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Abstract

We re-examine the dynamics of returns and dividend growth within the

present-value framework of stock prices. We �nd that the �nite sample order

of integration of returns is approximately equal to the order of integration of

the �rst-di¤erenced price-dividend ratio. As such, the traditional return fore-

casting regressions based on the price-dividend ratio are invalid. Moreover,

the nonstationary long memory behaviour of the price-dividend ratio induces

antipersistence in returns. This suggests that expected returns should be mod-

elled as an ARFIMA process and we show this improves the forecast ability

of the present-value model in-sample and out-of-sample.

JEL Classi�cation: G12, C32, C58

Keywords:price-dividend ratio, persistence, fractional integration, return

predictability, present-value model.

�Golinski (corresponding author, adam.golinski@york.ac.uk) and Madeira
(joao.madeira@york.ac.uk) are at the University of York, Department of Economics and Re-
lated Studies; Rambaccussing (d.rambaccussing@dundee.ac.uk) is at the University of Dundee,
Economic Studies. We are grateful to participants of the seminar at the University of Exeter and
participants at the International Association of Applied Econometrics (Queen Mary) 2014 for
helpful comments.

1



1 Introduction

The price-dividend ratio has been shown to have strong forecasting power of future

returns at long horizons (see Fama and French (1988a) and Cochrane (1999)). The

prediction properties of the price-dividend ratio have a strong theoretical foundation

grounded in the present-value (PV) identity, popularized in the log linear form by

Campbell and Shiller (1988). As shown in Cochrane (2005), price-dividend ratios

"can only move at all if they forecast future returns, if they forecast future dividend

growth, or if there is a bubble � if the price-dividend ratio is nonstationary and is

expected to grow explosively". Cochrane (2008a) argues that the lack of predictabil-

ity of dividend growth reinforces the evidence for forecastability of stock returns.

However, many research studies have pointed out that return predictability has been

overstated due to the highly persistent price-dividend ratio (e.g. Stambaugh (1986),

Stambaugh (1999), Mankiw and Shapiro (1986), Hodrick (1992) and Goyal and Welch

(2003)).

Many (see Cochrane (2005)) however, �nd it implausible that the price-dividend

ratio has unit root properties (i.e. are integrated of order one), since this would

mean that the series is unbounded (implying that it can achieve negative values and

go to in�nity). As such, it is tempting to think that the price-dividend ratio process

is, in fact, a persistent but, nonetheless, a mean reverting process (long memory in

price-dividend ratio was earlier suggested by Andersson and Nydahl (1998) in the

context of a test of rational bubbles). Our paper re-examines the hypothesis of time

variation in expected returns from the perspective of long range persistence in the

price-dividend ratio (that is, fractionally integrated of order higher than zero but

smaller than one). Indeed, we �nd the price-dividend ratio to exhibit long memory

and estimate it to have an order of integration of about 0.8.1 We show that the
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relation between returns, dividend growth and price-dividend ratio implies that the

order of integration of returns is (in �nite sample) approximately equal to the order

of integration of the �rst di¤erenced price-dividend ratio. We �nd the time series of

returns to be integrated of order -0.2, con�rming this conjecture.2

The fact that the variables in simple linear regression have di¤erent orders of

integration invalidates statistical inference (see Maynard and Phillips (2001)). The

negative fractional order of integration in returns and dividend growth in the data

must be taken into account when estimating the PV model of stock prices. This

motivates specifying the expected return and expected dividend growth series in

a PV model as autoregressive fractionally integrated moving average (ARFIMA)

processes. We derive the unobserved series for expected returns and expected divi-

dend growth through a structural state-space approach. The state-space (or latent-

variables) representation has shown to be a �useful structure for understanding and

interpreting forecasting relations� as stated by Cochrane (2008b). Recent important

examples of this include Van Binsbergen and Koijen (2010) and Rytchkov (2012),

who found the state-space methodology to be able to increase the return forecast R2

over price-dividend ratio regressions. As in these papers, we specify expected returns

and expected dividend growth as latent variables de�ned within a PV model of the

aggregate stock market to which we subsequently apply the Kalman �lter and obtain

parameter estimates through maximum likelihood.

The fractional integration parameter in expected returns is found to be statisti-

cally signi�cant and negative. Using model selection criteria we �nd theARFIMA(1; �; 0)

model for expected returns and ARMA(1; 1) for expected dividend growth to be the

preferred speci�cation. Our results suggest that allowing for an autoregressive frac-

tionally integrated process in expected returns leads not only to a better in-sample

�t to the data but also to a better out-of-sample forecast. Assuming expected re-

3



turns follow an autoregressive process of order one results in R2 values ranging from

13 to 14 percent for returns and about 32 percent for dividend growth rates in the

1926-2011 sample. The use of an autoregressive fractionally integrated process in ex-

pected returns results in R2 values for returns of about 20 percent and a range of 36

to 38 percent for dividend growth rates in the 1926-2011 sample. Several prediction

exercises on the last 40 years of data (1971� 2011) con�rm the relevance of using a

model which accounts for fractional integration in improving the forecast ability of

the PV model both in-sample and out-of-sample. Assuming a �rst order autoregres-

sive process of expected returns results in R2 values of about 3 percent for returns

and a range of 11 to 15 percent for dividend growth rates in-sample and negative R2

for returns and about 7 to 12 percent for dividend growth rates out-of-sample. On

the other hand, the use of an ARFIMA process in expected returns results in R2

values for returns of about 9 percent and about 13 to 17 percent for dividend growth

rates in-sample, and out-of-sample R2 values of about 1 to 4 percent for returns and

9 to 13 percent for dividend growth.

Using Mincer-Zarnowitz style regressions (Mincer and Zarnowitz (1969)) we check

that our model produces latent counterparts that jointly match the time series proper-

ties of returns and dividends very well. The expected returns and expected dividend

growth series forecast observed series better than the AR(1) model by Van Bins-

bergen and Koijen (2010) both in-sample and out-of-sample. Our �ltered series of

expected returns and expected dividend growth are clearly countercyclical, which is

in line with many other studies (e.g. Chen, Roll and Ross (1986), Fama and French

(1989), Fama (1990), Barro (1990)).3

This paper is related to the research stream focused on testing for long memory

in stock returns and volatility. While long memory has been well documented in the

volatility literature, the evidence of long memory in returns is rather weak.4 Our
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results support to the view that fractional integration processes are relevant in asset

pricing.

The remainder of the paper is organized as follows. Section 2 explores the po-

tential imbalance in the return forecasting regression due to the high persistence in

the price-dividend ratio. In section 3 we set out the PV model with ARFIMA dy-

namics. In section 4.1 we describe the data. Section 4.2 describes the estimation

methodology and results while in section 4.3 we present a series of diagnostics of the

model. Section 4.4 presents the out-of-sample performance of particular models. We

examine the business cycle �uctuations of the model implied expected returns and

dividend growth in Section 4.5. Section 5 concludes.

2 The implications of persistence in the price-dividend ratio

We start by de�ning the aggregate stock market�s total log return (rt+1) and log

dividend growth rate (�dt+1) as:

rt+1 � log
�
Pt+1 +Dt+1

Pt

�
; (1)

�dt+1 � log
�
Dt+1
Dt

�
: (2)

The price-dividend ratio (PDt) is:

PDt �
Pt
Dt
:

Using pdt � log(PDt) and (2) one can then re-write the log-linearized return (1) as:

rt+1 ��dt+1 ' �+ �pdt+1 � pdt; (3)
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with pd = E(pdt), � = log(1 + exp(pd))� �pd; and � = exp(pd)

1+exp(pd)
(see Campbell and

Shiller (1988)).

We now proceed to the analysis of the data (see section 4.1 for details). Figure 1

shows the time series for the log of the price-dividend ratio. The price-dividend ratio

is lower preceding economic booms and high values preceding recessions, suggesting

it could be relevant for forecasting returns. One can also observe that it is a very

persistent variable. In Table 1 we report the results of the following regression:

pdt+1 = �+ � � pdt + ut+1: (4)

The estimated coe¢cient on the lagged price-dividend value is very close to one

(0.9417). Table 1 also reports the results of the Augmented Dickey-Fuller unit root

test (Dickey and Fuller (1979)). The t�statistic (�1:52) is much smaller than the

5% critical value (�2:9), which means that we cannot reject the null of a unit root

in the series.5 Thus, in principle the nonstationarity of the price-dividend ratio

invalidates a return forecasting regression (see Granger and Newbold (1974)) of the

type considered by Fama and French (1988a):

rt+1 = �+ � � pdt + ut+1: (5)

However, as discussed in the previous section it is likely that the price-dividend ratio is

integrated of order less than one but we fail to reject the null due to the small power

of the test. In Table 2 we explore further the possibility that the price-dividend

ratio is a variable with long memory or long range persistence (i.e. fractionally

integrated of order higher than zero but smaller than one). Table 2 reports the

estimates of the order of integration of the price-dividend ratio, returns and dividend
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growth series obtained using three di¤erent semi-parametric estimators, proposed

by Geweke and Porter-Hudak (1983), Robinson (1995) and Shimotsu (2010). The

Shimotsu estimator, as opposed to the other two, has been designed to deal with a

nonstationary time series. As can be seen, the estimates of the fractional parameter

(�) revolve around 0.8, meaning that the series is a nonstationary but mean-reverting

process. On the other hand, the time series of returns and dividend growth seem to

exhibit antipersistence (i.e. are integrated of order smaller than zero). Inference and

forecasting based on estimates of (5) is therefore invalid (as shown by Maynard and

Phillips (2001)) due to the di¤erent order of integration of the variables included in

it.

At this point, we should consider as well the balance in the order of integration in

the log-linearized return equation, (3). A closer inspection of (3) reveals that, due to

the discount parameter (�) being very close to unity, the return series is (almost) over-

di¤erenced. Indeed, as reported in Table 2, the estimate of the fractional integration

parameter for the return series is about �0:2, which is exactly the expected order

of integration of the price-dividend ratio after taking �rst di¤erence. Naturally, this

also applies to the dividend growth process (the point estimates of � for dividend

growth are more negative than those of returns, but well within a con�dence interval

of two standard deviations of �0:2).

The PV model (see Campbell and Shiller (1988) and Van Binsbergen and Koijen

(2010)) is derived from the return accounting identity shown in (3). The preceding

analysis indicates that taking into account the fractional integration of returns and

dividend growth should allow for improved statistical inference.
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3 The Present-Value Model

In this section we present a log-linearized PV model of stock prices similar to that

of Van Binsbergen and Koijen (2010). The crucial di¤erence is the way we model

the persistence in expected returns. Van Binsbergen and Koijen (2010) speci�ed ex-

pected returns as an AR process while we will consider the more general ARFIMA

process. The discussion in the previous section indicates that the ARFIMA process

should improve the ability of the PV model in accounting for the data. In our

empirical application we consider two di¤erent speci�cations for expected returns

(mt � Et[rt+1]) and expected dividend growth (gt � Et[�dt+1]); we model ex-

pected returns as an ARFIMA (1; �m; 0) process and expected dividend growth as

an ARMA(1; 1) process:6

(1� �mL)(1� L)�m(mt � �m) = "m;t; (6)

(1� �gL)(gt � �g) = (1 + �gL)"g;t; (7)

where L is the the lag operator and j�mj < 1=2 is a fractional integration parameter.

For the sake of notational simplicity, since the fractional integration term (�m) and

moving average term (�g) are unique, from now on we will call them simply � and

�, respectively. When � = � = 0 then our model becomes identical to that in

Van Binsbergen and Koijen (2010).

It is often convenient (see Cochrane (2008b)) to re-write the model as an in�nite

moving average:7

mt = �m + "m;t + 'm;1"m;t�1 + 'm;2"m;t�2 + : : : ; (8)

gt = �g + "g;t + 'g;1"g;t�1 + 'g;2"g;t�2 + : : : : (9)
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An AR(1) speci�cation of the expected returns time series process, imposes a tight

restriction on the moving average coe¢cients, such that 'm;j = �jm. The addition

of the fractionally integrated component and the extension to the ARFIMA(p; �; q)

series allows for additional �exibility in modelling the series dynamics. If the frac-

tional integration parameter (�) is larger than zero the series is characterized by slow

decay of autocorrelations, at an hyperbolic rate. On the other hand, if � < 0, we

say that the series is antipersistent. For � = 0 the series is a simple short memory

process and the model reduces to an ARMA(p; q). Moreover, the series is stationary

if � < 1=2 and invertible if � > �1=2.8

For estimation purposes we will use a state space representation of mt and gt.

Thus, we specify the state space equations:

mt = �m +w
0Cm;t; (10)

gt = �g +w
0Cg;t; (11)

where w = [1 0 0 � � � ]0, and Cr;t and Cd;t are in�nite dimensional state vectors. The

transition equations are

Cm;t+1 =FCm;t + hm"m;t+1; (12)

Cg;t+1 =FCg;t + hg"g;t+1; (13)
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with F, hm and hg given by:

F =

2
6666664

0 1 0 � � �

0 0 1

...
. . .

3
7777775
; hm =

2
66666666664

1

'm;1

'm;2

...

3
77777777775

; hg =

2
66666666664

1

'g;1

'g;2

...

3
77777777775

:

As in Van Binsbergen and Koijen (2010), the realized dividend growth rate is equal

to the expected dividend growth rate plus an orthogonal shock:

�dt+1 = gt + "d;t+1: (14)

Rearranging (3) for the price-dividend ratio and iterating forward we obtain the PV

identity

pdt =
�

1� � + Et
1X

j=1

�j�1�dt+j � Et
1X

j=1

�j�1rt+j ; (15)

which relates the log price-dividend ratio to expected future dividend growth and

returns.

Using (12) and (13) in (14) and (15) we obtain the following measurement equa-

tions:

�dt+1 = �g +w
0Cg;t + "d;t+1; (16)

pdt =A+ b
0Cg;t � b0Cm;t; (17)

where A = (�+ �m � �g)=(1� �) and b = [1; �; �2; � � � ]0.

We now need only specify the covariance matrix of the �structural� shocks (which

we assume to have mean zero and to be independent and identically distributed over

10



time) to complete the speci�cation of this model:

� � var

0
BBBBBB@

2
6666664

"m;t+1

"g;t+1

"d;t+1

3
7777775

1
CCCCCCA
=

2
6666664

�2m �mg �md

�mg �
2
g �gd

�md �gd �2d

3
7777775
:

The vector of parameters to be estimated is:

� = (�m; �m; �; �g; �g; �; �m; �g; �d; �mg; �gd; �md);

where �mgr ; �gd and �md are correlation coe¢cients de�ned as: �mg = �mg=(�m�g); �gd =

�gd=(�g�d) and �md = �md=(�m�d).

4 Estimation

4.1 Data and Methodology

In our empirical investigation we use value-weighted NYSE/Amex/Nasdaq index data

available from the Center for Research in Securities Prices (CRSP). We downloaded

monthly data from January 1926 to December 2011 with and without dividends to

construct series of annual returns.9 These are the same series as in Van Binsbergen

and Koijen (2010) and Rytchkov (2012) but updated to include observations for more

recent years. We then obtain real returns and real dividend growth series by using

the CPI index from the US Bureau of Labor Statistics.10 Since the PV model is a

�rst order approximation, it does not hold exactly for the observed data. Following

Cochrane (2008a) and Van Binsbergen and Koijen (2010) we use exact measures of

returns to �nd the dividend growth rates from the PV model and use it in subsequent

analysis.11

We estimate four di¤erent speci�cations: AR(1)�AR(1), AR(1)�ARMA(1; 1),
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ARFIMA(1; �; 0) � AR(1) and ARFIMA(1; �; 0) � ARMA(1; 1), where the time

series speci�cations refer to expected returns and expected dividend growth, respec-

tively.

As pointed out by Rytchkov (2012) and Cochrane (2008b), the dimension of the

covariance matrix of shocks is not identi�ed in our system. Following Rytchkov

(2012) and Van Binsbergen and Koijen (2010) we set the correlation between the

expected dividend growth and unexpected dividend innovation to zero (�gd = 0).

Additionally, we found that the correlation between expected returns and unexpected

dividend growth (�md) in all our estimated models to be close to zero and statistically

insigni�cant. As such, we decided to set it to zero as well, in order to reduce the

number of parameters and increase the power of the estimation.

The remaining parameter values are obtained by means of maximum-likelihood

estimation (MLE). We assume that the error terms have a multivariate Gaussian dis-

tribution, which, since the measurement and transition equations consist of a linear

dynamic system, allows us to compute the likelihood using the Kalman �lter (Hamil-

ton (1994)).12 The transition equations are given by (12), (13) and the measurement

equations (16) and (17). Despite the fact that the state vectors are in�nitely dimen-

sional, Chan and Palma (1998) showed that the consistent estimator of an ARFIMA

process is obtained when the state vector is truncated at the lag l �
p
T . In estima-

tion of the model we use the truncation at l = 30, but the results are robust to other

choices.

4.2 Results

We found that, according to the t�test, the four model speci�cations to have all the

parameters as statistically signi�cant (except for the intercept of expected dividend

growth). The estimates are reported in Table 4.
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The dynamics of expected returns have a strong positive autoregressive compo-

nent and a negative fractional integration component. Allowing for fractional in-

tegration in the model increases the estimate of the autoregressive coe¢cient from

about 0:83 to about 0:89. The high persistence of expected returns is consistent with

the �ndings in the literature (see Fama and French (1988a), Campbell and Cochrane

(1999), Ferson, Sarkissian and Simin (2003), and Pástor and Stambaugh (2009)).

The autoregressive coe¢cient for expected dividend growth is strongly negative

(this is in line with the results in Van Binsbergen and Koijen (2010), who also found

similar results in the case of market-invested dividends), in the range �0:53 to �0:61

when assuming AR(1) dynamics. Extending the model of expected dividend growth

from AR(1) to ARMA(1; 1) renders an even more negative autoregressive coe¢cient

(around �0:88). The moving average component in dividend growth is about 0:6 and

has relatively large standard errors (about 0:24).

As in Van Binsbergen and Koijen (2010) we �nd the correlation between expected

dividend growth rates and expected returns to be positive, high and statistically

signi�cant (this is consistent with the work of Menzly, Santos and Veronesi (2004),

and Lettau and Ludvigson (2005)).

The descriptive statistics of the estimated models are reported in Table 5. The

�rst line shows the estimated number of parameters of particular models, which is

between 8 for the most parsimonious AR(1)�AR(1) to 10 for the ARFIMA(1; �; 0)�

ARMA(1; 1) model. The likelihood ratio test examines the null hypothesis of equal

�t to the data by particular models in relation to the most restricted model, which is

the AR(1)�AR(1). The test rejects the null hypothesis at the 10% signi�cance level

for the AR(1)�ARMA(1; 1), albeit marginally, and ARFIMA(1; �; 0)�ARMA(1; 1)

models. The 10% signi�cance level might seem rather high as a standard testing level,

but since our annual time series have only 86 observations the power of the test must

13



be appropriately adjusted.13

For model selection criteria we calculated the Akaike (AIC) and Bayesian Infor-

mation Criteria (BIC):

AIC =�2 ln(L) + 2k; (18)

BIC =�2 ln(L) + k ln(TN); (19)

where L is the likelihood function evaluated at the maximum, k is the number of

parameters, and T and N is the sample size in the temporal and cross-sectional

dimensions, respectively. The two criteria select di¤erent models as the preferred

one: the AIC favours the ARFIMA(1; �; 0) � ARMA(1; 1) model, while the most

parsimonious AR(1) � AR(1) is preferred by the BIC. As can be seen from the

information criteria formulae (18-19), the di¤erence in model selection stems from

the fact that while the BIC penalizes for the number of observations, the AIC does

not.

The next two lines of Table 5 report the sample standard deviations of expected

dividend growth and expected returns. As can be seen, the variability of the implied

time series increases when we allow for a more �exible model speci�cation than

AR(1)�AR(1). The variability of the expected excess returns almost doubles when

we move from the short memory models to the models that include the fractional

integration component. The standard deviation of the expected returns implied by

the AR(1)�AR(1)model is 3:82% and it goes up to 7:23% for the ARFIMA(1; �; 0)�

ARMA(1; 1) model. The ARFIMA speci�cation o¤ers a higher variability which is

more similar to the volatility of realized returns. On the other hand, the increase in

the variability of expected dividend growth is rather moderate and it does not exceed

1%.
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In the following line we report the sample correlation between the expected re-

turns and expected dividend growth. The correlation between the two series for the

AR(1) � AR(1) model amounts to 0:12, but adding only the moving average com-

ponent to the expected dividend process increases the correlation to 0:30. Adding

the fractional integration component to the expected returns series increases the

correlation to 0:38 for the ARFIMA(1; �; 0) � AR(1) model and to 0:5 for the

ARFIMA(1; �; 0) � ARMA(1; 1) model. Lettau and Ludvigson (2005). point out

that this large positive correlation is consistent with higher variation in expected

returns and expected dividend growth than apparent from the price-dividend ratio.

In the last two lines of Table 5 we report the R2 statistics calculated as:

R2r = 1�
vâr(rt �mF

t�1)

vâr(rt)
;

and

R2�d = 1�
vâr(�dt � gFt�1)

vâr(�dt)
:

where vâr is the sample variance, mF
t is the �ltered series for expected returns (mt),

and gFt is the �ltered series for expected dividend growth rates (gt). The �ltered

series are easily obtained from the Kalman �lter.

Two facts are striking from these numbers. The �rst important fact is the pre-

dictability of returns and its dependence on the assumed time series speci�cation. For

the AR(1)�AR(1) model the R2 amounts to 0:13 and it raises slightly to 0:14 when

allowing for ARMA(1; 1) process in expected dividend growth. However, when we

add the fractional integration component, the R2 jumps to 0:21. Van Binsbergen and

Koijen (2010) report R2 values of 8% to 9%, which is in line with our AR(1)�AR(1)

model.14

Our results show that in a reduced form framework it is important to consider
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carefully the underlying time series process. Second, the dividend growth process

seems very predictable. For the AR(1)�AR(1) model the R2 for dividend growth is

0:32 and it is the highest for the ARFIMA(1; �; 0)�AR(1) model, where it reaches

0:38. This is contrary to some results reported in related literature (e.g. Cochrane

(2008a)) but is on the other hand in line with, for example, Van Binsbergen and

Koijen (2010) and Koijen and Van Nieuwerburgh (2011).

4.3 Forecasts Diagnostics

In this section we formally evaluate the predictions given by the PV model. To do

so, we use the classic Mincer and Zarnowitz (1969) regressions, where the �ltered

series of expected returns and expected dividend growth are used as predictors:

rt+1 = �+ � �mF
t + ut: (20)

�dt+1 = �+ � � gFt + ut: (21)

Good predictors should be optimal (� = 1) and unbiased (� = 0). In Table 6 we

report the results of the regressions for returns in Panel A and for dividend growth

in Panel B. From Panel A we can see that all models have a negative bias and the

forecasts tend to �overshoot� the realized values of returns, as evidenced by negative

estimates of � and larger than 1 estimates of �. The statistical signi�cance of these

deviations seems to be particularly against the short memory models AR(1)�AR(1)

and AR(1) � ARMA(1; 1), as both the t�test values are larger than 2 in absolute

values, and the F test of the joint null hypothesis (H0 : � = 0 and � = 1) rejects the

null at the 5% and 10%, respectively. On the other hand, the models that incorporate

the long memory component are characterized by the intercept and slope coe¢cients

close to their hypothesized values, and their t�statistics and F test don�t reject the
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null hypothesis at any conventional signi�cance level. Additionally, we also test for

serial correlation in the residuals up to the second order. The models show a similar

performance. The null hypothesis of no correlation can be rejected at the 5% level

for the AR(1)�ARMA(1; 1) model, while the remaining models have p�values just

above 5%.

In Panel B of Table 6 we report the same statistics for the dividend growth se-

ries. We can see that all models display a signi�cant and positive bias of forecasts

as evidenced by the t�test values of the intercept exceeding 2. The slope coe¢-

cients, on the other hand are uniformly smaller than 1, but only the t�statistic for

the AR(1) � AR(1) model rejects the null at the 5% level. The joint hypothesis

is rejected for all models at the 5% level, which is the outcome of the statistical

bias of the intercept. The only model not rejected jointly at the 1% level is the

ARFIMA(1; �; 0) � ARMA(1; 1). The test of the serial correlation in residuals re-

jects the AR(1)�AR(1) model at the 5% level, and the ARFIMA(1; �; 0)�AR(1)

at the 10% level, while there is no evidence of serial correlation in residuals for the

AR(1)�ARMA(1; 1) and ARFIMA(1; �; 0)�ARMA(1; 1) models.

In summary, the short memory models exhibit strong departure from the unbi-

asedness and optimal hypothesis for returns and dividend growth. Especially bad

performance is noted for the AR(1) � AR(1) model that fails all the tests, both of

simple and joint hypotheses. Models which account for fractional integration seem

to yield good forecasts of returns and also improve the forecasts of dividend growth.

The ARFIMA(1; �; 0)�ARMA(1; 1) model seems to perform the best overall.

4.4 Out-of-Sample Forecast Exercises

Since it is well known that some models can predict stock returns very well in-sample

but perform badly out-of-sample (see e.g. Goyal and Welch (2003), and Welch and
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Goyal (2008)), we examine the out-of-sample forecasting ability of our time series

models in Table 7. Speci�cally, we consider prediction of the models on the last 40

years of data, that is 1971� 2011. Panel A presents the benchmark results obtained

from using the parameters estimated on the whole sample, thus it consists of in-

sample forecast. As can be seen, the chosen subperiod is much less predictable than

the whole period, since the R2 coe¢cients from both dividend growth and expected

returns are much smaller than those reported in Table 5. The models with the long

memory component show a better �t to both dividend growth and expected returns

time series in this subperiod (the AR(1)�AR(1) has lower R2r and R2�d values than

the ARFIMA(1; �; 0)�AR(1) model, while the AR(1)�ARMA(1; 1) also has lower

R2r and R
2
�d values than the ARFIMA(1; �; 0) � ARMA(1; 1) model). In Panels

B and C we report the out-of-sample forecast produced by two methodologies. In

Panel B we report the results obtained by estimating the models only once on the data

1926 � 1970 and using these estimates to �nd the subsequent forecast. The results

in Panel C were obtained by expanding the data used in estimation recursively by

one observation each time and making the prediction for the next year. As could

be expected, the out-of-sample forecasts deteriorate signi�cantly as compared to the

in-sample predictions.

The returns predictions generated by the short memory models, AR(1)�AR(1)

and AR(1)�ARMA(1; 1), perform worse than the sample mean, as evidenced by the

negative R2 values. On the other hand, the models that include the fractional inte-

gration component predicted better than the sample mean. The degree of prediction

is very modest, but nevertheless the R2 statistic is positive for all models, both for

the �xed point method and recursive forecast. We emphasize that the out-of-sample

results should be taken with caution since the sample period is very small.

The dividend growth, however, remains still strongly predictable by all models
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with R2 ranging between 0:7 to 0:11 for the recursive estimation method. Inter-

estingly, dividend growth is better predicted by the �xed point estimation method

than by recursive forecasts. One could expect the opposite relationship, since the

recursive forecast should make use of increasing information available to make new

forecasts. We interpret this as the e¤ect of small sample uncertainty. Just as with

expected returns, the introduction of the long memory component leads to an im-

provement in the model�s out-of-sample forecast performance of dividend growth

(the AR(1)�AR(1) has lower R2 than the ARFIMA(1; �; 0)�AR(1) model and the

AR(1) � ARMA(1; 1) also has lower R2 than the ARFIMA(1; �; 0) � ARMA(1; 1)

model) with either of the two methodologies.

4.5 Expected Returns and Dividend Growth over the Busi-

ness Cycle

In Figure 2 we plot the time series of realized (blue line) and expected returns as im-

plied by the models AR(1)�AR(1) (green line) and ARFIMA(1; �; 0)�ARMA(1; 1)

(red line). The time series for dividend growth (blue line) and expected dividend

growth for the AR(1) � AR(1) (green line) and ARFIMA(1; �; 0) � ARMA(1; 1)

(red line) are shown in Figure 3. The grey areas denote the NBER recession pe-

riods. Since our data is annual, we plotted only recessions that lasted at least 9

months. We can see that the higher variability of expected returns implied by the

ARFIMA(1; �; 0)�ARMA(1; 1) model in comparison to the AR(1)�AR(1) is very

prominent. The expected returns seem to have a very strong countercyclical pattern:

they fall in the period prior and at the start of economic downturns and then increase

as the period of expansion approaches. Since the �t of the expected dividend growth

is not so sensitive to a choice of a particular model, the two implied series are quite

close to each other. From Figure 3 can be seen that the expected dividend growth
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series also exhibits a countercyclical pattern.

In order to examine the cyclicality of expected returns and dividend growth we

regress a set of macro variables on the �ltered series of expected returns and expected

dividend growth. The macro series are growth of real consumption (�Cons), growth

of real GDP (�GDP ) and growth of industrial production of consumption goods

(�IP ). The growth of the series is de�ned as the log di¤erence. We chose these vari-

ables since they are meaningful indicators of the business cycle. The �ltered series

are obtained from the whole available sample of returns, that is 1926�2011, however

the consumption growth and GDP growth are available only from 1930 and indus-

trial production growth only from 1940, the regressions are therefore run for those

respective periods.15 In Table 8 we report the slope coe¢cients with the t�statistics

calculated from the ordinary least squares (OLS) standard errors (reported in small

font) and the regression R2.16 In Panel A we report the regression on expected

returns while the regression on implied dividend growth is reported in Panel B.

The results allow us to make a few observations. First, despite the countercyclical

nature of both expected returns and expected dividend growth, the latter is a stronger

predictor of the business cycle. It is especially visible for predictive regressions of

GDP growth; while the expected returns are not signi�cant and have the slope

coe¢cients close to zero, the expected dividend growth have statistically signi�cant

slopes at 5% level for all models.

Second, although the signi�cance of the predictors does not change signi�cantly

for di¤erent models, we can observe that the models that incorporate the fractional

integration component seem to predict better than short memory models. This ob-

servation can be made for almost all regressions (the only exception consists of the

predictive regressions of GDP growth by the expected dividend growth series), but it

is especially evident for prediction of consumption growth by the expected dividends
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series, where the R2 value increases from 0:13 for the AR(1)�AR(1) model to 0:19

for the ARFIMA(1; �; 0)�ARMA(1; 1) model.

These results suggest that obtaining implied expected returns and dividend growth

series can have an important application as leading economic indicators. Particularly

more so if the PV model includes a fractional integration component, since this leads

to a larger degree of countercyclicality for both the case of expected returns and

expected dividend growth as indicated by a larger R2 statistic.

5 Conclusion

In this paper we show that the long range persistence of the price-dividend ratio ren-

ders the simple return forecasting regression considered by Fama and French (1988a)

as invalid. Moreover, we argue that in �nite sample the order of integration of the

log return series should be approximately the same as that of the �rst di¤erenced

price-dividend ratio, which induces negative memory in the return series. We found

evidence con�rming this conjecture using semi-parametric estimators; we found that

the dividend ratio series is nonstationary but mean reverting with a fractional inte-

gration parameter estimate of about 0:8, while the return series is characterized by

a fractional integration parameter amounting to about �0:2.

We incorporate the fractional integration feature in the PV model using an

ARFIMA time series speci�cation. Using model selection criteria we found that

the preferable joint model is the one with ARFIMA(1; �; 0) expected returns and

ARMA(1; 1) expected dividend growth processes. The fractionally integrated model

yields better returns and dividend growth forecasts than the AR(1) model, both in-

sample and out-of-sample. Using Mincer-Zarnowitz style regressions we found that

our model correctly captures the variation in expected returns and dividend growth.

Our work has important implications for the popular return forecasting literature.
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The potential imbalance in the regression can be a reason for the very mixed and hotly

debated regression results. Also, using a structural model that takes into account the

stylized features of the data can certainly help understand the underlying forces. As

emphasized by Cochrane (2011), a correct understanding of the risk premia is vital

for macro-prudential regulation and monetary policy.
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Notes

1Lettau and Van Nieuwerburgh (2008) explained the strong persistence in the

price-dividend series as a result of structural breaks (or shifts) in the steady state

mean of the economy. They showed that if the shifts are accounted for, then the

return forecasting ability of the price-dividend ratio is stable over time. These �nd-

ings reinforce the long memory argument in the price-dividend ratio. As showed by

Diebold and Inoue (2001), rare structural breaks and long memory are really two

sides of the same coin and they cannot be distinguished from each other in �nite

samples. On the other hand, Granger and Hyung (2004) established that, if the true

series is a long memory process, it is very likely that spurious breaks will be de-

tected. Conversely, even if the true process was generated by occasional breaks, the

long memory process can successfully reproduce many features of the true series and

(under some conditions) can yield better forecasts. Indeed, Lettau and Van Nieuwer-

burgh (2008) reported that di¢culties with detecting the breaks in real time makes

it hard to forecast stock returns. An alternative explanation of the long memory

feature in the aggregate price-dividend ratio could be due to aggregation. Granger

(1980) has shown that "integrated series can occur from realistic aggregation situ-

ations" (for example: independent series generated by a �rst order autoregressive

process can result in a fractionally integrated series when aggregated).

2Negative serial correlation in common stock returns at long horizons has indeed

been found in many studies (e.g. De Bondt and Thaler (1985), Fama and French

(1988b), Poterba and Summers (1988)). This evidence has been interpreted in many

studies (such as De Bondt and Thaler (1985)) as overreaction to past events due to

waves of optimism or pessimism among investors. The �nding that investors expect
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such long-run return reversals, however, supports the idea that mean reversion can

be consistent with the e¢cient functioning of markets as argued by Malkiel (2003).

3See also Campbell and Diebold (2009) and references therein.

4Willinger, Taqqu and Teverovsky (1999) found evidence of small degree of long

range dependence in stock returns. On the other hand, Lo (1991) found no statistical

evidence of long memory in stock returns. Lobato and Savin (1998) study rejected

the hypothesis of long memory in the levels of returns but found the presence of long

memory in squared returns (in line with the �ndings of Ding, Granger and Engle

(1993)). Recent studies have reinforced the view that long memory is important

to the understanding of asset prices. Bollerslev, Osterrieder, Sizova and Tauchen

(2013) estimate a fractionally cointegrated VAR model for returns, objective and risk-

neutral volatilities using high-frequency intraday data. Sizova (2013) demonstrates

that accounting for long memory in predictive variables is important when considering

long-horizon return regressions.

5Since the number of lags in the test selected by AIC is 0, the test collapses to

the simple Dickey-Fuller test.

6We considered extensions of di¤erent autoregressive and moving average or-

ders of ARFIMA processes for both the expected returns and expected dividend

growth processes and found the ARFIMA(1; �m; 0) model of expected returns and

ARMA(1; 1) model of expected dividend growth to be the most general speci�cation

with all coe¢cients signi�cant at the 5% level.

7See Brockwell and Davis (2009) for details on deriving the moving average coef-

�cients.

8See Granger and Joyeux (1980) and Hosking (1981). For a textbook treatment

24



of long memory see Brockwell and Davis (2009) or Palma (2007).

9Although monthly or quarterly data would be preferable, we found a strong

seasonal pattern in the correlogram of dividend growth series at quarterly frequency,

which, if not accounted for, invalidates the time series analysis of the dynamics. See

also Ang and Bekaert (2007) and Cochrane (2011), appendix. A.1.

10Since �rms can pay dividends at di¤erent times of a year, as shown by Cochrane

(1991), dividends paid early in the year are treated as reinvested at the market rate

of return to the end of the year. Van Binsbergen and Koijen (2010) considered the

PV model with market reinvested and risk-free rate reinvested strategies and showed

that the resulting aggregate dividend growth series are very similar.

11The di¤erence between the observed and implied dividend growth is negligible.

The correlation between these two series amounts to 0:9997.

12See appendix for details.

13For a more detailed discussion of this argument see Hendry (1995).

14The R2 values for annual returns reported in the literature for the long sample,

starting in 1926 are about 3% � 9%, see e.g. Campbell, Lo and MacKinlay (1997),

ch.7, Goyal and Welch (2003). The price-dividend ratio is generally found to forecast

returns better in the second half of the twentieth century until the 1990s, as evidenced

by Campbell et al. (1997), Goyal and Welch (2003), Lewellen (2004) and Koijen and

Van Nieuwerburgh (2011). Lettau and Van Nieuwerburgh (2008) considered a 30

year rolling sample and found R2 values ranging from close to zero to 30%.

15The macro data was obtained from the Federal Reserve Economic Data (FRED),

which is freely available at the website of the Federal Reserve Bank of St.Louis.
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16In the regressions we did not detect neither heteroskedasticity nor autocorrelation

in the residuals.
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Appendix A

In this section we discuss the Kalman �ltering procedure and then present the log

likelihood function which will subsequently be maximized.

In order to obtain the Kalman equations it is convenient to write the measurement

equations in the form where the shocks are lagged relatively to the state vector

(see e.g. Brockwell and Davis (2009)). Therefore we de�ne the new state variables

xm;t+1 = Cm;t and xg;t+1 = Cg;t, so the transition equations are now

xm;t+1 =Fxm;t + hm"m;t; (A-1)

xg;t+1 =Fxg;t + hg"g;t; (A-2)

and the measurement equations are:

�dt = �g +w
0xg;t + "d;t; (A-3)

pdt =A+ b
0Fxg;t � b0Fxm;t + b0hg"g;t � b0hm"m;t: (A-4)

In general notation the transition and measurement equations are

xt+1 =Fxt + vt; (A-5)

yt = e+Wxt + zt; (A-6)
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with

xt =

2
664
xm;t

xg;t

3
775 ;F =

2
664
F 0

0 F
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775 ;vt =
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664
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775 ;
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2
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�dt
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3
775 ; e =

2
664
�g

A

3
775 ; W =

2
664
w0 0

b0F�b0F

3
775 ; zt =

2
664

"d;t

b0hg"g;t � b0hm"m;t

3
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where 0 is an in�nite dimensional matrix of zeros.

The Kalman recursive equations of the model are:
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(A-7)

where

Q=

2
664
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2
g hgh

0
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hmh
0
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0
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2
m

3
775 ;

R=

2
664

�2d b0hg�gd�g�d � b0hm�md�m�d

b0hg�gd�g�d � b0hm�md�m�d (b0hg)2�2g + (b0hm)2�2m � 2b0hgb0hm�mg�m�g

3
775 ;

S=

2
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2
g � hgb0hm�mg�m�g

hm�md�m�d hmb
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3
775 ;

using as initial condition x1 = 0:

The log likelihood function is then given by:

` = (2�)�kT=2
�

TQ
t=1
det�t

��1=2
exp

 
�1
2

TX

t=1

(yt � byt)0��1
j (yt � byt)

!
(A-8)
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with byt = e+Wbxt, where T is the sample size and k is the size of the system.

34



� � t� adf

0:2046
0:1285

0:9417
0:0384

�1:5199

Table 1: ADF test for the price-dividend ratio. The 5 percent critical value is -2.90.
The data sample is 1926-2011.
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p/d ratio returns div.growth

GPH �
std:err:

1:0763
0:2138

�0:2313
0:2138

�0:3738
0:2138

Robinson �
std:err:

0:8117
0:1091

�0:2154
0:1091

�0:3479
0:1091

Shimotsu �
std:err:

0:8079
0:1078

�0:1690
0:1078

�0:2438
0:1078

Table 2: Semiparametric estimation of the fractional integration parameter � for real
returns and dividend growth series. The estimators applied are proposed by: Geweke
and Porter-Hudak (1985), Robinson (1995) and Shimotsu (2010). The standard
errors are reported in small font. The data sample is 1926-2011.
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p/d ratio returns div.growth

Mean 3:3294 6:1290 1:9898
Std Dev 0:4301 20:0743 14:8599
Skew 0:6154 �0:7672 0:1650
Ex. Kurtosis �0:1252 0:4177 0:2310
Min 2:6268 �48:8422 �30:8588
Max 4:4991 44:6672 44:0666
1st lag Autocorr. 0:9243 0:0164 �0:1279
10th lag Autocorr. 0:3983 �0:0442 �0:0395

Table 3: Descriptive statistics of the real returns and dividend growth series. The
data sample is 1926-2011.
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Model
mt :
gt :

AR(1)
AR(1)

AR(1)
ARMA(1; 1)

ARFIMA(1; �; 0)
AR(1)

ARFIMA(1; �; 0)
ARMA(1; 1)

�m
std:err

0:0644
0:0159

0:0634
0:0169

0:0665
0:0159

0:0659
0:0182

�m
std:err

0:8321
0:0747

0:8254
0:0719

0:8917
0:0498

0:8840
0:0510

�
std:err

�0:3269
0:1368

�0:2929
0:1303

�g
std:err

0:0179
0:0145

0:0170
0:0151

0:0180
0:0157

0:0176
0:0179

�g
std:err

�0:6050
0:2392

�0:8861
0:0861

�0:5348
0:2156

�0:8714
0:1009

�
std:err

0:5874
0:2229

0:5764
0:2360

�m
std:err

0:0322
0:0131

0:0369
0:0141

0:0661
0:0158

0:0684
0:0179

�g
std:err

0:0599
0:0200

0:0651
0:0167

0:0719
0:0191

0:0731
0:0174

�d
std:err

0:1293
0:0145

0:1296
0:0113

0:1268
0:0116

0:1286
0:0115

�mg
std:err

0:8410
0:0854

0:9098
0:0684

0:8664
0:0677

0:9183
0:0574

Table 4: Estimation results of di¤erent present-value models. The standard errors
are reported in small font. The data sample is 1926-2011.
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Model
mt :
gt :

AR(1)
AR(1)

AR(1)
ARMA(1; 1)

ARFIMA(1; �; 0)
AR(1)

ARFIMA(1; �; 0)
ARMA(1; 1)

k 8 9 9 10

LR
p�value

� 2:7075
0:0999

2:6716
0:1022

4:8418
0:0888

AIC �164:2585 �164:9660 �164:9302 �165:1004
BIC �139:0786 �136:6386 �136:6027 �133:6254

�(mt) 3:8189 4:2736 7:2302 7:4888
�(gt) 5:1369 5:4733 5:8259 6:0329

corr(mt; gt) 0:1239 0:3043 0:3817 0:4986

R2r 0:1321 0:1443 0:2060 0:2058
R2�d 0:3166 0:3200 0:3763 0:3577

Table 5: Estimation statistics ofdi¤erent present-value models. In rows we report:
number of parameters in a model; likelihood ratio test performed relatively to the
AR(1)-AR(1) model with associated p-values reported in small font; Akaike Infor-
mation Criterion; Bayesian Information Criterion; sample standard deviation of ex-
pected dividend growth; sample standard deviation of expected stock returns; sample
correlation between expected returns and expecte dividend growth; R-squared coef-
�cient of dividend growth and stock returns.
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Model
mt :
gt :

AR(1)
AR(1)

AR(1)
ARMA(1; 1)

ARFIMA(1; �; 0)
AR(1)

ARFIMA(1; �; 0)
ARMA(1; 1)

Panel A: rt+1 = �+ � �mF
t + ut

�
std:err:

�0:0869
0:0382

�0:0724
0:0352

�0:0252
0:0263

�0:0227
0:0261

�
std:err:

2:3248
0:5144

2:0924
0:4589

1:2939
0:2680

1:2394
0:2593

t� val: (H0 : � = 0) �2:2777 �2:0558 �0:9582 �0:8685
t� val: (H0 : � = 1) 2:5755 2:3806 1:0964 0:9232
F (H0 : � = 0; � = 1)

p�value

3:3246
0:0408

2:8425
0:0639

0:6428
0:5284

0:4820
0:6193

F test [AR(1)�AR(2)]
p�value

2:8533
0:0634

3:2463
0:0440

3:1044
0:0502

3:0333
0:0536

Panel B: �dt+1 = �+ � � gFt + ut

�
std:err:

0:0585
0:0232

0:0544
0:0229

0:0500
0:0227

0:0474
0:0225

�
std:err:

0:1468
0:4261

0:3685
0:3982

0:5697
0:3708

0:6855
0:3553

t� val: (H0 : � = 0) 2:5202 2:3713 2:2026 2:1077
t� val: (H0 : � = 1) �2:0024 �1:5860 �1:1605 �0:8852
F (H0 : � = 0; � = 1)

p�value

7:2104
0:0013

5:2610
0:0070

7:3222
0:0012

4:7647
0:0110

F test [AR(1)�AR(2)]
p�value

3:7835
0:0269

1:9651
0:1468

2:5621
0:0834

1:4814
0:2334

Table 6: Results of the Mincer-Zarnowitz (1969) regressions for real returns (Panel
A) and dividend growth (Panel B) for di¤erent present-value models. In Panel A we
regress returns on a constant and the �ltered values of expected returns. In the �rst
two lines we report the estimated coe¢cients with their standard errors and in the
following two lines the t-statistic for the null hypothesis of unbiased and consistent
forecasts, that is H0 : � = 0 and H0 : � = 1 . In the next line we report the F�test
of the joint null hypothesis H0 : � = 0 and � = 1 with the p-values. The last line
shows the value of the F�test of no autocorrelation of order 1 and 2 in regression
residuals with the corresponding p-values. In Panel B we report the same results for
dividend growth.
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Model
mt :
gt :

AR(1)
AR(1)

AR(1)
ARMA(1; 1)

ARFIMA(1; �; 0)
AR(1)

ARFIMA(1; �; 0)
ARMA(1; 1)

Panel A: In-sample forecast

R2r 0:0310 0:0297 0:0948 0:0914
R2�d 0:1099 0:1535 0:1315 0:1659

Panel B: Fixed point estimation forecast

R2r �0:0311 �0:0396 0:0433 0:0359
R2�d 0:1015 0:1258 0:1080 0:1304

Panel C: Recursive estimation forecast

R2r �0:0209 �0:0295 0:0183 0:0083
R2�d 0:0733 0:1005 0:0883 0:1058

Table 7: Out-of-sample forecast power of di¤erent present-value models. The fore-
casts are evaluated on the subsample 1971-2011. In Panel A we report the in-sample
forecasts calculated by using the estimates obtained from the whole sample and eval-
uated on the subsample. In Panel B we estimate the models for 1926-1970 and use
these estimates to generate forecasts for the rest of the sample. In Panel C we start
from estimating the model on the sample 1926-1970 and making the prediction for
the next year. In the next step we extend the estimation sample by one observation
and make a prediction for the next year, and so on.
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Model
mt :
gt :

AR(1)
AR(1)

AR(1)
ARMA(1; 1)

ARFIMA(1; �; 0)
AR(1)

ARFIMA(1; �; 0)
ARMA(1; 1)

Panel A:
�Const+1 = �+ � �mF

t + u
�

t�value
�0:2666
�3:3171

�0:2460
�3:3988

�0:1502
�3:5959

�0:1439
�3:5393

R2 0:1236 0:1290 0:1422 0:1384
�GDPt+1 = �+ � �mF

t + u
�

t�value
�0:0062
�0:0437

�0:0122
�0:0956

�0:0239
�0:3225

�0:0222
�0:3088

R2 0:0000 0:0001 0:0013 0:0012
�IPt+1 = �+ � �mF

t + u
�

t�value
�0:2785
�2:0031

�0:2592
�2:0630

�0:1535
�2:1268

�0:1474
�2:0990

R2 0:0557 0:0589 0:0624 0:0608
Panel B:

�Const+1 = �+ � � gFt + u
�

t�value
�0:2063
�3:4067

�0:2205
�3:9450

�0:2082
�4:0264

�0:2156
�4:3383

R2 0:1295 0:1663 0:1721 0:1944
�GDPt+1 = �+ � � gFt + u

�
t�value

�0:2108
�2:0274

�0:2084
�2:1308

�0:1843
�2:0250

�0:1785
�2:0118

R2 0:0501 0:0550 0:0499 0:0493
�IPt+1 = �+ � � gFt + u

�
t�value

�0:3330
�3:1928

�0:3437
�3:4493

�0:3158
�3:5102

�0:3196
�3:6055

R2 0:1304 0:1489 0:1534 0:1605

Table 8: Results from the regression of macro variables on model �ltered expected
returns(Panel A) and expected dividend growth (panel B). The macro variables are
real consumption growth (�Cons), real GDP growth (�GDP ) and growth of indus-
trial production of consumer goods (�IP ). The intercept is ommited from the table.
The t-statistics calculate from OLS standard errors are reported in small font. The
implied series are obtained from the whole sample 1926-2011 and the regressions are
run on available samples of macro variables, that is 1930-2011 for consumption and
GDP growth and 1940-2011 for industrial production growth.
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Figure 1: Time series of log price/dividend ratio. The grey areas denote the recession
periods (only those longer than 9 months).

43



Figure 2: Realized returns (blue line) and expected returns as implied by the models
AR(1) � AR(1) (green line) and ARFIMA(1; �; 0) � ARMA(1; 1) (red line). The
grey areas denote the recession periods (only those longer than 9 months).
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Figure 3: Realized dividend growth (blue line) and expected dividend growth as im-
plied by the models AR(1)�AR(1) (green line) and ARFIMA(1; �; 0)�ARMA(1; 1)
(red line). The grey areas denote the recession periods (only those longer than 9
months).
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