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ABSTRACT

Xiao, Jingjie Ph.D., Purdue University, December 2013. Grid Integration and Smart
Grid Implementation of Emerging Technologies in Electric Power Systems Through
Approximate Dynamic Programming. Major Professor: Joseph F. Pekny and An-
drew L. Liu.

A key hurdle for implementing real-time pricing of electricity is a lack of con-

sumers’ responses. Solutions to overcome the hurdle include the energy management

system that automatically optimizes household appliance usage such as plug-in hybrid

electric vehicle charging (and discharging with vehicle-to-grid) via a two-way com-

munication with the grid. Real-time pricing, combined with household automation

devices, has a potential to accommodate an increasing penetration of plug-in hybrid

electric vehicles. In addition, the intelligent energy controller on the consumer-side

can help increase the utilization rate of the intermittent renewable resource, as the

demand can be managed to match the output profile of renewables, thus making the

intermittent resource such as wind and solar more economically competitive in the

long run.

One of the main goals of this dissertation is to present how real-time retail pricing,

aided by control automation devices, can be integrated into the wholesale electric-

ity market under various uncertainties through approximate dynamic programming.

What distinguishes this study from the existing work in the literature is that whole-

sale electricity prices are endogenously determined as we solve a system operator’s

economic dispatch problem on an hourly basis over the entire optimization horizon.

This modeling and algorithm framework will allow a feedback loop between electric-

ity prices and electricity consumption to be fully captured. While we are interested

in a near-optimal solution using approximate dynamic programming; deterministic

linear programming benchmarks are use to demonstrate the quality of our solutions.
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The other goal of the dissertation is to use this framework to provide numerical ev-

idence to the debate on whether real-time pricing is superior than the current flat

rate structure in terms of both economic and environmental impacts. For this pur-

pose, the modeling and algorithm framework is tested on a large-scale test case with

hundreds of power plants based on data available for California, making our findings

useful for policy makers, system operators and utility companies to gain a concrete

understanding on the scale of the impact with real-time pricing.
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1. INTRODUCTION

1.1 Motivation and Literature Review

The retail electricity rate has been kept flat for the past century, mainly due

to technological limitations and regulatory policies. On the other hand, wholesale

electricity prices vary constantly (e.g. hourly, or even minute-by-minute) to reflect

changes in costs of producing electricity at different time. It has long been understood

that the current flat retail rate structure is inefficient [1–5]. It prevents consumers

from benefitting from a lower electricity bill by reducing their electricity consumption

when the wholesale electricity price is high and increasing their consumption during

time periods when the electricity price is low. An inelastic short-term demand, com-

bined with extremely high costs of blackouts [6–8], also means that sufficient generat-

ing capacity must be installed to satisfy some extreme realizations of demand shocks.

This leads to an electricity system that is overly built with capital intensive assets,

solely to maintain system reliability.

Aware of potential benefits of demand-side participation, the U.S. Department of

Energy (DOE) envisions a future electricity system, referred to as Smart Grid [9–13],

where consumers are fully integrated into wholesale power markets. The Federal

Energy Regulatory Commission (FERC) also encourages a wholesale market where

demand and supply are treated symmetrically. How are the visions of smart grid

to be implemented, however, is still a subject of a great deal of debate [14–18].

Programs intended to promote demand-side participation can be divided into two

major categories: incentive-based demand response (DR) programs, and time-varying

retail prices [19] including time-of-use tariffs (TOU), critical-peak pricing (CPP), and

real-time pricing (RTP).



2

Incentive-based demand response programs pay customers to reduce their con-

sumption relative to an admistratively set baseline level of consumption. Studies

including Aalami et al. 2010 [20], Caron and Kesidis 2010 [21], and Parvania and

Fotuhi 2010 [22] focus on efficiently integrate such programs in wholesale electricity

markets to provide reserves. Time-varying prices can be static or dynamic. Static

time-varying prices, generally called time-of-use prices, are preset for pre-determined

hours and days; while dynamic prices are allowed to change on short notice, often

within a day or less. Important dynamic pricing schemes include real-time pricing

and critical peak pricing. Real-time pricing is characterized by passing on a price,

which best reflects changes in wholesale electricity prices and supply/demand bal-

ance, to consumers. Critical peak pricing allows for a retailer to occasionally declare

an unusually high retail price for a limited number of hours.

Economists have long recognized that dynamic pricing, reflecting varying system

conditions over locations as well as time, is the path to realizing full benefits of active

demand participation in the wholesale electricity market. For example, Borenstein

et al. 2002 [3] conclude that real-time pricing delivers the most benefits in terms of

reducing peak demand. Their conclusion is drawn based on a comprehensive theo-

retical and practical analysis of possible approaches to integrate an active demand

side into the wholesale electricity market. Hogan 2010 [5] also concludes in favor of

real-time pricing, but from a perspective of price signal development. He argues that

a straightforward way to implement real-time pricing is to use full wholesale electric-

ity prices, with a fixed customer charge for transmission and distribution, metering

and billing costs. However, to apply incentive-based demand response and critical

peak pricing, sophisticated calculations are required to achieve principles laid out by

FERC. Bushnell et al. 2009 [4] pinpoint an important drawback of using incentive-

based demand response. That is, individual customers will always know more about

their true baseline than the administrator of a demand response program. Therefore,

it is possible for customers to profit from that knowledge.
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Despite its potential benefits, real-time pricing was not possible to implement in

the past because the meter that most consumers had can record only the sum of con-

sumption over each month, not in each minute or hour. However, these technological

limitations have been greatly reduced. For example, millions of smart meters that

record electricity consumption on frequent intervals have been installed. Develop-

ment of advanced metering infrastructure (AMI) has been increasingly encouraged

by federal and state incentives. AMI can enable a two-way communication between

consumers and electricity retailers (even a system operator1) in terms of electricity

usages and prices [11, 24, 25].

Technologies such as AMI help pave an efficient path to universal deployment of

real-time pricing and active consumer participation. However, advanced infrastruc-

tures alone are not enough. There are at least two important barriers to a widespread

adoption of real-time pricing. The first barrier is a lack of knowledge among con-

sumers about how to respond to real-time updated prices. As most consumers have

long been accustomed to a flat rate of electricity, it would take a long time for them to

learn to track and respond to dynamic electricity rates, if they decide to do so at all.

Allcott 2011 [1] has observed, based on the first real-time pricing program operated

in Chicago since 2003, that households rarely actively checked hourly prices provided

(via telephone or the Internet), as it was difficult for them to constantly monitor the

prices and respond properly. Andersen 2011 [26] also argues that business cases for

Smart Grid should work with or without consumers’ behavior change. Therefore,

without automation technologies, it would be difficult for consumers to respond to

real-time prices that change frequently.

To overcome this hurdle, enabling technologies that allow residential customers

to respond automatically to pricing signals without adding significant burden to con-

sumers’ lifestyle have emerged. Such metering and control systems, referred to as

household energy management controllers (EMCs) or energy management system

1A system operator is responsible for the operation of the electric grid to match demand and gen-
eration, and dealing with transmission companies to maintain system reliability [23].
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(EMS), can be programmed to automatically optimize home appliances energy us-

age in response to real-time price signals. Existing products include GE Nucleus R©,

Control4 R©, etc. Some energy scheduling algorithms that can be embedded into EMCs

of a household or small business to maximize its utility (or minimize its energy cost)

have been desiged (Ibars et al. 2010 [27], Mohsenian-Rad et al. 2010 [28], etc).

The second barrier to a universal deployment of real-time pricing is political resis-

tance because of costs and risks associated with RTP. FERC 2009 [14] pinpoints the

disagreement on cost-benefit analysis of real-time pricing as one of regulatory barriers.

From a customer’s perspective, there are two main costs associated with time-varying

rates [19]. The first is the metering cost, which would be the cost of a smart meter

net of its operational benefit such as the avoided meter reading cost. The second

cost is the loss of welfare associated with reducing or shifting usage. There is no

consensus among the literature on the debate about whether real-time pricing would

have positive net welfare effects. For example, Allcott 2012 [2] estimates that mov-

ing from 10 percent of consumers on real-time pricing to 20 percent would increase

welfare in the PJM electricity market by $120 million per year in the long run. In

another study [1] based on a real-time pricing program in Chicago, the same author

concludes that households were not sufficiently price elastic to generate gains that

substantially outweigh the estimated cost of the advanced electricity meter required

to observe hourly consumption.

Another valid regulatory concern regarding real-time pricing of electricity is that

RTP could increase instability of the electric grid. For example, Allcott 2012 [2]

observes based on simulations that real-time pricing could cause peak energy prices

to increase, assuming that the reserve margin2 is a fixed percentage of peak demand.

He discovers that the reason behind this counter-intuitive observation is that the

required excess capacity is less with more consumers on RTP since the peak demand

with RTP is lower.

2Reserve margin must be imposed on the electric system to deal with some extreme realizations of
system demand and maintain system reliability [2].
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To address these regulatory concerns, we must show that real-time pricing could

yield tangible benefits to end consumers without facing significant volatility on their

monthly electric bills. One potential benefit from real-time pricing, aided with house-

hold automation devices, is that it can facilitate an increasing adoption of electric

vehicles (EVs) and/or plug-in hybrid electric vehicles (PHEVs). Interests in devel-

oping EV/PHEVs are driven by environmental concerns, and high and volatile fuel

prices [29]. While electric vehicles have a limited range and thus suffering from “range

anxiety” [30]; plug-in hybrid electric vehicles eliminate this problem as it has an in-

ternal combustion engine that works as a backup when its battery is depleted. In

this study, we use only PHEVs as an illustrative example. Adapting the modeling

framework to include EVs and other household appliances such as air conditioners

would be a straightforward extension.

The electricity consumed for charging PHEVs (e.g. 0.4 kW per mile driven for a

Chevy Volt) will present a significant new load on the existing electric system [31]. An

increased penetration of PHEVs will, if no additional measures are taken, increase

the system peak, since there is usually a natural coincidence between the normal

system peak and charging pattern. Thus, the uncoordinated new load associated

with charging will reduce the load factor3 and capacity utilization, increase peaking

generating unit usage, and raise electricity rates. It will also increase power losses

and voltage deviation [32], and reduce transformers’ life [33].

The impact of PHEVs on the electric grid depends on when they are charged.

From a PHEV owner’s point of view, their PHEV has to be charged overnight so

the driver can drive off in the morning with a fully-charged battery. This gives op-

portunities to strategically shift PHEV charging loads without causing inconvenience

to consumers. There is extensive literature on assessment of potential benefits of

coordinated charging on reducing the system demand peak, power losses, electricity

generation costs and emissions. In studies including Clement et al. 2009, 2010 [34,35],

3The load factor is defined as the average load divided by the peak load over a specified time
period [23].
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Denholm and Short 2006 [36], and Sortomme et al. 2011 [37], a system operator is

assumed to be able to directly control PHEV charging and to coordinate it with

power system operations. It is, however, unlikely for this scenario to be implemented

in the real world since it requires the system operator to track every PHEV in the

system. Besides the technological difficulty associated with such a centralized charg-

ing scenario, drivers’ privacy can also be a barrier in implementing this scheme [38].

Although the centralized charging controlled by a system operator is not practical,

it can nonetheless serve as a benchmark case to which other more realistic charging

schemes can be compared. Thus, in this study the centralized charging scheme is

considered along with various other charging scenarios.

Some studies on PHEV charging argue that charging decisions should be left

to individual consumers, and time-varying tariffs can be provided as incentives for

consumers to shift their charging demand to late night hours when the electricity price

is low. A time-of-use tariff is used in Axsen et al. 2011 [39], Huang et al. 2011 [40],

and Parks et al. 2007 [41]. These studies are usually done through simulations (with

a detailed modeling of PHEV driving patterns) since it is trivial to determine the

start time of charging.

In this study, we are interested in using real-time pricing tariffs as signals to coor-

dinate PHEV charging. As we discussed early on, with the help of EMCs, residential

consumers will have the capability to effectively react to hourly-updated price signals

and optimize their charging start time. Studies including Conejo et al. 2010 [42], Han

et al. 2010 [43], Kishore and Snyder 2010 [44], and Valentine et al. 2011 [45] discuss

PHEV charging with a real-time pricing tariff. However, they treat price signals as

exogenous information and use historical wholesale electricity prices (or statistical

models based on historical data). By doing this, they assume that PHEV charging

demand does not affect the cost of generating electricity. This assumption does not

hold when the real-time price of electricity changes every hour or less. Real-time

pricing creates a closed feedback loop between electricity supply and demand, and

as a result, the realization of random events and the reaction of PHEV owners with
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respect to the price in previous hours will influence the price in the upcoming op-

eration periods. Algorithms designed without considering this closed feedback loop

may not fully realize the benefit of deployment of real-time pricing. Mohsenian-Rad

and Leon-Garcia 2010 [46] argue that any residential energy management strategy in

hourly-updated real-time pricing requires price prediction capabilities. A few stud-

ies share this view and examine decentralized charging, in which charging decisions

are made on residential level in response to real-time pricing, based on convex op-

timization (Samadi et al. 2010 [47]), mixed integer linear programming (Sioshansi

2012 [48]), dynamic programming (Livengood and Larson 2009 [49]), reinforcement

learning (O’Neill et al. 2010 [50]), game theory (Chen et al. 2011 [51], Mohsenian-Rad

and Leon-Garcia 2010 [46]). Our work is distinguish from these studies because we

demonstrate that the proposed approximate dynamic programming-based modeling

and algorithm framework can be extended to solve resource planning problems and

assess long-term effects of real-time pricing. In the decentralized charging scenario

examined in this dissertation, we assume real-time price signals are updated hourly to

reflect the real-time interaction between electricity demand and supply, and charging

decisions are made by EMCs for PHEV owners in response to price signals.

PHEVs could play an even bigger role in future electric systems if we consider

vehicle-to-grid (V2G) acting as storage resources. The electric grid suffers from a

lack of affordable storage resources, and as a result, system generation will need to

exactly match fluctuating load at any time. V2G allows a PHEV to charge when the

electricity price is low and discharge to send energy back to the electric grid when the

electricity price is high, thus acting as a storage resource [52, 53]. PHEV owners can

potentially gain revenue, which could make PHEVs more economically competitive.

Many believe that a large number of PHEVs with V2G aggregated together have

the potential to participate in energy markets, from bulk energy to ancillary services

including spinning reserves and frequency regulation [43, 54–56]. In this study, we

consider a decentralized charging scenario in which V2G is included, and charging

and discharging decisions are both optimized by EMCs.
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Another benefit of a universal deployment of real-time pricing and active consumer

participation enabled by EMCs is that more variable energy resources (VERs) such

as wind can be incorporated into power systems. Increasing amount of wind energy

has been installed in the United States, driven by policy factors such as Renewable

Portfolio Standards (RPS), and by market factors such as the demand for green power,

and the natural gas price volatility. For example, California’s RPS program requires

investor-owned utilities, electric service providers, and community choice aggregators

to increase procurement from eligible renewable energy resources to 33% of total

procurement by 2020 [57]. It is well known that it is difficult to accurately predict wind

availability even in the short term [58–60]. The variable and unpredictable nature

of wind energy imposes great challenges for system operators in balancing electricity

supply and demand in the short run, and planning wind capacity investment in the

long run. A number of studies, including [61–66], examine wind power generation

integration into short-term power operations and quantify system reserves (back-up

energy) required to maintain system reliability when wind penetration is high.

The volatility of wind resources and a possible asynchronous effect between wind

and normal system demand profiles can be mitigated with real-time pricing, since

RTP can signal load profile to adapt to short-term wind variations. Real-time pric-

ing provides customers with hourly-updated price signals that reflect changing mar-

ket conditions including the availability of wind resources. Residential consumers

equipped with EMCs will be able to charge their vehicle when wind energy is abun-

dant. Borenstein 2005 [67] and De Jonghe et al. 2011 [68] argue that the demand

elasticity to price should be considered when we optimize long-term generation in-

vestments.

There are, however, very few resource planning models to guide investment and

policy decisions on intermittent resources with or without real-time pricing. Current

planning models (for example, NEMS [69] used by the Energy Information Adminis-

tration (EIA) and the U.S. DOE, and MARKAL [70] used by the International Energy

Agency) are based on deterministic linear or non-linear programming. They do not
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perform economic dispatch4 on a chronologically hourly basis, and use load duration

curves5 and wind capacity factor6 for intermittent energy. To accurately represent

the economics of wind resources under real-time pricing, a planning model has to

capture hourly fluctuations of wind power production and consumers’ reactions to

price signals. Powell et al. 2012 [74] propose an approximate dynamic programming

(ADP) framework for planning energy resources in the long run. This framework can

handle different levels of decision granularity, link different time periods together, and

handle different sources of uncertainty.

1.2 Research Objectives and Contributions

One of the main purposes of this dissertation is to present an approximate dynamic

programming-based modeling and algorithm framework that optimizes PHEV charg-

ing and discharging decisions, while capturing the feedback loop between wholesale

electricity prices and consumer electricity usages. While we are interested in near-

optimal policies since the algorithm is based on approximations; we use deterministic

linear programming solutions as benchmarks to demonstrate the high quality of our

solutions. The modeling and algorithm framework is extended to solve a resource

planning model to guide long-term investment decisions on wind resources. The

other purpose of the dissertation is to use the framework to provide numerical evi-

dence to the debate about whether real-time pricing is superior than the current flat

rate structure in terms of both economic and environmental considerations. In the

numerical analysis, we attampt to answer the following questions. First, what are

the effects of increasing PHEV penetration on daily electricity system demands and

wholesale electricity prices under real-time pricing, compared with the business-as-

4Economic dispatch is the short-term determination of the optimal output of power plants to meet
the system load at the lowest possible cost. It is performed by the system operator at every hour
(or less) [71].
5A load duration curve is similar to a load curve, but the demand data is ordered in descending
order of magnitude, rather than chronologically [72].
6The wind capacity factor of a wind farm is defined as wind power production over certain time
period divided by its nameplate capacity over the same time period [73].
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usual flat tarrif? Second, to what extent will real-time pricing reduce daily electricity

generation costs and emissions? Third, what are the impacts of real-time pricing

on generating capacity investment decisions in the long term? Especially, will real-

time pricing, coupled with an intelligent demand participation, increase the economic

competitiveness of intermittent wind resources?

This dissertation contributes toward the understandings of real-time pricing in

three aspects. First, distinguished from most of the existing work in the literature,

real-time pricing signals are hourly-updated and endogenously determined, as we solve

the system operator’s economic dispatch problem on an hourly basis over the entire

optimization horizon. This allows our model to capture the feedback loop between

electricity demand and supply, thus representing full benefits of real-time pricing.

Second, to our knowledge, this work is the first to incorporate endogenous real-time

pricing in a long-term resource planning model. Our modeling framework considers

hourly variations of wind resources and consumers’ reactions (automated by EMCs)

to real-time price signals. These price signals reflect energy market conditions includ-

ing wind availability. This enables us to fully represent the economics of wind energy

under real-time pricing. Third, the proposed modeling and computational framework

is applied to a real-world case (with hundreds of generators and high wind penetra-

tion) based on the data available for California, thus making the findings more useful

for policy makers, system operators and utilities to gain a concrete understanding of

the system-level impacts of real-time pricing and its potentials to facilitate the inte-

gration of plug-in hybrid electric vehicles and wind resources into the future electric

grid.

The dissertation proceeds as follows. In the remainder of this chapter, technical

backgrounds on dynamic programming and approximate dynamic programming will

be provided. Chapter 2 presents a centralized charging scenario based on a short-term

energy model, in which a system operator is assumed to make charging decisions for

PHEV owners over a 24-hour horizon. At the end of the chapter, details on the Cali-

fornia test system are provided, based on which the ADP solutions are benchmarked
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against the optimal solution. Chapter 3 extends the modeling framework to consider

two decentralized charging scenarios (with and without V2G, respectively), in which

EMCs are assumed to make decisions for consumers in response to price signals. At

the end of the chapter, comparison analysis among various charging policies will be

discussed. In Chapter 4, the modeling and algorithm framework is further extended to

make resource investment decisions over a long planning horizon. Chapter 5 discusses

conclusions and future works.

1.3 Technical Background

In this section, we will provide technical details on dynamic programming and

approximate dynamic programming. Note that we are only interested in finite hori-

zon problems, since both power operation and resource planning problems, studied in

this dissertation, have a specific horizon. Dynamic programming (Bellman 1956 [75])

has been used to solve many optimization problems that involve a sequence of deci-

sions over multiple time periods. It is natural for us to use dynamic programming to

formulate energy system problems, since it is common for these problems to have el-

ements that link different time periods together. It is, however, generally known that

dynamic programming suffers from the curses of dimensionality. To overcome the

computational difficulties of dynamic programming, approximate dynamic program-

ming (ADP) [76] has been implemented to solve large-scale, dynamic and stochastic

problems in areas such as energy resource allocation (Powell et al. 2012 [74]), network

revenue management (Zhang and Adelman 2009 [77]), large-scale fleet management

(Simão et al. 2009 [78]). For this reason, our computational framework is developed

based on approximate dynamic programing.

1.3.1 Dynamic programming

We describe a dynamic program by defining its decision variables, state variables,

random variables for exogenous information, transition functions, cost functions, and
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policies to make a decision. We use h ∈ {1, 2, . . . , H} to denote a finite number of

time periods. Let xh present the vector of all decision variables at time h. Decisions

at time h are made depending on state variables at time h, denoted as St. Sh are

designed to include only the information available at time h, and as a result decisions

are not allowed to anticipate events in the future. Once a decision is made, the system

then evolves over time, with new information arriving that also changes the state of

the system. New information at time h is captured by random variables. Let ωh

denote the vector of random variables that represent all sources of randomness at

time h. Note that the realization of ωh will not become known to the system until

time h + 1. When we make decisions, they are governed by two sets of constraints.

The first set of constraints only affects decisions made at one point in time. The other

set of constraints is in the form of the transition function that describes how a state

evolves from one point in time to another, linking activities over time. The transition

function that governs the system evolution from a state at time h to the next state

at time h+ 1 is defined as

Sh+1 = SM (Sh, xh, ωh) , 1 ≤ h ≤ H − 1. (1.1)

Note that S1 is the initial state, which is given as data. A cost function (for a min-

imization problem) at time h measures the system costs incurred at time h. Let

Ch (Sh, xh) denote the cost function at time h. If the exogenous information is deter-

ministic, the objective function is written as

min
xh

H
∑

h=1

Ch (Sh, xh) . (1.2)

For a stochastic problem in which the exogenous information is random, we are

in a position of finding the best policy (or decision rule) for choosing decisions, since

the state Sh is also random. Let Xπ
h (Sh) denote a decision rule, and let Π be a set of

decision rules. The problem of finding the best policy would be written as

min
π∈Π

E

{

H
∑

h=1

Ch (Sh, X
π
h (Sh))

}

. (1.3)
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Assume that the state space is discrete, dynamic programming can be used to break

down a large, finite-horizon problem into a series of simpler and more tractable sub-

problems. This is done by defining the value function of every state Sh, denoted as

Vh(Sh), to represent the sum of expected contributions from state Sh until the end of

the time horizon. Bellman’s Equation [75] is used to recursively compute the value

associated with each state, written as:

Vh(Sh) = max
xh

{−Ch(Sh, xh) + E [Vh+1(Sh+1)|Sh]} , 1 ≤ h ≤ H − 1, (1.4)

where Sh+1 = SM (Sh, xh, ωh). A transition matrix that gives the probability that if

we are in a state Sh and make a decision xh, then we will be in state Sh+1, is assumed

to be known. Note that the terminal value VH(SH) is assumed to be given as data.

Often we simply use VH(SH) = 0. By working backwards from the last time period,

and using Bellman Equation (1.4) recursively, the optimal value Vh associated with

each state can be found. Note that at time period h, we have already computed Vh+1.

A dynamic programing algorithm is presented as follows:

Step 1 Initialization. Set the terminal value VH(SH) = 0.

Step 2 For h = H − 1, . . . , 1:

Step 2.1 For each Sh:

Step 2.1.1 Compute Vh(Sh) using

Vh(Sh) = max
xh

{−Ch(Sh, xh) + E [Vh+1(Sh+1)|Sh]} .

Step 3 Return the optimal objective value V1.

Note that solving the dynamic program using Bellman Equation requires to enu-

merate all states Sh (assuming the state space is discrete) and compute the value Vh

associated with each state. Therefore, dynamic programming suffers from the “three

curses of dimensionality” arising from the state space, action space, and random

exogenous information space.
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1.3.2 Approximate dynamic programming

To overcome the computational difficulties of dynamic programming, approximate

dynamic programming has been implemented to solve large-scale, stochastic, dynamic

problems. Approximate dynamic programming uses the concept of the post-decision

state variable to avoid complex calculations of the expectation in Bellman Equation

(1.4). The post-decision state at time h, denoted as Sx
h , is the state of the system

immediately after making a decision at time h, but before any new information at

time h arrives. With the use of the post-decision state variable, we can break the

original transition function (1.1) into the following two steps:

Sx
h = SM,x (Sh, xh) , 1 ≤ h ≤ H; (1.5)

Sh+1 = SM,ω (Sx
h , ωh) , 1 ≤ h ≤ H − 1, (1.6)

where SM,x (Sh, xh) represents the pre-transition function used to obtain the post-

decision state variable at time h, and SM,ω (Sx
h , ωh) represents the post-transition

function used to step forward to the next pre-decision state variable (known as the

state variable in the dynamic programming setting) at time h+1. Figure 1.1 illustrates

a generic decision tree with decision nodes (squares) and outcome nodes (circles).

The information available at a decision node is the pre-decision state Sh, at which

a decision xh needs to be made. The information available at an outcome node is

the post-decision state Sx
h , right after which new information ωh reveals. The pre-

transition function SM,x (Sh, xh) takes us from a decision node (pre-decision state

at time h: Sh) to an outcome node (post-decision state at time h: Sx
h). The post-

transition function SM,ω (Sx
h , ωh) takes us from the outcome node to a next decision

node (pre-decision state at time h: Sh+1).

The value function of the post-decision state Sx
h , denoted as V x

h (S
x
h), would be

written as follows

V x
h (S

x
h) = E [Vh+1(Sh+1)|S

x
h ] , 1 ≤ h ≤ H − 1. (1.7)
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Fig. 1.1. Overview of implementing approximate dynamic programming

The value function around the post-decision state (ranther than the value function

around the pre-decision state as for dynamic programming) is used in the approxi-

mate dynamic programming setting to take advantage of the fact that V x
h (S

x
h) is a

deterministic function of xh. Using V x
h (S

x
h), Bellman Equation (1.4) can be rewritten

as

Vh(Sh) = max
xh

{−Ch(Sh, xh) + V x
h (Sx

h)} , 1 ≤ h ≤ H. (1.8)

This allows us to avoid computing an expectation within the optimization formulation

in Bellman Equation (1.4). Instead of calculating the exact value function associated

with each post-decision state, V x
h (S

x
h) in (1.8), approximate dynamic programming
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approximates the value function of the post-decision state. We use V̄ x
h (Sx

h) to denote

an approximation of the value function around the post-decision state Sx
h , which

depends only on Sx
h .

For obtaining the value function approximation V̄ x
h (Sx

h), approximate dynamic

programming performs an iterative operation. Let n ∈ {1, . . . , N} denote the itera-

tion counter, where N is a preset finite number. To describe the iterative operation,

we add the iteration counter n to the decision variables, state variables, random vari-

ables, and value function approximations. For example, the pre-decision state at time

h for iteration n is referred to as Sn
h . The initial value function approximations are

assumed to be 0. Starting from iteration n = 2, at each time h, given a pre-decision

state Sn
h , we make a decision, using the value function approximation computed in

the previous iteration n − 1, V̄ n−1

h (Sx
h). The optimizaiton problem that is solved to

make an optimal decision at time h is presented as follows

vnh = max
xh

{

−Ch(S
n
h , xh) + V̄ n−1

h (Sx
h)
}

, 2 ≤ n ≤ N, 1 ≤ h ≤ H, (1.9)

where Sx
h = SM,x (Sn

h , xh). Let x
n
h denote an optimal solution of (1.9), and vnh repre-

sent the objective value associated with the optimal solution. vnh is a new estimate of

the value of being in post-decision state Sx,n
h . We now use vnh to update value function

approximation V̄ n−1

h according to the following equation

V̄ n
h = (1− αn−1)× V̄ n−1

h + αn−1 × vnh , 2 ≤ n ≤ N, 1 ≤ h ≤ H, (1.10)

where αn−1 is a step-size between 0 and 1; and, the common practice is to use a

constant step-size or a declining rule such as αn−1 = 1/(n− 1).

The post-decision state at time h is determined by the following pre-transition

function

Sx,n
h = SM,x (Sn

h , x
n
h) , 2 ≤ n ≤ N, 1 ≤ h ≤ H. (1.11)
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After xn
h is determined in (1.9), and a particular realization of new information, ωn

h ,

becomes known to the system, the system evolves to the next pre-decision state at

time h+ 1 using the following transition function:

Sn
h+1 = SM (Sn

h , x
n
h, ω

n
h) , 2 ≤ n ≤ N, 1 ≤ h ≤ H − 1. (1.12)

The realization of new information can be generated by Monte Carlo sampling. We

proceed to make decisions till the end of the horizon to complete iteration n. The same

procedure is repeated for a number of iterations. A generic algorithm for approximate

dynamic programming is presented as follows

Step 1 Initialization. Set V̄ 1
h (S

x
h) = 0, h ∈ H. Set n = 2.

Step 2 Generate a particular realization of new information ωn
h , h ∈ H.

Step 3 For 1 ≤ h ≤ H:

Step 3.1 Solve the following optimization problem:

vnh = max
xh

{

−Ch(S
n
h , xh) + V̄ n−1

h (Sx
h)
}

,

and let xn
h denote an optimal decision of the above optimization problem.

Step 3.2 Update V̄ n−1

h using the following equation

V̄ n
h = (1− αn−1)× V̄ n−1

h + αn−1 × vnh .

Step 3.3 Find the next pre-decision state using the following function

Sn
h+1 = SM (Sn

h , x
n
h, ω

n
h) .

Step 4 n = n+ 1. If n ≤ N , go to Step 2.

Step 5 Return the value function approximation V̄ N
h , h ∈ H.

Exactly how to construct and update the value function approximation in order

to find a good decision rule is very problem specific. When we present our approxi-

mate dynamic programming-based modeling and algorithm framework for solving a

specific energy system problem, important details such as how the value functions

are approximated and updated, how to select a proper step size αn−1, and how to

design performance measures used to evaluate the quality of the ADP solutions, will

be discussed.
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2. CENTRALIZED PLUG-IN HYBRID ELECTRIC

VEHICLE CHARGING

To quantify the potential benefits of real-time pricing in integrating plug-in hybrid

electric vehicles into the electric grid, we will compare various PHEV charging schemes

under different electricity tariffs. In this chapter, we will focus on a centralized

charging scenario in which an independent system operator (ISO) controls the timing

of PHEV charging. In the electric power system, a system operator is responsible for

power operations to make sure electricity demand is satisfied by generation at any

time. While unrealistic to be implemented in the real world, the centralized charging

case can be used as a benchmark for evaluating other charging policies.

The chapter proceeds as follows. Section 2.1 provides an outline of the ISO’s

short-term energy system model, followed by a deterministic linear programming

formulation in Section 2.2, and a stochastic optimization formulation based on ap-

proximate dynamic programming in Section 2.3. Section 2.4 provides details of the

test case used in the numerical analysis, which is based on data available for Califor-

nia’s electricity and transportation sectors. Finally, in Section 2.5, the approximate

dynamic programming solutions are evaluated to show how closely they match with

the optimal solution.

2.1 Outline of the Short-Term Energy System Model

A system operator solves a multi-period economic dispatch problem to determine

the optimal output of each power plant at each time. Let h ∈ {1, 2, . . . , H} denote the

hours within a day, and j ∈ {1, 2, . . . , J} represent individual power plants. We will

describe the economic dispatch problem using the language of dynamic programming

by defining the decision variable vector xh, state variable vector Sh, random variable
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vector ωh, transition function, and cost function associated with each time h. The

economic dispatch problem determines at each point in time how much energy to be

produced from each power plant ghj [MW], and from renewable resources such as wind

energy wh [MW] to satisfy the system demand. When the electricity demand cannot

be met, electric service interruptions will occur, resulting in expensive outage costs

measured by value of lost load (VOLL) [$/MWh] [79]. Note that using a variable for

the quantity of lost load at each hour qh [MW], the optimization problem is always

feasible. The centralized PHEV charging scenario is modeled by assuming that a

system operator has control over power system variables as well as charging decisions

(how many vehicles to charge at each hour) z+h [thousand]. The superscript ‘+’ is used

throughout this study to indicate the variables associated with PHEV charging. In

later chapters, we will introduce the superscript ‘−’ to represent PHEV discharging

when vehicle-to-grid is modeled. The decision variables at time h, captured by a

vector xh, are presented as follows

ghj [MW] power dispatched from power plant j at time h;

wh [MW] wind power production at time h;

qh [MW] lost load (unsatisfied electricity demand) at time h;

z+h [thousand] number of PHEVs to charge at time h.

The state variables consist of the PHEV charging state, system demand state, wind

energy state, and system generation state. The state variables at time h, represented

by a vector Sh, are described as follows

Y +

h [thousand] number of PHEVs plugged in and waiting to be charged at hour h;

λh [thousand] expected number of new PHEVs plugged in at hour h;

Dh [MW] system electricity demand at hour h;

CP [kW] PHEV battery charging power (e.g. 3.3 kW using a Level II charger);

βh [100%] expected wind availability factor (output/capacity ratio) at hour h;

W [MW] installed wind capacity;
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NGP [$/MMBtu] natural gas price (e.g. 5 $/MMBtu);

Gj [MW] maximum power output from power plant j;

ERj [lb/MWh] emission rate of power plant j;

HRj [MMBtu/MWh] heat rate of power plant j;

FUELj [$/MWh] variable fuel cost of power plant j; and, FUELj = NGP ×HRj;

V OLL [$/MWh] value of lost load (e.g. 2000 $/MWh).

The number of new PHEVs plugged in λh [thousand] and wind availability βh

[100%] are assumed to be random. The random variables for exogenous information

at time h, denoted by a vector ωh, are presented as follows

λh [thousand] number of new PHEVs plugged in at hour h,

βh [100%] wind availability factor at hour h.

In the system operator’s economic dispatch model, the one element that links all

the time periods together is the PHEV charging state, namely the number of empty

batteries plugged in and waiting to be charged at time h, Y +

h . The system operator

can strategically delay vehicles’ charging to take advantage of low electricity prices

and excess wind power in late night hours. The transition functions used to move the

PHEV backlog at time h to the next time h+ 1 would be written as

Y +

h = 0, h = 1; (2.1)

Y +

h+1
= Y +

h − z+h + λh, 1 ≤ h ≤ H − 1. (2.2)

Equation (2.1) states that the initial number of the PHEV backlog at the beginning

of a day is assumed to be zero. Note that in general for a dynamic program the initial

state S1 is given as known. Equation (2.2) says that the new backlog at time h + 1

depends on the backlog at previous time h, the number of vehicles to be charged at

time h, z+h , and the number of new vehicles plugged in at time h, λh.
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The costs incurred at time h in the system include costs of dispatching power

generation to meet the system demand at time h, and costs paid for any unsatisfied

demand at time h, qh. The cost function at time h, denoted as Cdisp
h (Sh, xh), is given

by

Cdisp
h (Sh, xh) =

J
∑

j=1

FUELj × ghj + V OLL× qh, 1 ≤ h ≤ H. (2.3)

2.2 A Deterministic Linear Programming Formulation

If we assume the exogenous information is deterministic, the short-term economic

dispatch problem can be formulated as a simple linear program, which can be solved

using commercial packages such as GAMS R© [80] and CPLEX R© [81]. In this sec-

tion, we will describe the deterministic linear programming formulation in which

random variables of exogenous information are replaced by their expected values

ωh =
(

λh, βh

)

, 1 ≤ h ≤ H, where

λh = E (λh) ;

βh = E (βh) .

The objective of the deterministic linear program for the short-term economic

dispatch problem (in which charging decisions are made by a system operator) is to

minimize the costs of satisfying system demand over a 24-hour horizon, written as

min
ghj , wh, qh, z

+

h
, Y +

h

H
∑

h=1

Cdisp
h (Sh, xh) , (2.4)

subject to the following constraints

J
∑

j=1

ghj + wh + qh = Dh +D0

h +
L
∑

l=1

CP × z+{h−l+1}>0
, 1 ≤ h ≤ H; (2.5)

Y +

h = 0, h = 1; (2.6)

Y +

h+1
= Y +

h − z+h + λh, 1 ≤ h ≤ H − L+ 1; (2.7)
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z+h = Y +

h + λh, H − L+ 1 ≤ h ≤ H; (2.8)

0 ≤ ghj ≤ Gj, 1 ≤ h ≤ H, 1 ≤ j ≤ J ; (2.9)

0 ≤ wh ≤ βh ×W, 1 ≤ h ≤ H; (2.10)

qh, z
+

h , Y
+

h ≥ 0, 1 ≤ h ≤ H. (2.11)

Note that the PHEV backlog state variables Y +

h , which link different time periods

together, are treated as decisions in the above formulation, since linear programming

optimizes decisions at all time periods together.

Equation (2.5) is the power balance constraint. At any point of time, the total

electricity supply should match the total system demand, which includes the elec-

tricity demand associated with PHEV charging. We will explain in the following

paragraphs how the electricity consumed for charging PHEVs at each hour is calcu-

lated. There is a penalty measured by value of lost load (VOLL) [$/MWh] for any

unsatisfied demand qh.

Our 24-hour daily cycle starts at 7 AM (h = 1). Let 1 ≤ l ≤ L represent the hours

within a complete PHEV charging cycle, e.g. L = 4 for charging a Chevy Volt using

a Level II charger. Once it is started, the charging is assumed to continue for L hours

till it is complete and the battery is fully charged. For example, if we start charging

a PHEV at hour h = 21 (3 AM), the PHEV will remain being charged during hour

21, 22, 23, and 24 (from 3 AM to 6 AM).

Figure 2.1 illustrates a PHEV’s charging due time (by which its charging cycle

needs to be completed), depending on when it is plugged in. For vehicles plugged in

at and before hour h = 20, its charging due time is assumed to be the end of a day, i.e.

7 AM. This assumption makes sense since from a typical PHEV owner’s perspective,

their vehicle needs to be charged overnight so that they can drive off in the morning.

This gives opportunities for a system operator to strategically shift charging demand

to increase system efficiency. The PHEVs plugged in at and after hour h = 21 are

assumed to be charged immediately without any delay, and as a result the charging

decisions for vehicles that arrive at home at and after 3 AM are fixed. The electricity
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Fig. 2.1. Illustrating a PHEVs’ charging due time given its arrival time

Fig. 2.2. Computing the electricity consumed for charging PHEVs at
each hour in a day
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consumption associated with these vehicles, represented by D0
h in Equation (2.5), is

known to the system at time h = 1 and included as the initial state; that is, D0
h ∈ S1.

We now explain the subscript of z+ in Equation (2.5) with two examples. At hour

h = 22 (4 AM), highlighted in Figure 2.2, PHEVs being charged are those dispatched

between 1 AM to 4 AM (hour 19, 20, 21, and 22). Vehicles dispatched at hour 22

are in the first hour of its charging cycle; while vehicles dispatched at hour 19 are

in its last charging hour. Hence, the electricity consumed due to PHEV charging at

hour 22 is equal to CP ×
(

z+22 + z+21 + z+20 + z+19
)

, where CP is battery charging power

[kW], and z+h is the number of batteries to charge at time h. Consider another hour

h = 1 (7 AM). PHEVs being charged are those dispatched between 4 AM to 7 AM

(hour 22, 23, 24, and 1). As discussed earlier, the electricity consumption associated

with vehicles dispatched at hour 22, 23, and 24 is treated as given data, and included

in the initial state D0
h. Thus, the PHEV charging demand to be determined at hour

1 is equal to CP × z+1 , which only depends on the charging decision at hour 1, z+1 .

Equations (2.6) and (2.7) are the transition functions for PHEV backlog Y +

h , as

detailed in Section 2.1. Equation (2.8) enforces the charging due time for PHEVs.

Equations (2.9) and (2.10) are capacity constraints for thermal units and wind energy,

respectively. The power dispatched from a power plant at any time is constrained by

its full nameplate capacity. The wind power production at each hour is confined by

the total installed capacity W and availability factor for that particular hour. Finally,

Equation (2.11) is the non-negativity restriction.

2.3 An Approximate Dynamic Programming Formulation

If exogenous information is stochastic, we are in a position of finding the best

policy (or decision rule) for choosing decisions, since state Sh is a random variable.

Let Xπ
h (Sh) denote a decision rule to make decisions depending on Sh, and let Π be a

set of decision rules. The problem of finding the best policy to make a decision would

be written as
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min
π∈Π

E

{

H
∑

h=1

Cdisp
h (Sh, X

π
h (Sh))

}

. (2.12)

If the state space is discrete, Bellman Equation can be used to recursively compute the

value of being in state Sh, denoted as Vh(Sh), thus breaking a multi-period problem

into a series of smaller, more tractable problems, as discussed in Section 1.3.1. The

Bellman Equation for finding the best decision rule to (2.12) can be written as

Vh(Sh) = max
xh

{

−Cdisp
h (Sh, xh) + E [Vh+1(Sh+1)|Sh]

}

, 1 ≤ h ≤ H − 1, (2.13)

where Sh+1 = SM (Sh, xh, ωh). Note that finding the best decision rule using (2.13)

requires enumerating all the states Sh, thus making it difficult to solve a dynamic

program with a large state space.

To overcome the computational difficulties in solving the stochastic, dynamic pro-

gram using Bellman Equation (2.13), we attempt to find a near-optimal policy based

on approximate dynamic programming. As discussed in Section 1.3.2, the value func-

tion around a post-decision state is defined in approximate dynamic programming to

avoid computing an expectation within the optimization formulation in (2.13). We

use y+,x
h to represent the post-decision state of PHEV backlog at time h. y+,x

h captures

the number of empty batteries in the system immediately after a charging decision

z+h is made, but before a particular realization of the number of new vehicles plugged

in at time h, λh becomes known to the system. Using y+,x
h , the original transition

function for PHEV backlog, described in Equation (2.2), can be broken down into

two steps: a pre-transition function and a post-transition function. The following

pre-transition function is used to obtain y+,x
h :

y+,x
h = Y +

h − z+h + λh, 1 ≤ h ≤ H. (2.14)

For the number of new vehicles plugged in at time h, its expected value λh is used

in (2.14), since its realization will not become known until time h + 1. Once the

new information λh becomes known to the system, the system evolves to the next
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pre-decision state of PHEV backlog in the time h+1, Y +

h+1
, according to the following

post-transition function:

Y +

h+1
= max

{

0, Y +

h − z+h + λh

}

, 1 ≤ h ≤ H − 1. (2.15)

Let V x
h (y

+,x
h ) denote the value function of the post-decision PHEV backlog state y+,x

h .

Using V x
h (y

+,x
h ), Bellman Equation (2.13) can be rewritten as

Vh(Sh) = max
xh

{

−Cdisp
h (Sh, xh) + V x

h

(

y+,x
h

)

}

, 1 ≤ h ≤ H. (2.16)

This allows us to avoid computing the expectation in Bellman Equation (2.13).

Instead of calculating the exact value function around the post-decision state

V x
h (y

+,x
h ), an approximation of the value function, denoted as V̄ x

h

(

y+,x
h

)

, is used to al-

low solving the dynamic program by stepping forward instead of working backwards.

Finding a suitable approximation is problem specific. We begin with a simple linear

approximation, and will show (in Section 2.5) that linear approximation is able to

produce solutions highly close to the optimal solution generated by solving a deter-

ministic linear program. For the resource planning model studied in Section 4.3, a

separable, piece-wise linear approximation is used. The linear approximation of the

value function around the post-decision PHEV backlog y+,x
h is given by

V x
h

(

y+,x
h

)

≈ V̄ x
h

(

y+,x
h

)

= V̄ +

h × y+,x
h , 1 ≤ h ≤ H, (2.17)

where V̄ +

h is the approximation of marginal value of increasing y+,x
h by one unit

(in thousand). Using the linear approximation, we are only concerned about the

derivative of the value function rather than the actual value.

For obtaining the value function gradient approximations V̄ +

h , an iterative oper-

ation is performed. Let n ∈ {1, . . . , N} denote the iteration counter, where N is

a preset, finite number. To describe the iterative operation, we add the iteration

counter n to decision variables, state variables, random variables, and value function

approximations. For example, the pre-decision state at time h for iteration n is re-

ferred to as Sn
h . The initial value function gradient approximations are assumed to

be 0; that is, V̄ +,1
h = 0, 1 ≤ h ≤ H.
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2.3.1 Making decisions approximately

Starting from iteration n = 2, at each time h, given a pre-decision state Sn
h ,

we make a decision, using the value function slope approximation computed in the

previous iteration n−1, V̄ +,n−1

h . For obtaining an optimal charging decision, we solve

the hour-ahead economic dispatch problem as a linear program. Since a particular

realization of random exogenous information on new vehicle arrivals and wind power

production at time h will not become available until time h+1, their expected values

ωh =
(

λh, βh

)

are used to make a decision. The objective of a system operator’s

hour-ahead economic dispatch (in which charging decisions are assumed also made

by the system operator) is to minimize the costs of meeting forecasted hourly demand,

written as

max
ghj , wh, qh, z

+

h
, y

+,x

h

{

−Cdisp
h (Sn

h , xh) + V̄ +,n−1

h × y+,x
h

}

, (2.18)

subject to the following constratins:

J
∑

j=1

ghj + wh + qh = Dh +D0

h + CP × z+h +
L
∑

l=1

CP × z+,n

{h−l}>0
; (2.19)

y+,x
h = Y +,n

h + λh − z+h ; (2.20)

z+h = Y +,n
h + λh, H − L+ 1 ≤ h ≤ H; (2.21)

0 ≤ ghj ≤ Gj, 1 ≤ j ≤ J ; (2.22)

0 ≤ wh ≤ βh ×W ; (2.23)

qh, z
+

h , y
+,x
h ≥ 0. (2.24)

Although the above constraints look similar to (2.5) – (2.11) of the deterministic

linear program explained in Section 2.2, there are two important differences. The

first difference is that the pre-state variable at time h+ 1, Y +

h+1
, in (2.7), is replaced

with the post-decision state variable at time h, y+,x
h , in (2.20). Because, as discussed

earlier, in the approximate dynamic programming setting, the value function is cal-

culated around a post-decision state variable instead of a pre-decision state variable.
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The second difference is that the state variables representing information available at

time h, such as z+,n

{h−l}>0
in (2.19) and Y +,n

h in (2.20) and (2.21), are indicated by the

superscript “n”. In the linear program, these are all decision variables, since linear

programming optimizes decisions at all time periods together. Approximate dynamic

programming, however, steps forward in time and solves the economic dispatch prob-

lem for one hour at one point of time. Therefore, decisions made at and before time

h − 1, such as z+,n

{h−l}>0
in (2.19), are known to the system by the time h when the

above optimization problem is solved. For example, at hour h = 22, the electricity

demand associated with PHEV charging in power balance equation (2.19) is equal

to CP ×
(

z+22 + z+,n
21 + z+,n

20 + z+,n
19

)

, where z+22 is a decision we are solving for at the

current hour; while z+,n
21 , z+,n

20 , and z+,n
19 have already been determined at previous

hours, and are indicated by the superscript “n”.

We use z+,n
h to represent an optimal charging solution of (2.18) – (2.24). After

z+,n
h is determined, and a particular realizaiton of the number of new PHEVs plugged

in at time h, λn
h, becomes known to the system, the following post-decision transition

function is used to step forward to the next pre-decision state at time h+ 1, Y +,n
h+1

:

Y +,n
h+1

= max
{

0, Y +,n
h − z+,n

h + λn
h

}

. (2.25)

λn
h is sampled using Monte Carlo sampling based on a Poisson distribution with the

mean equal to λh. In Section 2.4.4, we will present a detailed simulation model of

PHEV usage based on which λh is obtained.

2.3.2 Value function approximation

In this subsection, we will discuss how to update the value function gradient ap-

proximation V̄ +,n−1

h . Let v+,n
h denote a sample estimate of marginal value of increasing

post-decision PHEV backlog at time h, y+,n
h , by one unit. The proposed scheme to

obtain v+,n
h involves approximating and updating wholesale electricity prices. We use

P̄ n
h to denote the approximation of the wholesale electricity price at hour h, computed

in iteration n. The initial wholesale electricity price approximation associated with
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any hour is assumed to be 0; that is P̄ 1
h = 0, 1 ≤ h ≤ H. Let pnh denote a new

estimate of the wholesale electricity price at time h, obtained at iteration n. Starting

from iteration n = 2, at each hour h, after a charging decision z+,n
h is determined

from (2.18) – (2.24), and a specific realization of exogenous information at time h,

ωn
h , is known to the system, a real-time economic dispatch problem is solved to obtain

pnh. The real-time economic dispatch is performed by a system operator to determine

the after-the-fact wholesale electricity price at time h. The objective of the real-time

economic dispatch is to minimize the costs of satisfying the actual electricity demand,

written as

min
ghj , wh, qh

Cdisp
h (Sn

h , xh) , (2.26)

subject to the following constraints:

J
∑

j=1

ghj + wh + qh = Dh +D0

h +
L
∑

l=1

CP × z+,n

{h−l+1}>0
; (2.27)

0 ≤ ghj ≤ Gj, 1 ≤ j ≤ J ; (2.28)

0 ≤ wh ≤ βn
h ×W ; (2.29)

qh ≥ 0. (2.30)

A particular realization of wind availability factor βn
h in (2.29) is sampled for iteration

n using Monte Carlo simulation based on a time-series model. Details on the modeling

of wind power production will be presented in Section 2.4.3. The dual of the power

balance constraint represented by (2.27) is the ex post wholesale electricity price

associated with this particular sample path, which can be used as a new estimate of

wholesale electricity price.

We now use the new estimate pnh to update the wholesale electricity price approx-

imation according to the following equation

P̄ n
h = (1− αP

n−1)× P̄ n−1

h + αP
n−1 × pnh, 2 ≤ n ≤ N, 1 ≤ h ≤ H; (2.31)

where αP
n−1 ∈ (0, 1) is a step-size; and, the common practice is to use a constant

step-size or a declining rule such as αn−1 = 1/(n− 1), 2 ≤ n ≤ N .
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Using P̄ n
h , 1 ≤ h ≤ H, a new sample estimate of marginal value of increasing

post-decision PHEV backlog y+,n
h (denoted as v+,n

h ) can be obtained, as illustrated in

Figure 2.3. We could increase the number of empty batteries at time h, y+,n
h , by one

unit, by charging one less unit of batteries at time h. By doing this, two things will

happen in the future hours till the end of a day. First, in the very next L− 1 hours,

h+ 1 ≤ τ ≤ h+L− 1, CP [kW] of electricity generation at a marginal cost equal to

P̄ n
τ will be saved. CP represents the charging power rate, and L denotes the number

of hours needed to fully charge a battery. The reduction on electricity generation

costs in the future hours would be given by

h+L−1
∑

τ=h+1

CP × P̄ n
τ , (2.32)

which can be rewritten as (by letting τ = h+ l − 1)

L
∑

l=2

CP × P̄ n
h+l−1. (2.33)

The second thing that will occur is that we need to fully charge the one unit of

batteries by the end of the day because of the charging due time constraint. The lowest

cost to charge the additional unit can be estimated by solving a trivial optimization

problem of finding an optimal start time of charging to minimize the associated

electricity generation costs incurred during a charging cycle that lasts for L hours.

The optimization problem can be written as follows

min
h+1≤τ≤H−L+1

L
∑

l=1

CP × P̄ n
τ+l−1. (2.34)

To summarize, the marginal value of increasing PHEV backlog by one unit can be

estimated by the net reduction on electricity generation costs, written as

v+,n
h =

L
∑

l=2

CP × P̄ n
h+l−1 − min

h+1≤τ≤H−L+1

L
∑

l=1

CP × P̄ n
τ+l−1. (2.35)

From (2.35) we can see that when future electricity prices are low, gains from

increasing PHEV backlog will be relatively large, meaning that more vehicles’ charg-

ing will be delayed to take advantage of low electricity prices in future hours. This
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Fig. 2.3. Illustrating how to obtain a new sample estimate of the value
function gradient approximation given the wholesale electricity price
approximations

shows that using the designed value function approximation, combined with the iter-

ative updating operation, a closed feedback loop is created to make better and better

decisions.

We now use the new estimate v+,n
h to update the value function gradient approx-

imation according to the following equation

V̄ +,n
h = (1− α+

n−1)× V̄ +,n−1

h + α+

n−1 × v+,n
h , 2 ≤ n ≤ N, 1 ≤ h ≤ H; (2.36)

where α+

n−1 is a step-size between 0 and 1; and, the common practice is to use a

constant step-size or a declining rule such as αn−1 = 1/(n− 1), n = 2, . . . , N .
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2.3.3 Complete algorithm

The complete approximate dynamic programming-based algorithm for the cen-

tralized PHEV charging scenario is presented as follows:

Step 1 Initialization. Set V̄ +,1
h = 0 and P̄ 1

h = 0, 1 ≤ h ≤ H. Set iteration n = 2.

Step 2 Generate a sample path ωn = (λn
h, β

n
h ), 1 ≤ h ≤ H.

Step 3 For h = H − L+ 2, . . . , H:

Step 3.1 Find the real-time PHEV charge decision at hour h:

z+,n
h = λn

h.

Step 4 For h = 1, 2, . . . , H − L:

Step 4.1 Solve the hour-ahead economic dispatch problem at hour h:

max
ghj , wh, qh, z

+

h
, y

+,x

h

{

−Cdisp
h (Sn

h , xh) + V̄ +,n−1

h × y+,x
h

}

.

Let z+,n
h be an optimal PHEV charging decision to the maximization problem.

Step 4.2 Find the pre-decision state PHEV backlog at hour h+ 1:

Y +,n
h+1

= max{0, Y +,n
h − z+,n

h + λn
h}.

Step 5 For h = H − L+ 1, . . . , H:

Step 5.1 Find the real-time PHEV charging decision at hour h:

z+,n
h = Y +,n

h + λn
h.

Step 5.2 If h ≤ H−1, find the pre-decision state PHEV backlog at hour h+1:

Y +,n
h+1

= 0.

Step 6 For h = 1, 2, . . . , H:

Step 6.1 Solve the real-time economic dispatch problem at hour h:

max
ghj , wh, qh

−Cdisp
h (Sn

h , xh) .
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The dual of power balance constraint is an estimate of electricity price, pnh.

Step 6.2 Update the electricity price approximation:

P̄ n
h = (1− αP

n−1)× P̄ n−1

h + αP
n−1 × pnh.

Step 7 For h = 1, 2, . . . , H − L:

Step 7.1 Find a new estimate of the value function gradient approximation:

v+,n
h =

L
∑

l=2

CP × P̄ n
h+l−1 − min

h+1≤τ≤H−L+1

L
∑

l=1

CP × P̄ n
τ+l−1.

Step 7.2 Update the value function gradient approximation:

V̄ +,n
h = (1− α+

n−1)× V̄ +,n−1

h + α+

n−1 × v+,n
h .

Step 8 Let n = n+ 1. If n ≤ N , go to Step 2.

Step 9 Return value function gradient approximation V̄ +,N
h , 1 ≤ h ≤ H.

The Matlab codes associated with the above algorithm is presented in the Ap-

pendix. So far we have presented our approximate-dynamic programming based

modeling and algorithm framework for solving the daily economic dispatch problem

in which charging decisions are made by a system operator. The proposed framework

will be tested on a realistic test case based on data available for California before it is

extended to model charging schemes in which charging decisions are made by individ-

ual drivers in Chapter 3, and to solve resource investment problems in Chapter 4. The

California test system will be presented in the next section of this chapter, followed

by the assessment of quality of the approximate dynamic programming solutions in

Section 2.5.

2.4 Test Case: the California System

The proposed approximate dynamic programming-based modeling and algorithm

framework will be tested on study cases based on data available for California’s elec-

tricity and transportation sectors. In this section, details of the California test system
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will be provided, including the data source for system electricity demand in Section

2.4.1, the characteristics of electricity generation in Section 2.4.2, the data source and

a time-series model for wind power production in Section 2.4.3, a detailed simulation

model used to obtain the PHEV arrival rate in Section 2.4.4.

2.4.1 Electricity Demand

The historical system demand data for California is available on the California ISO

Open Access Same-time Information System (OASIS) [82], which provides market

participants and the public with reports on real-time updates of system demand,

market prices, transmission outage/capacity status, and other market data.

Fig. 2.4. Statistics of system demand at different hours in a day,
California, August 2009

Figure 2.4 plots the dataset that we are using for system demand, which contains

the actual hour-by-hour data for August 2009 (one line for each day), the estimated

mean across days for each hour (bold line) and 95% confidence interval (two bold
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dashed lines for upper and lower endpoints), assuming normal distributions. The

system peak hours occur around 5 PM when residential consumers return home from

work, turning on their air conditioner and starting household activities; while the

hours from midnight to early morning are off-peak hours.

2.4.2 Electricity Generation

The characteristics of the California electric power generation sector used in

this study are based on the Emissions & Generation Resource Integrated Database

(eGRID) [83] of EPA, which is a comprehensive source of data on the environmental

characteristics of almost all electric power generated in the United States. eGRID

is unique in that it links air emissions data with electric generation data for United

States power plants. The dataset that we are using is eGRID2012, which contains

the complete release of year 2009 data.

Table 2.1
Statistics for the electric power generation by fuel type, California, 2009

Fuel source Capacity # of plants Emission rate Heat rate

Unit MW lb/MWh MMBtu/MWh

Natural gas 38,200 214 1,143 9.7

Hydro 10,592 204 – –

Nuclear 4,577 2 – –

Wind 2,535 76 – –

Geothermal 2,281 17 82 –

Biomass 1,012 80 332 13.2

Oil 494 13 2,176 12.4

Coal 415 7 1,822 8.9

Other fossil 63 2 2,281 19.5

Solar 44 18 – –

Total 60,212 633
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Fig. 2.5. Statistics for electric power generation mix using a bubble
chart, California, 2009

We extracted the characteristics for the 633 power plants in the state of California,

with a total generation capacity of about 60 GW. The characteristics that we are

interested in include the fuel source, plant nameplate capacity Gj in [MW], plant

annual CO2 equivalent emission rate ERj in [lb/MWh], and plant heat rate HRj

in [MMBtu/MWh] for each power plant in California. Table 2.1 and Figure 2.5

summarize the statistics of the data that we are using. In the bubble chart, the

horizontal axis represents the cleanness of the energy resource, while the vertical

axis indicates how expensive to operate it (in terms of the fuel cost). In addition,

the bubble size presents the percentage of each energy resource in the California

generation capacity mix.
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Table 2.2
Modeling the electric power generation by fuel type

Fuel source Capacity # of plants Modeling details

Unit MW

Natural gas 38,200 214 Dispatch individual plants for each hour

Wind 15,000 1 Aggregated and stochastic output for each hour

Hydro 10,592 1 Aggregated and fixed output at all hours

Nuclear 4,577 1 Aggregated and fixed output at all hours

Geothermal 2,281 1 Aggregated and fixed output at all hours

Biomass 1,012 80 Dispatch individual plants for each hour

Oil 494 13 Dispatch individual plants for each hour

Coal 415 7 Dispatch individual plants for each hour

Other fossil 63 2 Dispatch individual plants for each hour

Total 72,633 320

Table 2.2 summarizes how we actually model generation by fuel sources in the

California system. Hydro, nuclear and geothermal power generators are assumed to

be must-run units, which operate at its full unit capacity in all time periods since

they are relatively cheap to operate (zero heat rate), and as a result we simply model

it as one aggregated and fixed output for each fuel type. For fossil fuel (natural gas,

oil and coal) and biomass sources, we try to optimally decide how much electricity

each individual plant should generate at each time, leading to more than 300 decision

variables at each hour in a day in the economic dispatch problem. Given the plant’s

heat rate (thermal efficiency) HRj, the fuel cost of power plant j can be written as

FUELj [$/MWh] = NGP [$/MMBtu]×HRj [MMBtu/MWh] (2.37)

which depends on the natural gas price.
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2.4.3 Modeling and Forecasting Wind Power

California’s RPS is one of the most ambitious renewable energy standards in the

country. Its RPS program requires investor-owned utilities, electric service providers,

and community choice aggregators to increase procurement from eligible renewable

energy resources to 33% of total procurement by 2020 [57]. The U.S. National Re-

newable Energy Laboratory (NREL) derived that the amount of new wind capacity

required to meet California’s RPS assuming that wind power would supply 80% of

the capacity and energy required from state RPS is 12,368 MW. Therefore, we as-

sume that the total wind capacity of the California system is 15,000 MW, which

is approximately equal to the current capacity (2,535 MW) plus the required new

capacity.

The wind power output data that we are using are based on the NREL Wind

Integration Datasets [84], which provide a simulated set of wind profiles for the west-

ern United States. The dataset provides ten minute simulated time-series wind speed

and power data for 2004, 2005, and 2006. The dataset includes over 2,800 possible

onshore sites in California. Each location is assumed to contain 10 Vestas R©V90 3

MW wind turbines with a hub height 100 meters above ground level. That would

allow the installation of over 86 GW of capacity. Since the full amount of poten-

tial capacity is not needed in the study, sites are chosen based on their simulated

capacity factors. Those sites with higher capacity factors are assumed to be chosen

before lower capacity factor sites. The 500 sites with the highest average capacity

factors from the dataset are used in the study. Thus, with 30 MW per site, a total of

W = 15, 000 MW is assumed to be available to the system.

Figure 2.6 plots the hour-by-hour data of the wind availability factor1 for August

2006 (one line for each day) and the estimated mean across days for each hour βh (bold

line). It can be observed that the variance across days for each hour is significant,

which will impose big challenge on the balance between supply and demand when

1The wind availability factor is defined as the actual wind power production divided by the total
installed capacity at a particular hour.
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Fig. 2.6. Statistics of wind availability factor at different hour in a
day, California, August 2006

the wind penetration is significant. Moreover, the comparison between daily demand

profile (Figure 2.4) and wind profile (Figure 2.6) indicates that the available wind is

not synchronized with the load. On the contrary, when available wind power is at

its highest around early morning hours, system demand is at its lowest; while when

wind power production is at its lowest around late afternoon hours, system electricity

consumption is at its highest. Without solutions such as affordable storage, this

asynchronous effect will greatly undermine the long-term benefits of wind energy

integration.

In the approximate dynamic programming-based algorithm, we make vehicle charg-

ing decisions at any given hour h without knowing the outcome of the random events

including available wind power production at time h. Therefore, we need a time-series

model [85] to forecast wind power output, and a method to predict forecast errors.

There have been a number of statistical techniques developed for the forecasting

of time series wind data, but none are as widely applicable and effective as the simple
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persistence model [60]. While a simple approach, the persistence model is the baseline

against which all other forecasting methods must be compared. The persistence model

uses the value of the last time period to estimate the current time period. That is,

the wind availability factor at hour h is equal to the value of the previous hour plus

an error term ǫh, written as

βh = βh−1 + ǫh. (2.38)

We model the wind power production forecast error using a normal distribution,

justified by the the geographical dispersion of the wind power and the central limit

theorem [86] written as

ǫh ∼ N (µh, σh) . (2.39)

In Ortega 2009 [64], for predictions with a horizon of 24 hour, the standard deviation

of the wind forecast error can be approximated by

σh = 0.2× βh−1 + 0.02. (2.40)

Therefore, our persistence model used for wind power productions is written as

βh = βh−1 +N (µh, 0.2× βh−1 + 0.02) . (2.41)

Figure 2.7 plots the simulated hour-by-hour wind availability factor for August

(one line for each day), and the mean across days for each hour (bold line). The com-

parison between the simulated data (Figure 2.7) and the actual wind profile (Figure

2.6) shows that there is a close match between the mean of the simulated data and

that of the historical data, and the time-series model is able to capture the variation

across days for each hour and the inter-temporal correlation among different hours.

2.4.4 Obtaining PHEV Arrival Rate

Hodge et al. 2011 [87, 88], and, Huang et al. 2012 [89], 2011 [40] have intro-

duced a multi-paradigm modeling approach to examine the effects of introduction of
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Fig. 2.7. Plot of simulated wind availability factor at different hour
in a day, California, August

EVs/PHEVs on electricity demand sector. The general modeling framework is de-

scribed in [87], which combines a GIS (Geographic Information System)-based trans-

portation model and agent-based model for simulating EV/PHEV usage patterns.

The same methodology is adapted here to generate the expected number of PHEVs

plugged in at different hour in a day (λh, 1 ≤ h ≤ H). We assume that the number

of PHEV arrivals at time h (λh) follows a Poisson distribution with mean of λh.

An overview of the whole modeling process is illustrated in Figure 2.8. The trans-

portation model is built using the transportation planning software TransCAD R© [90],

which combines GIS and transportation modeling capabilities in a single integrated

platform. The inputs of the transportation model include zone-level socioeconomic

data and GIS road networks, which can be obtained from the Metropolitan Planning

Organization (MPO) of a particular city. The socioeconomic data of zones (such as

population, number of households, number of automobiles, employment information,

etc) are used to estimate trips between zones.
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Fig. 2.8. Flowchart overview of modeling PHEV arrival at different hour in a day

The distribution of trip frequency by the three trip purposes is generated based

on the simulated traffic flows, which is useful for modeling PHEV usage patterns.

The other distribution needed is the distribution of trip lengths by trip purposes,

which can be obtained on the National Household Travel Survey (NHTS) [91]. These

two distributions of vehicle travel characteristics are used as the inputs of the agent-

based model for PHEV. Agent-based modeling has been introduced and extensively

implemented for simulating the actions and interactions of autonomous agents to

assess their effects on the system as a whole [92–94]. The system-level behavior

emerges as a result of interactions of many individual behaviors. Our agent-based

model is built using the multi-method simulation software AnyLogic R© [95], which

brings together system dynamics, process-centric (discrete event), and agent-based

methods within one modeling language and one model development environment.

Detailed definition for our PHEV agents can be found in Hodge et al. 2011 [40]. A

typical usage pattern for a PHEV can be described as follows.
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Fig. 2.9. Probability that a PHEV is plugged in at different hour in a day

Figure 2.9 summarizes the probability that a PHEV arrives at home from the last

trip of a day and is plugged in at different hour in a day, obtained from our agent-

based model of PHEV usage patterns. The probability gradually grows from morning,

reaches its peak around 5 PM as people return home from work, and decreases after

that.

To compute the expected number of PHEVs plugged in at hour h (λh), we need

to scale up the distribution for one PHEV (shown in Figure 2.9), according to a

multiplier (denoted as θ), namely, the number of empty PHEV batteries [thousand]

produced in the California transportation system in a day. The parameters used to

compute the multiplier θ are defined as follows:

θ [thousand] number of PHEVs with empty battery generated in a day,

Cars [thousand] number of passenger cars registered,

Distance [mile] daily driving distance per vehicle,

P enetration [100%] PHEV penetration rate in the California transportation system,
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Range [mile] PHEV electric range,

γ [100%] PHEV electric driving ratio.

PHEV electric driving ratio (γ) is defined as the ratio of the daily miles driven on

electricity to the total daily miles driven on average. A PHEV has a limited electric

range (e.g. 35 miles for Chevy Volt), and as a result it cannot reply completely on its

battery for trips longer than its electric range without charging. When its battery is

depleted, a PHEV runs on its internal combustion engine which works as a backup.

When we consider only home-based charging (no public charging), the PHEV electric

driving ratio (γ) is less than 1. Our agent-based model of PEV usage patterns tracks

each vehicle’s battery level and state of charge (SOC) (from 0% for empty to 100%

for full), and can be used to compute this electric driving ratio. The simulation

results based on the agent-based modeling indicate that for an average Volt driver

in California, about 70% of the total daily mileage can be replaced by driving on

electricity. That is, γ = 70%.

The rest of the parameters used to calculate the multiplier (θ) can be found in

Table 2.3 and Table 2.4. Table 2.3 summaries the data used for the California trans-

portation system, available from the U.S. DOE, Bureau of Transportation Statistic

(BTS). Table 2.4 shows the parameters used for PHEVs, which reflect the specifica-

tions of Chevrolet Volt, extracted from the U.S. Environmental Protection Agency

(EPA).

We can now calculate the average number of PHEV empty batteries produced in

a day (θ) as follows

θ = Cars× Penetration×
Distance× γ

Range
(2.42)

= 19, 800 [thousand]× Penetration [100%]×
34 [mile]× 70%

35 [mile]
,

which depends on the PHEV penetration rate in the California transportation system.

The charging for PHEVs can be classified into different levels, namely level I,

level II and level III, as shown in Table 2.5. Level II chargers are the preferred and
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Table 2.3
Characteristics of the California transportation system (BTS)

Passenger cars registered 19,800 thousand

Daily driving distance 34 mile

Table 2.4
Characteristics of Chevrolet Volt (EPA)

Casoline range 344 mile

Electric range 35 mile

Electricity consumed for a full charge 12.9 kWh

Table 2.5
Characteristics of various charging configurations [89]

Charging level Voltage/Current requirement

Level I 120 V AC/16 A

Level II 208 – 240 V AC/12 – 80 A

Level III No specific limits; very hight voltages (e.g. 480 V DC)

recommended scheme for residential consumers who own a PHEV. For example, the

Voltec R©home-charging unit is a 240 V (Level II) charger with power output of 3.3

kW, and, according to General Motors, can replenish Volt’s batteries in about 4 hours.

2.5 Evaluating Approximate Dynamic Programming Solutions

Jaakkola 1994 [96] provides proofs of convergence to TD(λ) algorithm2 (Sutton

1988 [97]) and Q-learning algorithm3 (Watkins and Dayan 1992 [98]) used by ap-

2TD(λ) algorithm addresses the problem of learning to predict in a Markov environment, using a
temporal difference operator to update the predictions [97].
3Q-learning algorithm extended TD(λ) algorithm to control problems.
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proximate dynamic programming to update value function approximation iteratively.

However, performing these two schemes requires extensive matrices calculations. Our

approximate dynamic programming-based algorithm uses a linear approximation for

the value functions (and separable, piece-wise linear approximation in later chapter),

which avoids matrices calculations and requires less computational time. However, in

general there is no guarantee that linear approximation will lead to convergence [76].

It is obvious that there is a trade-off between the computational time and quality

of the solutions. To determine a good trade-off is an extension to this dissertation

and will be considered for future works. We now need to know how closely our ADP

solutions match the optimal solution. For this purpose, in this section, performance

measures are defined to evaluate the ADP solutions.

2.5.1 Performance measures under deterministic assumption

In this subsection, we design performance measures to determine how closely the

ADP solutions match the optimal solution for a deterministic problem, in which ran-

dom events are replaced by their expected values. We use two types of solution

methods to construct our performance measures: ADP (solution produced using ap-

proximate dynamic programming), and OPT (an optimal solution of a deterministic

problem produced by solving a linear program). While updating value function ap-

proximation iteratively, an ADP algorithm generates a sequence of objective values,

one for each iteration. For a deterministic problem, the ADP solution is equal to the

best (lowest costs) of all the objective values generated by the ADP algorithm, since

all iterations are associated with the same scenario/sample-path.

We define several terms that will be used for computing the statistics that we

measure. Let Cs [Million $] denote the objective value (costs in a day) as computed

using solution method s. For example, CADP denotes the objective value computed

using the ADP algorithm. Let CDEs [Million lb] represent the carbon dioxide equiv-

alent emissions in a day computed using solution method s, and PMT s [Million $]
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denote the consumers’ electric payment in a day computed using solution method s.

PMT s is calculated using the following equation

PMT s =
H
∑

h=1

dsh × psh, (2.43)

where dsh [MW] represents the electricity demand at hour h computed using solution

method s, and, psh [$/MWh] denotes the wholesale electricity price at hour h computed

using solution method s.

We use the terms defined above to compute the following measures. Let ∆CADP
OPT

[100%] denote the error in the objective value computed using the ADP algorithm

from the optimal objective value as a percentage of the optimal value. ∆CADP
OPT is

computed using the following equation

∆CADP
OPT =

CADP − COPT

COPT
× 100%. (2.44)

Similarly, we define the error associated with emissions, referred to as ∆CDEADP
OPT

[100%], and the error for consumers’ electric payment, denoted as ∆PMTADP
OPT [100%].

Table 2.6
Performance statistics of the ADP algorithm for deterministic cases
under different PHEV penetration rates

PHEV penetration ∆CADP
OPT ∆CDEADP

OPT ∆PMTADP
OPT

100% 0.0042% 0.0024% 0.0264%

80% 0.0000% -0.0051% 0.1143%

60% 0.0000% 0.0014% 0.0701%

40% 0.0000% 0.0000% 0.0106%

20% 0.0000% 0.0000% 0.0105%

Figure 2.10 shows the PHEV charging decision in a day from the optimal solution

(dashed line) and from the ADP algorithm (solid line). As discussed in Section 2.4.3,

for the specific test case that we study, electricity demand (excluding PHEV electricity

consumption) is at its highest in late afternoon; while wind power output happens
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Fig. 2.10. Optimal PHEV charging decision from OPT and ADP for
a deterministic case

to be at its lowest. After midnight, demand gradually falls to its lowest; meanwhile

wind power production grows to its highest. With this setup, the ADP algorithm

realizes that it is necessary to delay most of the PHEV charging to take advantage of

lower electricity prices in late night hours. The results also show an extremely chose

match between the optimal solution and that produced by the ADP algorithm.

Table 2.6 summarizes performance statistics of the ADP algorithm for different

PHEV penetration levels. The negative values in the table indicate that the ADP

solution performs better than the optimal solution for that particular measure. Note

that the values in the ∆CADP
OPT column (error in the objective value computed using

the ADP compared with the optimal value) are always nonnegative. We observe

that the ADP algorithm is able to produce solutions that are consistently within a

extremely small margin of error of the optimal for a deterministic energy model.
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2.5.2 Performance measures under stochastic assumption

We now consider stochastic cases in which the number of PHEVs plugged in and

wind power production at different times are random. The concept of EVPI has been

first developed in decision analysis and then used in the stochastic programming set-

ting to measure quality of stochastic programming solutions [99]. The same concept

is adapted here to evaluate the ADP solutions. The expected value of perfect infor-

mation (EVPI) measures the maximum amount a decision maker would be willing to

pay in order to gain access to complete and accurate information about the future.

The expected value of perfect information is defined as follows. We use ω to

represent randomness whose realizations correspond to a number of scenarios ωn, 1 ≤

n ≤ N . Let CWS (ωn) represent the objective value from the optimal solution for a

particular scenario ωn. The wait-and-see solution [99], a concept used in the stochastic

programming setting, finds the optimal solutions for all scenarios and their optimal

objective values. Let CADP (ωn) denote the objective value for scenario ωn produced

by approximate dynamic programming. The expected value of perfect information is

the difference between the expected objective value computed using the wait-and-see

solution method and that from the ADP algorithm. For a minimization problem, the

EVPI can be written as

EV PI = E
{

CADP (ω)
}

− E
{

CWS (ω)
}

. (2.45)

It is obvious that the EVPI is a nonnegative value since for any scenario ωn, CWS (ωn) ≤

CADP (ωn).

We use two types of solution methods to construct performance measures: ADP

(solution produced using approximate dynamic programming), and WS (the wait-

and-see solution assuming we have perfect information about the future). We compute

the following measures to determine how closely the ADP solutions match the wait-

and-see solution. Let ∆CADP
WS [100%] denote the difference in the objective value

computed using the ADP algorithm from the objective value computed using the WS
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solution method as a percentage of that associated with the WS solution method.

For example, the following equation is used to compute ∆CADP
WS

∆CADP
WS = E

{

CADP (ω)− CWS (ω)

CWS (ω)

}

× 100%. (2.46)

Similarly, we define the difference associated with emissions, denoted as ∆CDEADP
WS

[100%], and difference in consumers’ electric payment, referred to as ∆PMTADP
WS

[100%].

Fig. 2.11. Optimal PHEV charging decision in a day from ADP and
WS for a stochastic case

Figure 2.11 shows the PHEV charging decision over the course of a day for a

stochastic case from the WS solution method (dashed line) and the ADP algorithm

(solid line). Figure 2.12 illustrates hourly electricity demands in a day (mean in bold

line and 95% confidence interval in light lines) from the two solution methods: ADP

(solid line) and WS (dashed line). Figure 2.13 summarizes wholesale electricity prices

in a day from the two solution methods. We can observe a close match between the

results of these two solution methods. Note that stochasticity inherent in exogenous

information leads to a significant variance even in the optimal solutions associated
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Fig. 2.12. Hourly electricity demand in a day from OPT and ADP
for a stochastic case

Fig. 2.13. Hourly wholesale electricity price in a day from OPT and
ADP for a stochastic case
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Table 2.7
Performance statistics of the ADP algorithm for stochastic cases under
different PHEV penetration rates

Penetration ∆CADP
WS ∆CDEADP

WS ∆PMTADP
WS

100%
µ 0.5628% 0.6098% 1.2001%

σ 0.4290% 0.4574% 2.2012%

80%
µ 0.1349% 0.1390% 1.1314%

σ 0.1301% 0.1371% 1.0881%

60%
µ 0.0410% 0.0392% 0.1223%

σ 0.0562% 0.0582% 0.3013%

40%
µ 0.0915% 0.0942% -0.1732%

σ 0.1992% 0.2008% 0.5598%

20%
µ 0.1389% 0.1427% 0.0280%

σ 0.3655% 0.3601% 1.5859%

Table 2.8
Performance statistics of the ADP algorithm for stochastic cases under
different PHEV penetration rates (with an increased variance in wind
forecast error)

Penetration ∆CADP
WS ∆CDEADP

WS ∆PMTADP
WS

100%
µ 1.2736% 1.3292% 1.8431%

σ 1.1972% 1.2472% 3.5535%

80%
µ 0.6498% 0.7026% 2.2508%

σ 0.5837% 0.6051% 1.9691%

60%
µ 0.3627% 0.3722% 0.4152%

σ 0.3431% 0.3640% 1.0701%

40%
µ 0.8170% 0.8265% -0.9937%

σ 1.8048% 1.8307% 2.2633%

20%
µ 1.0947% 1.1112% -0.8577%

σ 2.2516% 2.2594% 3.3853%
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with various scenarios (the wait-to-see solution method in dashed lines). Neverthe-

less, the ADP algorithm is able to find a policy that performs well under significant

uncertainty.

In Table 2.7, we summarize the performance statistics of the ADP algorithm for

different PHEV penetration levels, benchmarked against the WS solution method.

We observe that the ADP algorithm is able to produce solutions that are close to

the wait-and-see solutions under significant randomness. Note that ∆CADP
WS indicates

expected gains from perfect information; that is EV PI. Table 2.8 summarizes the

results assuming that the variance of wind forecase error is increased from 0.2×βh−1+

0.02 to 0.3×βh−1+0.02. It shows that when wind forecast error increases, a decision

maker would be willing to pay more in order to have perfect information.

2.5.3 Selecting step size

Using approximate dynamic programming, we update value function approxima-

tion V̄ +

h and wholesale electricity price approximation P̄h iteratively as the following

V̄ +,n
h = (1− α+

n−1)× V̄ +,n−1

h + α+

n−1 × v+,n
h , 2 ≤ n ≤ N, 1 ≤ h ≤ H;

P̄ n
h = (1− αP

n−1)× P̄ n−1

h + αP
n−1 × pnh, 2 ≤ n ≤ N, 1 ≤ h ≤ H,

where α+

n−1 ∈ (0, 1) and αP
n−1 ∈ (0, 1) are step sizes for updating V̄ +

h and P̄h, respec-

tively. The common practice for choosing a step size is to use a constant step-size or

declining rule such as αn−1 = 1/(n − 1), n = 2, . . . , N . This leaves us the problem

to choose a step size pair
(

α+

n−1, α
P
n−1

)

. We assume both α+

n−1 and αP
n−1 can either

take on one of the five constant values {0.1, 0.2, 0.3, 0.4, 0.5} or follow the declining

rule, and as a result (6× 6) = 36 combinations are considered, among which we will

choose the one that produces the best result.

The ADP algorithm generates multiple objective values, one for each iteration.

For a deterministic case, the objective values produced by the ADP algorithm are

benchmarked against the optimal objective values. Note that when exogenous infor-

mation is deterministic, the optimal objective values for all iterations are the same
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Fig. 2.14. Plot of the objective values with respect to iteration n for
step size (0.3, 0.1), for a deterministic case

Fig. 2.15. Plot of the objective values with respect to iteration n for
step size (1/n, 0.1), for a deterministic case
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Fig. 2.16. Plot of the objective values with respect to iteration n for
step size (0.5, 0.1), for a stochastic case

Fig. 2.17. Plot of the objective values with respect to iteration n for
step size (1/n, 0.2), for a stochastic case
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since they are associated with the same scenario. Figure 2.14 and 2.15 plot the objec-

tive values generated by the ADP algorithm (solid line) with respect to iteration n,

benchmarked against the optimal values (dashed line). It can be observed that con-

vergence behavior is sensitive to step size. The sequence in Figure 2.14, corresponding

to step size (0.3, 0.1), rapidly converges to the optimal value. After 55 iterations, the

error in the ADP objective values compared with the optimal value is within 0.05%.

The sequence associated with step size (1/n, 0.1) in Figure 2.15, however, fails to

converge to the optimal value within 200 iterations. The minimum error achieved is

greater than 9%.

Figure 2.16 and 2.17 represent stochastic cases. Note that for a stochastic case,

a different sample path is generated for each iteration, and as a result the optimal

objective values vary with respect to iteration n. The step size (0.5, 0.1), in Figure

2.16, produces fast convergence. The error after 40 iterations is less than 0.6%. The

sequence associated with step size (1/n, 0.2), in Figure 2.17, fails to converge within

a large number of iterations. The minimum error obtained is above 4%.

Fig. 2.18. Choosing the best step size based on the mean and standard
deviation of the objective values generated by the ADP algorithm
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To find the best step size among the 36 combinations, for each combination, we run

the ADP algorithm for 200 iterations and calculate an estimate to which the objective

values would converge, using the mean and standard deviation of the objective values

generated in the last 100 iterations. Figure 2.18 shows the estimates computed for

the 36 combinations, which are color scaled with red corresponding to greater (worse)

values and green corresponding to smaller (better) values. Among the 36 pairs tested,
(

α+

n−1, α
P
n−1

)

= (0.5, 0.1) is the best choice because it produces the lowest objective

value.
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3. EXTENSIONS OF THE SHORT-TERM ENERGY

SYSTEM MODEL

In the centralized PHEV charging scenario discussed in Chapter 2, charging decisions

are determined and coordinated by a system operator. As pointed out earlier, it is,

however, unrealistic to implement the centralized charging scheme in the real world.

A more practical scheme is to leave charging decisions to individual consumers, and

design electricity tariffs to encourage PHEV owners to shift their charging to late night

hours when electricity price is low. In this chapter, we will extend the ADP-based

modeling and algorithm framework to examine two decentralized charging scenarios,

in which real-time pricing is assumed to be deployed and set electricity prices based

on wholesale electricity prices. In addition, communications and controls systems,

referred to as energy management controllers (EMCs), are assumed to be universally

deployed for all residential consumers to automate PHEV charging decisions in re-

sponse to real-time price signals for consumers. We are also interested in effects of

vehicle-to-grid (V2G) as storage resources, a case in which PHEV batteries can be

discharged to send energy back to the grid when electricity demand is high.

The chapter proceeds as follows. Section 3.1 and 3.2 describe the formulations

for decentralized charging without V2G and with V2G, respectively. Section 3.3

compares different charging policies and discusses their economic and environmental

effects on the short-term energy system.

3.1 Decentralized PHEV Charging

At time h, the charging decision z+h in the centralized charging scenario is modeled

as a continuous variable because a system operator may decide to charge a subset of

the empty batteries waiting to be charged and hold the charging of the rest to future
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hours. When charging decisions are left to individual consumers, a PHEV owner is

only responsible for their own charging decision, deciding whether to start charging

their vehicle or delay its charging. Therefore, we need a set of binary decision variables

used to represent a consumer’s charging decisions at different times in a day; that is

k+

h =







1 to charge their PHEV at time h;

0 to delay its charging.

As a starting point, we assume all EMCs installed are identical. Thus, at any

point of time, all EMCs will make the same charging decision for consumers facing

the same electricity rates. Therefore, the total number of batteries to be charged at

time h, z+h can be written as:

z+h =







Y +

h + λh if k+

h = 1;

0 if k+

h = 0,

where λh represents the number of new PHEVs plugged in and waiting to be charged

at time h.

3.1.1 A deterministic mixed integer linear programming formulation

If we assume that all exogenous information is deterministic, we can formulate the

system operator’s multi-period economic dispatch problem with charging decisions

made by individual consumers as a simple mixed integer linear program (MILP). In

this section, we will describe the deterministic MILP formulation in which random

events are replaced by their expected values ωh =
(

λh, βh

)

, 1 ≤ h ≤ H. The objective

is to minimize the costs of generating electricity in a day, written as

min
ghj , wh, qh, z

+

h
, Y +

h
, k+

h

H
∑

h=1

Cdisp
h (Sh, xh) , (3.1)

subject to the following constraints:
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J
∑

j=1

ghj + wh + qh = Dh +D0

h +
L
∑

l=1

CP × z+{h−l+1}>0
, 1 ≤ h ≤ H; (3.2)

Y +

h = 0, h = 1; (3.3)

Y +

h+1
= Y +

h + λh − z+h , 1 ≤ h ≤ H − 1; (3.4)

z+h ≤ bigM × k+

h , 1 ≤ h ≤ H − L; (3.5)

Y +

h+1
≤ bigM ×

(

1− k+

h

)

, 1 ≤ h ≤ H − L; (3.6)

z+h = Y +

h + λh, H − L+ 1 ≤ h ≤ H; (3.7)

k+

h = 1, H − L+ 1 ≤ h ≤ H; (3.8)

0 ≤ ghj ≤ Gj, 1 ≤ j ≤ J, 1 ≤ h ≤ H; (3.9)

0 ≤ wh ≤ β ×W, 1 ≤ h ≤ H; (3.10)

k+

h ∈ {0, 1}, qh, z
+

h , Y
+

h ≥ 0 1 ≤ h ≤ H. (3.11)

Equation (3.2) ensures system load (including electricity consumed due to PHEV

charging) is exactly met at any point of time. Equation (3.3) and (3.4) define the

transition functions for PHEV backlog Y +

h . Equation (3.5) and (3.6) are unique to

the decentralized charging policy as opposed to the centralized charging, stating that

either all or none of the vehicles will be charged at any time. Note that bigM in (3.5)

and (3.6) is a large positive number. Equation (3.7) and (3.8) enforce that PHEVs

whose charging cannot be finished by the end of a daily cycle will be charged without

any delay. Equation (3.9) and (3.10) are capacity constraints.

3.1.2 An approximate dynamic programming formulation

If the exogenous information is stochastic, an approximate dynamic programming-

based algorithm is developed to find a near-optimal policy for making decisions. As in

the ADP algorithm for the centralized charging scenario, we assume a linear approx-

imation for the value function around a post-decision state y+,x
h , and update value

function slope approximations V̄ +

h using an iterative updating operation. The initial
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values for all value function gradient approximations are 0. Starting from iteration

n = 2, at each time h, to obtain an optimal charging decision k+,n
h , given a specific

state1 Sn
h , we solve the hour-ahead economic dispatch problem based on the value

function gradient approximation computed in the previous iteration n − 1, V̄ +,n−1

h .

The economic dispatch problem is solved as a mixed integer linear programming

problem, given as follows

max
xh

{

−Cdisp
h (Sn

h , xh) + V̄ +,n−1

h × y+,x
h

}

, (3.12)

s.t.
J
∑

j=1

ghj + wh + qh = Dh +D0

h

+ CP × z+h +
L
∑

l=1

CP × z+,n

{h−l}>0
, 1 ≤ h ≤ H; (3.13)

y+,x
h = Y +,n

h + λh − z+h , 1 ≤ h ≤ H − 1; (3.14)

z+h ≤ bigM × k+

h , 1 ≤ h ≤ H − L; (3.15)

y+,x
h ≤ bigM ×

(

1− k+

h

)

, 1 ≤ h ≤ H − L; (3.16)

z+h = Y +,n
h + λh, H − L+ 1 ≤ h ≤ H; (3.17)

k+

h = 1, H − L+ 1 ≤ h ≤ H; (3.18)

capacity constraints: (3.9), (3.10)

k+

h ∈ {0, 1}, qh, z
+

h , y
+,x
h ≥ 0 1 ≤ h ≤ H. (3.19)

Equation (3.14) is the pre-transition function used to calculate the post-decision

PHEV backlog y+,x
h .

It is important to recognize that solving the above MILP is equivalent to solving

two linear programs, by setting k+

h to be equal to either 0 or 1 and finding the solution

which yields greater objective value. For example, when k+

h = 0 (no vehicle is to be

1Again, the system state captures available information on system demand, PHEV charging, gener-
ation, and wind availability.
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charged, and as a result z+h = 0 and y+,x
h = Y +,n

h + λh), the optimization problem

would be rewritten as the following linear program:

max
ghj , wh, qh

{

−Cdisp
h (Sn

h , xh) + V̄ +,n−1

h ×
(

Y +,n
h + λ̄h

)

}

, (3.20)

s.t.
J
∑

j=1

ghj + wh + qh = Dh +D0

h +
L
∑

l=1

CP × z+,n

{h−l}>0
, 1 ≤ h ≤ H; (3.21)

capacity constraints: (3.9), (3.10)

qh ≥ 0, 1 ≤ h ≤ H. (3.22)

Similarly, we can obtain the linear program associated with k+

h equal to 0.

After an optimal charging decision k+,n
h is determined from (3.12) – (3.19), and a

specific realization of new information on the number of new PHEV arrivals at time

h, λn
h, becomes known to the system, the following post-decision transition function

is used to step forward to the next pre-decision state at time h+ 1, Y +,n
h+1

.

Y +,n
h+1

=







0 if k+,n
h = 1;

Y +,n
h + λn

h if k+,n
h = 0,

Our algorithm proceeds till the last hour of a day to finish iteration n. At the

end of the iteration, for each time h, we solve the real-time economic dispatch (as a

linear program) to obtain a new estimate of the wholesale electricity price pnh, and use

pnh to update the wholesale electricity price approximation. The best estimates for

wholesale electricity prices calculated so far P n
h , 1 ≤ h ≤ H are then used to obtain a

new estimate of marginal value of increasing the post-decision PHEV backlog by one

unit, v+,n
h . Using v+,n

h , we can update the value function gradient approximation to

obtain the best estimate so far, V̄ +,n
h . The same procedure is repeated for a number of

iterations to return a good policy. The details on how the new estimates are computed

and how the approximations for wholesale electricity prices and value function slope

approximations are updated are the same as that presented in Section 2.3.

The numerical results for various charging scenarios including the decentralized

charging without V2G will be discussed in the end of this chapter, after the modeling
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and algorithm details for the decentralized charging with V2G are presented in the

next section.

3.2 Decentralized PHEV Charging with Vehicle-to-Grid as Storage

Lack of storage resources in the electric grid is one of the reasons why wholesale

electricity prices fluctuate and price spikes occur from time to time. PHEVs could

play an important role in the power system because it can be used to provide elec-

tricity storage to the electric grid through the vehicle-to-grid technology. To quantify

potential benefits of a widespread adoption of V2G by PHEV owners, in this section

we formulate a decentralized PHEV charging scenario, in which V2G is universally

adopted by PHEV drivers, and energy management controllers are used to automati-

cally optimize the timing for charging and discharging their PHEV battery in response

to real-time pricing signals.

We assume that only a fully charged PHEV battery can be discharged to provide

electricity to the grid since charging and discharging processes decrease battery life.

From a modeling perspective, we would need a new set of variables to represent

decisions related to discharging (indicated by the superscript “−”), as listed in the

following

k−
h [0/1] 1 to discharge PHEV at time h; 0 otherwise;

z−h [thousand] number of PHEVs to be discharged at time h;

Y −
h [thousand] number of fully charged PHEV batteries at time h.

The binary variable k−
h represents a consumer’s discharging decision at time h,

which is whether or not to discharge their PHEV to send electricity back to the grid.

Since it is assumed that all EMCs installed are identical and response to the same

electricity prices, charging and discharging decisions (k+

h and k−
h ) made by all drivers
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would be the same. Therefore, the total number of PHEVs to be discharged at time

h, z−h , can be calculated according to the following equation

z−h =







Y −
h + z+{h−L}>0

if k−
h = 1;

0 if k−
h = 0,

where z+{h−L}>0
represents the number of PHEVs whose charging starts at time h−L

and become fully charged at time h; that is the number of new charging completions

at time h. Similarly, the total number of PHEVs to be charged at time h, z+h , is

written as:

z+h =







Y +

h + λh + z−{h−L}>0
if k+

h = 1;

0 if k+

h = 0,

where z−{h−L}>0
is the number of PHEVs whose discharging stats at time h − L and

become empty at time h; that is the number of new discharging completions at time

h. Note that we assume it takes L hours to charge or discharge a battery.

3.2.1 A deterministic mixed integer linear programming formulation

In this section, we will describe a deterministic MILP formulation for the decen-

tralized charging scenario with V2G in which random events are replaced by their

expected values ωh =
(

λh, βh

)

, 1 ≤ h ≤ H. The objective is to minimize the costs of

electricity generation in a day

min
ghj , wh, qh, z

+

h
, Y +

h
, k+

h
, z−

h
, Y −

h
,k−

h

H
∑

h=1

Cdisp
h (Sh, xh) , (3.23)

subject to the following constraints:

J
∑

j=1

ghj + wh + qh = Dh +D0

h

+
L
∑

l=1

CP × z+{h−l+1}>0
−

L
∑

l=1

CP × z−{h−l+1}>0
, 1 ≤ h ≤ H; (3.24)
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Y +

1 = 0; (3.25)

Y +

h+1
= Y +

h + λh − z+h + z−{h−L}>0
, 1 ≤ h ≤ H − 1; (3.26)

z+h ≤ bigM × k+

h , 1 ≤ h ≤ H − L; (3.27)

Y +

h+1
≤ bigM ×

(

1− k+

h

)

, 1 ≤ h ≤ H − L; (3.28)

z+h = Y +

h + λh + z−{h−L}>0
, H − L+ 1 ≤ h ≤ H; (3.29)

k+

h = 1, H − L+ 1 ≤ h ≤ H; (3.30)

Y −
1 = 0, (3.31)

Y −
h+1

= Y −
h − z−h + z+{h−L}>0

, 1 ≤ h ≤ H − 1; (3.32)

z−h ≤ bigM × k−
h , 1 ≤ h ≤ H − 2× L+ 1; (3.33)

Y −
h+1

≤ bigM ×
(

1− k−
h

)

, 1 ≤ h ≤ H − 2× L+ 1; (3.34)

z−h = 0, H − 2× L+ 2 ≤ h ≤ H; (3.35)

k−
h = 0, H − 2× L+ 2 ≤ h ≤ H; (3.36)

capacity constraints: (3.9) and (3.10);

k+

h , k
−
h ∈ {0, 1}, qh, z

+

h , Y
+

h , z−h , Y
−
h ≥ 0, 1 ≤ h ≤ H. (3.37)

Equation (3.24) is the power balance constraint, where
∑L

l=1
CP × z−{h−l+1}>0

rep-

resents the electricity discharged from PHEVs at time h. At time h, the PHEVs

whose discharging starts at time h are in the first hour of its discharging cycle; while

those starting discharging at time h − L + 1 are in the last hour. (3.25) – (3.30)

are associated with PHEV charging and similar to (3.3) – (3.8), explained in Section

3.1.1. The only difference is that with V2G, the PHEVs whose discharging starts at

time h − L and completes at time h (that is new discharging completions z−{h−L}>0
)

need to be counted towards the number of empty batteries in (3.26) and (3.29).

Equation (3.31) and (3.32) define the transition functions for PHEV inventory Y −
h

(fully charged batteries ready to be discharged to send power back to the grid), where

z+{h−L}>0
represents the PHEVs whose charging cycle completes at time h. Equation

(3.33) and (3.34) define the decentralized discharging policy as opposed to the cen-

tralized charging, ensuring that either all or none of the vehicles will be discharged
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at any time. Equation (3.35) and (3.36) enforce that at and after time H− 2×L+2,

no PHEVs are discharged, otherwise its charging cycle cannot be finished by the end

of a day.

3.2.2 An approximate dynamic programming formulation

For stochastic cases, an approximate dynamic programming-based algorithm is

designed to find a near-optimal policy for making decisions. We assume linear ap-

proximation for the value function around a post-decision PHEV backlog y+,x
h and

that around a post-decision PHEV inventory (full batteries) y−,x
h , and update asso-

ciated value function slope approximation V̄ +

h and V̄ −
h using an iterative updating

operation. The initial values for all value function gradient approximations are 0.

Starting from iteration n = 2, at each time h, to obtain an optimal charging decision

k+,n
h and discharging decision k−,n

h , given a specific state Sn
h , we solve ISO’s hour-

ahead economic dispatch problem with charging and discharging decisions made by

individual consumers as a mixed integer linear programming problem. Since the ex-

act value function of being in post-decision state y+,x
h and y−,x

h is unknown, the value

function slope approximation computed in the previous iteration n − 1, V̄ +,n−1

h and

V̄ −,n−1

h , are used to make decisions. The objective of the MILP is given as follows

max
xh

{

−Cdisp
h (Sn

h , xh) + V̄ +,n−1

h × y+,x
h + V̄ −,n−1

h × y−,x
h

}

, (3.38)

subject to the following constraints:

J
∑

j=1

ghj + wh + qh = Dh +D0

h + CP × z+h

+
L
∑

l=1

CP × z+,n

{h−l}>0
− CP × z−h −

L
∑

l=1

CP × z−,n

{h−l}>0
, 1 ≤ h ≤ H; (3.39)

y+,x
h = Y +,n

h + λh + z−,n

{h−L}>0
− z+h , 1 ≤ h ≤ H − 1; (3.40)

y−,x
h = Y −,n

h + z+,n

{h−L}>0
− z−h , 1 ≤ h ≤ H − 1; (3.41)
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z+h ≤ bigM × k+

h , 1 ≤ h ≤ H − L; (3.42)

y+,x
h ≤ bigM ×

(

1− k+

h

)

, 1 ≤ h ≤ H − L; (3.43)

z−h ≤ bigM × k−
h , 1 ≤ h ≤ H − 2× L+ 1; (3.44)

y−,x
h ≤ bigM ×

(

1− k−
h

)

, 1 ≤ h ≤ H − 2× L+ 1; (3.45)

z+h = Y +,n
h + λh + z−,n

{h−L}>0
, H − L+ 1 ≤ h ≤ H; (3.46)

k+

h = 1, H − L+ 1 ≤ h ≤ H; (3.47)

z−h = 0, H − 2× L+ 2 ≤ h ≤ H; (3.48)

k−
h = 0, H − 2× L+ 2 ≤ h ≤ H; (3.49)

capacity constraints: (3.9) and (3.10);

k+

h , k
−
h ∈ {0, 1}; qh, z

+

h , Y
+

h , z−h , Y
−
h ≥ 0. (3.50)

It is important to recognize that solving the above MILP is equivalent to solving four

linear programs, by setting
(

k+

h , k
−
h

)

to be equal to (0, 0), (0, 1), (1, 0) or (1, 1) and

finding the solution which yields the greatest objective value.

Once an optimal charging decision k+,n
h and an optimal discharging decision k−,n

h

are determined, and a particular realization of new information on the number of

new PHEV arrivals at time h, λn
h, becomes available to the system, the following

post-decision transition functions are used to move forward to the next pre-decision

states at time h+ 1:

1) the post-decision transition function for empty batteries plugged in and waiting

to be charged Y +,n
h+1

, written as

Y +,n
h+1

=







Y +,n
h + z−,n

{h−L}>0
+ λn

h if k+,n
h = 0;

0 if k+,n
h = 1;

2) the post-decision transition function for fully charged batteries ready to be

discharged Y −,n
h+1

, given by

Y −,n
h+1

=







Y −,n
h + z+,n

{h−L}>0
if k−,n

h = 0;

0 if k−,n
h = 1.
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where z−,n

{h−L}>0
represents the number of new discharging completions at time h, and

z+{h−L}>0
denotes the number of new charging completions at time h.

Our algorithm proceeds till the end of a day to finish iteration n. At the end

of the iteration, for each time h, we solve a real-time economic dispatch to obtain a

new estimate of the wholesale electricity price, pnh, and use it to update the wholesale

electricity price approximation. The best estimates for wholesale electricity prices

calculated so far, P n
h , 1 ≤ h ≤ H, are then used to obtain a new estimate of marginal

value of increasing the post-decision PHEV backlog by one unit, v+,n
h , and a new

estimate of marginal value of increasing the post-decision PHEV inventory by one

unit, v−,n
h . Using v+,n

h and v−,n
h , we update the post-decision states’ value function

gradient approximations to obtain their best estimate so far, V̄ +,n
h and V̄ −,n

h . The

same procedure is repeated for a number of iterations to return a good policy. The

details on how to obtain V̄ +,n
h and P̄ n

h are the same as that presented in Section 2.3.

In the rest of this section, we will explain how to generate a new estimate of marginal

value of increasing the post-decision PHEV inventory at time h by one unit, v−,n
h ,

and use it to update the value function slope approximation.

Figure 3.1 illustrates how we obtain a new estimate of marginal value of increasing

fully charged batteries at time h, y−,x
h , by one unit (in thousand), given wholesale

electricity price approximations: P̄ n
τ , 1 ≤ τ ≤ H. If we discharge one more unit

of batteries at time h, post-decision PHEV inventory y−,x
h will decrease by one unit.

By doing this, two things will happen in the future hours. First, for the following

L − 1 hours, CP [kW] of electricity generation would be provided by discharging

the PHEVs. CP represents the discharging power rate. The associated savings on

electricity generation costs are equal to

h+L−1
∑

τ=h+1

CP × P̄ n
τ , (3.51)

which can be rewritten as (by letting τ = h+ l − 1)

L
∑

l=2

CP × P̄ n
h+l−1. (3.52)
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Fig. 3.1. Illustrating how to generation a new estimate of marginal
value of increasing PHEV inventory by one unit, given wholesale elec-
tricity price approximations

Note that the one unit of batteries would become empty at time h + L. The second

thing that will happen to the following hours is that we would need to recharge it to

its full electricity capacity (at the lowest costs), since it is assumed that all PHEVs

need to be fully charged by the end of a daily cycle. The lowest costs to recharge the

one unit of batteries can be computed by solving a trivial optimization problem of

finding the optimal charging start time to minimize the associated electricity costs in

a full charging cycle that lasts for L hours. The optimization problem can be written

as follows

min
h+L≤τ≤H−L+1

L
∑

l=1

CP × P̄ n
τ+l−1. (3.53)
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The marginal value of decreasing fully charged batteries by one unit can be estimated

by the net reduction on electricity generation costs expected to make, according to

L
∑

l=2

CP × P̄ n
h+l−1 − min

h+L≤τ≤H−L+1

L
∑

l=1

CP × P̄ n
τ+l−1. (3.54)

The marginal value of increasing y−,x
h by one unit, v−,n

h , can be estimated using exactly

the opposite of what is calculated in (3.54), written as

v−,n
h = min

h+L≤τ≤H−L+1

L
∑

l=1

CP × P̄ n
τ+l−1 −

L
∑

l=2

CP × P̄ n
h+l−1. (3.55)

From (3.55) we can see that when electricity price in the immediate future is low,

gains from increasing fully charged batteries (or storage resources) will be relatively

large, meaning that more vehicles should be charged to store energy when electricity

price is low and sell it back to the grid later when electricity price is relatively high.

By far we have presented our approximate dynamic programming-based models

and algorithms for three PHEV charging scenarios. The numerical results for these

three schemes will be presented and analyzed in the next section.

3.3 Comparing PHEV Charging Policies

We optimize PHEV charging under three different charging scenarios: a central-

ized charging scenario coordinated by the system operator, and two decentralized

charging scenarios in which charging decisions are made by PHEV owners. The cen-

tralized charging scenario, referred to as the “ISO” scenario, is discussed in Chapter 2.

Two decentralized charging scenarios under real-time pricing are detailed in Section

3.1 and 3.2, which are referred to as the “EMC” scenario and the “V2G” scenario,

respectively, depending on whether V2G is adopted. Both decentralized charging sce-

narios assume that EMCs automate charging (and discharging with V2G) decisions in

response to hourly-updated wholesale electricity prices. These three charging schemes

will be compared with the current flat rate tariff. Under flat rate structure, we assume

that PHEV owners charge their vehicle immediately after they return home from the
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last trip of a day and connect their vehicle to the grid. This charging policy is re-

ferred to as the “Flat” scenario. The “Flat” scenario represents our current system

(or the business-as-usual case) in which consumers have no incentive to shift their

PHEV charging load. On the contrary, the “ISO” scenario is an ideal case in terms

of strategically shifting charging consumption in order to minimize electricity gener-

ation costs. Although centralized charging could be unrealistic to implement (since

it requires that the system operator tracks every PHEV in the system), it provides

an important benchmark by which the two decentralized charging scenarios, namely

“EMC” and “V2G” are evaluated. Note that all findings to be presented in the rest

of the section are specific to the given input dataset that we are using.

Figure 3.2 summarizes the system demand (including electricity consumption for

PHEV charging) in a day for the four charging scenarios. Excluding PHEV charg-

ing, as shown earlier, the system consumes the greatest amount of electricity in late

afternoon, when wind availability happens to be in its lowest. After midnight sys-

tem electricity demand gradually falls to its lowest points; meanwhile wind speed

grows to its highest. Under this setup, it is clear that the “Flat” scenario (bold solid

line) significantly increases peak hour demand; while the centralized charging scheme

(bold dashed line) strategically shifts electricity consumption of PHEV charging and

flattens the overall load profile. The figure also shows that both decentralized charg-

ing policies will be able to move PHEV charging load to late night hours to exploit

lower electricity price. However, for the “EMC” charging (without V2G), charging

between 5 pm and 1 am is completely delayed and released at 2 am at the same

time, thereby creating a “rebound” peak (solid light line). In contrast, the “V2G”

scheme (dashed light line) presents no such rebound effects and is able to closely

approximate the centralized charging policy. Moreover, similar observations can be

made based on the daily wholesale electricity price profiles under different charging

scenarios, summarized in Figure 3.3.

The extent to which an increasing adoption of PHEVs will impact power gener-

ation costs, generator emissions, and consumers’ electric payment are summarized
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Fig. 3.2. System demand profile in a day under four charging scenarios

Fig. 3.3. Wholesale electricity price profile in a day under four charging scenarios

in Figure 3.4, 3.5, and 3.6, respectively. It is clear that the flat rate scheme (bold

solid line) is the worst in terms of all three measures; while the centralized “ISO”
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Fig. 3.4. Generation costs in a day for four charging scenarios and
five PHEV penetration levels

Fig. 3.5. Generator emissions in a day for four charging scenarios and
five PHEV penetration levels
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Fig. 3.6. Consumers’ electric payment in a day for four charging
scenarios and five PHEV penetration levels

Fig. 3.7. Generator and tailpipe emissions in a day, assuming a high
tailpipe emission rate
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Fig. 3.8. Generator and tailpipe emissions in a day, assuming a low
tailpipe emission rate

scenario (bold dashed line) is the best in those measures. The reduction in system

costs would be more significant if other household appliances such as air conditioner

are considered. It can be observed that the “V2G” scenario is consistently better

than the “EMC” scenario in all three measures.

Figure 3.7 and 3.8 summarize environmental impacts of an increasing adoption

of PHEVs under various charging schemes. We consider emission sources from both

tailpipes (the dark area) and generators (difference between lines and the area). The

lines represent the total emissions from both tailpipe and generator sources with re-

spect to different PHEV penetration levels under various charging policies. Tailpipe

emissions are direct vehicle emissions due to gasoline combustion. It is important to

recognize that environmental competitiveness of PHEVs compared with traditional

gasoline cars depends on averaged tailpipe emission of a gasoline passenger car. Con-

sidering that, we use two different rates for gasoline emission: 380.6 grams per mile

driven (in which 97% comes from CO2) according to estimates for cars sold by 2008
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modeled by EPA [100], and 225 grams per mile driven planned by EPA for new cars

to be sold from 2017 to 2025 [101]. It shows that there is a dramatic reduction in

new gasoline passenger car emissions mandated by the new EPA standard. With the

current car emission standard (Figure 3.7), the reduction in tailpipe emissions would

greatly outweigh the increase on generator emissions regardless of PHEV charging

policy. Therefore, total emissions decrease dramatically as PHEV penetration level

increases for all four charging scenarios. On the contrary, under the tightened emis-

sion standard for new cars (Figure 3.8), PHEV charging policy will play a more crucial

role on increasing net emission reduction, which is equal to tailpipe emission reduc-

tion minus generator emission increase (shown as the difference between solid lines

and the dotted line). The net emission reduction associated with the “ISO” charging

policy consistently double that of the flat rate case.
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4. RESOURCE PLANNING WITH REAL-TIME PRICING

So far we have compared various PHEV charging policies under different tariffs to

quantify the benefits of real-time pricing on short-term power operations. As men-

tioned earlier, real-time pricing will impact the electric power system in the long run

in at least two aspects. The first one is that the lack of real-time pricing in a long

run will lead to wasteful investments on generating capacity in order to satisfy higher

peak demand. The second one is that real-time pricing allows consumers to response

to electricity market conditions including wind availability and charge their plug-in

hybrid electric vehicle when wind energy is abundant, thus making wind resources

more cost-efficient in the long run. To quantify the potential long-term benefits of

real-time pricing, in this chapter, we will extend the scope to include generating re-

source investment decisions. From a modeling perspective, it is quite challenging

to solve an optimization problem that involves different levels of decision granular-

ity, handles uncertainty, and links different time periods together. To deal with the

computational difficulties, the approximate dynamic programming-based modeling

and algorithm framework is extended to examine the impacts of real-time pricing on

capacity investments.

We begin with an outline of the long-term energy system model in Section 4.1,

followed by both a deterministic optimization formulation based on linear program-

ming in Section 4.2 and a stochastic optimization formulation based on approximate

dynamic programming in Section 4.3. Finally, Section 4.4 compares different charg-

ing policies and discusses their economic and environmental effects on the long-term

energy system.
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4.1 Outline of the Long-Term Energy System Model

In the long-term energy model, decisions are made at two different time scales.

The investment decisions on resources such as wind and natural gas are made by a

system operator once every year. The acquired capacity is assumed to be effective

starting from the next year. In practice, an investment may take several years before

it comes online. If we wish to capture multi-year delays, an instance of a lagged asset

acquisition problem is created. Information on how to address this issue in an ADP

setting can be found in Powell 2011 [76]. For the remainder of the year, economic

dispatch problems are solved by the system operator on an hourly basis to determine

how much energy to produce from each power plant to satisfy system demand as well

as how many PHEVs to charge and discharge.

The total planning horizon is assumed to be 20 years. Let t ∈ {1, . . . , T} denote

years from 2011 to 2030, m ∈ {1, . . . ,M} represent months within a year, h ∈

{1, . . . , H} denote hours within a day, and i ∈ {1, . . . , I} represent energy resources

that can be procured over the two decades. We assume that there are two energy

resources to be invested: wind and natural gas. Let i = 1 represent wind, and i = 2

denote natural gas. The decision variables at time (t,m, h), represented by xtmh,

include annual investment decisions and hourly energy dispatch and PHEV charge

(and discharge) decisions. The annual decision variable at year t is given by

rti [MW] incremental capacity of resource i installed at year t.

The hourly energy dispatch and vehicle charging and discharging decisions are the

same as those defined for the short-term energy model. To avoid repetitive presenta-

tion, we will only present the complete formulation for the resource planning model

with centralized PHEV charging. The numerical results for resource planning under

different charging schemes will be discussed in the end of this chapter. With cen-
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tralized charging, the system operator’s hourly decision variables at time (t,m, h) are

defined as follows

gtmhj [MW] power dispatched from power plant j at time (t,m, h),

etmhi [MW] power dispatched from resource i at time (t,m, h),

qtmh [MW] lost load at time (t,m, h),

z+tmh [thousand] number of PHEVs to charge at time (t,m, h).

While for existing natural gas resources, we optimize power output from each in-

dividual power plant; for new natural gas resources acquired at time (t,m, h), its

aggregated output is represented by one decision variable, etmh,2.

The state variables at time (t,m, h), denoted as Stmh, represent the information

available for making a decision at time (t,m, h). In this study, the state variables

include information on capacity investment, system demand, PHEV charging, wind

energy, and generation characteristics. The state variables at time (t,m, h) are listed

as follows

Rti [MW] accumulated capacity of resource i at year t;

CCi [$/MW/yr] annualized capital cost of resource i;

RPSt [100%] renewable energy mandate at year t;

Dtmh [MW] system electricity demand at time (t,m, h);

Y +

tmh [thousand] number of PHEVs plugged in at time (t,m, h);

λtmh [thousand] expected number of new PHEVs at time (t,m, h);

CP [kW] PHEV battery charge power (e.g. 3.3 kW);

βtmh [100%] expected wind availability factor at time (t,m, h);

NGP [$/MMBtu] natural gas price at year t (e.g. 5 $/MMBtu);

Gj [MW] maximum power output from power plant j;

HRj [MMBtu/MWh] heat rate of power plant j;
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FUELj [$/MWh] variable fuel cost of power plant j, FUELj = NGP ×HRj;

ERj [lb/MWh] emission rate of power plant j;

V OLL [$/MWh] value of lost load (e.g. 2000 $/MWh).

We use ωtmh to represent the vector of random information that occurs at time

(t,m, h), including new PHEV arrivals and wind availability. The random exogenous

information at time (t,m, h) consists of

λtmh [thousand] number of new PHEVs plugged in at time (t,m, h),

βtmh [100%] wind availability factor at time (t,m, h).

The transition function governs how the system evolves with time. The system

state may change in different time scales. In this study, resource investment states

change once a year, when new wind and natural gas capacities are added to the system

at year t and become effective starting from the next year t+1. The transition function

used to move the accumulated capacity of resource i at year t to the next year t+ 1

would be written as

Rt+1,i = Rti + rti, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ I. (4.1)

The PHEV charging state changes on an hourly basis, as considered in the short-term

energy model. The PHEV backlog at hour (t,m, h), Y +

tmh, migrates to the next hour

(t,m, h+ 1) according to the following transition function

Y +

tm,h+1
= Y +

tmh + λtmh − z+tmh, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 2 ≤ h ≤ H. (4.2)

Equation (4.2) states that the new backlog at hour (t,m, h+1) depends on the backlog

at previous hour h, Y +

tmh, new vehicles plugged in at time (t,m, h), λtmh, and number

of vehicles to be charged at time (t,m, h), z+tmh.

The cost function at time (t,m, h), denoted as Ctmh, measures system costs in-

curred at time h. In the long-term energy model, system costs at time (t,m, h)

consist of capacity investment costs incurred annually and electricity generation costs
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incurred on an hourly basis. The equation used to compute capacity investment costs

at year t, denoted as Ccap
t , is given as follows:

Ccap
t =

I
∑

i=1

(

CCi ×
t−1
∑

τ=1

rτ,i

)

, 1 ≤ t ≤ T, (4.3)

where CCi is the annualized capital cost1 [$/MW/yr] for resource i. Note that the

incremental capacity procured at year t, rti, is assumed to be effective at and after

year t+1. The equation used to calculate electricity generation costs at hour (t,m, h),

referred to as Cdisp
tmh , is written as

Cdisp
tmh =

J
∑

j=1

FUELj × gtmhj + FUELng × etmh,2 + V OLL× qtmh, (4.4)

where FUELng represents variable fuel cost2 [$/MWh] for new natural gas energy.

Fuel cost for wind energy is zero.

4.2 A Deterministic Linear Programming Formulation

Assuming that exogenous information is deterministic, we can formulate ISO’s

long-term resource planning model with centralized charging as a single (albeit very

large) deterministic linear program. The objective is to minimize the costs of procuing

new capacities and generating electricity to meed system demand over the entire

planning horizon, written as

min
T
∑

t=1

Ccap
t +

T
∑

t=1

M
∑

m=1

(

NDm ×
H
∑

h=1

Cdisp
tmh

)

, (4.5)

where NDm represents the number of days in the mth month of a year. Note that we

consider one representive day3 for every month of each year. In total, (T ×M ×H) =

1The annualized capital cost for wind or natural gas is defined as its overnight capital costs [$/MW]
divided by its average plant lifetime. For example, overnight capital costs for wind (onshore) is
2,000,000 $/MW, and, average wind plant lifetime is 20 years [102]. Therefore, the annualized
capital cost for wind energy is equal to 100,000 $/MW/yr. Similarly, the annualized capacity cost

for combustion turbine natural gas is equal to 600,000 $/MW
30 yr = 20, 000 $/MW/yr

2The fuel cost for combustion turbine is assumed to be 50 $/MWh [102].
3Using approximate dyamic programming, variations in exogenous information such as new vehicle
arrivals and wind power production across days in a month are captured by multiple sample pathes
generated for different iteration.
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5760 different hours are modeled in the long-term model. The objective is subject to

the following constraints:

J
∑

j=1

gtmhj +
I
∑

i=1

etmhi + qtmh = Dtmh +D0

tmh

+
L
∑

l=1

CP × z+{tm,h−l+1}h−l+1>0
, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 1 ≤ h ≤ H; (4.6)

M
∑

m=1

(

NDm ×
H
∑

h=1

etmh,wind

)

≥ RPSt×

{

M
∑

m=1

[

NDm ×
H
∑

h=1

(

J
∑

j=1

gtmhj +
I
∑

i=1

etmhi + qtmh

)]}

, t = T ; (4.7)

Rti = 0, t = 1, 1 ≤ i ≤ I; (4.8)

Rt+1,i = Rti + rti, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ I; (4.9)

rti = 0, t = T, 1 ≤ i ≤ I; (4.10)

Y +

tmh = 0, 1 ≤ t ≤ T, 1 ≤ m ≤ M, h = 1; (4.11)

Y +

tm,h+1
= Y +

tmh + λtmh − z+tmh, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 1 ≤ h ≤ H − 1; (4.12)

z+tmh = Y +

tmh + λtmh, 1 ≤ t ≤ T, 1 ≤ m ≤ M, H − L+ 1 ≤ h ≤ H; (4.13)

0 ≤ gtmhj ≤ Gj, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 1 ≤ h ≤ H, 1 ≤ j ≤ J ; (4.14)

0 ≤ etmh,1 ≤ βtmh ×Rt,1, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 1 ≤ h ≤ H; (4.15)

0 ≤ etmh,2 ≤ Rt,2, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 1 ≤ h ≤ H; (4.16)

rti ≥ 0, 1 ≤ t ≤ T, 1 ≤ i ≤ I; (4.17)

z+tmh, Y
+

tmh ≥ 0, 1 ≤ t ≤ T, 1 ≤ m ≤ M, 1 ≤ h ≤ H. (4.18)

Equation (4.6) is the power balance constraint for time (t,m, h). Equation (4.7) is the

renewable mandate constraint used to ensure that environmental requirement is met

at the end of the planning horizon. For example, California’s Renewable Portfolio

Standard requires that 33% of electricity will be provided by renewables such as wind

by year 2030. That is, RPST = 33%. Equation (4.8) - (4.10) are transition functions

for resource investments. Equation (4.13) is the PHEV charging due time constraint.
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Equation (4.14) - (4.16) are capacity constraints for existing power plants, wind, and

new natural gas resources, respectively. In (4.15) and (4.16), power dispatched from

wind or new natural gas resources at time (t,m, h) is constrained by available capacity

for the corresponding resource at year t.

Finding a solution to the above deterministic problem requires solving a linear

program with approximately T × M × H × J decision variables, where T , M , H,

and J represent the number of years within the planning horizon, months within a

year, hours within a day, and individual power plants, respectively. It is difficult to

handle stochasticity using linear programming, since it tries to optimize all decisions

variables together, and, the computational time required grows exponentially with

the number of decision variables. Suppose we model uncertainty using a number of

scenarios/sample-pathes, and use N to represent the total number of scenarios. The

linear programming version of the long-term resource planning problem would have

approximately T ×M ×H×J ×N decision variables and easily becomes too large to

solve. To deal with the computational challenge, in the next section, we present an

approximate dynamic programming-based framework for the large-scale, multi-scale,

dynamic, and stochastic resource planning problem.

4.3 An Approximate Dynamic Programming Formulation

The ADP algorithm for the long-term energy model with centralized charging is

different from the one for the short-term energy model in two important aspects.

The first difference is that energy dispatch is solved at each hour h of a day in every

month m and every year t since the optimization horizon is T years instead of one

day. The other difference is that at the beginning of year t, a capacity expansion

problem is solved to make resource investment decisions. For the value function of

the investment state at year t + 1, referred to as Vt+1, a separable, piece-wise linear

approximation is used. Let V̄t+1,i (Rt+1,i) denote a piece-wise linear approximation
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of the value function for state Rt+1,i. Vt+1 is defined as the sum of value function

approximations for all resources, given by

Vt+1 ≈
I
∑

i=1

V̄t+1,i (Rt+1,i) , 1 ≤ t ≤ T − 1. (4.19)

We assume that V̄t+1,i is piece-wise linear in Rt+1,i. Let b ∈ {1, . . . , B} denote the

indexes for segments of a value function approximation, and Qt+1,ib and Qt+1,i,b+1

represent the lower and upper bound of Rt+1,i for segment b, respectively. Hence,

Qt+1,i1 < Qt+1,i2 < · · · < Qt+1,i,B+1. Let V̄t+1,ib denote approximation of marginal

value of increasing Rt+1,i by one unit, when Qt+1,ib ≤ Rt+1,i < Qt+1,i,b+1, 1 ≤ b ≤

B. It is assumed that the slopes of a piece-wise value function are monotonically

decreasing in Rt+1,i because of law of diminishing marginal returns. That is, V̄t+1,i1 ≥

V̄t+1,i2 ≥ · · · ≥ V̄t+1,iB, 1 ≤ b ≤ B. Given that Rt+1,i falls in segment b⋆, the piece-wise

linear approximation of being in state Rt+1,i, would be written as

V̄t+1,i (Rt+1,i) =
B
∑

b=1

V̄t+1,ib × qt+1,ib; (4.20)

qt+1,ib = Qt+1,i,b+1 −Qt+1,ib, b < b⋆; (4.21)

qt+1,ib = Rt+1,i −Qt+1,ib, b = b⋆; (4.22)

qt+1,ib = 0, b > b⋆. (4.23)

In the rest of this section, we will discuss how to make resource investment decisions

using value function slope approximations, and how to update these approximations

iteratively.

Starting from iteration n = 2, at year t, in a specific state of resource investment

Rn
ti, it is to be decided how much new wind and natural gas capacity to install at

year t, rnti. Since the exact value for being in state Rt+1,i is unknown, value function

slope approximations calculated in iteration n− 1, V̄ n−1

t+1,ib, b ∈ B are used. We solve

the annual capacity expansion problem as the following linear program
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max
xt

{

−Ccap
t +

I
∑

i=1

B
∑

b=1

V̄ n−1

t+1,ib × qt+1,ib

}

, (4.24)

s.t. β̄t+1,mh ×Rt+1,1 +Rt+1,2 = PEAKn−1

t+1 1 ≤ t ≤ T − 1; (4.25)

Rti = 0, t = 1, 1 ≤ i ≤ I; (4.26)

Rt+1,i = Rn
ti + rti, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ I; (4.27)

rti = 0, t = T, 1 ≤ i ≤ I; (4.28)

B
∑

b=1

qt+1,ib = Rt+1,i, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ I; (4.29)

0 ≤ qt+1,ib ≤ Qn−1

t+1,i,b+1
−Qn−1

t+1,ib, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ I, 1 ≤ b ≤ B;

(4.30)

rti, Rt+1,i ≥ 0, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ I. (4.31)

Equation (4.25) enforce that peak demand of the following year is satisfied by genera-

tion including the new added capacity, where PEAKn−1

t+1 represents the peak demand

net the generation from existing power plants at year t + 1, computed in the previ-

ous iteration n − 1. Equation (4.26) – (4.28) are transition functions for available

resources. Equation (4.29) and (4.30) define segments of piece-wise linear value func-

tion approximation.

We need a method to update value function slope approximations V̄ n−1

t+1,ib. Let v
n
t+1,i

denote a new estimate of marginal value of increasing Rn
t+1,i by one unit. Consider

any hour in year at and after t+1, (τ,m, h), t+1 ≤ τ ≤ T , 1 ≤ m ≤ M , 1 ≤ h ≤ H.

Let P̄ n−1

τmh denote the approximation for wholesale electricity price at time (τ,m, h),

computed in iteration n − 1. By increasing accumulated wind capacity at and after

year t + 1, Rt+1,1, by one unit, β̄τmh of generation from a marginal power unit at a

marginal cost of P̄ n−1

τmh would be saved and provided by wind energy at zero fuel cost.

P̄ n−1

τmh represents wind availability at time (τ,m, h). Therefore, the marginal value of
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increasing Rt+1,1 by one unit can be estimated by the sum of savings on electricity

generation cost at all future hours together, written as

vnt+1,1 =
T
∑

τ=t+1

M
∑

m=1

NDm ×

(

H
∑

h=1

β̄τmh × P̄ n−1

τmh

)

, (4.32)

where NDm represents number of days within month m. The same method is used to

obtain an estimate of marginal value of increasing accumulated natural gas capacity

at and after year t+1, Rt+1,2, by one unit. For hours whose marginal electricity price

(approximated by P̄ n−1

τmh) is higher than fuel cost of natural gas FUELng, one unit of

generation from a marginal unit will be substituted by natural gas. Therefore, net

reduction on electricity generation costs for this particular hour would be equal to
(

P̄ n−1

τmh − FUELng
)

. For hours with lower marginal electricity price than natural gas

fuel cost, an additional unit of natural gas will not bring any cost reduction since it

is too expensive to be dispatched to provide electricity. Therefore, marginal value of

increasing natural gas capacity by one unit is equal to zero. To summarize, vnt2 would

be written as

vnt+1,2 =
T
∑

τ=t+1

M
∑

m=1

NDm ×

[

H
∑

h=1

max
(

0, P̄ n−1

τmh − FUELng
)

]

. (4.33)

The standard updating algorithm to update value function slope approximation

V̄ n−1

t+1,i using new estimate vnt+1,i, is written as follows

V̄ n
t+1,i = (1− αn−1)× V̄ n−1

t+1,i + αn−1 × vnt+1,i, (4.34)

where αn−1 represents the step size. After the update, it is quite possible that the

updated approximation no longer satisfies the monotonicity property. We implement

the leveling algorithm [76] to make sure the slopes are declining in available resource

Rt+1,i. The leveling algorithm can be described as follows
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V̄ n
t+1,i (Rt+1,i) =























































(1− αn−1)× V̄ n−1

t+1,i

(

Rn
t+1,i

)

+ αn−1 × vnt+1i,

if Rt+1,i = Rn
t+1,i;

max
{

V̄ n−1

t+1,i

(

Rn
t+1,i

)

, (1− αn−1)× V̄ n−1

t+1,i

(

Rn
t+1,i

)

+ αn−1 × vnt+1,i

}

,

if Rt+1,i < Rn
t+1,i;

min
{

V̄ n−1

t+1,i

(

Rn
t+1,i

)

, (1− αn−1)× V̄ n−1

t+1,i

(

Rn
t+1,i

)

+ αn−1 × vnt+1,i

}

,

if Rt+1,i > Rn
t+1,i.

Once a resource investment decision is made at the beginning of a year, we step

forward and solve economic dispatch problems on an hourly basis to make power

operation and vehicle charging decisions till the last hour of the year to complete

iteration n. The algorithm repeats the same procedure for a number of iterations to

obtain a good policy (in the form of value function slope approximations) for making

decisions.

The same modeling and algorithm framework is adapted to solve the long-term

resource planning model with decentralized charging with and without vehicle-to-grid.

The only difference in models and algorithms for decentrailized charging compared

with centralized charging lies in the details for hourly economic dispatch problems,

which are already presented in Section 3.1 and Section 3.2.

4.4 Numerical Results

To examine effects of various PHEV charging policies on long-term resource plan-

ning, the proposed approximate dynamic programming-based modeling and algorithm

framework is tested on cases based on data available for California. Details on the

test system are described in Section 2.4. The algorithm optimizes resource invest-

ment decisions once every year over a 20-year horizon (from year 2011 to 2030).

Some important assumptions are explained as follows. First, system demand exclud-

ing electricity comsumed for PHEV charging is assumed to increase at an annual rate

of 2% [14]. Second, we assume that the PHEV penetration rate increases by 5% every
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year, and all passenger cars are PHEVs at 2030. Finally, at 2030, 33% of electricity

generation is provided by wind energy.

Fig. 4.1. Wind capacity investment decision under different pricing
and charging schemes

Figure 4.1 summarizes the optimal resource investment decision over the planning

horizon for wind resources, and 4.2 shows that for natural gas resources. The lines

represent accumulative capacity at each year under various charging policies (“Flat”

in bold solid line, “ISO” in bold dashed line, “EMC” in light solid line, and “V2G” in

light dashed line). The bars show incremental capacity installed at each year. There

are two important insights that can be drawn based on these two figures. First,

charging policy has a great impact on long-term resource investment decision. It is

clear that the flat rate structure (the business-as-usual case) will lead to very differ-

ent resource investment mix than the other three charging scenarios. Under flat rate

pricing, majority of wind capacity is added at year 2029 solely to meet the 33% Re-

newable Portfolio Standards at 2030, and, significant amount of natural gas is needed

to meet the increasing demand. With the other three policies, wind energy is more
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Fig. 4.2. Natural gas capacity investment decision under different
pricing and charging schemes

cost-effective than natural gas, and gradually integrated to the system throughtout

the planning horizon, although wind energy has much higher capital costs. Under the

centralized charging scheme, almost no natural gas is added to the system. To sum-

marize, coordinated PHEV charging is able to significantly increase wind economic

effectiveness and help integrate more wind resources into the electric grid, despite of

asynchronous effect between wind and demand profiles. The second insight is that

there is a close match between the ISO-controlled scheme and decentralized charging

(both with and without V2G).

Table 4.1 summarize effects of charging policies on electricity generation costs,

consisting of capital costs and power dispatch costs. Note that time value of money

is not considered in the calculations for this table. Table 4.2 includes carbon tax

costs in the comparison. Carbon tax is considered at a rate of $154 per metric ton of

carbon dioxide [104], or $0.006804 $/lb. It is obvious that the flat rate structure is the

4Multiply by 0.0004536 to convert CO2 in lb to metric tons [103].
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Table 4.1
Costs comparison for various charging policies

Item Unit Flat ISO EMC V2G

Capital costs Billion $ 18.2 30.4 29.0 29.1

Dispatch costs Billion $ 113.0 89.1 92.5 92.3

Total costs Billion $ 131.2 119.5 121.5 121.4

Reduction compared with flat rate % -8.9% -7.4% -7.5%

Cost savings per household $ 958 799 803

Table 4.2
Costs comparison for various charging policies (with carbon tax)

Item Unit Flat ISO EMC V2G

Total costs Billion $ 131.2 119.5 121.5 121.4

Carbon tax costs Billion $ 17.7 14.4 14.8 14.8

Total costs with carbon tax Billion $ 148.9 133.9 136.3 136.2

Reduction compared with flat rate % -10.1% -8.5% -8.5%

Cost savings per household $ 1,234 1,037 1,041

worst in terms of total electricity generation costs (both with and without carbon tax

consideration). The flat rate policy will leads to the lowest capital costs because the

system delays the installation of wind resources with high capital costs and replies on

operating expensive existing and new natural gas units. Therefore, power dispatch

costs and carbon tax costs for the flat rate structure are significantly higher than the

rest three charging policies. Benchmarked against the centralized charging scenario,

both two decentralized charging cases are able to achieve, to a great extent, what the

ISO-controlled policy is capable of.
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5. CONCLUSIONS AND FUTURE WORK

In this study, we present an approximate dynamic programming-based modeling and

algorithm framework to implement real-time pricing, with smart meters, household

energy management devices and controllable appliances such as plug-in hybrid electric

vehicles. We show how this framework captures the feedback loop between wholesale

electricity prices and consumer electricity usages. By solving the system operator’s

economic dispatch problem on an hourly basis (even in the long-term resource plan-

ning model), wholesale electricity prices are endogenously determined. The compu-

tational results based on the data for California demonstrate economic and environ-

mental benefits of real-time pricing as opposed to the current flat rates of electricity,

in terms of accommodating plug-in hybrid electric vehicles in the electric grid, and

increasing wind energy economic competitiveness in the long run.

This work can be improved in several ways. First, one important aspect of the

power system that is neglected in our study is transmission. There are at least two

reasons why transmission is relevant in this context. First, one potential benefit of de-

mand participation is to reduce transmission congestions [20]. For example, Parvania

and Fotuhi-Firuzabad 2010 [22] integrate incentive-based demand response into the

wholesale electricity markets, and argue that demand response alleviates transmis-

sion line congestions caused by outage of system components. This alleviation effect

could be even more significant when V2G is present in the system to provide storage

resources. The second reason is that transmission costs could have great impact on

wind investment decisions. One of the challenges in integrating wind resources is that

wind resources are usually located far away from large electricity demand centers. To

connect these wind resources to the electric grid, the system operator must ensure

that existing transmission lines are updated, and new transmission lines are built,

if needed. The high capital costs for the required transmission investment will be
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reflected in consumers’ electricity bill eventually, and thus raising electricity rates.

Xiao et al. 2011 [105] determine long-term decisions for wind farm locations and

sizes, and observe that transmission constraints affect investment decisions of wind

resources. Our model needs to be modified to incorporate transmission networks. In-

cluding transmission modeling will expand the decision variable space and add extra

transmission related constraints, thus increasing the computational time needed.

The second possible extension is to model the non-convexities of a power genera-

tion system. For illustrative purposes, we neglect integer variables such as the on and

off status of individual power units, and only consider continuous power generations.

However, real-time pricing is believed to be inefficient to properly capture the non-

convex startup costs of the power system operations [106]. For example, Sioshansi

2012 [48] examines PHEV charging under various tariffs with the non-convexity mod-

eling, and finds out that RTP performs worse than other electricity tariffs because its

generator startup costs are higher. The non-convex startup costs may not have signif-

icant impact on the California system studied in this dissertation, since the capacity

of coal plants (usually with high startup costs) is less than 1% of the total system

capacity. Nevertheless, it is of great interests to include the non-convex nature of the

power operations when studying real-time pricing in general, especially for regions

where coal generation makes up a significant portion of the total generation, such as

ERCOT (33.8% in 2012). From the modeling perspective, adding the non-convexities

gives us a unit commitment model [66, 107, 108]. Binary variables are required to

model the on and off status of each power plant. Additional constraints for ramping

up and down, and minimum on and off times, linking multiple time periods together,

will further complicate the calculations. Adding these non-convexity components will

naturally impose great burdens on algorithm computations.

Thirdly, either of the above two possible improvements in modeling would require

for a faster and more efficient algorithm, especially for the resource planning model.

One possible approach is to modify our algorithm to allow for the use of recent

advances high performance computing [109]. Our framework has the potential to



93

implement parallel computing and improve algorithm efficiency. For example, in our

algorithm for the long-term planning model, the annual capacity expansion problems

are sequential (since the investment decisions at previous years affect the decisions

in the upcoming years). However, within every year, representative days for different

months are assumed to be independent of each other, and as a result, can be computed

in parallel. By doing so, the computational time will be greatly reduced. Note that

the hourly economic dispatch problems are sequential.

Finally, in addition to algorithm efficiency, another concern raised when we ex-

tend our framework to model a more complex system using approximate dynamic

programming is the quality of the solution. We use linear and separable piece-wise

linear approximations to update value function approximation in this study. Although

we evaluate the approximate dynamic programming solutions benchmarked against

the optimal solutions and demonstrate a close match, in general there is no guarantee

that linear value function approximation will converge [76]. Jaakkola 1994 [96] pro-

vide proofs of convergence to TD(λ) algorithm1 (Sutton 1988 [97]) and Q-learning

algorithm2 (Watkins and Dayan 1992 [98]) used to update value function approxima-

tion iteratively. However, implementing these algorithms require extensive matrices

calculations. Thus, a tradeoff needs to be found between the quality of the ADP

solutions and the computational time.

1TD(λ) algorithm addresses the problem of learning to predict in a Markov environment, using a
temporal difference operator to update the predictions [97].
2Q-learning algorithm extended TD(λ) algorithm to control problems.
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A. MATLAB CODES

The following Matlab codes are associated with the ADP-based algorithm for a sys-
tem operator’s daily economic dispatch problem with centralized charging, which is
described in Section 2.3. To avoid repetitive presentation, the Matlab codes of the
algorithms for solving the two decentralized charging schemes presented in Section
3.1.2 and 3.2.2, and for solving the long-term resource planning problem described in
Section 4.3 are not presented here.

clear

load(’CADayInput’)

N = 200;

Cost_ADP(1:N) = 0;

CDE_ADP(1:N) = 0;

PMT_ADP(1:N) = 0;

D_ADP(1:H, 1:N) = 0;

g_ADP(1:H, 1:N) = 0;

p_ADP(1:H, 1:N) = 0;

zPlus_ADP(1:H, 1:N) = 0;

YPlus_ADP(1:H, 1:N) = 0;

P_ADP(1:H, 1:N) = 0;

vPlus_ADP(1:H, 1:N) = 0;

VPlus_ADP(1:H, 1:N) = 0;

NCol = J + 4;

NRowEq = 2;

NRow = 1;

f(1:NCol) = 0;

lb(1:NCol, 1) = 0;

ub(1:NCol, 1) = 0;

Aeq(1:NRowEq, 1:NCol) = 0;

beq(1:NRowEq, 1) = 0;

A(1:NRow, 1:NCol) = 0;

b(1:NRow, 1) = 0;

g(1,1:J) = 0;

sumCharge(1:H) = 0;

for n = 2:N

for h = H-L+2:H

zPlus_ADP(h,n) = U(h,n);

end
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for h = 1:H-L

%% Solve the hour-ahead dispatch problem

NCol = J + 4; % # of decision variables j) g(h,j), 1) w(h), 2) q(h),

% 3) zPlus(h), 4) yPlusx(h)

NRowEq = 2; % # of equality constraints

NRow = 1; % # of inequality constraints

f(1:NCol) = 0;

lb(1:NCol, 1) = 0;

ub(1:NCol, 1) = 0;

Aeq(1:NRowEq, 1:NCol) = 0;

beq(1:NRowEq, 1) = 0;

A(1:NRow, 1:NCol) = 0;

b(1:NRow, 1) = 0;

for j = 1:J

f(j) = FUEL(j); % g(h,j)

ub(j) = G(j); % g(h,j)

end

f(J+2) = VOLL; % q(h)

f(J+4) = -VPlus_ADP(h,n-1); % yPlusx(h)

ub(J+1) = WCFMean(h)*W; % w(h)

ub(J+2) = D(h); % q(h)

ub(J+3) = sum(UMean); % zPlus(h)

ub(J+4) = sum(UMean); % yPlusx(h)

% power balance - 1 rows

for j = 1:J

Aeq(1,j) = 1; % g(h,j)

end

Aeq(1,J+1) = 1; % w(h)

Aeq(1,J+2) = 1; % q(h)

Aeq(1,J+3) = -RHO; % zPlus(h)

beq(1) = D(h)-Hydro; % D(h)

for l = 2:L

if h-l+1 > 0

beq(1) = beq(1)+ RHO*zPlus_ADP(h-l+1,n);

else

beq(1) = beq(1)+ RHO*zPlus_ADP(h-l+1+24,n);

end

end

% transition equation - 1 rows

Aeq(2, J+4) = 1; % yPlusx(h)

Aeq(2, J+3) = 1; % zPlus(h)

beq(2) = UMean(h) + YPlus_ADP(h,n);

[x,fval,exitflag,~,lambda] = linprog(f,A,b,Aeq,beq,lb,ub);

if exitflag ~= 1

ERROR_ADP_DHLP = n;
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break

end

%% Find the hour-ahead charge decision

zPlus_ADP(h,n) = x(J+3);

if zPlus_ADP(h,n) < ZERO

zPlus_ADP(h,n) = 0;

end

%% Find the real-time charge decision

zPlus_ADP(h,n) = min(YPlus_ADP(h,n) + U(h,n), zPlus_ADP(h,n));

%% Find the next pre-decision state

YPlus_ADP(h+1,n) = YPlus_ADP(h,n) + U(h,n) - zPlus_ADP(h,n);

end

for h = H-L+1:H

zPlus_ADP(h,n) = YPlus_ADP(h,n) + U(h,n);

if h <= H-1

YPlus_ADP(h+1,n) = 0;

end

end

if abs(sum(U(:,n)) - sum(zPlus_ADP(:,n))) > 1

ERROR_ADP_ChargeBalance = n;

end

for h = 1:H

%% Solve the real-time dispatch problem

NCol = J + 4; % # of decision variables j) g(h,j), 1) w(h), 2) q(h)

NRowEq = 2; % # of equality constraints

NRow = 1; % # of inequality constraints

f(1:NCol) = 0;

lb(1:NCol, 1) = 0;

ub(1:NCol, 1) = 0;

Aeq(1:NRowEq, 1:NCol) = 0;

beq(1:NRowEq, 1) = 0;

A(1:NRow, 1:NCol) = 0;

b(1:NRow, 1) = 0;

g(1,1:J) = 0;

for j = 1:J

f(j) = FUEL(j); % g(h,j)

ub(j) = G(j); % g(h,j)

end

f(J+2) = VOLL; % q(h)

ub(J+1) = WCF(h,n)*W; % w(h)

ub(J+2) = D(h); % q(h)

% power balance - 1 rows
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for j = 1:J

Aeq(1,j) = 1; % g(h,j)

end

Aeq(1,J+1) = 1; % w(h)

Aeq(1,J+2) = 1; % q(h)

beq(1) = D(h)-Hydro; % D(h)

for l = 1:L

if h-l+1 > 0

beq(1) = beq(1)+ RHO*zPlus_ADP(h-l+1,n);

else

beq(1) = beq(1)+ RHO*zPlus_ADP(h-l+1+24,n);

end

end

[x,fval,exitflag,~,lambda] = linprog(f,A,b,Aeq,beq,lb,ub);

if exitflag ~= 1

ERROR_ADP_RTLP = n;

break

end

D_ADP(h,n) = D(h);

for l = 1:L

if h-l+1 > 0

D_ADP(h,n) = D_ADP(h,n) + zPlus_ADP(h-l+1,n)*RHO;

else

D_ADP(h,n) = D_ADP(h,n) + zPlus_ADP(h-l+1+24,n)*RHO;

end

end

for j = 1:J

g(j) = x(j);

if g(j) < ZERO

g(j) = 0;

end

end

g_ADP(h,n) = sum(g);

Cost_ADP(n) = Cost_ADP(n) + fval;

%% Compute a sample estimate of electricity price

p_ADP(h,n) = abs(lambda.eqlin(1));

%% Update electricity price approximation

if stepSizeP == 0

P_ADP(h,n) = (1-1/(n-1))*P_ADP(h,n-1) + 1/(n-1)*p_ADP(h,n);

else

if n == 2

P_ADP(h,n) = 1*p_ADP(h,n);

else

P_ADP(h,n) = (1-stepSizeP)*P_ADP(h,n-1) + stepSizeP*p_ADP(h,n);

end
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end

end

for h = 1:H-L

%% Compute a sample estimate of value function gradient

vPlus_ADP(h,n) = sum(P_ADP(h+1:h+L-1,n));

sumCharge(1:H) = 0;

for h1 = h+1:H-L+1

sumCharge(h1) = sum(P_ADP(h1:h1+L-1,n));

end

vPlus_ADP(h,n) = RHO*(vPlus_ADP(h,n)-min(sumCharge(h+1:H-L+1)));

%% Update value function (gradient) approximation

if stepSizePlus == 0

VPlus_ADP(h,n) = (1-1/(n-1))*VPlus_ADP(h,n-1) + 1/(n-1)*vPlus_ADP(h,n);

else

if n == 2

VPlus_ADP(h,n) = 1*vPlus_ADP(h,n);

else

VPlus_ADP(h,n) = (1-stepSizePlus)*VPlus_ADP(h,n-1)

+ stepSizePlus*vPlus_ADP(h,n);

end

end

end

end
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