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Abstract 

Quasi-independence is a common assumption for analyzing truncated data. To verify this 

condition, we propose a class of weighted log-rank type statistics that includes existing tests 

proposed by Tsai (1990) and Martin and Betensky (2005) as special cases. To choose an 

appropriate weight function that may lead to a more power test, we derive a score test when the 

dependence structure under the alternative hypothesis is modeled via the odds ratio function 

proposed by Chaieb, Rivest and Abdous (2006). Asymptotic properties of the proposed tests are 

established based on the functional delta method which can handle more general situations than 

results based on rank-statistics or U-statistics. Extension of the proposed methodology under two 

different censoring settings is also discussed. Simulations are performed to examine finite-sample 

performances of the proposed method and its competitors. Two datasets are analyzed for 

illustrative purposes.   

Key words and phrases: Conditional likelihood; Kendall’s tau; Mantel-Heanszel test; Power; 

Right-censoring; Survival data; Two-by-two table. 
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1. INTRODUCTION 

Truncated data are commonly seen in studies of biomedicine, epidemiology, 

astronomy and econometrics. Such data occur when the variables of interest can be 

observed if their values satisfy certain criteria. In this article, we discuss the situation that 

a pair of lifetime variables ),( YX  can be included in the sample only if YX  . The 

variable Y  is said to be left-truncated by X  and X  is right-truncated by Y . 

Sometimes, external censoring also happens due to subjects’ withdrawal or the 

end-of-study effect. Here we allow that Y  is subject to right-censoring by another 

variable C . Hence one observes X , CYZ   and )( CYI   subject to ZX  , 

where ),min( baba   and )(I  is the indicator function. Left-truncated and 

right-censored data consist of )}...,,1( ),,{( niZX iii  , replications of  ),,( ZX .  

Truncation often occurs when a subject can be recruited according to a certain 

sampling criterion [32]. For example in the study of transfusion-related AIDS discussed 

in Lagakos, Barraj, and De Gruttola [20], infected people could be included in the sample 

only if they developed AIDS within the study period. Accordingly the incubation time 

X  was subject to right-truncation by the lapse time Y  measured from infection to the 

recruitment time. In this design, a subject with the incubation time exceeding the lapse 

time ( YX  ) would never be observed. Another example is the survival analysis for 

residents in the Channing House retirement community in Palo Alto, California [16, 17, 

18]. This sample can not represent the general population since only those who had lived 

long enough to enter the retirement center could be observed. Hence the lifetime Y  was 

left-truncated by the entry age X . Notice that a truncated subject with YX   is 

completely missing and even its existence is unknown. 

   Any statistical analysis for data subject to truncation requires making some 

assumption about the association between X  and Y . Independence between X  and 
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Y  is the most common assumption [16, 18, 19, 20, 31, 32, 33]. This assumption has 

been relaxed by Tsai [28] to a weaker condition of quasi-independence which can be 

formulated as follows: 

00 /)()(),(: cySxFyxH YX   ( yx  ),          (1) 

where )|,Pr(),( YXyYxXyx   and XF  and YS  are arbitrary 

right-continuous distribution and survival functions respectively, and 0c  is the constant 

satisfying  


yx
YX ydSxdFc )()(0 . The joint function ),( yx  is defined in the upper 

wedge ( yx  ) and, under 0H , it can be factorized into the product of two marginal 

functions XF  and YS . Since the behavior of these functions in the lower wedge ( yx  ) 

is not specified, XF  and YS  may not be equal to the true distribution and survival 

functions of X  and Y  respectively [2]. The assumption of quasi-independence in (1) 

is weaker than independence. Thus rejection of 0H  implies rejection of independence 

between X  and Y  but not vice versa. Many nonparametric methods for truncation 

data are still valid under 0H . If X  and Y  are truly independent, 0H  holds and then 

)Pr()( xXxFX  , )Pr()( yYySY   and )Pr(0 YXc  .  

 Unlike independent censorship which can not be verified, quasi-independence is a 

testable assumption [28]. Tsai [28] proposed the first test on 0H  by defining a 

conditional version of Kendall’s tau and then using its empirical estimator as the test 

statistics. Martin and Betensky [21] extended Tsai’s idea to more complicated truncation 

structures in which the properties of U-statistics are applied in variance estimation and 

large-sample analysis. Chen, Tsai and Chao [3] constructed their test based on a 

conditional version of Pearson correlation coefficient. 

     In this article, we propose different methods for testing 0H . Specifically based on a 

series of 22  tables suitable for describing truncated data, we construct weighted 

log-rank type tests. We also show that the tests of Tsai [28] and Martin and Betensky [21] 
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can be viewed as our special cases with different forms of weight. To choose a good 

weight that leads to a more powerful test, we propose a score test that utilizes some 

distributional properties of the 22  tables. In particular, the odds ratio function 

proposed by Chaieb, Rivest and Abdous [2] is adopted to model the dependence structure 

under the alternative hypothesis. The existing testing procedures also differ in the way of 

estimating the variance of the corresponding test statistic. Here we adopt the functional 

delta method which can handle flexible weight functions and hence is a more powerful 

tool than the techniques based on rank-statistics or U-statistics. 

The paper is organized as follows. In Section 2, we propose the main methodology 

by temporarily ignoring censoring. In Section 3, we derive the score test and suggest a 

model selection method. Large sample properties are examined in Section 4. 

Modifications of all the results to account for the presence of right-censoring are 

presented in Section 5. Section 6 contains numerical analysis including data analysis and 

simulation studies. Concluding remarks are given in Section 7.     

2. THE PROPOSED METHOD WITHOUT CENSORING 

To illustrate the main idea, we temporarily ignore right-censoring by letting C . 

Observed data can be expressed as )},,1( :),({ njYX jj   subject to jj YX  .  

2.1 Constructing the Test Statistics based on Two-by-two Tables 

Adapt to the nature of truncation, we can construct the following 22  table at an 

observed failure point ),( yx  for yx  . 

 yY   yY    

xX   ),(11 dydxN   ),(1 ydxN   

xX      

 ),(1 dyxN   ),( yxR  

Table 1: 22  table for truncated data without censoring 

The cell counts and marginal counts in Table 1 are defined as  
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,),(),(11  
j

jj yYxXIdydxN   
j

jj yYxXIdyxN ),(),(1 , 

 
j

jj yYxXIydxN ),(),(1 ,  
j

jj yYxXIyxR ),(),( . 

Under 0H  and conditional on the marginal counts, the cell count ),(11 dydxN  follows 

the hyper-geometric distribution with  

),(

),(),(
),,|),((E 11

1111
yxR

dyxNydxN
RNNdydxN 

  .         (2) 

To test quasi-independence, we propose the following weighted log-rank type statistics: 















yx

W
yxR

dyxNydxN
dydxNyxWL

),(

),(),(
),(),( 11

11 ,      (3) 

where ),( yxW  is a weight function. Motivated by the 
G  class discussed in 

Harrington and Fleming [10, 13], we consider a sub-class of WL  with a particular form 

of ),( yxW  which can be written as  















yx

yxR

dyxNydxN
dydxNyxL

),(

),(),(
),(),(ˆ 11

11


  ,       (4) 

where nyxRyx /),(),(ˆ   and 0  is a pre-specified constant. 

 The statistics WL  is nonparametric in the sense that no distributional assumption 

about the joint distribution of ),( YX  is made. However such information would be 

helpful for choosing an appropriate weight or the value of   in (4) which may lead to a 

more powerful test. In Section 3, we derive a score test that utilizes the information of the 

underlying association structure provided by the 22  tables.  

2.2 Relationship with Existing Tests 

The tests proposed by Tsai [28] and Martin and Betensky [21] are both related to a 

conditional version of Kendall’s tau defined as   

}|))({sgn( ijjijia AYYXXE  , 

where )sgn(x  is defined to be -1, 0, or 1 if 0x , 0x , or 0x  respectively, 
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}
~

{ ijijij YXIA 


, jiij XXX 


 and jiij YYY ~
. Note that when the event ijA  

occurs, )
~

,( ijij YX


 is located in the observable region }0:),{(  yxyx  and hence 

a  is well-defined under the truncation setting. Under quasi-independence, Tsai [28] 

showed that 0a . 

An empirical estimator of a  can be used for testing 0H . Specifically Tsai [28] 

and Martin and Betensky [21] both considered the statistics  





ji

jijiija YYXXAIK )})(sgn{(}{      (5) 

but proposed different ways of calculating the variance of aK . For example in absence 

of ties, by writing aK  as the sum of conditionally independent rank variables, Tsai [28] 

was able to utilize rank-based results to derive the conditional variance of aK  explicitly. 

Martin and Betensky [21] recognize the fact that aK  is a U-statistic and then derive a 

more general variance formula which can handle tied data. The statistic aK  has been 

extended to account for censoring [28] or even more complicated data structures [21].  

 Now we compare the proposed test statistics WL  in (3) with aK  in (5). To 

simplify the analysis, assume that the data have no ties so that the values of 

nn YYXX ,,,,, 11   are all distinct. In such a case 1),(),( 11   dyxNdyxN  for all 

tables of interest and the expected value in (2) becomes ),(/1 yxR . It can be shown that 

  



ji

jiji

ijij

ijij

ijW YYXX
YXR

YXW
AIL )})(sgn{(

)
~

,(

)
~

,(
}{ 



.             (6) 

The proof of the above equation is given in Appendix C under a more general setting that 

includes right-censoring. By setting nyxRyxW /),(),(  , we get 

 














yx

yxR

dyxNydxN
dydxN

n

yxR
L

),(

),(),(
),(

),( 11
111

n

Ka .     (7) 
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Equation (6) implies that 
WL  is also a U-statistic if ),(/),( yxRyxW  is a 

deterministic function. However if we prefer a flexible weight function that may lead to a 

more powerful test, the technique of U-statistics is no longer applicable for variance 

estimation and large sample analysis. Accordingly in Section 4, we will use the functional 

delta method to establish asymptotic properties of 
WL .  

3. CONDITIONAL SCORE TEST 

3.1 Construction of Conditional Likelihood 

As mentioned above, the weight function in (3) affects the power of 
WL  which 

depends on the dependence structure under the alternative hypothesis. The Clayton’s 

model [4], characterized by the constant odds ratio function [23, 24], is perhaps the most 

popular choice for describing bivariate lifetime variables. The class of Archimedean 

copula (AC) models, which include the Clayton’s model and the bivariate frailty family 

[24] as special cases, provide a systematic framework to describe the dependence for 

multivariate random variables [12]. These concepts are modified by Chaieb, Rivest and 

Abdous [2] in analysis of truncated data. Here we also adopt their proposal.  

 We assume that )|,Pr(),( YXyYxXyx   is differentiable and hence the 

data have no ties. Chaieb, Rivest and Abdous [2] modified the odds ratio function suitable 

for truncated data as follows:  

yyxxyx

yxyxyx
yx





/),(/),(

/),(),(
),(

2


 . 

Under quasi-independence, 1),( yx  for all yx 0 . It should be noted that the 

case of 1),( yx  implies positive association while 1),( yx  implies negative 

association between the two truncated variables. 

The information of ),( yx  is contained in the summary statistics of Table 1. 

Given the marginal counts, ),(11 dydxN  follows a Bernoulli distribution with 

),(1

),(
),1|1),(Pr( 1111

yxr

yx
rRNNdydxN





  . 
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This distributional result can be further utilized to construct a score test under alternative 

hypotheses. Here we assume that ),( yx  can be formulated as follows: 

(i) The odds ratio function can be parameterized as )},({),( yxyx   , where   

is a parameter and ),( yx  is an unspecified nuisance function.  

(ii) For each fixed  , )(  is a continuously differentiable function of   and 

1)(lim
0





, where 0  is the parameter value under quasi-independence.  

Suppose that ),( yx  can be estimated by ),(ˆ yx . Under a working assumption of 

independence among different tables of ),( yx  and ignoring the distributions of the 

marginal counts, we can construct the following conditional likelihood function: 




























yx

dydxNdydxN

yxyxR

yxR

yxyxR

yx
L

),(1),( 1111

)},(ˆ{1),(

1),(

)},(ˆ{1),(

)},(ˆ{
)(







 .   (8) 

The corresponding score function becomes 

,
)},(ˆ{1),(

)},(ˆ{),(),(
),(

)},(ˆ{

)},(ˆ{)(log 11
11



















yx
yxyxR

yxdyxNydxN
dydxN

yx

yxL



















    (9) 

where    /)()( vv . Note that equation (8) was motivated by Clayton [4] and 

Oakes [23] who considered the Clayton model for bivariate censored data. 

By setting 0  , the score test statistic can be obtained based on equation (9). 

Specifically since 1)},({lim
0




yx
, the proposed score statistics has the form of WL  

with the weight function  

)},(ˆ{lim),(
0

yxyxW 



 .                    (10) 

Equation (10) provides a clear guideline for choosing the weight function for WL  when 

the assumptions on ),( yx  stated in (i) and (ii) are satisfied. The level of power 

improvement depends on whether )(  is correctly specified and how accurate ),( yx  

can be estimated. We will discuss these issues via specific examples in Section 3.2.  
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3.2 Semi-survival Archimedean Copula Models  

For dependent truncation data, Chaieb, Rivest and Abdous [2] proposed 

“semi-survival” Archimedean copula (AC) models of the form 

cySxFYXyYxXyx YX /)}]({)}({[{)|,Pr(),(
1

   
,    (11) 

where c  is a normalizing constant satisfying  


yx
yxd ),(1  . AC models are 

characterized by the generating function )( : ],0[]1,0[  , where 0)1(  , 

0/)()(  ttt    and 0/)()( 22  ttt   . Furthermore, they showed that 

under (11), the odds ratio function can be written as )},({),( yxcyx   , where 

)(

)(
)(







 


 .          (12) 

Hence AC models satisfy assumption (i) such that ),(),( yxcyx   . The case of 

quasi-independence corresponds to )log()( tt  in (11). After appropriate 

parameterization for  , we may assume that )log()(
0

tt   for 10   so that 

assumption (ii) holds. 

An estimator of c  may be obtained using the proposal by Chaieb, Rivest and 

Abdous [2]. Alternatively, considering that ),(),( yxcyx    in (10) is evaluated at 

0  , it suffices to estimate 0cc  , the value under 0H . He and Yang [14] proposed 

to estimate )Pr( YX   under independence between X  and Y . Although in the 

present case, 0c  is not necessary equivalent to )Pr( YX  , their idea can be modified. 

Specifically, one can set ),(/)( )1()1()1(0 XXXFc X   in (1) under the assumption of 

1)( )1( XSY  where j
j

XX min)1(  . By applying the nonparametric estimator XF̂  of 

Wang, Jewell, and Tsai [31], we have ),(ˆ/)(ˆˆ
)1()1()1(0  XXXFc X  . Note that the same 

estimator 0ĉ  can also be obtained as a solution of equation (12) of Chaieb, Rivest and 
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Abdous [2] by setting 0   and )1(xt  .  

Now we derive the suggested form of weight in (10) for selected AC models. 

Example 1. Clayton copula 

Clayton’s model [4] has the generating function )1/()1()( )1(    
 tt  for 

0 , 1 , and )log()(
0

tt   when 10  . It follows that  )(  and 

hence  

1)},({lim
0




yx
 , 

which corresponds to 0L , a special case of L  in (4). Notice that no nuisance 

parameter is involved in the weight function.  

Example 2. Frank copula  

For Frank’s model [11], the generating function has the form 

)}1/()1log{()( t
t    for 0 , 1  and )log()(

0
tt   for 10  . 

Since }1/{)log()( )log(  
  e  and 1)(

0
 , we have 

21

)1log(1
lim)(lim

)1log(00

 













  hh e

h

h
 . 

Thus, the suggested weight function is given by 

),(
2

),(
)},({lim

0

yx
yxc

yx 



 . 

If we estimate ),( yx  by ),(ˆ yx , the resulting score test becomes 1L  in (7) which 

is equivalent to aK  considered by Tsai [28] and Martin and Betensky [21]. This implies 

that these two tests are suitable for Frank’s alternative.  

Example 3. Gumbel copula 

For the Gumbel model, the generating function equals 
 )}log({)( tt   for 1  

and )log()(
0

tt   for 10  . Under the Gumbel model, ),( YX  only permit 
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negative association. Since )log(/)1(1)(   , it follows that  

)},(log{/1)},({lim
0

yxcyx 



 . 

By plugging in the estimators of ),( yx  and c  in the suggested weight, we denote the 

corresponding test as loginvL , which however is not a member of L  in (4). 

 In practice there may be several model choices under consideration. We suggest a 

heuristic approach by choosing the model that yields the highest value of )ˆ(L , where 

̂  maximizes )(L  over the corresponding parameter space. The influence of weight 

on the power of the corresponding test will be evaluated later via simulations. 

4. ASYMPTOTIC ANALYSIS 

4.1 Asymptotic Normality 

   In this section, we state the main theoretical results. We assume that the underlying 

distribution is absolutely continuous under the null hypothesis in (1). Consider a class of 

weighted log-rank type statistics of the form,  















yx

w
yxR

dyxNydxN
dydxNyxwL

),(

),(),(
),()},(ˆ{ 11

11 , 

where )(vw  is a known continuously differentiable function of )1,0(v . 

Theorem 1: Under 0H , the statistics wLn
2/1  converges in distribution to a mean-zero 

normal random variable. The special case Ln
2/1

 has asymptotic 

variance }),({ 22
jj YXUE   , where  

  


**

2** ),(2/)1(

),(

yyxx

jj

yyxx

YXU






 

).,()},(),({

)})(sgn{(),(

),(),()})(sgn{()},(),({

**

**1**

********

**

yxdyxdyYxXI

yyxxyyxx

yxdyxdyyxxyyxxyyYxxXI

ii

yyxx

jj














  

 (13) 
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Sketch of the proofs are given in Appendix A.1 and A.2 and more complete discussions 

can be found in Emura and Wang [9]. 

4.2 Variance Estimation 

Equation (7) shows that, in absence of ties, 1L  is equivalent to aK . Variance 

estimation of aK  has been discussed in Tsai [28] and Martin and Betensky [21]. Here 

we propose a different approach. Based on the formula in (13), we can estimate 2
  by 

applying the method of moment and the plug-in principle. The arguments in Appendix 

A.2 yield the following variance formula for L :  

.)
~

,()})(sgn{()
~

,(ˆ}{
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    (14) 

This estimator incorporates the variability of estimating the nuisance function ),( yx .  

 When censoring is present, analytic expressions of 2
  become complicated and 

not tractable. Under general situations, the jackknife method provides a convenient tool 

for variance estimation. For an arbitrary weight function, the variance of 
WL  can be 

estimated by the following jackknife estimator:  

  
j

W

j

WJack LLnn
2)()(2 )()1/(̂ , 

where )( j

WL
  is the statistics WL  ignoring the j th observation and   

j

j

WW LnL
)()( )/1( . 

Emura and Wang [9] provide simulation results which compare the two variance 

estimators under L  statistics. It is found that although the analytic estimator sometimes 

has better performance in variance estimation by producing smaller mean squared errors, 

it tends to yield less accurate type-I probability compared with the jackknife estimator. It 

seems that the higher-order terms omitted in the linear expression of L  still play some 
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role in estimating the variance for finite samples.  

 The validity of the jackknife estimator is closely related to the smoothness of the 

L  with respect to the empirical process nyYxXIyx
j jj /),(),(ˆ   . This 

property requires a stringent smoothness condition on the corresponding statistical 

functional. The following theorems can be proved by checking a sufficient condition of 

continuous Gateaux differentiability [25] for consistency of the jackknife method. 

Theorem 2: Under 0H , the asymptotic variances 
2
  of L  can be consistently 

estimated by the jackknife method. 

The detailed proof is given in Emura and Wang [9]. 

4.3 Asymptotic Efficiency of the Score Test 

The conditional likelihood constructed in Section 3 is not the true likelihood since it 

ignores the dependence among different tables and involves extra estimation of the 

nuisance parameter. Here we investigate its asymptotic efficiency. Under assumptions (i) 

and (ii) of Section 3.1, a Taylor series expansion of )(  around 0  leads to the 

contiguous alternative 

)()},({1)},({: 2/12/1

0
2/1

0




 noyxnyxH
nn  

 . 

Under the sequence of alternatives, it can be shown that the statistics Ln
2/1  converges 

in distribution to the normal distribution with mean  










yx
n

dyxNydxNyxyx
n

),(),()},(ˆ{),(ˆ1
lim 11

1

2 0
 




  

and variance 2
 . The asymptotic efficiency of L  can be studied by comparing the 

noncentrality parameter of the chi-square test defined as 

222 /~
    

Standard Cauchy-Schwarz type argument can not be applied to obtain the optimal choice 
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of   due to the complicated variance function that involves the nuisance parameter 

estimates. Note that 2~
  not only depends on the alternative structure but it also 

functionally depends on the marginal distributions. To investigate the efficiency of L , 

we compute 2~
  when the joint distribution of ),( YX  follows Clayton and Frank AC 

families with selected marginal distributions, namely exponential, uniform and 

chi-squared distribution. The results are depicted in Figure 1. For a range of ]2,0[ , 

the noncentrality parameter 2~
  is maximized at 0  under the Clayton model and 

1  under the Frank model for all the chosen marginal distributions. These results 

indicate that among all members of the L  test, the score tests 0L  and 1L  are 

locally most powerful under the Clayton and Frank alternatives respectively. 

5. MODIFICATION FOR RIGHT CENSORING 

 In this section, we modify the proposed tests to adjust for right-censoring which 

arises when the process of observation has to be terminated before the event of interest 

occurs. Consider a situation that the lifetime variable Y  is right-censored by C . In 

presence of truncation, how to formulate the censoring mechanism deserves some 

discussions. We present two different ways to include the censoring mechanism. Both 

settings have been considered in the literature.  

   Case (A) The censoring variable C  is also subject to the truncation criteria. 

Individuals satisfying YCX   are included in the sample and otherwise truncated.   

   Case (B) Censoring only affects the individuals who satisfy YX  . Accordingly it is 

assumed that 1)Pr( CX .  

Independent censorship means that the censoring event is not related to the disease 

process. In presence of truncation, how to formulate the assumption of independent 

censoring depends on which censoring mechanism is adopted. Now we discuss the 
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assumption for each setting. Chaieb, Rivest and Abdous [2] considered the situation in 

Case (A) and then made the following assumption:  

Assumption (A): C  is independent of ),( YX .  

In Case (B), however, C  and X  cannot be independent due to the mathematical 

restriction X C . For this case, define XCC R  , where 0RC  refers to the 

residual censoring time. A more proper assumption is given by  

Assumption (B): RC  is independent of ),( YX  given YX  . 

Note that in absence of truncation ( 0X  with probability one), both cases reduce to the 

usual independent censorship model. In the following subsections, we discuss 

modification of the proposed tests under the two censoring mechanisms.  

5.1 The Proposed Test Statistic under Censoring 

Under both censoring frameworks, observed data can be expressed as 

),,{( iii ZX  : )}...,,1( ni  , where iC  is a random replication of C , iii CYZ   and  

)( iii CYI  , subject to ii ZX  . Table 2 is a modification of Table 1 such that ),( yx  

denotes an uncensored failure point satisfying yx  . To simplify the presentation, we 

use the same notations for the counts as before but modify their definitions as follows.  

 
j

jjj yZxXIdydxN )1,,(),(11  ,  
j

jj yZxXIydxN ),(),(1 ,  

 
j

jjj yZxXIdyxN )1,,(),(1   and  
j

jj yZxXIyxR ),(),( . 

 1,  yZ  yZ    

xX   ),(11 dydxN   ),(1 ydxN   

xX      

 ),(1 dyxN   ),( yxR  

Table 2: 22  table for left truncated and right censored data 

In Appendix B we show that, under 0H , the population odds ratio of Table 2 is still one 

under both censoring settings. Accordingly the modified log-rank statistics has the same 

form given below  
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
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








yx

W
yxR

dyxNydxN
dydxNyxWL

),(

),(),(
),(),( 11

11 .          (15) 

Define the L  statistic as  















yx

yxR

dyxNydxN
dydxNyxvL

),(

),(),(
),(),(ˆ 11

11


 ,   (16) 

where 0  is a constant and ),(ˆ yxv  is an estimator of ),( yx . Note that the two 

censoring cases yield different consistent estimators of ),( yx  such that  

(B) Assumptionunder 

(A) Assumptionunder 

)})((ˆ/{),(

)}(ˆ/{),(
),(ˆ

0











x

C

C

uySnyduR

ySnyxR
yxv

R

, 

where )(ˆ ySC  is the product-limit estimator for )()Pr( ySyC C  based on data 

)1,,{( iii ZX   )}...,,1( ni   [29] and )(ˆ yS
RC  is the usual Kaplan-Meier estimator for 

)()Pr( ySyC
RCR   based on data )1,{( iii XC  : )}...,,1( ni   [32] . In absence of 

censoring, ),(ˆ yxv  reduces to ),(ˆ yx  for both cases. Notations L (A) and L (B) 

will be used when ),(ˆ yxv  is defined under Assumption (A) and (B) respectively. 

   Emura and Wang (2008) showed that, under Assumption (A), L  can be written as a 

Hadamard differentiable function of ncCyYxXIcyxH
j jjj /),,(),,(ˆ   : 

  
* * *

* * *

* * * * *

* * * * *

ˆ{ ( ; , ) }ˆ( ) ˆ2 { , ( ) , ( ) }

?                   sgn{( )( )} ( , , ) ( , , ),

x x y y c c

n H x x y y c c
L H

H x x y y c c y y c c

x x y y dH x y c dH x y c



 


    

   
   

        

  

  
 

where ),;ˆ(),(ˆ yxHyx    is also a Hadamard differentiable function of Ĥ . 

Asymptotic normality of L  can be established by applying the functional delta method 

and the fact that )ˆ(2/1
HHn   converges weakly to a mean-zero Gaussian process. 
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Emura and Wang (2008) also showed that the asymptotic variance of L  can be 

consistently estimated by the Jackknife estimator 2ˆ
Jack . Extension of these results under 

Assumption (B) follows essentially the same arguments by modifying the definition of 

),;( yxH . Therefore, the test of quasi-independence can be based on JackL  ˆ/  by 

applying the asymptotic normality result.   

The definition of a  has also been modified to account for censoring. Using the 

fact that the order of a pair is known for certain if the smaller one is observed, Martin and 

Betensky [21] define the event  

)}1&0&0()0&1&0()1{(}
~

{  jijijiijjiijijij ZZZZZXB 


which is a condition for the ),( ji  pairs being comparable and orderable. The modified 

conditional Kendall’s tau, denoted as b , has the same form as a  with ijA  being 

replaced by ijB . Under quasi-independence, it can be shown that under both settings, 

0]|)})([sgn{(  ijjijib BZZXXE .  

The proof is essentially quite similar as in Appendix B and hence is omitted. In Appendix 

C, we show that  





ji

jiji

ijij

ijij

ijW ZZXX
ZXR

ZXW
BIL )})(sgn{(

)
~

,(

)
~

,(
}{ 



.          (17) 

By setting nyxRyxW /),(),(  , WL  reduces to the empirical estimator of b , 

n

K
ZZXXBI

n

b

ji

jijiij  


)})(sgn{(}{
1

. 

Note that bK  no longer belongs to the class L  in (16) when data are censored. For 

variance estimation, explicit variance formula for bK  was proposed by Tsai [28] based 

on properties of rank statistics. Martin and Betensky [21] still apply properties of 
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U-statistics to obtain the asymptotic variance of bK .  

5.2 Conditional Score Test under Censoring  

Now we extend the analysis in Section 3 to the two censoring settings. Extension 

under Assumption (A) is first discussed since it is more straightforward. Under the 

alternative hypothesis, the population odds ratio of Table 2 is )},({),( yxyx    and 

the arguments in Section 3.1 can be still applied based on the modified counts defined in 

Section 5.1. The conditional score tests is a special case of (15) with the weight function 

)},(ˆ{lim),(
0

yxyxW 



 . Consider the semi-survival AC models (11) in which 

)},({ yx  can be written as )(/)()(     and ),(),( yxcyx   . To 

estimate the nuisance parameter we rewrite it as ),(),( *
yxcyxc   , where 

)(/)|,Pr(),( ySZXyZxXyxv C . The nuisance parameter is estimated by 

),(ˆˆ),(ˆ *  yxcyx  , where *
ĉ  is an estimator of *

c . Under 0H , the constant *
c  is 

estimated by ),(ˆ/)(ˆˆ
)1()1()1(

*
0  XXXFc X  , where XF̂  is the estimator of Wang, Jewell, 

and Tsai [31] based on truncated data ),{( ii ZX : )}...,,1( ni   subject to ii ZX  . The 

suggested weight function under each AC model is the same as those presented in Section 

3.2 except that the method of estimating nuisance parameter has to be modified. It turns 

out that 0L  and 1L (A) in (16) are the conditional score tests when ),( YX  follows 

Clayton and Frank AC models respectively. 

Derivation of the score test under Assumption (B) becomes more complicated since 

the population odds ratio of Table 2 is no longer )},({ yx . Based on (B1) of 

Appendix B, the odds ratio equals 












x

C

x

C

duuySyuyu

duuySuyu

xyx

yxyx

R

R

0

2

0
2

)(}/),({

)(}/),({

/),(

/),(








. 

This is not equal to )},({ yx  unless 1)( uyS
RC  for xu 0 . Development of 
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the conditional score test under Assumption (B) will be left as our future work. 

Nevertheless, the choice with )},(ˆ{lim),(
0

yxyxW 



  in (15) is still a valid test even 

it may not achieve the same level of power improvement. If censoring is light so that 

)},({ yx  is a good approximation of the true ratio, the resulting test will still be a 

good choice.  

6. NUMERICAL ANALYSIS 

6.1 Data Analysis 

We apply the proposed methods to the aforementioned AIDS data and Channing 

House data and compare our results with existing analyses. The first data contains no 

censored observations.  

Lagakos, Barraj, and De Gruttola [20] divided the AIDS data into two age groups of 

children (37 subjects) and adults (258 subjects) and assumed independence between the 

incubation time X  and the lapse time Y . The Z-values and p-values of five tests are 

reported in Table 3. Specifically the proposed log-rank statistics based on 0L , 1L  

and loginvL  utilize the jackknife method for variance estimation. The tests proposed by 

Tsai [28] and Martin and Betensky [21] have the form of 1L  or aK  but use their own 

variance estimators in the standardization. For the adult group, all the results show 

significant deviation from quasi-independence. The sign of the Z-values indicates 

positive association between X  and Y  ( 111.0a ). This implies that people infected 

in earlier chronicle time tended to have longer length of incubation. Although similar 

pattern of association was also discovered in the children group ( 117.0a ), it did not 

reach 5% level of statistical significance probably because the sample size is not large 

enough. Nevertheless 0H  is still rejected by the tests of 0L  and Martin and Betensky 

[21] at 10% significance level.  
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To determine the best weight for wL , we compare values of the fitted likelihood 

under the three models, namely the Clayton, Frank and Gumbel families. In Table 3, 

)ˆ(log L  denotes the log of conditional likelihood when ̂  is the maximized value of 

  over the parameter space of the model. For both covariate groups, the Clayton model 

is the best fitted one among the competitors and hence 0L  is recommended.  

For the Channing House example, quasi-independence between a resident’s lifetime 

(Y ) and his/her entry age to the community ( X ) is examined under the two censoring 

mechanisms which differ in whether censoring could occur to a truncated subject. Six 

tests are compared in Table 4 which include the tests proposed by Tsai [28] and Martin 

and Betensky [21] and four proposed tests. The score tests, 0L , 1L (A) and loginvL , 

use the suggested weights for the three AC models respectively with ),(ˆ yxv  defined 

under Assumption (A). The 1L (B) test adopts Assumption (B) to define ),(ˆ yxv . All 

the tests are valid.  

The first analysis uses the data provided in Hyde [17] which contains 462 (97 men and 

365 women) subjects. Among them, 286 people withdrew from the community yielding 

the censoring proportion 0.62. Based on the first half of Table 4, the Z-value of each test 

indicates slightly positive association between X  and Y  ( b = 0.088). The four tests, 

namely 1L (A), 1L (B), Tsai’s test and Martin and Betensky’s test, reach the 10% 

significance level. In fact, the likelihood analysis favors the Frank model under which the 

score test is 1L (A). Recall that in presence of censoring, Tsai and Martin and 

Betensky’s tests use the weight nyxR /),(  while 1L (A) and 1L (B) adopt the weight 

)}(ˆ/{),( ySnyxR C  and  
x

C uySnyduR
R0

)})((ˆ/{),(  respectively. Hence they are no longer 

equivalent.  
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   The second analysis uses the data in Hyde [16], where only the 97 men were studied 

with 51 subjects being censored. This subset also reveals positive association between 

X  and Y  ( b =0.199). Based on the second half of Table 4, the three score tests fail to 

reject quasi-independence. The values of maximized log-likelihood still favor the Frank 

alternative in which the score test is 1L (A) with the p-value 0.168. In contrast, three 

tests 1L (B), Tsai’s test and Martin and Betensky’s test suggest rejecting 

quasi-independence at 5% level (p-values: 0.048, 0.043 and 0.040 respectively).  

 Now we discuss the results of Channing House data in more detail. Firstly, the 

methods of variance estimation seem to have not much effect. In fact, if we tested the 

second dataset using WL  with nyxRyxW /),(),(   and the jackknife variance 

estimator, the corresponding Z-value becomes -2.033 (p-value: 0.042) which is very close 

to the results based on the two competing tests. Therefore the test result seems to be 

mostly affected by the chosen weight function. Note that the function nyxR /),(  assigns 

higher weight to early failure time y  than )}(ˆ/{),( ySnyxR C  in 1L (A). We suspect 

that the association at earlier time period is higher for the subset of men than it is for the 

whole sample of 462 subjects. Notice that for the male group, the 1L (B) test rejects 

0H  (p-value: 0.048) while the 1L (A) test does not (p-value: 0.168). To determine 

which censoring assumption is more suitable, one may further examine whether the 

censoring event can also be truncated or not. For Channing House data among 286 

censored subjects, 27 subjects withdrew from the study and the remaining 259 subjects 

survived until the end of study. The reason of withdraw might be due to financial 

insecurity. Assumption (B) (i.e. 1)Pr( CX ) is more plausible if the end-of-study 

effect was the primary reason of censoring. However if the financial issue still affected a 

person’s decision on the enrollment of the community, Assumption (A) may be a proper 
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choice. In addition the definition of the target population is crucial. The researcher might 

adopt Assumption (B) by excluding those who were not rich enough to enroll from the 

target population.  

6.2 Simulation Studies 

Finite-sample performances of the proposed test and their competitors are evaluated 

via simulations. Random pairs of ),( YX  were generated from three well-known 

semi-survival AC models, namely the Clayton, Frank and Gumbel families discussed in 

Section 3.2 The level of association for an AC model can be described in terms of 

(pre-truncated) Kendall’s tau defined as ]))(sgn([ jiji YYXXE   which is 

independent of the marginal distributions. Since the major goal of the simulations is to 

see the power improvement in the suggested weight in (10), we adopt Assumption (A) for 

the censoring mechanism, under which the score tests are derived. Accordingly, the 

censoring variable C  was generated independently from ),( YX . The marginals of 

),,( CYX  follow exponential distributions with the hazard rates yielding the targeted 

levels of )( YXPc  (i.e. 66.7%, 50.0% and 33.3%) for the uncensored case and of  

)(*
ZXPc   (i.e. 66.7%, 50.0% and 33.3%) for the 50% censored case 

( 5.0)|(  ZXYCP ) respectively. For each setting, we provide the value of 

conditional Kendall’s tau a  or b . 

   We consider three proposed tests, namely 0L , 1L  and loginvL , using the 

jackknife method for variance estimation. For the Clayton, Frank and Gumbel 

alternatives, the score tests correspond to 0L , 1L  and loginvL  respectively. The tests 

proposed by Tsai [28] and Martin and Betensky [21] are also evaluated. In absence of 

censoring, these two tests constructed based on aK  are equivalent to 1L  except that 

different variance estimators are used. Performances of the five tests at n 100 and 200 
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are studied.  

Table 5 and 6 summarize the results based on 500 replications when ),( YX  follow 

the Clayton model. Under quasi-independence, the rejection probability for all tests are 

close to the nominal 5% level, and as expected, the power of each test increases as the 

level of association departs from quasi-independence. In all the cases, the proposed score 

test 0L  is uniformly more powerful than the other tests. The test 
1L  and two related 

tests proposed by Tsai [28] and Martin and Betensky [21] have similar and sometimes 

unsatisfactory performances. Also, the power of each test improves when the censoring 

rate decreases.  

  The results for the Frank model under different levels of association are 

summarized in Table 7 ( 100n ) and Table 8 ( 200n ). As mentioned earlier, the score 

test based on 1L  and the tests proposed by Tsai [28] and Martin and Betensky [21] use 

the same weight function when data are not censored. Under the Frank model, the three 

tests have shown higher power than both 0L  and loginvL  as expected but a clear-cut 

dominance among the three is not found. Compared with the Clayton’s case, the 

magnitude of power improvement reduces a little bit. This may be due to the effect of 

estimating the nuisance function of ),( yx  in the suggested weight for the Frank model.   

  Table 9 contains the results under the Gumbel model with 2.0  and 4.0  

since the semi-survival Gumbel model only permits negative association. In contrast to 

the Clayton and Frank models, the discrepancy for the power curves of different tests 

becomes less clear. Nevertheless for the uncensored case with 200n , the proposed 

score test based on loginvL  still performs slightly better than the competing tests. We 

suspect that the gain by using the suggested form of weight )},(log{/1 yxc  may be 

somewhat offset by estimating two nuisance parameters c  and ),( yx . 
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 Interestingly the level of truncated proportion has a clear impact on the power 

performance if the data follow the Frank or Gumbel models, while it does not under the 

Clayton model. Now we provide some heuristic explanations. Under these two models, 

the odds ratio function ),( yx is a monotone function of )( YXPc   or 

)(*
ZXPc  . It turns out that the power of all tests increases as c  or *

c  gets larger. 

In contrast,  ),( yx  under the Clayton model and this may explain why the power 

of the tests is not much affected by c  or *
c .  

    In general, the simulation results confirm that the suggested weight in (10) can 

improve the power when the alternative is correctly specified. On the other hand, a wrong 

choice of weight may result in loss of power. The results of the simulation studies are 

consistent with the efficiency study in Section 4.3. 

7. CONCLUDING REMARKS 

   A related area of research is testing independence for bivariate failure times. 

Rank-based procedures were proposed by Cuzick [5, 6] and Dabrowska [8]. Oakes [22] 

suggested a concordance test based on an estimate of Kendall's tau which keeps the 

information of ranks and has a nice expression as a U-statistic. Shih and Louis [26, 27] 

utilized the covariance process of martingale residuals to constructs test statistics. Hsu 

and Prentice [15] generalized the idea of Mantel-Haenszel statistics to test independence 

for right censored data. Similar idea has been extended to bivariate current status data by 

Ding and Wang [7] based on another formulation of 22  tables.  

   This article considers left-truncated data in presence of right-censoring. A modified 

version of Kendall’s tau was proposed by Tsai [28] and then used as the basis for testing 

quasi-independence by both Tsai [28] and Martin and Betensky [21]. Alternatively we 

apply the idea of log-rank type statistics based on 22  tables designed for describing 

truncation data. By permitting a flexible weight function, the proposed statistics form a  

general class of tests. A nice equivalence property between the log-rank type statistics and 
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the Kendall’s tau statistics has been established. This relationship allows us to compare 

different types of tests under a unified framework and it turns out that the weight function 

plays a crucial role. The distributional properties of the 22  tables shed some light on 

the underlying likelihood structure. Accordingly, motivated by the papers of Clayton [4] 

and Oakes [23], we derive a score test when the dependence structure under the 

alternative hypothesis can be modeled via the odds ratio function ),( yx . Compared 

with the conditional Kendall’s tau measures, ),( yx  is a better association measure 

since it is independent of the marginal distributions and can be accurately estimated in 

presence of censoring. The proposed score test has the log-rank type expression with the 

weight function chosen to fit the alternative hypothesis and hence has good power when 

the true model is assumed. The functional delta method is applied to derive large-sample 

properties for the proposed test statistics with flexible weight functions which may 

contain nuisance parameters. Consistency of the jackknife variance estimator is also 

justified. 

To find the score test, a heuristic model selection procedure is proposed by comparing 

the values of the conditional likelihood functions under different model choices. 

Alternatively Beaudoin and Lakhal-Chaieb [1] proposed a different method for model 

selection. They also suggested fitting the AIDS data by Clayton’s model and Channing 

House data by the Frank model.  

 In analysis of the Channing House data, we discuss the issue of choosing a suitable 

assumption on censoring. In summary, one should check whether the reason of censoring 

can occur to those with X Y . This assumption also depends on how the target 

population is defined.  

For analyzing more complicated truncation and censoring structures, Martin and 

Betensky [21] considered several extended versions of Kendall’s tau and utilized 

properties of U-statistics in variance estimation and large-sample analysis. It would be 
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interesting to apply the idea of log-rank tests to these data settings. This extension is not 

trivial since the formulation of appropriate “risk sets” in the construction of 22  tables 

is not straightforward. We will leave this problem as a future research topic.  

  APPENDIX A: ASYMPTOTIC ANALYSIS 

Let }),0{[ 2D  be the collection of all right-continuous functions with left-side limit 

defined on 2),0[  , whose norm is defined by |),(|sup),( , yxfyxf yx


 for 

}),0{[ 2Df . We assume that the function cySxFyx YX /)()(),(   is absolutely 

continuous. The empirical process on the plane is defined as: 


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yx
1

),(
1

),(̂ . 

The functional delta method is applied based on the weak convergence result of 

)),(),(ˆ(2/1
yxyxn    to a mean 0 Gaussian process ),( yxV  on }),0{[ 2D  with the 

covariance structure given by 

),(),(),()},(),,(cov{ 221121212211 yxyxyyxxyxVyxV   , 

for any ),( 11 yx , 2
22 ),0[),( yx . 

A.1 Proof of Theorem 1  

After some algebraic manipulations based on (6), we can rewrite it as 
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This allows us to rewrite the statistics as 
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where the definition of the functional R }),0{[:)( 2
D  is 
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By setting the argument   as )|,Pr(),( YXyYxXyx   and viewing the 
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above integral as an expectation, we have 0)(   : 
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By direct calculations, we can show the Hadamard differentiability of )( . The 

differential map of )(  at }),0{[ 2D  with direction }),0{[ 2Dh  is 
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Applying the functional delta method [30], we obtain the asymptotic expression 
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where ),(),(),( yYxXIyx jjYX jj
 . It is easy to see that the sequences, 

)(),( ),(  
jj YXjj YXU  for nj ,,1  , 

are iid random variables with mean-zero. From the central limit theorem, 
wLn

2/1  

converges to a mean-zero normal distribution with the variance ]),([ 22
jj YXUE .  

A.2 Analytic variance estimator for the 


G  class 

Recall that the L  class is a sub-family of wL . For this class, one can obtain the 

explicit formula of ),( jj YXU  given in (13). Accordingly it is not difficult to obtain an 

analytic estimator of 2  based on (13) as follows: The derivative map is given by 
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Hence the asymptotic variance of L  can be estimated by 
2
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Based on the above expression, one can estimate the asymptotic variance 

2)(  nLAVar   by equation (14).  

APPENDIX B: ODDS RATIO OF TABLE 2 

Assume that all the time variables are continuous. Under 0H  and Assumption (A), all 

entries in Table 2 is observed under the conditioning event ZX  . Thus, the population 

odds ratio of Table 2 can be written as 
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Under 0H  and Assumption (B), all entries in Table 2 is observed under the conditioning 

event YX   since 1)Pr( CX  holds. Thus, 
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APPENDIX C: DERIVATIONS OF EQUIVALENT EXPRESSIONS 

In this section, we prove equations (6) and (17). Note that equation (6) is the uncensored 

case with iC  in (17). For mathematical convenience, we define the discordant 

indicator }0))({(  jijiij ZZXXI . To simplify the notations, let ijijij WZXW
~

)
~

,( 


 

and ijijij RZXR
~

)
~

,( 


. One can write   

 


 












i

ZZX

XXj ji

jijijw

iji

ij
ZXR

dZdXNZXWL
:

11
),(

1
),(),(  

.

),(

1
),(

),(

1),(
),(

21

:

II

ZXR
ZXW

ZXR

ZXR
ZXW

i

ZZX

XXj ji

jij

i ii

ii
iii

iji

ij






  





 

Using the fact that 1),(),(  iij ijij ZXRZZXXI , it follows that  
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The indicator ij  equals zero for a pair ),( ji  with jiij ZZXX  , . Therefore  
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By applying similar algebraic manipulations, it follows that 



 

 - 30 - 

  






i ZXXXj ij

ij

ijj

i

ZZX

XXj ij

ij

j

jiij

iji

ij
R

W

R

W
I

,::
2 ~

~

)1(~

~

 . 

Combining 1I  and 2I , we obtain 
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For a pair ),( ji  with ij XX  , the following equation holds: 
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Thus, we obtain the equation (17) as follows: 
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The second equation follows from the permutation symmetry of each term with respect to 

arguments ),( ji . 
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Table 3. Tests of quasi-independence for the AIDS data 

 
0L  1L  loginvL  Tsai M & B 

     Adult     

Z-value -5.012 -2.918 -3.795 2.567 2.833 

P-value 5.398 710  3.519 310  1.475 410  1.027 210  4.610 310  

)ˆ(log L  -1077.878 -1080.054 -1082.860 Undefined Undefined 

     Children     

Z-value -1.838 -1.379 -1.373 0.966 1.672 

P-value 0.066 0.168 0.170 0.334 0.095 

)ˆ(log L  -95.225 -95.434 -95.859 Undefined Undefined 
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Table 4. Tests of quasi-independence for the Channing House data. 

 
0L  1L (A) loginvL  1L (B) Tsai M & B 

(1) 462 subjects      

Z-value -0.515 -1.669 -1.169 -1.700 1.776 1.837 

P-value 0.607 0.095 0.243 0.089 0.076 0.066 

)ˆ(log L  -809.207 -807.954 -809.316 Undefined Undefined Undefined 

(2) 97 men, a subset of (1)     

Z-value -1.286 -1.379 -1.116 -1.973 2.021 2.053 

P-value 0.198 0.168 0.264 0.048 0.043 0.040 

)ˆ(log L  -139.297 -139.267 -140.268 Undefined Undefined Undefined 

 

Note: 1L (A) uses the weight function )}(ˆ/{),(),(ˆ  ySnyxRyxv C  and 1L (B) 

uses the weight function  
x

C uySnyduRyxv
R0

)})((ˆ/{),(),(ˆ . 



 

 - 35 - 

Table 5. Empirical rejection probabilities of the proposed tests ( 0L , 1L  and loginvL ) 

and two competing tests (Tsai’s and Martin and Betensky’s tests) at level 05.0  based 

on 500 replications when ),( YX  under Clayton’s model with sample size 100. 

)Pr( YXc   

)Pr(*
ZXc   

  ( a / b ) 0L  1L  loginvL  Tsai M & B 

Uncensored       

667.0c  -0.2 (-0.200) 0.908 0.832 0.860 0.856 0.800 

 -0.1 (-0.100) 0.410 0.320 0.334 0.344 0.312 

 0.0 (0.000) 0.052 0.044 0.042 0.046 0.046 

 0.1 (0.100) 0.518 0.374 0.442 0.358 0.378 

 0.2 (0.200) 0.998 0.914 0.962 0.900 0.910 

500.0c  -0.2 (-0.200) 0.900 0.802 0.852 0.832 0.786 

 -0.1 (-0.100) 0.404 0.290 0.344 0.334 0.280 

 0.0 (0.000) 0.062 0.054 0.044 0.052 0.064 

 0.1 (0.100) 0.456 0.354 0.376 0.322 0.372 

 0.2 (0.200) 0.998 0.912 0.984 0.888 0.914 

333.0c  -0.2 (-0.200) 0.900 0.794 0.838 0.846 0.786 

 -0.1 (-0.100) 0.396 0.290 0.332 0.340 0.272 

 0.0 (0.000) 0.046 0.036 0.032 0.036 0.038 

 0.1 (0.100) 0.518 0.382 0.438 0.352 0.410 

 0.2 (0.200) 0.990 0.896 0.978 0.900 0.920 

50% Censored       

667.0* c  -0.2 (-0.200) 0.746 0.622 0.606 0.604 0.582 

 -0.1 (-0.100) 0.262 0.186 0.192 0.172 0.148 

 0.0 (0.000) 0.056 0.054 0.028 0.048 0.052 

 0.1 (0.100) 0.222 0.212 0.198 0.184 0.182 

 0.2 (0.200) 0.836 0.690 0.734 0.646 0.636 

500.0* c  -0.2 (-0.200) 0.696 0.552 0.558 0.538 0.512 

 -0.1 (-0.100) 0.270 0.176 0.172 0.190 0.162 

 0.0 (0.000) 0.038 0.034 0.026 0.050 0.046 

 0.1 (0.100) 0.244 0.220 0.214 0.204 0.204 

 0.2 (0.200) 0.824 0.660 0.702 0.622 0.624 

333.0* c  -0.2 (-0.200) 0.690 0.542 0.542 0.522 0.482 

 -0.1 (-0.100) 0.254 0.158 0.156 0.166 0.140 

 0.0 (0.000) 0.046 0.060 0.044 0.054 0.056 

 0.1 (0.100) 0.204 0.170 0.154 0.178 0.188 

 0.2 (0.200) 0.852 0.688 0.740 0.676 0.686 

NOTE: For each run, five test statistics are calculated based on the same dataset. 
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Table 6. Empirical rejection probabilities of the proposed tests ( 0L , 1L  and loginvL ) 

and two competing tests (Tsai’s and Martin and Betensky’s tests) at level 05.0  based 

on 500 replications when ),( YX  under Clayton’s model with sample size 200. 

)Pr( YXc   

)Pr(*
ZXc   

  ( a / b ) 0L  1L  loginvL  Tsai M & B 

Uncensored       

667.0c  -0.2 (-0.200) 0.990 0.970 0.988 0.974 0.970 

 -0.1 (-0.100) 0.706 0.534 0.626 0.590 0.522 

 0.0 (0.000) 0.048 0.056 0.044 0.060 0.050 

 0.1 (0.100) 0.872 0.646 0.798 0.622 0.658 

 0.2 (0.200) 1.000 1.000 0.998 1.000 1.000 

500.0c  -0.2 (-0.200) 1.000 0.984 0.992 0.984 0.978 

 -0.1 (-0.100) 0.684 0.520 0.614 0.566 0.514 

 0.0 (0.000) 0.044 0.056 0.044 0.060 0.054 

 0.1 (0.100) 0.874 0.670 0.824 0.642 0.676 

 0.2 (0.200) 1.000 0.998 1.000 0.998 0.998 

333.0c  -0.2 (-0.200) 0.990 0.974 0.986 0.982 0.974 

 -0.1 (-0.100) 0.684 0.510 0.628 0.570 0.504 

 0.0 (0.000) 0.052 0.070 0.046 0.058 0.070 

 0.1 (0.100) 0.886 0.678 0.822 0.642 0.696 

 0.2 (0.200) 1.000 1.000 1.000 0.998 1.000 

50% Censored       

667.0* c  -0.2 (-0.200) 0.936 0.854 0.868 0.842 0.838 

 -0.1 (-0.100) 0.504 0.378 0.384 0.340 0.316 

 0.0 (0.000) 0.048 0.052 0.048 0.054 0.046 

 0.1 (0.100) 0.488 0.376 0.394 0.324 0.328 

 0.2 (0.200) 0.996 0.944 0.974 0.910 0.908 

500.0* c  -0.2 (-0.200) 0.940 0.866 0.894 0.840 0.828 

 -0.1 (-0.100) 0.456 0.348 0.360 0.332 0.308 

 0.0 (0.000) 0.062 0.050 0.058 0.054 0.060 

 0.1 (0.100) 0.566 0.446 0.494 0.394 0.408 

 0.2 (0.200) 0.992 0.938 0.978 0.924 0.926 

333.0* c  -0.2 (-0.200) 0.920 0.834 0.872 0.834 0.824 

 -0.1 (-0.100) 0.450 0.354 0.380 0.338 0.330 

 0.0 (0.000) 0.044 0.046 0.048 0.052 0.042 

 0.1 (0.100) 0.500 0.382 0.446 0.340 0.364 

 0.2 (0.200) 0.998 0.946 0.984 0.956 0.960 

NOTE: For each run, five test statistics are calculated based on the same dataset. 
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Table 7. Empirical rejection probabilities of the proposed tests ( 0L , 1L  and loginvL ) 

and two competing tests (Tsai’s and Martin and Betensky’s tests) at level 05.0  based 

on 500 replications when ),( YX  under Frank’s model with sample size 100. 

)Pr( YXc   

)Pr(*
ZXc   

  ( a / b ) 0L  1L  loginvL  Tsai M & B 

Uncensored       

667.0c  -0.4 (-0.242) 0.864 0.956 0.946 0.956 0.952 

 -0.2 (-0.103) 0.292 0.348 0.322 0.366 0.330 

 0.0 (0.000) 0.052 0.044 0.042 0.046 0.046 

 0.2 (0.081) 0.214 0.256 0.236 0.234 0.270 

 0.4 (0.163) 0.532 0.738 0.620 0.722 0.742 

500.0c  -0.4 (-0.189) 0.664 0.852 0.806 0.848 0.830 

 -0.2 (-0.075) 0.166 0.206 0.198 0.216 0.182 

 0.0 (0.000) 0.062 0.054 0.044 0.052 0.064 

 0.2 (0.047) 0.114 0.126 0.102 0.116 0.152 

 0.4 (0.082) 0.216 0.234 0.208 0.244 0.286 

333.0c  -0.4 (-0.135) 0.406 0.544 0.498 0.552 0.510 

 -0.2 (-0.050) 0.130 0.132 0.082 0.142 0.126 

 0.0 (0.000) 0.046 0.036 0.032 0.036 0.038 

 0.2 (0.026) 0.060 0.084 0.046 0.076 0.090 

 0.4 (0.034) 0.064 0.066 0.056 0.062 0.106 

50% Censored       

667.0* c  -0.4 (-0.340) 0.856 0.926 0.912 0.930 0.908 

 -0.2 (-0.141) 0.310 0.346 0.320 0.334 0.314 

 0.0 (0.000) 0.052 0.044 0.042 0.046 0.046 

 0.2 (0.131) 0.256 0.338 0.278 0.324 0.316 

 0.4 (0.284) 0.752 0.898 0.834 0.888 0.884 

500.0* c  -0.4 (-0.260) 0.720 0.806 0.782 0.786 0.772 

 -0.2 (-0.131) 0.224 0.230 0.206 0.244 0.216 

 0.0 (0.000) 0.062 0.054 0.044 0.052 0.064 

 0.2 (0.080) 0.144 0.190 0.146 0.174 0.186 

 0.4 (0.167) 0.456 0.568 0.468 0.550 0.564 

333.0* c  -0.4 (-0.223) 0.474 0.490 0.444 0.518 0.462 

 -0.2 (-0.081) 0.142 0.126 0.108 0.146 0.124 

 0.0 (0.000) 0.046 0.036 0.032 0.036 0.038 

 0.2 (0.049) 0.062 0.082 0.046 0.084 0.100 

 0.4 (0.097) 0.122 0.148 0.104 0.178 0.196 

NOTE: For each run, five test statistics are calculated based on the same dataset. 
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Table 8. Empirical rejection probabilities of the proposed tests ( 0L , 1L  and loginvL ) 

and two competing tests (Tsai’s and Martin and Betensky’s tests) at level 05.0  based 

on 500 replications when ),( YX  under Frank’s model with sample size 200. 

)Pr( YXc   

)Pr(*
ZXc   

  ( a / b ) 0L  1L  loginvL  Tsai M & B 

Uncensored       

667.0c  -0.4 (-0.242) 0.990 1.000 0.996 1.000 1.000 

 -0.2 (-0.103) 0.456 0.596 0.576 0.606 0.600 

 0.0 (0.000) 0.048 0.056 0.044 0.060 0.050 

 0.2 (0.081) 0.340 0.486 0.406 0.452 0.490 

 0.4 (0.163) 0.820 0.970 0.906 0.968 0.968 

500.0c  -0.4 (-0.189) 0.912 0.972 0.966 0.970 0.972 

 -0.2 (-0.075) 0.260 0.410 0.370 0.428 0.418 

 0.0 (0.000) 0.044 0.056 0.044 0.060 0.054 

 0.2 (0.047) 0.188 0.242 0.208 0.226 0.236 

 0.4 (0.082) 0.334 0.434 0.358 0.438 0.468 

333.0c  -0.4 (-0.135) 0.654 0.812 0.792 0.824 0.810 

 -0.2 (-0.050) 0.138 0.158 0.150 0.166 0.160 

 0.0 (0.000) 0.052 0.070 0.046 0.058 0.070 

 0.2 (0.026) 0.072 0.086 0.064 0.092 0.088 

 0.4 (0.034) 0.104 0.148 0.102 0.148 0.180 

50% Censored       

667.0* c  -0.4 (-0.340) 0.990 0.992 0.996 1.000 1.000 

 -0.2 (-0.141) 0.530 0.620 0.596 0.608 0.576 

 0.0 (0.000) 0.048 0.056 0.044 0.060 0.050 

 0.2 (0.131) 0.426 0.582 0.528 0.562 0.574 

 0.4 (0.284) 0.984 0.984 0.990 1.000 1.000 

500.0* c  -0.4 (-0.260) 0.946 0.976 0.976 0.978 0.974 

 -0.2 (-0.131) 0.338 0.392 0.382 0.410 0.398 

 0.0 (0.000) 0.044 0.056 0.044 0.060 0.054 

 0.2 (0.080) 0.236 0.344 0.298 0.328 0.336 

 0.4 (0.167) 0.724 0.862 0.772 0.844 0.848 

333.0* c  -0.4 (-0.223) 0.734 0.806 0.792 0.804 0.780 

 -0.2 (-0.081) 0.216 0.212 0.202 0.220 0.196 

 0.0 (0.000) 0.052 0.070 0.046 0.058 0.070 

 0.2 (0.049) 0.106 0.128 0.102 0.136 0.136 

 0.4 (0.097) 0.248 0.334 0.232 0.290 0.318 

NOTE: For each run, five test statistics are calculated based on the same dataset. 
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Table 9. Empirical rejection probabilities of three proposed tests ( 0L , 1L  and loginvL ) 

and two competing tests (Tsai’s and Martin and Betensky’s tests) at level 05.0  based 

on 500 replications when ),( YX  under Gumbel’s model with sample sizes 100 and 200. 

)Pr(

)Pr(
*

ZXc

YXc




   ( a / b ) 0L  1L  loginvL  Tsai M & B 

100n , uncensored      

67.0c  -0.4 (-0.200) 0.804 0.844 0.836 0.860 0.820 

 -0.2 (-0.081) 0.226 0.224 0.220 0.234 0.206 

50.0c  -0.4 (-0.169) 0.712 0.722 0.730 0.756 0.700 

 -0.2 (-0.063) 0.196 0.174 0.168 0.186 0.168 

33.0c  -0.4 (-0.138) 0.552 0.478 0.500 0.524 0.466 

 -0.2 (-0.054) 0.142 0.124 0.116 0.126 0.116 

100n , 50% censored      

67.0* c  -0.4 (-0.293) 0.766 0.804 0.784 0.808 0.774 

 -0.2 (-0.119) 0.234 0.204 0.190 0.206 0.184 

50.0* c  -0.4 (-0.215) 0.658 0.670 0.670 0.668 0.626 

 -0.2 (-0.085) 0.134 0.146 0.126 0.144 0.134 

33.0* c  -0.4 (-0.198) 0.504 0.418 0.418 0.420 0.408 

 -0.2 (-0.059) 0.134 0.092 0.092 0.088 0.078 

200n , uncensored           

67.0c  -0.4 (-0.200) 0.978 0.992 0.994 0.990 0.990 

 -0.2 (-0.081) 0.360 0.376 0.392 0.386 0.364 

50.0c  -0.4 (-0.169) 0.934 0.944 0.950 0.950 0.936 

 -0.2 (-0.063) 0.308 0.302 0.312 0.310 0.306 

33.0c  -0.4 (-0.138) 0.828 0.792 0.830 0.824 0.786 

 -0.2 (-0.054) 0.226 0.200 0.208 0.212 0.204 

200n , 50% censored      

67.0* c  -0.4 (-0.293) 0.960 0.978 0.980 0.976 0.976 

 -0.2 (-0.119) 0.356 0.380 0.380 0.394 0.360 

50.0* c  -0.4 (-0.215) 0.878 0.884 0.890 0.880 0.868 

 -0.2 (-0.085) 0.262 0.246 0.246 0.234 0.226 

33.0* c  -0.4 (-0.198) 0.722 0.684 0.696 0.692 0.674 

 -0.2 (-0.059) 0.186 0.158 0.162 0.168 0.158 

 NOTE: For each run, five test statistics are calculated based on the same dataset. 
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Figure 1. Efficiency comparison of L  test with ]2,0[   

under selected marginal distributions.  

○: mean-zero exponential ; △: uniform on [0,1]; ┼: chi-squared with one degree of freedom. 

 


