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Abstract

This paper considers the impact of using the regularisation techniques for the
analysis of the (extended) skew normal distribution. The models are estimated using
Maximum Likelihood and compared to OLS based LASSO and ridge regressions
in addition to non- constrained skew normal regression. The LASSO is seen to
shrink the model’s coefficients away from the unconstrained estimates and thus
select variables in a non- Gaussian environment.

1 Introduction & Motivation

Variable selection is an important issue for many fields. It is also noticeable that not all
data conforms to the standard of normality. This paper addresses the issue raised by
Bühlmann [2013] of the lack of non-Gaussian distributions using regularisation methods.
Within the statistics literature there are many applications of penalised regressions.
There are other fields such as finance and econometrics where these approaches are
less common. This paper extends this to consider situations where shrinkage of the
coefficients might be helpful and one has an a priori expectation of non-normality in the
data.

Variable selection is an important part of the modelling process. A number of ap-
proaches such as stepwise regression or subset regression have previously been used
with metrics such as Aikake Information Criteria (Akaike [1974]) used as the decision
criterion. There are well documented problems with these approaches. The use of reg-
ularised regressions mitigate these problems. The coefficients are shrunk towards zero,
which creates a selection process.

In the majority of cases, the use of the regularisation techniques are based upon
Gaussian distributed errors and Ordinary Least Squares. Though in many cases this
is sufficient, there are many cases such as those in finance where normality is not an
appropriate assumption. This paper looks to add to the regularisation literature by
extending the Least Absolute Shrinkage & Selection Operator (henceforth LASSO (Tib-
shirani [1996]) to accommodate shrinkage within the higher moments via the use of the
extended skew normal based regression model (Adcock & Shutes [2001] & Shutes [2004]).
The method proposed here uses the technique of the LASSO, i.e. the introduction of
ℓ1 norms, but in contrast to the literature based on Gaussian regression, further norms
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are introduced on the skewness parameters. This will imply that in addition to the
variable selection made via the standard approach the method also performs a selection
of non-normality as the extra parameters control the skewness and kurtosis.

The rest of the paper is organised as follows. A consideration of the extended skew
normal and the LASSO is presented with the relevant estimation and an example to
conclude. A standard data set from the machine learning literature, that of diabetes
patients is used (see Efron et al. [2004] where it is more fully described). All estimation
was performed in R [2008] with package Azzalini [2013].

2 Literature Review & Definitions

2.1 Regularization

In many fields, regularisation has a substantial history. In circumstances of ill-formed
problems, such as multi-collinearity or non-full rank in the independent variable matrix,
it is possible to use these approaches. Ridge regression is perhaps the best known
example (for example Hoerl & Kennard [1970]), where the problem of multicollinearity
is dealt with by the imposition of a constraint on the coefficients of the regressions. This
estimator is known to be biased however it is the case that the approach gives estimators
with lower standard errors. The ridge and the LASSO exhibit an equivalence between
the penalty formulation and that of a Lagrangean, with a correspondence between the
Lagrange multiplier and the value of ǫ as shown in Osborne et al. [1999]. The penalised
function for the estimation is given by:

βR = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

s.t. βTβ ≤ ǫ (1)

= argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

+ νβTβ

=
(

XTX + νI
)

−1
XT y

This approach does not perform any form of variable selection as, although it does
shrink coefficients, it does not shrink them to 0. The ν parameter1 acts as the shrinkage
control with ν = 0 being no shrinkage and therefore ordinary least squares. This can
be compared to the Least Absolute Shrinkage & Selection Operator (LASSO). In this
case the penalty is based on the ℓ1 norm rather than the ℓ2 norm of the ridge approach.
Hence the problem becomes:

βL = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

s.t. | β |≤ ǫ (2)

= argmin
β

(

Yi − β0 −XT
i β
)T (

Yi − β0 −XT
i β
)

+ ν | βT | 1

1Traditionally the Lagrangean multiplier is denoted λ, however due to the use of λ as the skewness
parameter in the distribution, the Lagrangean is denoted ν throughout this paper.

2



Pr
el
im
in
ar
y
D
ra
ft

The variable selection property is clearly shown graphically in Figure 1 when consid-
ering two parameter estimates, with the LASSO (black) and ridge (red). The estimator
loss functions are shown as ellipses. The point of tangency are the estimates for each

Figure 1: Differences Between LASSO & Ridge Regressions
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technique. The LASSO shrinks β1 to 0, whereas the ridge regression approaches it. The
OLS estimator is given as β̂. The parameter ν controls the amount of penalty applied to
the parameters for the LASSO. Fu and Knight [2000] show that under certain regularity
conditions, the estimates of the coefficients are consistent & that these will have the
same limiting distribution as the OLS estimates.

There is a generalisation such that the γ-th norm is used. This is the bridge estimator.
The γ-th norm is defined as:

|| β ||γ=
(

∑

| βi |
γ
) 1

γ

(3)

This therefore implies that the bridge regression, despite first impressions will not select
variables unless γ < 1 in which case the penalty function is non-concave and the estimates
may not be unique, though they may be set at zero. These estimators, LASSO, bridge
and ridge are all forms of Bayesian estimator with priors based on a LaPlace or variants
of this based on a log exponential function.
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2.2 The Skew Normal Distribution

The skew skew normal distribution has become increasingly well used within a number
of fields since its initial description by Azzalini [1985]. A particularly attractive feature
of the distribution is that it includes the Gaussian as a limiting case. In its simplest
form the distribution is described by the following density function:

h (y) = 2φ (y) Φ (λy) (4)

−∞ < λ <∞

−∞ < y <∞

with λ controlling the degree of skewness of the distribution. The case λ=0 will lead to
a standard normal distribution.

Azzalini [1985] & [1986] proposes that the skew normal distribution is best thought
of as a combination of a symmetric element and a skewing element, which is a truncated
normal distribution with mean of 0. This is generalised in Arnold & Beaver [2000] and
Adcock & Shutes [2001] where the truncated normal has a mean of τ . Thus the density
function can be written as:

f (r) =
1

Φ (τ)
φ
(

r;µ+ λτ, σ2 + λ2
)

Φ





τ + λ
σ2 (r − µ)
√

1 + λ2

σ2



 (5)

where φ and Φ are the probability density and cumulative functions of the normal
distribution respectively.

It is possible to use the following parameterization, with γ and ω2 being the mean
and the variance of the normal part of the distribution respectively:

γ = µ+ λτ (6)

ω2 = σ2 + λ2

ψ =
√

σ2 + λ2
λ

σ
= ω

λ

σ

ψ2

ω2
=

λ2

σ2

This parameterisation allows a simpler description of the distribution. This is not a
unique transformation. However the definitions used are easily extendable to the multi-
variate distribution. The probability density function can be expressed in terms of these
parameters as:

fR(r) =
1

Φ(τ)
φ(r; γ, ω2)Φ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(r − γ)

)

(7)

where φ(x;µ, σ2) is the probability density function of a normally distributed variable
with mean µ and variance σ2. This gives an extension to the standard skew normal
distribution, known as the extended skew normal.
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The application of the LASSO type approach to the skewed family of distributions
is limited. Wu et al. [2012] consider the variable selection problem for the skew normal
family. However they use a fixed but estimated skewness parameter in essence removing
the skewness problem in conjunction with a quadratic expansion of the penalised like-
lihood to give a tractable solution. Their focus is very much on the location and scale
parameters rather than the skewness with a view to modelling the variance as an entity
as well as the mean i.e. regression style models. The penalised likelihood approach used
both in Wu and here is found in Fan and Li [2001]. This allows both the estimation and
standard errors to be estimated despite the singularity introduced by the constraint.

3 Likelihood Functions

In order to use the LASSO style estimators, it is necessary to consider the relevant like-
lihood estimators in light of the constraints. We can think of the constrained likelihood
as having two elements, the objective and the constraint.

The likelihood function of the extended skew normal distribution is somewhat non-
linear. Using the specification above, the likelihood is given by:

ℓi(y; τ, γ, β, ψ, ω
2) = − lnΦ(τ)−

1

2
lnω2 −

1

2
ln 2π −

1

2ω2
(yi − β0 − βxi − γ)2 (8)

+ lnΦ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(yi − β0 − βxi − γ)

)

− ν1 (|| β ||1 + || ψ ||1 + || τ ||1)

This is the standard log-likelihood function for the extended skew normal with the
addition of the LASSO penally for the coefficients and the skewness parameter.

The regression coefficients where the constraints can potentially bind are given below.

∂ℓ

∂β
=

x

ω2
(y − βx− γ)−

ψ

ω2
xζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)

− sgn(β)ν1 (9)

4 Estimation

For Gaussian based estimations it is possible to leverage the co-ordinate descent approach
to update the estimates of the relevant coefficients until convergence to the LASSO
solution occurs. Assuming uncorrelated predictors, the updating procedure can be based
on the product of the residuals and the relevant predictors and the value of the Lagrange
multiplier. This produces a whole path solution with the different solutions for the
problem providing the starting point for the next optimisation thus reducing the issues
with convergence2 and speed. The approach taken here is to use direct estimation of the
likelihood function for the distributions where τ is unconstrained (the extended skew
normal) and where it is constrained to τ = 0, the skew normal. Each estimator used

2As noted in Azzalini and Capitanio [1999] the likelihood function of the skew normal is not convex
in its standard form.
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the previous estimate as the starting point of the algorithm to increase the speed of the
estimation.

4.1 Estimation with Maximum Likelihood

Estimation was performed using a maximum likelihood approach with the nuisance pa-
rameter, ν being based on a grid in the first case and then cross validation being used to
optimise the choice of this parameter. Using the non-constrained maximum likelihood
estimates as the initial points to aid in convergence, the estimations were performed with
a transformation of the parameter ν to exp(ν). This leads to more satisfactory conver-
gence of the algorithms and allowed a greater range of the parameter than a simple
linear constraint would allow.

The estimation of ν used a 10-fold cross-validation over an identical grid of ν pa-
rameter values. The CV errors are calculated off the hold-out sample of this, with the
ν selected by the min+1S.E. rule of thumb being used as a fixed parameter within the
final, whole sample estimation. Thus the process involves sampling in order to estimate
the nuisance parameter, with that value then being used to select the model using the
whole data set.

5 Data & Maximum Likelihood Estimation

The data used was a standard machine learning example, the diabetes dataset (from
Efron et al. [2004]). These relate the progress of diabetes over a year to the age, weight,
BMI and various serum measurements. There are 442 observations with the first non-
interaction terms used. The data are standardised to have 0 mean and an unit ℓ2-norm.
Though this is not a p >> n situation, it serves to demonstrate the technique and places
this approach in the corpus of penalised regression.

This is supplemented with a set of simulations based on 10 variables with lengths of
10000 and 1000 observations. Fifty different sets of data are used to demonstrate the
properties of the estimation. This is performed with the mean and standard error of the
mean, median and 25th and 75th quantiles given.

5.1 Simulated Data

Fifty simulated data sets of both 1000 and 10000 observations were created with specific
seeding points. These contained 10 independent variables. The data generating process
was identical for all of the simulations (β1 < 0, β2 < 0, β3 > 0 and β5 > 0 are all
non-zero). The estimates are reported as a proportion of the full Maximum Likelihood
estimators.

Those variables that are included in the data generating process are stable around
the MLE coefficients (qv. Figures 2a and 4a), whereas those omitted from the data
generating process are restricted and converge to zero (Figure 2a & 4a ) and have a
mean of zero (Figures 2b & 4b). These have a wider dispersion than the variables
included in the data generating process.

6



Pr
el
im
in
ar
y
D
ra
ft

Results for both the lengths are similar in substance, though the dispersion is higher
in the smaller data sets. In both cases the skewness parameters (γ and τ) converge
to zero as the penalty increases even though the actual value is not zero (Figures 3a
and 5a with mean values shown in Figures 3b and 5b). This is in part due to the non-
linearities associated with the likelihood function. The instability that this creates gives
a median value of zero. The model is penalising the asymmetry and removing it from
the regression in these cases.

Figure 2: Paths of LASSO Coefficients for the Skew Family of Distributions for the
Simulated Data

(a) LASSO Regression Coefficients (β) of Variables
by ν (N=10000)
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(b) Mean LASSO Regression Coefficients (β) of Vari-
ables by ν (N=10000)
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Figure 3: Skewness Parameter Estimates

(a) Skewness Parameter Estimates of Simulation
Data (N=10000)
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(b) Mean Skewness Parameter Estimates of Simula-
tion Data (N=10000)
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5.2 Diabetes Data

The results are presented with skew normal (τ = 0) and extended skew normal (τ ≶ 0),
Gaussian LASSO and Ridge regressions in Table 1. The Maximum Likelihood approach
used a grid of Lagrange multipliers and the coefficients from each of these values are
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Simulated Data

(a) LASSO Regression Coefficients (β) of Variables
by ν (N=1000)
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(b) Mean LASSO Regression Coefficients (β) of Vari-
ables by ν (N=1000)
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Figure 5: Skewness Parameter Estimates

(a) Skewness Parameter Estimates of Simulation
Data (N=1000)
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(b) Mean Skewness Parameter Estimates of Simula-
tion Data (N=1000)
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recorded. These are presented graphically in Figures 6a and 6b with the coefficients
presented as a proportion of the unconstrained maximum likelihood estimates3. As
can be seen the estimates converge to zero as the penalty increases. A number of
coefficients were somewhat unstable for the skew normal, though this is less problematic
for the extended skew normal estimations. This is due to the relative smoothness of
the likelihood functions under specific conditions (examples are given in Azzalini and
Capitanio [1999]).

The path of the regression coefficients are given in Figure 6a and 6b using a grid-
based path. These are given as a proportion of the unconstrained estimates (with a sign
modification to aid visualisation). These diagrams show the variable selection ability of
the LASSOs.

The LASSO parameter, ν is selected using the 10-fold cross validation. Using the
rule of thumb that one should maximise the cross validated parameter within a standard
error (Breiman et al. [1984]) of the MSE of the minimum, the optimal value of ln(ν) is
-3.4 for the skew normal and -3.6 for the extended version as is shown in Figure 7a &
7b respectively. The relevant ν parameters are shown in Figures 6a & 6b as the vertical
dashed line. These results demonstrate that there is variable selection under both the
skew normal and the extended skew normal LASSOs. The regression coefficients have a
similar path for each of the distributions, though not identical.

The selection implies that the variables 2, 3, 4, 7 and 9 are to be included in the skew
normal model model with the other coefficients being less than 1% of their standard MLE
estimate with variable 10 also included in the ESN LASSO as in the case of the Gaussian
LASSO. The skew normal LASSOs do not include variable 5 unlike the standard LASSO.

The parameters associated with the skewness, λ and τ , are estimated from the like-
lihood function. These are presented below in Figure 8a & 8b. What is immediately
obvious is that the skewness parameter under the non-extended formulation is erratic,
whereas under the extended form there is more direct convergence.

The underlying distributions with λ & τ at the cross validated parameter value of
ν is shown in Figure 9. As can be seen, the distributions are very similar. The ratio of
the extended to unextended variants has a range of 5% and has a maximum difference
in the tails. This is to be expected as the extended skew normal’s extra parameter does
allow control over the tails of the distribution.

The OLS ridge regression shrinks the coefficients towards 0 however this is not as
extreme as that of the LASSO in both the Gaussian and non- Gaussian scenarios. The
(leave one out) cross validated LASSO Gaussian coefficients are also given in Table
1. These were estimated using glmnet (Friedman et al. [2010]). The penalty for the
ridge regression is selected using the approach of Cule and De Iorio [2012] based on
cross-validation. There is more shrinkage under the skew normal approaches to the
LASSO. Thus the skew normal creates a more parsimonious regression but the skewness
parameters are non-zero. There is therefore a trade-off between a more parsimonious

3Given that the LASSO parameter is re-parameterized as expν , the unconstrained optimum is given
as a small step away from the start of the grid search in order to demonstrate the shrinkage across the
range.
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Figure 6: Path of LASSO Coefficients for the Skew Family of Distributions

(a) Path of Skew Normal LASSO Regression Coefficients (β) by ν
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(b) Path of Extended Skew Normal LASSO Regression Coefficients (β) by ν
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Figure 7: Cross Validation Results for the Selection of ν, the LASSO parameter for Skew
and Extended Skew Normal

(a) Cross Validation of Skew Normal LASSO
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(b) Cross Validation of Extended Skew Normal LASSO
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regression and a parsimonious distribution.
The skew parameters are acting to counter-act the variable not included.

Figure 8: Skewness Parameters for the Skew and Extended Skew Normal

(a) Path of Skewness Parameter λ for the Skew Nor-
mal LASSO
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(b) Path of Skewness Paramters λ & τ for the Ex-
tended Skew Normal LASSO
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Figure 9: Distribution of Skew Normal Distributions from Parameter Estimates

(a) Distribution of the Skew Normal & Ex-
tended Skew Normal at estimate of ν
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Table 1: Estimates of the Skew Normal LASSO for Diabetes Data

SN LASSO ESN LASSO SN MLE ESN MLE LASSO Ridge OLS
Coef Coef SN SE ESN SE CV.LASSO Ridge Ridge SE OLS OLS SE

µ 151.487 152.719 152.1335 2.544 152.133 2.552 152.133 152.133 NA 152.133 2.576
β1 - - -10.012 59.297 -7.231 59.191 - -4.816 57.599 -10.012 59.749
β2 -40.484 -105.654 -239.819 61.070 -234.654 60.651 -196.053 -228.124 58.710 -239.819 61.222
β3 507.480 514.916 519.840 65.816 529.039 65.915 522.070 515.391 63.156 519.840 66.534
β4 213.516 244.548 324.390 64.804 320.971 64.811 296.268 316.125 62.340 324.390 65.422
β5 - - -792.184 414.036 -101.146 415.433 -102.047 -206.171 102.045 -792.184 416.684
β6 - - 476.746 337.776 -84.037 338.006 - 13.835 99.620 476.746 339.035
β7 -120.622 -170.463 101.045 209.892 -197.840 211.517 -223.27 -150.203 91.810 101.045 212.533
β8 - - 177.064 159.876 106.878 160.037 - 115.787 114.508 177.064 161.476
β9 480.669 458.722 751.279 170.958 488.531 171.222 513.684 518.312 76.632 751.279 171.902
β10 - 13.586 67.625 65.334 70.653 65.368 53.937 75.172 63.061 67.625 65.984
ν 0.033 0.027
log(ν) -3.4 -3.6
λ 0.014 -9.627 0.005 0.101 -118.631 0.000
σ 55.081 55.237 53.476 1.799 53.648 1.816
τ 0 2.710 43.242 0.000
lp -2444.44 -2434.91 -2385.99 -2387.43

Key:
ESN LASSO= Estimation of Extended Skew Normal LASSO with coefficients greater than 1% of ESN MLE
SN LASSO= Estimation of Skew Normal LASSO with coefficients greater than 1% of SN MLE
SN MLE= Estimation of Skew Normal by MLE
LASSO= Gaussian based LASSO with penalty parameter estimated using Cross Validation
Ridge= Gaussian based Ridge with penalty parameter estimated using Cross Validation
OLS= Gaussian based regression
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6 Conclusions

The skew normal is an example of a well developed class of asymmetric distributions.
This paper has shown that it is possible to adapt the estimation of regressions based on
this distribution to include a LASSO type penalty. This is seen to shrink the estimates
of regression coefficients and thus perform a variable selection role. This therefore allows
the analysis of data using a non- Gaussian toolbox and thus address the issue raised by
Bühlmann [2013]. Natural extensions from this work include a generalisation from the
skew normal distribution to include other, spherically symmetric distributions. These,
such as the skew Student distribution would increase the application of these approaches
to situations where higher moments are critical such as finance. Further the extension
of the LASSO to its generalisation of the elastic net is also possible as is the Bayesian
estimation using double exponential priors on the regularised coefficients.

The skew normal family of LASSOs will trade off the distribution complexity with the
regression complexity relative to the Gaussian distribution. The skewness parameters
act in the same manner fundamentally as the regression coefficients with the approach
constraining them towards 0 as the penalty increases. Thus the Gaussian and the skewed
variants will converge if the skewness parameters are driven towards 0 relatively soon in
the process.
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