Merz, Joachim and Stolze, Henning (2006): Representative Time Use Data and Calibration of the American Time Use Studies 1965-1999.
Preview |
PDF
MPRA_paper_5856.pdf Download (386kB) | Preview |
Abstract
Valid and reliable individual time use data in connection with an appriate set of socio -economic background variables are essential elements of an empirical foundation and evaluation of existing time use theories and for the search of new empirical-based hypotheses about individual behavior. Within the Yale project of Assessing American Heritage Time Use Studies (1965, 1975, 19895, 1992-94 and 1998/99), supported by the Glaser Foundation, and working with these time use studies, it is necessary to be sure about comparable representative data. As it will become evident, there is a serious bias in all of these files concerning demographic characteristics, characteristics which are important for substantive time use research analyses. Our study and new calibration solution will circumvent these biases by delivering a comprehensive demographic adjustment for all incorporated U.S. time use surveys, which is theoretically funded (here by information theory and the minimum information loss principle with its ADJUST program package), is consistent by a simultaneous weighting including hierarchical data, considers substantial requirements for time use research analyses and is similar and thus comparable in the demographic adjustment characteristics for all U.S. time use files to support substantial analyses and allows to disentangle demographic vs. time use behavioral changes and developments.
Item Type: | MPRA Paper |
---|---|
Original Title: | Representative Time Use Data and Calibration of the American Time Use Studies 1965-1999 |
Language: | English |
Keywords: | time use, calibration (adjustment re-weighting) of microdata, information theory, minimum information loss principle, American Heritage Time Use Studies, ADJUST program package |
Subjects: | Z - Other Special Topics > Z0 - General J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J22 - Time Allocation and Labor Supply J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J29 - Other J - Labor and Demographic Economics > J1 - Demographic Economics > J11 - Demographic Trends, Macroeconomic Effects, and Forecasts |
Item ID: | 5856 |
Depositing User: | Joachim Merz |
Date Deposited: | 28 Nov 2007 00:04 |
Last Modified: | 05 Oct 2019 03:58 |
References: | Atkinson, A.B., Gomulk a, J. & Sutherland, H. (1988). Grossing-up FES Data for Tax-Benefit Models, Atkinson, A.B. and H. Sutherland, eds., Tax Benefit Models, London, 223- 253. Becker, G. S. (1965). A Theory of the Allocation of Time. Economic Journal, 75, 493-517 Beebout, H. (1977), "Microsimulation as a Policy Tool: The MATH Model", Policy Analysis Series No. 14, Mathematica Policy Research Inc., Washington, D.C. Beebout, H. (1986). Evaluating Reagan administration social program changes: Two applications of MATH, G.H. Orcutt, J. Merz and H. Quinke, eds., Microanalytic simulation models to support social and financial policy, North Holland, Amsterdam, 83-97. Bihler, H. (1995), Die Hochrechnung der Zeitbudget-Studie des Statistischen Bundesamtes, Wiesbaden. Bihler, W. & Ehling, M. (1995). Das Stichprobenverfahren der Zeitbudgeterhebung, Wirtschaft und Statistik, 6, 425-436. Bishop, Y. M. & Fienberg, S. E. (1975). Discrete Multivariate Analysis: Theory and Practice, Cambridge, Mass.: MIT-Press. Bishop, Y. M. &.Fienberg, S. E. (1969). Incomplete Two-dimensional Contingency Tables. Biometrics, 25, 383-400. Bridges, B. jr. and M.P. Johnston (1976), "Estimation of social security taxes on the March current population survey", Studies of Income Distribution, No.4 (Social Security Administration, Office of Research and Statistics, US Department of Health, Education and Welfare, Washington, D.C. Bureau of Labor Statistics (1988). Labor Force Statistics Derived from the Current Population Survey, 1948-87, Bulletin 2307 Byron, R. P. (1978). The Estimation of Large Social Account Matrices. Journal of the Royal Statistical Society, Series A, 141, Part 3, 359-367. CBS (Centraal Bureau voor de Statistiek) (1999). Living Conditions of Dutch Population: Part 3, Time Allocation and Social Participation, Voorberg/Heerlen, The Netherlands. Citro C. F. & Hanushek, E. A. (eds.) (1991a). Improving Information for Social Policy Decisions, The Uses of Microsimulation Modeling: Review and Recommendations, Vol. I, National Research Council, Washington. Citro C. F. & Hanushek, E. A. (eds.) (1991b), Improving Information for Social Policy Decisions, The Uses of Microsimulation Modeling: Technical Papers, Vol. II, National Research Council, Washington. Deming, W. E. & Stephan, F. F. (1940). On a Least Square Adjustment of a Sampled Frequency Table when the Expected Marginal Totals are Known. Annals of Mathematical Statistics, 11, 427-44. Devine, J. & Wertheimer, R. (1981). Aging Techniques Used by the Major Microsimulation Models, Working paper 1453-01, The Urban Institute Washington, D.C. Ehling, M. & Biehler, W. (2003). Methodische Anlage der Zeitbudgeterhebung, Wiesbaden. Finke, R. & Theil, H. (1984). An Extended Version of Minimum Information Estimation of Allocation Models. Economics Letters, 15, 229-233. Flood, L. (1988). Effects of Taxes on non-market Work: The Swedish Case. Journal of Public Economics, 36, 259-67. Frank, M. & Wolfe, P. (1956). An Algorithm for Quadratic Programming. Naval Research Logistics Quarterly, 3, 95-100. Galler, H. P. (1977). Die Ermittlung eines konsistenten Hochrechnungsrahmens für das IMDAF-69, SPES-Arbeitspapier Nr. 77, Frankfurt/Mannheim. Galler, H.P. and G. Wagner (1986), "The Microsimulation Model of the Sfb 3 for the Analysis of Economic and Social Policies", in: G.H. Orcutt, J. Merz and H. Quinke, eds., Microanalytic simulation models to support social and financial policy, North Holland: Amsterdam, 227-247. Goldfeld, S.M., Quandt, R. and H.F. Trotter (1966), "Maximization by Quadratic-Hill- Climbing", Econometrica, 34, 3, 541-551. Gronau, R. (1986). Home Production – A Survey, in: Ashenfelter, O. and Layard. R. (eds.), Handbook of Labor Economics, Vol. I, 273-304, Amsterdam/New York Hancock, R. & Sutherland, H. (eds.) (1992). Microsimulation Models for Public Policy Analysis: New Frontiers, Suntory-Toyota International Centre for Economics and Related Disciplines, London School of Economics and Political Science, London. Harding, A. (ed.) (1996). Microsimulation and Public Policy, North Holland, Amsterdam. Harvey, A. and St. Croix, A. (2005). Report on Data Assembly and Preliminary Evaluation, Yale Program of non-market Accounts: Dataset Assessments, Halifax, Canada. Harvey, A., Elliott, D. & Procos, D. (1977). Sub-Populations Relevant to the Study of the Use of Time: A working paper, Halifax. Haveman, R. and K. Hollenbeck (eds.) (1980), Microeconomic Simulation Models for Public Policy Analysis , New York, Academic Press. Hildreth, C. (1957), "A Quadratic Programming Procedure", Naval Research Logistics Quarterly, 14, 79-85. Hollenbeck, K. (1976). An Algorithm for Adjusting n-dimensional Tabular Data to Conform to General Linear Constraints, Proc. Am. Stat. Ass., 402-405. Houthakker, H. S. (1960). The Capacity Method of Quadratic Programming. Econometrica, 28, 62-87. http://ffb.uni-Lüneburg.de/adjust as at February 2005 Ireland, C. T. & Kullback, S. (1968). Contingency Tables with Given Marginals, Biometrika, 55, 179-188. Jaynes, E. T. (1957). Information Theory and Statistical Mechanics I. Physics Review, Vol. 106, 620-630. Killingsworth, M. (1983). Labor Supply, Cambridge. Killingsworth, M. R. & Heckmann, J. J. (1986). Female Labor Supply: A Survey, in: Ashenfelter, O. and Layard. R. (eds.). Handbook of Labor Economics, Vol. I, 103- 204, Amsterdam/New York Krupp, H. J., Galler, H. P., Grohmann, H., Hauser, R. & Wagner, G. (eds.) (1981). Alternativen der Rentenreform '84, Frankfurt/New York. Lancaster, K. (1966). A New Approach to Consumer Theory, in: Journal of Political Economy, 73, 132-157 Legal Information Institute (2005). U.S. Code Collection, Cornell Merz, J. & Wolff, K. G. (1993). The shadow economy: Illicit work and household production - A microanalysis of West Germany. The Review of Income and Wealth, Vol. 39, No. 2, 177-194. Merz, J. (1980), "Prognosegüte und Spektraleigenschaften ökonomischer Modelle", in: S. Stöppler (ed.), Dynamische ökonomische Systeme - Analyse und Steuerung, 2nd edition, Gabler, Wiesbaden, 31-66. Merz, J. (1983a). Die konsistente Hochrechnung von Mikrodaten nach dem Prinzip des minimalen Informationsverlustes, in: Allgemeines Statistisches Archiv, 67. Jg., Heft 4, 342-366 Merz, J. (1983b). The Adjustment of Microdata Using the Kalman Filtering Procedure and Optimal Control Theory, Sfb 3-Working Paper No. 122, Frankfurt/Mannheim. Merz, J. (1985). Ein modifiziertes Newton-Verfahren zur Lösung des Hochnungsproblems nach dem Prinzip des minimalen Informationsverlustes, in: Computing, 35, 51-61 Merz, J. (1986). Structural Adjustment in Static and Dynamic Microsimulation Models, in: Orcutt, G., Merz, J. and H. Quinke,. (Eds.), Microanalytic Simulation Models to Support Social and Financial Policy, Amsterdam, 423-446 Merz, J. (1989). Markt- und nichtmarktmäßige Aktivitäten privater Haushalte - Theoretischer Ansatz, repräsentative Mikrodaten, mikroökonometrische Analyse und Mikrosimulation wirtschafts- und sozialpolitischer Maßnahmen für die Bundesrepublik Deutschland, Habilitation (Frankfurt). Merz, J. (1990), "The 1990 German tax reform - Microsimulation of time allocation effects in the formal and informal economy", in: J.K. Brunner and H.G. Petersen, eds., Simulation models in tax and transfer policy, Campus: Frank furt/M., New York. Merz, J. (1991a). Microsimulation - A survey of principles, developments and applications, International Journal of Forecasting, 7, 77-104. Merz, J. (1991b). Wirkungen der Steuerreform 1990 auf Nebenerwerb und Schwarzarbeit, D. Döring and P.B. Spahn (eds.), Steuerreform als gesellschaftliche Aufgabe der neunziger Jahre, Duncker und Humblot, Berlin, 283-303. Merz, J. (1994a). Microdata Adjustment by the Minimum Information Loss Principle, FFBDiscussion paper No. 10, Forschungsinstitut Freie Berufe, Fachbereich Wirtschaftsund Sozialwissenschaften, Universität Lüneburg, Lüneburg Merz, J. (1994b), "Microsimulation - A survey of methods and applications for analyzing economic and social policy", FFB-Discussion Paper No. 9, Forschungsinstitut Freie Berufe (FFB), Department of Economics and Social Sciences, University of Lüneburg, Lüneburg, Germany. Merz, J. (1994b). Statisches Sonderforschungsbereich 3 - Mikrosimulationsmodell: Mainframe und PC-Version, R. Hauser, N. Ott and G. Wagner, eds., Deutsche Forschungsgemeinschaft: Mikroanalytische Grundlagen der Gesellschaftspolitik - Erhebungsverfahren, Analysemethoden und Mikrosimulation, Akademie Verlag: Berlin. Merz, J. (1994c), "Microdata adjustment by the minimum information loss principle", FFBDiscussion Paper No. 10, Forschungsinstitut Freie Berufe (FFB), Department of Economics and Social Sciences, University of Lüneburg, Lüneburg, Germany. Merz, J. (1996a). Market and Non-market Labour Supply and the Impact of the Recent German Tax Reform - Incorporating Behavioural Response, Ann Harding (ed.) Microsimulation and Public Policy, (IARIW Special Confe rence on Microsimulation and Public Policy, Canberra, Australia, 5.-9.12.93), Amsterdam, p. 177-202 Merz, J. (1996b). MICSIM: Concept, Developments, And Applications of a PC Microsimulation Model for Research and Teaching, Troitzsch, K. G., Mueller, U., Gilbert, N. and J. Doran (eds), Social Science Microsimulation, Berlin/Tokyo: Springer Verlag. Merz, J. und R. Lang (1997a), "Neue Hochrechnung der Freien Berufe und Selbständigen im Sozio-ökonomischen Panel", FFB-Dokumentation Nr. 5, Forschungsinstitut Freie Berufe (FFB), Fachbereich Wirtschafts- und Sozialwissenschaften, Universität Lüneburg, Lüneburg. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/5856 |