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Abstract

This paper presents a uncertain-lifetime overlapping-generations continuous

time model for an Arrow-Debreu economy with endogenous fertility, in which

age-dependent variables are explicitly introduced. The general equilibrium

paths for the discount factor and newborns are derived from a system of two

coupled forward-backward integral equations. The forward mechanism is re-

lated to aggregation between cohorts and the backward mechanism to life-cycle

decisions. We study changes in the age-dependent profiles of age-dependent dis-

tributions for productivity and time use. We show that high maximum ages of

productivity and child-rearing fitness increase the long run interest and growth

rates, and low maximum ages can lead to asset pricing bubbles and negative

population growth rates.
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e a Tecnologia). This article is part of the Strategic Projects PEst.-OE/EGE/UI0436/2011 and
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1 Introduction

What is the effect of ageing on interest rates ? How do interest rates react to age-

dependent shocks ? More generally: what is the relation between demographics and

interest rates ?

Some (rare) papers address the relationship between the age structure on the

long run behavior of asset prices and interest rates. According to Fama (2006) and

Favero et al. (2013) interest rates tend to follow moving average processes tending

towards variable long run components associated to demography, and Geanakoplos

et al. (2004) find that ratio young/middle is positively correlated with rates of interest.

However, empirical studies do not offer a clear understanding of the mechanism

between age-distribution of population and aggregate variables such as the interest

rate. Overlapping-generations (OLG) models supply the available theory on the ef-

fects (or joint determination) of demographics and asset markets. Most of the initial

contributions, following Samuelson (1958), consider two- or three- period lifetimes.

Attempts to extend these models to multiple period lifetimes (Auerbach and Kotlikoff

(1987) and Ŕıos-Rull (1996)) have only been solved numerically.

Is there a way to get an analytical understanding between asset prices and de-

mography, and in particular, their joint responses to age-dependent shocks ?

Continuous time versions of the OLG allow for the derivation of analytical predic-

tions. Two seminal papers give birth to two strands in the literature. First, the finite-

lifetime model has been initially presented in Cass and Yaari (1967) and has been

re-appreciated recently by many papers ( v.g. Boucekkine et al. (2002), Bommier

and Lee (2003), d’Albis and Augeraud-Veron (2007) d’Albis and Augeraud-Véron

(2009) ). It involves solving delay-differential equations, which makes it appropriate

for studying effects of changes in time-horizons of lifetime or work, but less fit for

studying changes in the profile of age-dependent densities. Second, the uncertain
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lifetime OLG model of Yaari (1965) and Blanchard (1985) gave birth to a voluminous

literature. However, most contributions have particular assumptions on demography

that lead to the representation of equilibrium by ordinary differential equations, which

simplifies the analysis at the cost of making it also unfit for studying changes in the

profile of age-dependent densities.

Within the last strand of literature, some papers consider more general types

of demography than in Blanchard (1985) implying a representation of equilibrium

by integral equations. An earlier paper Cass and Yaari (1967), for a finite lifetime,

OLG, production economy, found that equilibrium was represented by an integral

equation. The integral equation representation was rediscovered recently in several

endowment economy OLG models, of the finite lifetime strand, v.g. Demichelis and

Polemarchakis (2007) and Edmond (2008). This is consistent with the observation

by Santos and Bona (1989) the OLG models have a multiplicative operator nature.

In Brito and Dilão (2010) we also found an integral equation representation of

equilibrium in a infinite lifetime model, with a demography more general than in

the existing Yaari (1965)-Blanchard (1985), allows for the study of age-dependent

shocks. We considered uncertain lifetime with an infinite support (as in Yaari (1965)-

Blanchard (1985)), an E−∞,∞ timing, an Arrow-Debreu 1 endowment economy along

a growing balanced-growth path. Several age-dependent profiles of productivity were

introduced and they all implied the same conclusion: for a log-utility function we

proved that the long run real interest rate would increase for shifts in the income

distribution such that the age of maximum income increases. The interest rate is the

discount rate associated to Arrow-Debreu price, i.e, to prices for forward contracts in

the good’s market. Given that the mass of the population was taken as exogenous, the

supply and demand aggregate the members of cohorts according to their phase in their

1In Brito (2008) we prove that the we can have an equivalent sequential market economy.
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particular life-cycles. Therefore, aggregate the age-distribution of supply and demand

are determined by the life-cycle effect weighted by exogenous population densities.

Then, intertemporal prices are associated essentially to a backward mechanism and

their general equilibrium dynamics is governed by a double integral equation on AD

prices.

In this paper endogenous fertility and endogenous population is introduced in the

simplest way, through a version of the Barro and Becker (1989) fertility model 2 :

offsprings increase the utility of representative members of every cohort, but they

also introduce a trade-off between time used to child-rearing and to work. We as-

sume a production economy in which the only factor of production is labour, along a

balanced growth path. Endogenous fertility and population dynamics introduce two

main new feature to the model: first, as AD prices and fertility are jointly determined

then the GE is represented by a system of two coupled integral equations, and, sec-

ond, the market equilibrium condition is endogenously determined not only because

it aggregates excess-demand or supply due to life-cycle decisions, but also because the

population aggregators become endogenous. Then goods’ markets equilibria are de-

termined by two types of endogenous dynamic effects: (i) by a life-cycle effect as in the

exogenous population Brito and Dilão (2010) model and (ii) by an endogenous aggre-

gation effect because the aggregator, endogenous age-dependent population profiles,

is also endogenous. Both dynamics can work in the same or in opposite directions

and we prove that one of them tends to drive the asymptotic behavior of the interest

rates and population3

2There are other endogenous fertility papers in the finite-lifetime continuous-time literature. In

partial equilibrium context d’Albis et al. (2010) assume that the age of motherhood is endogenous.
3In a way the the design of pension systems (PAYG or capitalisation) reflects the two dimen-

sions of heterogeneity introduced by age: heterogeneity along the life-cycle, within a cohort, or

heterogeneity in the age-distribution for all cohorts living in a particular moment in time.
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Our approach allows for a parameterized analysis of some puzzling properties of

OLG equilibrium models4: indeterminacy, in the sense that we have a continuum

equilibrium of equilibria (Samuelson (1958), Gale (1973)), endogenous fluctuations,

rational asset pricing bubbles (Tirole (1985)).

The main results of the paper are the following: first, interest rates and population

growth is driven by a life-cycle (anticipating) and a cohort aggregation (evolutionary)

mechanisms; second, age-dependent distribution of productivity and child-rearing

fitness determine the dynamics of both interest rates and the rate of growth of the

population; third, there is indeterminacy for interest rates (and depending on the

version, for the rate of growth); fourth, the aggregate (life-cycle) effect dominates if

the age of maximum productivity is high (low) and the age of maximum fertility is

low (high); and , fifth, asset pricing bubbles can occur if productivity and fertility

maxima are reached earlier in the lifetime, and, in this case, population tends to

growth asymptotically at negative rates.

The paper unfolds as follows. In section 2 the model’s components are described

and the general equilibrium system of integral equations is presented, In section 3 we

solve the equilibrium integral equations for two, age-independent and age-dependent,

distribution. Section 4 concludes.

2 The model

This paper introduces the following assumptions as regards demographics technology,

and the institutional framework. At each point in time a new cohort borns, the size of

thew cohort depends on age-distribution of the population and on the distribution of

the fertility rate, which is also age-dependent. The lifetime for each cohort is uncer-

4The basic reason for those properties is related to the lack of market equilibrium at infinity (see

Geanakoplos (2008)).
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tain, and we take it at infinite. However, the size of every cohort decays exponentially

by the mortality rate. Along its lifetime, the members of the cohort consume, work

and have offspring and all those activities are age-dependent, and their resources come

from the labor income. All the individual within every cohort are homogeneous.

We assume an Arrow-Debreu economy in which there are only product markets

opening at the ”Archimedian time” t = −∞. At this date, there is a spot market

and an infinite number of forward markets for delivery at any future date individual

members of every cohort, irrespective of the time of birth, take those prices as given.

All the individual members of every cohort may only perform spot and forward

transactions at the time of birth, t0, at prices consistent to those set at t = −∞. As we

assume that there are intergenerational transfers, every member of all cohorts should

face an intertemporal budget constraint taking the Arrow-Debreu price as given.

The preferences are characterized by an additive intertemporal utility functional,

depending upon consumption and the number of children. Child-rearing have a cost

in time spent depending on the number of children and the age of the parent by a

fitness factor.

We consider a production economy, in which labor is the only endogenously deter-

mined factor of production but having an age-dependent productivity, growing along

a balanced growth path (BGP).

In this age-dependent model, the main functions are age-dependent densities. We

introduce the endogenously determined densities for fertility and population, con-

sumption, wage income and, implicitly, savings. We consider two exogenous densities

related to child-rearing fitness and productivity.

In the market equilibrium condition, which aggregates supply and demand densi-

ties, endogenous densities operate both through the aggregator (population densities)

and the behavioral densities. First, the choice between consumption and fertility de-

termines both the age-dependent density of consumption and income, through a life-
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cycle arbitrage condition, and, second, the endogenous fertility choice also determines

the density of population and, therefore, the aggregator. The first is anticipative and

forward-looking and the second is evolutionary, backward-looking. The two mecha-

nisms therefore, tend to operate simultaneously. However, depending on the initial

conditions and on the parameters of the model one of them tends to be dominant.

2.1 Demographics

To describe the growth of population during time, we follow the age-structured McK-

endrick model, McKendrick (1926). We denote by n(a, t) the density of individuals

of a population with age a ≥ 0 and at time t. The aggregate population is

N(t) =

+∞
∫

0

n(a, t)da. (1)

The evolution of the density of individuals of an age-structured population can be

simply described by the first order partial differential equation,

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −µ(a)n(a, t) (2)

where µ(a) is the age-dependent mortality rate of the population. We assume mor-

tality is time-independent. The new-borns are introduced through the boundary

condition,

b(t) ≡ n(0, t) =

∫ +∞

0

β(a, t)n(a, t)da (3)

where β(a, t) is the fertility density of age a at time t.

The population density at time t is determined from the initial population density,

n(a, t = 0) = ψ(a), with a, t ∈ R+.

According to the standard theory of first order partial differential equations, the

characteristic curves are lines a− a0 = t− t0 solving da
dt

= 1. Then, we can write the
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solution on each characteristic curve as5

n(a, t) = n(a0, t0)e
−

∫ t

t0
µ(s+a0−t0)ds. (4)

The individuals of a population that were born around some time t = t0 is a cohort

of the population, and (4) relates the density of individuals in the same cohort. Let

t0 be the (universal) time at which a cohort is born. The initial size of a cohort

is b(t0) = n(0, t0) and is related to the density of the existing cohorts by b(t0) =
∫ +∞

0
β(a, t0)n(a, t0)da and the size of a cohort born at time t0, at time t = a + t0,

where its members are of age a is n(a, t0 + a) = b(t0)π(a) where

π(a) ≡ e−
∫ t

0 µ(a)da (5)

is the instantaneous probability of survival for at age a.

2.2 Representative agent of cohort t0

The number of offspring produced by the cohort t0, up to time t ≥ t0 is
∫ t

0

β(s, t0 + s)n(s, t0 + s)ds = b(t0)

∫ t

0

β(s, t0 + s)e−
∫ s

0 µ(z)dzds.

Then the number of children by a member of the cohort produced during its lifetime

is
∫

∞

0

β(a, t0 + a)e−
∫ a

0 µ(s)dsda.

We assume that consumers have a von-Neumann-Morgenstern utility function

displaying impatience and uncertain lifetimes where the the probability of survival is

age-dependent but cohort-independent.

We also assume that agents derive utility both from consumption and from the

joy to parenting. A particular logarithmic instantaneous utility function is assumed

U(t0) =

∫

∞

0

ln(c(a, t0 + a)) + φ ln(β(a, t0 + a))R(a)π(a)da (6)

5see Cushing (1998) Webb (1985), Dilão (2006) and Brito and Dilão (2010)
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where φ weights the relative felicity derived from consumption and from parenting

and is assumed to be independent from age and

R(a) ≡ e−
∫ a

0 ρ(s)ds

is the psychological discount factor where ρ(.) ≥ 0

We assume a production economy in which there is a single good which is not

stored and is used in consumption. The production economy uses only one input,

labor, with a linear technology

y(a, t) = A(a, t)l(a, t)

where A(.) is the average and marginal productivity of labor and l(.) is the time

dedicated to production.

We assume a production economy in which there is a single good which is not

stored and is used in consumption. Production uses only one input, labor, with a

linear technology

y(a, t) = A(a, t)l(a, t)

where A(.) is the average and marginal productivity of labor and l(.) is the time

dedicated to production.

We follow Becker and Barro (1988) by assuming that the major cost of child-

rearing is the time lost to production. We assume that the time spend per-child is a

linear function of the number of children v(a)β(a, t) where v(a) is a fitness coefficient

which is age dependent.

If we normalize the total time to 1 then the time-use balance equation is

l(a, t) + v(a)β(a, t) = 1,

where l(a, t) ∈ (0, 1) and v(a)β(a, t) ∈ (0, 1).

9



We assume that a complete asset market exists, in which Arrow-Debreu contracts

may be performed, as in Brito and Dilão (2010). There is an Arrow-Debreu contract

for delivery of one unit of the good at price p(t). The price is consistent between

cohorts and is set at the ’Archimedian” time t = −∞. This allows agents to allows

members of every cohort to perform life-cycle allocations of net income, at the time

of birth t0.

Then the stock of human wealth, or the value at time of birth of the lifetime labor

income, for a member of cohort t0, is

h(t0) ≡
∫

∞

0

p(t0 + a)y(a, t0 + a)π(a)da

where y(a, t0 + a) = A(a, t0 + a)(1− v(a)β(a, t0 + a)).

Therefore, the problem for the representative member of the cohort born at t0,

Pad:

max
(c(a,t0+a),β(a,t0+a))a∈[0,∞)

∫

∞

0

ln(c(a, t0 + a)) + φ ln(β(a, t0 + a))R(a)π(a)da

subject to the intertemporal budget constraint

∫

∞

0

p(t0 + a)(1− v(a)β(a, t0 + a))A(a, t0 + a)− c(a, t0 + a))π(a)da = 0, (7)

for (c(a, t), β(a, t)) ∈ Ω(t0), where

Ω(t0) ≡ {(c(a, t0 + a), β(a, t0 + a)) : c(a, t0 + a) > 0, 0 < v(a)β(a, t0 + a) < 1, for all a ∈ R+} .

We introduce two magnitudes: the maximum wealth that cohort t0 can get

h̄(t0) ≡
∫

∞

0

p(t0 + a)A(a, t0 + a)π(a)da (8)

which occurs if cohort t0 is childless, and the average lifetime discount factor

R̄ ≡
∫

∞

0

R(a)π(a)da (9)
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Lemma 1. The optimal consumption and fertility for a member of cohort t0 with age

a ∈ [0,∞) are

c∗(a, t0 + a) =
R(a)

p(t0 + a)

H̄(t0)

(1 + φ)R̄
, a ∈ [0,∞) (10)

and

β∗(a, t0 + a) =
R(a)

p(t0 + a)v(a)A(a, t0 + a)

φH̄(t0)

(1 + φ)R̄
, a ∈ [0,∞) (11)

where (c∗(a, t0 + a), β∗(a, t0 + a)) ∈ Ω(t0).

Consumption, for any moment along the lifetime of a member of cohort t0 is

proportional to the lifetime human wealth. The age-dependency is captured by the

ratio R(a)/p(t0 + a), the ratio between the cohort and the market discount factor,

as in the exogenous-fertility model (see Brito and Dilão (2010)). The fertility rate at

age a is proportional to consumption, because

β∗(a, t0 + a) = φ
c∗(a, t0 + a)

v(a)A(a, t0 + a)
a ∈ [0,∞).

However, the proportionality is age-dependent: it decreases with both productvity

and the fitness to child-rearing. Therefore, fertility has two economic components and

a biological one (translated by v(.)). We find that an increase in average productivity

has two effects on fertility: (a) a substitution effect diminishes fertility, while (b) a

wealth effect, by increasing human capital, increases fertility.

2.3 Aggregation

Taking t > a in equation (4) we have the density of individuals of age a at time t

n(a, t) = n(0, t− a)e−
∫ a

0 µ(s)ds. (12)

where b(t) = n(0, t) is the number of newborns at time t. The number of newborns

is endogenous

b(t) = n(0, t) =

∫

∞

0

β∗(a, t)n(a, t)da =

∫

∞

0

β∗(a, t)b(t− a)e−
∫ a

0 µ(s)dsda (13)
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where β∗(.) is given by equation (11). The total population is

N(t) =

∫

∞

0

n(a, t)da =

∫

∞

0

b(t− a)e−
∫ a

0 µ(s)dsda (14)

We take the initial population N(0) =
∫

∞

0
b(−a)e−

∫ 0
−a

µ(z)dzda = N0 as given.

The aggregate demand for goods is

C(t) =

∫

∞

0

c∗(a, t)n(a, t)da =

∫

∞

0

c∗(a, t)b(t− a)e−
∫ a

0 µ(s)dsda (15)

where c∗(.) is given by equation (10), and the aggregate supply is

Y (t) =

∫

∞

0

(1−v(a)β∗(a, t))A(a, t)n(a, t)da =

∫

∞

0

(1−v(a)β∗(a, t))A(a, t)b(t−a)e−
∫ a

0 µ(s)dsda

(16)

In the last case, the fertility rate affects both the density of output per age but

also the aggregator.

2.4 General equilibrium

Definition 1. The OLG-Arrow-Debreu general equilibrium Is defined by the

densities (c(a, t))(a,t)∈R2
+
, (β(a, t))(a,t)∈R2

+
and the paths (p(t))t∈R+ and (b(t))t∈R+ such

that, given the initial population N0: (i) agents optimize c(a, t) = c∗(a, t), β(a, t) =

β∗(a, t) solve Pad, (ii) the equilibrium condition for the good’s market is , C(t) = Y (t)

holds (iii) the endogenous number of newborns is b(t) =
∫

∞

0
β∗(a, t)b(t−a)e−

∫ a

0 µ(a
′

)da
′

da

As we saw in Brito and Dilão (2010), the system of spot and forward markets

operating at time of birth of any cohort should be consistent irrespective of t0. Then

we may consider that markets operate at t = 0 and consider all the variables as

discounted values as regards t = 0.

Setting t = t0 + a then we can rewrite equations (10) and (11) as

c∗(a, t) =
R(a)h̄(t− a)

(1 + φ)p(t)R̄
, a ∈ [0,∞) (17)
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and

β∗(a, t) =
φh̄(t− a)R(a)

(1 + φ)p(t)A(a, t)R̄
, a ∈ [0,∞) (18)

where

h̄(t− a) ≡
∫

∞

0

p(t− a+ s)A(s, t− a+ s)π(s)ds. (19)

If we substitute the the optimal consumption and fertility, equations (17) and (18)

in the market clearing equation where C(t) and Y (t) are given by equations (15) and

(16), respectively, we get the equilibrium equation for the AD prices

p(t) =
1

R̄

∫

∞

0
n∗(a, t)H̄(t− a)R(a)da
∫

∞

0
n∗(a, t)A(a, t)da

, (20)

where n(a, t) is the equilibrium density of population in equation (12)

Substituting the equilibrium fertility rate, in equation (18), into the equilibrium

birth rate equation (13) we get,

b(t) =
φ

(1 + φ)R̄p(t)

∫

∞

0

H̄(t− a)b(t− a)π(a)R(a)

v(a)A(a, t)
da

Therefore, the general equilibrium is characterized by the pair of functions p(t), b(t)

for t ∈ R+ which solve the system of integral equations

p(t) =
1

R̄

∫

∞

0

∫

∞

0
b(t− a)p(t− a+ s)A(s, t− a+ s)π(s)π(a)R(a)dsda

∫

∞

0
b(t− a)A(a, t)π(a)da

, (21)

b(t) =
φ

(1 + φ)R̄

∫

∞

0

∫

∞

0

p(t− a+ s)A(s, t− a+ s)π(s)b(t− a)π(a)R(a)

p(t)v(a)A(a, t)
dsda(22)

given the initial total population is given N(0) = N0.

The solution depends upon the age-dependent functions µ(a), ρ(a), v(a) and

A(a, t). In this paper we want to characterise the aggregate effects of changing the

age-profile of some of this functions on the asset prices and endogenous fertility or

birth rate b(t)/N(t), that is the weight of newborns on total population.
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2.5 Balance growth path

In order to get some qualitative results, we restrict the analysis to the balanced growth

paths (BGP), that is to separable but age-dependent productivity densities, A(a, t) =

A(a)eγt, to constant rate of time preference and mortality rates, ρ(a) = ρ > 0 and

µ(a) = µ > 0. Therefore the unique exogenous age-dependent forcing functions are

A(a) and v(a). The system of integral equations (21)-(22) becomes

p(t) =

∫

∞

0

∫

∞

0
p(t− a+ s)b(t− a)K0(a, s) ds da

∫

∞

0
b(t− a)K1(a)da

(23)

p(t)b(t) =

∫

∞

0

∫

∞

0

b(t− a)p(t− a+ s)K2(a, s)ds da (24)

where the kernels are

K0(a, s) = (ρ+ µ)A(s)e−(µ−γ)se−(γ+ρ+µ)a

K1(a) = A(a)e−µa

K2(a, s) =

(

φ

1 + φ

)

K0(a, s)

A(a)v(a)
.

The kernels should be L1(R+) functions and are of the backward-forward type: the

forward term, s, is related to the life-time planning nature of the consumer’s problem,

irrespective of the cohort, the backward term a is related to the aggregation among

existing cohorts.

The equilibrium (real) interest rate and the rate of growth of population can be

obtained from the solutions of equations (23) and (24) as r(t) = −ṗ(t)/p(t) and

η(t) = Ṅ(t)/N(t), respectively.

If the kernels K0, K1 and K2 are continuous, the solution should be unique. We

use the Wiener-Hopf approach with the eigenfunction expansions

p(t) =
∑

k

p0ke
−rkt, b(t) =

∑

l

b0le
λlt

14



where rk and λl are complex numbers and p0k and b0l are arbitrary constants. The

eigenfunctions r and λ are the solutions of the characteristic system:

∫

∞

0

A(a)e−(λ+µ)a

(

1− ρ+ µ

λ
− r + γ + ρ+ µe−(r−γ−λ)a

)

da = 0 (25)

and
(ρ+ µ)φ

1 + φ

∫

∞

0

∫

∞

0

A(s)

v(a)A(a)
e−(λ−r+γ+ρ+µ)ae−(r+µ−γ)sdsda = 1 (26)

If we can determine p(.) and b(.) then we can obtain the equilibrium consumption

and fertility densities from

c(a, t) =
(ρ+ µ)h̄(t− a)

(1 + φ)p(t)
eγte−(γ+ρ)a

and

β(a, t) =
(ρ+ µ)φh̄(t− a)

(1 + φ)v(a)A(a)p(t)
e−(γ+ρ)a.

To characterise further the equilibrium we introduce assumptions regarding the

distributions A(a) and v(a). We start with age-independent function and next intro-

duce Mincerian densities.

3 Applications

3.1 Particular case: age-independent densities

To start with the simplest case, we assume in this section an uniform distributions

for productivity, A(a) = A0 > 0, and time-use, v(a) = v0 > 0.

Lemma 2. (Equilibrium price and birth rate) Let η ≡ β0 −µ and β0 ≡ φ/(v0(1+φ))

and assume that 0 < β0 < ρ + µ < 1/v0. Then the DGE paths for the AD price and
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the number of newborns verifies

b(t) = b0e
ηt, t ∈ [0,∞) (27)

p(t) =
(

p0,1e
−ρt + p0,2e

−ηt
)

e−γt, t ∈ [0,∞) (28)

where b0 = β0N0 and p0,1 and p0,2 are arbitrary constants.

In this simple version of the model, the determination of the population dynamics

and of the Arrow-Debreu prices can be done recursively. The number of newborns

grows at the rate of population growth. This is equal to the endogenous fertility rate,

which is driven by the trade-off between the love for parenting and the time withdrawn

from production to rearing them, less the mortality rate. The total population is

N(t) = b(t)
µ
. If we calibrate with data for the U.S we would get b(t)/N(t) ≈ 0.0127×2

to which corresponds an the average age E(a) = 1
µ

≈ 40 years. Historical data

suggests the second dominates: ρ > η.

The dynamics of Arrow-Debreu prices display three effects: first, if output grows

at the rate γ along the BGP the increase in supply drives process down; second ,

there a life-cycle discounting effect (working through the ρ term); and, third, there is

the aggregative (working through η) which is a result of the increase in supply driven

by the increase in the mass of population. Under the assumptions in Lemma 2, we

have ρ > η which implies that the aggregative effect dominates the life-cycle effect.

We can see more clearly how these effects operate by studying the equilibrium fer-

tility density and the interest rate. The equilibrium endogenous fertility rate density

also displays the two (life-cycle and aggregative) effects

β(a, t) =
β0p0,1 + (ρ+ µ)p0,2e

(ρ−η)(t−a)

p0,1 + β0p0,2e(ρ−η)t

The admissibility constraint 0 < β(a, t)v0 < 1 holds if β0 < µ+ρ ≤ 1
v0

or, equivalently,

if R̄ φ

1+φ
< v0 < R̄. The dominance of the aggregative effect implies fertility is
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decreasing in age. The equilibrium population can increase or decrease through time,

depending on the sign of η.

The DGE interest rate is

r(t) =











η + γ, if η = ρ

(ρ+γ)(η+γ−r0)−(η+γ)(ρ+γ−r0)e−(η−ρ)t

(η+γ−r0)+(r0−γ−ρ)e−(η−ρ)t , if η 6= ρ

(29)

Proposition 1. Let the assumptions in Lemma 2 hold. Then, along a BGP, the

interest rate is non-stationary and tends asymptotically to γ+η. The time t = 0 level

of the interest rate in indeterminate, but has to verify r0 < η + γ < ρ+ γ.

We say there are speculative bubbles if r(∞) < 0. In our model we have specula-

tive bubbles if γ + η < 0 independently of the rate of growth of the population. This

seems to be unrealistic given the data.

3.2 Particular case: age-dependent densities

We now assume age-dependent densities productivity and fitness in rearing children,

in terms of time use. In particular, we introduce Mincerian distribution for the age-

density of productivity per unit of time spent in production

A(a) = A0e
αa(Ka−a), α > 0, A0 > 0 (30)

where Ka/2 = age of maximum productivity (US: α ≈ 0.00156, Ka ≈ 109.3). We are

assuming that productivity is increasing up to age Ka/2 and decreases later in the

lifetime. However, the output profile per age depends not only on the (exogenous)

profile of productivity but also on the (endogenous) time allocated to production.

We also assume an inverse Mincerian age-profile for fitness in child-rearing

v(a) = v0e
νa(a−Kv), ν > 0, v0 > 0 (31)
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where Kv/2 = the age of maximum fitness (Kv ≈ 56). The fitness in child-rearing,

which is the inverse of time spending, increases up to age Kv/2 and increases after-

wards. However, the fertility profile per age depends not only on the (exogenous)

fitness but also other (endogenous) factors like human wealth.

Next we introduce two functions on x = r − γ and λ,

Ψ(k) = Ψ(k,Ka) ≡
√
π

2
√
α
ez

2

erfc(z), z ≡ k + µ− αKa

2
√
α

, k = x, λ (32)

and

Ψ̃(λ−x) = Ψ̃(λ−x,Ka, Kv) ≡
√
π

2
√
ν − α

ez̃
2

erfc(z̃), z̃ ≡ λ− x+ ρ+ µ+ αKa − νKv

2
√
ν − α

(33)

where

erfc(x) = 1− erf(x) =
2√
π

∫

∞

x

e−y2dy.

We define the critical magnitudes

ξ =
{

y : β0(ρ+ µ)Ψ(z(y))Ψ̃(0) = 1
}

(34)

and

ξ∗ = 2α

(

Ka

2
− 1

ρ+ µ

)

+ β0(ρ+ µ)Ψ̃(0)− µ. (35)

We emphasise the fact that ξ∗ = ξ∗(Ka, Kv) only depends on parameters, and, in

particular on Ka and Kv, as Ψ̃(0) is a function of them both. We also introduce the

following function

s(Ka, Kv) ≡ (ρ+ µ)Ψ
′

(ξ∗(Ka, Kv)) + Ψ(ξ∗(Ka, Kv)).

We introduce the following one-dimensional manifold over the domain of (Ka, Kv),

K ⊂ R
2
++,

S = {(Ka, Kv) ∈ K : s(Ka, Kv) = 0} (36)
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This set partitions set K into two subsets

K+ = {(Ka, Kv) ∈ K : s(Ka, Kv) > 0}

and

K− = {(Ka, Kv) ∈ K : s(Ka, Kv) < 0} .

Lemma 3. Assume that ν > α. Then the general solution for the integral system is:

1. if (Ka, Kv) ∈ S

p(t) = p0,ξe
−(ξ∗+γ)t

b(t) = b0,ξe
ξ∗t

2. if (Ka, Kv) /∈ S

p(t) = p0,ξe
−(ξ+γ)t + p0,ξ−e

−rξ− t

b(t) = b0,ξe
ξt + b0,ξ−e

λξ−
t

where ξ > ξ∗ and rξ− − γ < ξ < λξ− if (Ka, Kv) ∈ K+, and ξ < ξ∗ and

rξ− − γ > ξ > λξ− if (Ka, Kv) ∈ K−.

Again, there is indeterminacy as far as the AD price is concerned because the

initial value of the prices is not pinned down by the model. If (Ka, Kv) /∈ S there is

also indeterminacy regarding because we only know b0 = b0,ξ + b0,ξ−

The general solution for the interest rate is

r(t) =
(ξ + γ)(r0 − γ − xξ−) + (xξ− + γ)(ξ + γ − r0)e

−(xξ−
−ξ)t

r0 − γ − xξ− + (ξ + γ − r0)e
−(xξ−

−ξ)t

for xξ− 6= ξ and r0 is the initial interest rate.

19



Lemma 4. Let (Ka, Kv) /∈ S. Then, the interest rate:

1. is stationary in the cases

r(t) =











ξ + γ, if r0 = ξ + γ

xξ− + γ, if r0 = xξ− + γ

2. it is non-stationary in the cases:

lim
t→∞

r(t) =











xξ− + γ, if r0 < ξ + γ and xξ− < ξ

ξ + γ, if r0 < xξ− + γ and xξ− > ξ

The solution for the rate of growth of the population

η(t) =
ξ(λξ− − η0)− λξ−(ξ − η0)e

(λξ−
−ξ)t

(λξ− − η0)− (ξ − η0)e
(λξ−

−ξ)t

for λξ− 6= ξ and η0 is the initial rate of population growth.

Lemma 5. Let (Ka, Kv) /∈ S Then the rate of population growth:

1. is stationary in the cases

η(t) =











ξ, if η0 = ξ

λξ− , if η0 = λξ−

2. it is non-stationary in the cases:

lim
t→∞

η(t) =











ξ, if η0 > λξ− and λξ− < ξ

λξ− , if η0 > ξ, and λξ− > ξ

The next result presents conditions under which the aggregation or the lifetime

effect dominates:
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Lemma 6. Let (Ka, Kv) /∈ S. Then:

1. the aggregation effect dominates if λξ− < ξ < xξ−, and η0 > λξ− and r0 < ξ + γ

lim
t→∞

r(t) = ξ + γ, lim
t→∞

λ(t) = ξ

2. the lifetime effect dominates if λξ− > ξ > xξ−, and η0 > ξ and r0 < xξ− + γ

lim
t→∞

r(t) = xξ− + γ, lim
t→∞

λ(t) = λξ−

The case in which the aggregate effect dominates was the only one that was

possible when we had age-independent productivity and child-rearing fitness. This

case is sometimes called the asymptotic golden rule case, and the asymptotic rate of

interest is equal to the rate of productivity growth plus the population growth.

With Mincerian age-dependent functions a domination of lifetime effect is also

possible. In this case, sometimes labeled the inefficient steady state, the asymptotic

interest rate is smaller than the sum of the rate of growth in productivity plus the

rate of growth of the population and the rate of growth of population is relatively

higher than in the asymptotic golden rule.

We introduce the sets (one-dim manifolds), associated to the non-increasing in

population

K0 = {(Ka, Kv) : ξ(Ka, Kv) ≤ 0}

and associated to the emergence bubbles r ≤ 0

K−γ {(Ka, Kv) : ξ(Ka, Kv) = −γ}

We can also define the corresponding sets (zero-dim manifolds) over S, associated

to zero population growth rate S0 = {(Ka, Kv) ∈ S : ξ∗(Ka, Kv) = 0} and to the

emergence of bubbles S−γ = {(Ka, Kv) : ξ
∗(Ka, Kv) = −γ}.
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Proposition 2. Let (Ka, Kv) ∈ K. Then four main cases are possible:

1. if there is a high Ka and a low Kv then rate of interest will converge to the

asymptotic golden rule level and population growth will be positive asymptoti-

cally;

2. if there is a low Ka and a high Kv then rate of interest will converge to the in-

efficient steady level state and population growth will be positive asymptotically;

3. if there are both low Ka and Kv then there will be asymptotic rational bubbles

and population decline

4. if there are high Ka and Kv there will asymptotic golden rule or inefficient

steady state and population growth.

Figure 1 presents a bifurcation diagram, in space (Ka, Kv) for the partition of set

K illustration proposition 2: below line S the aggregation effect dominates, above

line S the lifetime effect dominates, below line ξ = 0 population declines and below

line ξ = −γ there will be asymptotically rational asset pricing bubbles.

4 Conclusions

A simple generalization of the demography,and a slight change in methodology, al-

lows us to study the effects of age-dependent endowments and demographics in asset

prices. Even though there is indeterminacy, we may derive comparative dynamics

conclusions. We reach two findings: first, we find a positive correlation between

interest rates and growth of the population (consistent with the young/middle-age

correlation with interest rates); second interest rates and population tends to grow

when the age of maximum productivity and of maximum fertility tend to increase;
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Figure 1: Partition of space K: the aggregation (lifetime) effect dominates for all

points below (above) line S. Below line ξ = 0 the long run rate of growth of population

becomes negative. Below line ξ = −γ there are speculative bubbles. Parameter

values: ρ = 0.02, µ = 0.005, φ = 0.005 α = 0.0015, ν = 0.005, v0 = 0.8 and γ = 0.02.
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third, rational bubbles can occur and are associated with negative population growth

rates, which occur when both the ages for maximum productivity and fertility are

low.
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A Appendix: Proofs

Proof of Lemma 1. The problem Pad is a isoperimetric problem, which we can solve

using calculus of variations techniques. We define the Lagrangean as

L(c, β, q) =

∫

∞

0

ln(c(a, t0 + a)) + φ ln(β(a, t0 + a))R(a)π(a)da+

+ q

(
∫

∞

0

p(t0 + a)(1− v(a)β(a, t0 + a))A(a, t0 + a)− c(a, t0 + a))π(a)da

)

(37)

where q is the Lagrange multiplier. Let us assume there are functions c(a, t0 + a)

and β(a, t0 + a) in Ω(t0) maximise L. Necessary conditions for an interior optimum

are
∂L

∂q
= 0,

δL

δc
= 0, and

δL

δβ
= 0

where ∂/∂q is a standard derivative and δ/δc and δ/δβ are functional derivatives.

Using a standard definition (Gelfand and Fomin, 1963, p. 12), we introduce two

arbitrary functions ǫc(a) and ǫβ(a) both in L1(R), and introduce a parameterized

perturbations c̄(a, t0+a) = c(a, t0+a)+αǫc(a) and β̄(a, t0+a) = β(a, t0+a)+αǫβ(a)

over the solution of the problem, where α is a parameter. The functional derivatives

of L are defined as

δL(c, β)

δc
=
δL(c̄, β̄)

δc

∣

∣

∣

∣

α=0

,
δL(c, β)

δβ
=
δL(c̄, β̄)

δβ

∣

∣

∣

∣

α=0

.

We get

δL

δc
=

∫

∞

0

(

R(a)

c(a, t0 + a)
− qp(t0 + a)

)

π(a)ǫc(a)da (38)

δL

δc
=

∫

∞

0

(

φ
R(a)

β(a, t0 + a)
− qp(t0 + a)v(a)A(a, t0 + a)

)

π(a)ǫǫ(a)da (39)

As c(a, t0 + a) and β(a, t0 + a) are maximisers for the Lagrangean the equalities 38

and 39 must be true for any functions ǫc(a) and ǫβ(a) both in L1(R), the terms inside
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the parentheses must be zero for all a ∈ R+. Then we get the optimal consumption

and fertility for every age of the member of cohort t0

c∗(a, t0 + a) =
R(a)

qp(t0 + a)
(40)

β∗(a, t0 + a) =
φR(a)

qp(t0 + a)v(a)A(a, t0 + a)
(41)

If we introduce these functions into the intertemporal budget constraint, (7) we get

the Lagrange multiplier

q = (1 + φ)
R̄

h̄(t0)
.

where h̄t0 and R̄ are defined in equations (8) and (9), respectively. Substituting q

into equations (40) and (41) we get the optimal consumption and fertility functions

(10) and (11). If h(t0) > 0 and if prices and productivity are positive, p(.) > 0 and

A(.), then c∗(a, t0 + a) > 0 and β∗(a, t0 + a) > 0 for every a ∈ R+. The condition

v(a)β∗(a, t0+a) < 1 is equivalent to φR(a)h̄(t0) < (1+φ)p(t0+a)A(a, t0+a)R̄ which

can be checked at the GE level.

Proof of Lemma 2. In this case then equations (21) and (22) become a the recursive

system

b(t) = β0

∫

∞

0

∫

∞

0

b(t− a)e−µada (42)

p(t) = (ρ+ µ)

∫

∞

0
b(t− a)p(t− a+ s)e−(µ−γ)se−(µ+ρ+γ)adsda

∫

∞

0
b(t− a)e−µada

(43)

(44)

Using a solution method for similar equations in (Polyanin and Manzhirov, 2008,

p.381), the general solution may be a linear combination of eigenfunctions having the

form

p(t) =
∑

k

p0ke
−rkt, b(t) =

∑

l

b0le
λlt (45)
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where rk and λl are the roots, in general complex roots of a system of characteristic

equations to be determined next. As the system (43)-(42) is recursive, we set b(t) =

b0e
(λr+λci)t in the linear integral equation (42) and get the characteristic equation

1 = β0

∫

∞

0

e−(λr+µ+λci)ada =

= β0

∫

∞

0

e−(λr+µ)a (cos (−λca) + sin (−λca)i) da.

The integration is well defined only if λr + µ > 0, which leads to the equivalent

characteristic equation

1 = β0
λr + µ− λci

(λr + µ)2 + λ2c
.

(observe that, for the complex conjugate root λr − λci we would get the complex

conjugate equation). Then, the solution for λr and λc can be obtained from

β0(λr + µ)

(λr + µ)2 + λ2c
= 1

− β0λc
(λr + µ)2 + λ2c

= 0.

As β0 > 0 then we have a single root λc = 0 and λr = β0 − µ, that verifies the

conditions λr + µ = β0 > 0. Then the general solution for equation (42) is

b(t) = b0e
(β0−µ)t. (46)

If we substitute this solution in equation (43) we get the linear integral equation for

on p(t)

p(t) = (ρ+ µ)β0

∫

∞

0

p(t− a+ s)e−(µ−γ)se−(ρ+γ+β0)adsda. (47)

Trying p(t) = p0e
−(rr+rci)t, we get the characteristic equation

1 =(ρ+ µ)β0

∫

∞

0

∫

∞

0

e−(µ−γ+rr+rci)se−(ρ+γ+β0−rr−rci)adsda =

=(ρ+ µ)β0

∫

∞

0

∫

∞

0

e−(µ−γ+rr)se−(ρ+γ+β0−rr)a [ cos (−rca) cos (−rcs)− sin (−rca) sin (−rcs)+

+ (sin (−rca) cos (−rcs) + cos (−rca) sin (−rcs)) i] dsda
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The equation is well defined only if −µ < rr − γ < ρ+ β0. Under this condition, the

characteristic equation becomes

[(µ− γ + rr)
2 + r2c ][(γ + ρ+ β0 − rr)

2 + r2c ]

β0(ρ+ γ)
= (µ−γ+rr)(γ+ρ+β0−rr)−r2c+rc(β0+µ+ρ)i

As β0+µ+ρ > 0 then rc = 0, then rr is the root of equation (µ+rr−γ)(γ−rr+ρ+β0) =
β0(µ + ρ), that has two roots r1 = γ + ρ and r2 = γ + β0 − µ. Both roots verify the

conditions −µ < rj − γ < ρ + β0 for j = 1, 2 as ρ > 0, µ > 0 and β0 > 0. Then the

general solution of equation (43) is

p(t) = p0,1e
−(γ+ρ)t + p0,2e

−(β0−µ−γ)t (48)

Equations (46) and (48) are candidate solutions, we have to check if the are admissible.

First, we have to verify if the consumption and fertility decisions for every cohort are

admissible, i.e, if (c(a, t), β(a, t)) ∈ Ω(t − a). We find c(a, t) = vA
φ
eγtl(t − a) and

v(a)β(a, t) = l(t− a) where l(t− a) ≡ v
(

β0+(ρ+µ)π0e
−(β0−ρ−µ)(t−a)

1+π0e
−(β0−ρ−µ)(t−a)

)

and π0 = p2,0/p1,0.

Then sufficient conditions for admissibility are: π0 > 0, which implies that both c(a, t)

and l(t − a) are positive for all t ∈ R+ and β0 < ρ + µ < 1/v which, together with

π0 > 0, implies that l(t− a) < 1 for all a ≥ 0. Second, we can determine b0 from the

initial data on population N(0) =
∫

∞

0
n(0, a)da =

∫

∞

0
b0e

−β0ada = b0/β0 = N0.

Proof of proposition 1. Consider equation 29. It displays no singularities (that r(t) =

∞ for a finite t) if r0 ≤ max{η + γ, ρ + γ}. In this case it tends asymptotically to

limt→∞ r(t) = γ + min{η + ρ}. Given the assumptions in Lemma 2 we should have

η < ρ.

Proof of Lemma 3. Using the same method as in the proof of Lemma 2 but assuming

that the eigenfunctions are real, the characteristic system (25) and (26), becomes

ζ1(x, λ) ≡ (ρ+ µ)Ψ(x) + (x− λ− ρ− µ)Ψ(λ) = 0 (49)

ζ2(x, λ) = β0(ρ+ µ)Ψ(x)Ψ̃(λ− x)− 1 = 0 (50)
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where x ≡ r − γ and the functions Ψ(x), Ψ(λ) and Ψ̃(λ − x) are defined in (32)

and (33). Function Ψ̃(x, λ) is only well defined if ν > α. There are no closed form

solutions for the characteristic system (49)-(50). In order to prove that solutions

exist we start by noting that Ψ(z = 0) =
√
π/(2

√
α) > 0, Ψ(z) > 0, Ψ

′

(z) < 0 and

Ψ
′′

(z) > 0 for any z ∈ R, and Ψ̃(z̃ = 0) =
√
π/(2

√
ν − α) > 0, Ψ̃(z̃) > 0, Ψ̃

′

(z̃) < 0

and Ψ̃
′′

(z̃) > 0 for any z̃ ∈ R. Then λ + ρ + µ > x is a necessary condition for the

existence of solutions.

Equation ζ1(x, λ) = 0 defines two solutions: the first such that x = λ and another

x
′ 6= λ

′

such that ζ1(x
′

, λ
′

) = 0. If we set x = λ = ξ then a unique manifold

exists if, locally , ζ1,x(ξ, ξ) = (ρ + µ)Ψ
′

(ξ) + Ψ(ξ) = 0, and there are two solutions,

(x, λ) = {(ξ, ξ), (x′

, λ
′

)}, if ζ1,x(ξ, ξ) 6= 0. In this case we have x
′

< ξ < λ
′

< λ+ρ+µ

if ζ1,x(ξ, ξ) > 0 or λ
′

< ξ < x
′

< λ + ρ + µ if ζ1,x(ξ, ξ) < 0. Solving ζ1,x(ξ, ξ) = 0 we

find ξ in equation (34).

Geometrically, ζ1(x, λ) = 0 has two branches, both positively sloped in space

(x, λ): one branch corresponding to λ = x and another branch with one asymptote

λ = −(ρ+ µ) + x and with a slope higher than 1. They cross at the point such that

λ = x = ξ. Therefore it crosses the line λ = x at one point. This point is unique and

verifies the condition ζ1,x(λ, λ) = (ρ + µ)Ψx(λ) + Ψ(λ) = 0. Then, if ζ1,x(λ, λ) 6= 0,

for a given λ = λ0 there are two values for x verifying ζ1(x, λ0) = 0, x = λ and x1,

say, such that if ζ1,x(λ, λ) > 0 then x1 < λ < λ + ρ + µ; and if ζ1,x(λ, λ) < 0 then

λ < x1 < λ + ρ + µ. As equation ζ2(x, λ) = 0 is geometrically a U -shaped curve in

space (x, λ), them we have a unique solution for system (49)-(50) if it passes through

point in x = λ such that it is the single solution for ζ1(x, λ) = 0 and we have two

solutions in all other cases.

As x = λ = ξ is also a solution for ζ2(x, λ) = 0, then it is the single solution

of the characteristic system if ξ solve simultaneously ζ1,x(ξ, ξ) = 0 and ζ2(ξ, ξ) = 0

and there is a particular constraint between the parameters. We find ξ∗ in equation
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(35) and the constraint s(Ka, Kv) = 0. If s(Ka, Kv) 6= 0 then there are two solutions

for the characteristic system {(ξ, ξ), (xξ−, λξ−)}. Using the previous result on the

branches of solutions to equation ζ1(x, λ) = 0 we have: if s(Ka, Kv) > 0 then ξ > ξ∗

and xξ− < ξ < λξ− , and if s(Ka, Kv) < 0 then ξ < ξ∗ and xξ− > ξ > λξ− . if

(Ka, Kv) ∈ K−
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