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Non Linear Moving-Average ConditionalHeteroskedasti
ityDaniel Ventosa-Santaul�aria�Alfonso Mendoza V.yAbstra
tEver sin
e the appearan
e of the ARCH model (Engle 1982a), an im-pressive array of varian
e spe
i�
ations belonging to the same 
lass ofmodels has emerged. Despite numerous su

essful developments, severalempiri
al studies seem to show that their performan
e is not always sat-isfa
tory see Boulier (1994).In this paper a new alternative to model 
onditional heteroskedasti
 vari-an
e is proposed: the Non-Linear Moving Average Conditional Heteroske-dasti
ity: (NLMACH). While NLMACH properties are similar to those ofthe ARCH-
lass spe
i�
ations this new proposal represents a 
onvenientalternative to modeling 
onditional volatility through a non-linear mov-ing average pro
ess. The NLMACH performan
e is investigated using aMonte Carlo experiment and modeling ex
hange rate returns. It is foundthat NLMACH outperforms GARCHs fore
asts whereas the appli
ationto ex
hange rates provides mixed eviden
e.Keywords: Conditionally heteroskedasti
 models, NLMACH(q), Volatility,Fat tails.JEL 
lassi�
ation: C22, C13, C12.1 Introdu
tionThe ARCH 
lass models, introdu
ed by Engle (1982a), qui
kly be
ame an im-portant domain in the e
onometri
 literature be
ause of their potential useful-ness in �nan
ial appli
ations. During the last twenty years, a vast quantity ofARCH type models appeared, some of them possessing statisti
al properties ex-tremely appealing to �nan
ial e
onometri
s. Among them, the GARCH model(Bollerslev 1986) has proved to be a very useful tool in the modeling of a widearray of �nan
ial variables. Other extensions su
h as the ARCH �M (Engle,�Corresponding Author: Es
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Lilien, and Robins 1987) and the EGARCH (Nelson 1991) have su

eeded ingeneralizing ARCH models by in
orporating the volatility of a variable in itsmean equation and taking into a

ount asymmetri
 e�e
ts respe
tively.The evolution of the ARCH models seems to follow a pattern. Ea
h newspe
i�
ation tries to in
orporate more 
hara
teristi
s typi
al of �nan
ial seriessu
h as leptokurti
ity, asymmetry and di�erent kinds of non-linearity. Su
hprogress is made at a 
ost of in
reasing 
omplexity. The latter eventually makessome of the spe
i�
ations to appear as having little robustness in empiri
alstudies. This is perhaps why the popular GARCH(1; 1) model remains one ofthe best options for pra
titioners of �nan
ial e
onometri
s.When dealing with 
onditionally heteroskedasti
 models, the a

ent has al-ways been put in Autoregressive spe
i�
ations, negle
ting the potential useful-ness of Non-Linear Moving Average type spe
i�
ations (although some mod-els, su
h as GARCH 
an be reinterpreted as very parti
ular Moving-Averagespe
i�
ations). In that sense, Robinson (1977) proposed a Non-Linear Moving-Average model (NLMA) inspired by a trun
ated version of a Volterra expan-sion. He also gave the statisti
al properties of su
h model as well as severalproperties of a maximum likelihood estimator. Sadly, he did not present anempiri
al appli
ation of the NLMA and did not 
onsider it a pra
ti
al modelfor �nan
ial variables. Indeed, NLMA models are nowadays seen as beingine�e
tual for empiri
al purposes (Tong 1990, Gu�egan 1994, Granger 1998).Despite these 
riti
isms, we believe NLMA 
an play a role similar to theone played by MA in linear modeling, although the pro
ess must be rede-�ned in order to avoid the main diÆ
ulties of Robinson's (1977) proposal, i.e.non-invertibility and diÆ
ult estimation due non-linearity. We de�ne a di�er-ent spe
i�
ation, the Nonlinear Moving Average Conditionally Heteroskedasti
model, NLMACH . Basi
ally, we repla
e the explanatory variable X2t�1of the
onditional varian
e in an ARCH model with a non-observed white noise andobtained a model with simple theoreti
al properties and, most importantly, easyto estimate. Su
h spe
i�
ation 
an reprodu
e several of the typi
al 
hara
ter-isti
s of �nan
ial variables, su
h as: (1) high frequen
y of large variations; (2)tenden
y of large variations (in absolute terms) to 
luster, and very interest-ingly, (3) leptokurti
ity. There are important advantages of this model when
ompared to the ARCH-
lass ones. Stationarity 
onditions are, for example,less stringent. The NLMACH is estimated using simulation te
hniques and aset of 
urren
ies. Its properties are then 
ompared to ARCH and GARCH .Also, using Monte Carlo simulations, we present eviden
e that the estimatorsperform well.This paper is divided in four se
tions. The se
ond introdu
es the NLMACHmodel and the third deals with the estimation and identi�
ation problem. Con-
lusions appear in se
tion four.2 New proposal: the NLMACHEngle's (1982a) ARCH model brought about an impressive array of varian
e2



spe
i�
ations belonging to the same 
lass. Despite ARCH's su

essful develop-ments, it 
an be argued that the NLMACHmay be more relevant for the studyof some parti
ular phenomena. Some variables may be heteroskedasti
, and yetbeing poorly adjusted by ARCH models. NLMACH may be a suitable alter-native in su
h 
ases.This se
tion proposes a new 
onditional heteroskedasti
 varian
e model: theQuadrati
 Moving-Average Conditional Heteroskedasti
ity (NLMACH). Itsproperties are roughly the same as those of ARCH-
lass spe
i�
ations but ourmodel has in addition several important advantages. It is simple, easy to esti-mate, 
aptures the high kurtosis observed in �nan
ial returns and impose fewerand less stringent existen
e 
onditions (stationarity). Indeed, it represents analternative to the ARCH � 
lass when dealing with heteroskedasti
ity. As itwill be explained later, NLMACH heteroskedasti
ity is fundamentally di�erentto ARCH one.2.1 The NLMACH modelAlthough the NLMACH model is a non-linear MA, it 
annot be en
ompassedin Robinson's (1977) NLMA spe
i�
ations. The latter has several unappealingproperties, among them non-invertibility (Granger and Andersen 1978, Granger1998) stands out. We propose a di�erent model still possessing some very at-tra
tive 
hara
teristi
s; the NLMACH(1):Xt = Vth1=2t (1)ht = Æ0 + Æ1V 2t�1Where, Vt �iid N (0; 1) and Æ0; Æ1 > 0.As 
an be inferred from (1), the NLMACH(1) is deeply inspired from anARCH(1). Yet, in our 
ase, the explanatory variable of the 
onditional varian
eis not X2t but rather V 2t . Parameters must satisfy a 
ondition in order to ensurepositiveness (Æi > 0 for i = 1; 2) of the 
onditional varian
e. Normality -and unit varian
e- of the white noise 
an also be seen as a 
ondition of themodel1. Its interesting to noti
e that the NLMACH(q) yields a naturally fat-tailed distribution, 
onveying automati
ally a must wanted 
hara
teristi
 among�nan
ial e
onometri
ians.2.1.1 Distribution of the �rst-order NLMACH pro
essThe NLMACH(1) has the advantage of being a very simple spe
i�
ation. Mostof its properties 
an be inferred straightforward. In order to make a brief 
om-1It may be interesting to modify su
h 
ondition (using a t distribution instead, for example),so the model 
an broaden its s
ope. This will be This will be address in the empiri
al se
tionof this paper. 3



parison with the ARCH(1), we present the �rst two - un
onditional and 
ondi-tional - moments of the pro
ess:E(Xt) = 0E(XtXt�j) = � Æ0 + Æ1 for j = 00 otherwise (2)Et�1(Xt) = 0Et�1(X2t ) = Æ0 + Æ1V 2t�1where Æ0; Æ1 > 0.Expression (2) shows that the NLMACH(1) is weakly stationary. Figure(1) shows a simulation of a �rst order NLMACH .
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Figure 1: NLMACH(1) Simulation: ht = 1 + 0:7V 2t�1It 
an be seen that, 
ontrary to most of the spe
i�
ations of 
onditionallyheteroskedasti
 models, there are fewer 
onditions for the existen
e of the se
ondmoment2.2.1.2 Stationarity of the NLMACHCovarian
e stationarity of the NLMACH spe
i�
ation was fairly easy to prove.In this se
tion we demonstrate that, under the already mentioned hypothesis(normality of the white noise, and positiveness of the parameters), all the mo-ments of a NLMACH(q) exist.theorem 1 Let Xt be a NLMACH(q) pro
ess satisfying the following equa-tions:2Of 
ourse, we must not forget the hypothesis made on Vt. The latter must be a gaussianiid zero-mean white noise with unit varian
e. Also, there are positiveness 
onstraints on theparameters. 4



Xt = Vth 12t (3)ht = Æ0 + qXi=1 ÆiV 2t�iWith Vt �iid N (0; 1) and Æi > 0 8i = 1; 2; � � � ; q.Then, all the moments of Xt, E (Xrt ) 8r = 1; 2; � � � exist.proof of theorem 1.Odd moments 
an be easily 
al
ulated be
ause of the properties of the gaus-sian white noise Vt. Indeed, all odd moments are equal to zero. We thus
on
entrate in even moments. The general formula of even moments is:E(X2rt ) = E(V 2rt ) �E(hrt )= rYj=1(2j � 1) � E " Æ0 + qXi=1 ÆiV 2t�i!r#It 
an be seen that the �rst term,Qrj=1(2j�1), has no 
onditions of existen
e.We have to develop the se
ond term to look for "possible" 
onditions.E(hrt ) = E " Æ0 + qXi=1 ÆiV 2t�i!r#= E 24 rXj=0�rj�Ær�j0 � qXi=1 ÆiV 2t�i!j35= rXj=0�rj�Ær�j0 �E qXi=1 ÆiV 2t�i!jWe realize that we have to obtain the value of the se
ond term, that is,E �Pqi=1 ÆiV 2t�i�j . We 
an develop the latter by means of Newton's Formulae,as follows:E qXi=1 ÆiV 2t�i!j = E " jXz=0�jz��Æ1V 2t�1�j�z � qXi=2 ÆiV 2t�i!z#= jXz=0�jz�Æj�z1 E �V 2(j�z)t�1 � �E qXi=2 ÆiV 2t�i!z= jXz=0�jz�Æj�z1 j�zYk=1(2k � 1) � E qXi=2 ÆiV 2t�i!z5



We noti
e, on
e again that we should only worry about a single element,in this 
ase E �Pqi=2 ÆiV 2t�i�k. The sum has now fewer elements (it goes fromi = 2 to q). This sum 
an indeed go over the same pro
ess (basi
ally anotherappli
ation of Newton's Formulae) in order to redu
e the number of elements.Eventually, we'll arrive to a sum with only one element:E �ÆqV 2t�q�s = Æsq � sYl=1 2l� 1So, we have "eliminated" all the expe
tation operators of the expression.There are thus, no 
onditions (ex
ept the normality of the white noise andthe positiveness 
onstraint) of existen
e for the un
onditional moments of aNLMACH(q). Q.E.D.We have also 
al
ulated the degree of Kurtosis, whi
h is superior to 3, ifÆi > 0 for at least one i, i = 1; � � � ; q and if Æi � 08 i = 1; � � � ; q:K = (Xt)4�4= 3 h(Æ0 +Pqi=1 Æi)2 + 2Pqi=1 Æ2i i(Æ0 +Pqi=1 Æi)2 (4)> 3proof.By rearranging the terms of expression (4), we get:qXi=1 Æ2i > 0Whi
h is true if, and only if Æi 6= 0 for at least one i, i = 1; � � � ; q.Q.E.D.2.1.3 Invertibility of the NLMACHInvertibility has always been a problem when dealing with moving average pro-
esses, whether they are linear or not. As pointed out earlier, a NLMACH(1)satisfying the normality hypothesis Vt �iid N (0; 1) yields the auto
ovarian
estru
ture stated in equation (2). The latter allows us to obtain the auto
o-varian
e fun
tion of the pro
ess, whi
h is similar to the one yielded by a whitenoise: 6



gx(z) = Æ0 + Æ1 (5)Thus, the auto
ovarian
e fun
tion is a 
onstant. The invertibility of thespe
i�
ation may appear now 
learly. On typi
al NLMA, it happens thatdi�erent sets of parameters, yield the same auto
ovarian
e fun
tion (so theparameters are not identi�able). For theNLMACH this does not o

urs thanksto the positiveness 
onstraint imposed on the parameters, Æ0; Æ1 > 0. It must beremembered that su
h 
ondition appears naturally if we want the 
onditionalvarian
e to be always positive. Su
h 
ondition not only ensures the positivenessof the 
onditional varian
e, but it also solves the identi�
ation problem of theparameters. We are thus able to re
onstru
t the unobserved white noise whi
h
an be seen as a proof of invertibility (Granger and Terasvirta 1993).For the linear MA(q) pro
ess, 
onditions ensuring invertibility are well known.Our parti
ular model, when manipulated algebrai
ally, 
an exhibit analogous
onditions. From the 
onditional varian
e expression stated in (1), we 
an get:ht = Æ0 + qXi=1 Æi �V 2t�i � 1�+ qXi=1 Æi (6)= & + qXi=1 ÆiWt�iwhere & = Æ0 +Pqi=1 Æi is a 
onstant and Wt = V 2t�i � 1 is a non gaussian noisesu
h that: E(Wt) = 0E(WtWt�j) = � 2 for j = 00 otherwise (7)We realize that ht 
an be understood as a non gaussian MA(q) and thus, theusual invertibility 
onditions apply, that is, the pro
ess is invertible if the rootsof the polynomial �1 + Æ1z + Æ2z2 + : : :+ Æqzq� = 0 lie outside the unit 
ir
le.2.1.4 De�ning the value of q in a NLMACH(q)In the next se
tion, we present a estimation te
hnique dealing in parti
ular witha NLMACH(q). Of 
ourse, on
e this model is to be used with real data, thereis an additional requirement; the identi�
ation of the parameter q. The orderof the NLMACH(q) pro
ess 
an be inferred by means of its sample squaresauto
orrelation fun
tion. This is true be
ause of the stru
tural properties of themodel we develop here. So identi�
ation of q must be done through the SACFof the squares of the pro
ess. Undoubtedly, other tools allowing su
h inferen
e
an be found, but in this work we 
on
entrate our e�orts in the SACF . Firstof all, the theoreti
al shape of the auto
orrelation fun
tion is to be developed:7



Let Xt be a NLMACH(q) spe
i�ed in expression (3). Then, the auto
or-relation fun
tion of the squares of Xt is:� �X2t ; X2t�j� = 8><>: 
i for j < qÆq(Æ0+Pqi=1 Æi)(Æ0+Pqi=1 Æi)2+3Pqi=1 Æ2i for j = q0 8 j > q (8)where, 
i = ÆjPqi=0 Æi +Pqi=j+1 ÆiÆi�jÆ20 + 2Æ0Pqi=1 Æi + (Pqi=1 Æi)2 + 3Pqi=1 Æ2iWe now should be able to identify empiri
ally the value of q by meansof the sample auto
orrelation fun
tion of the pro
ess's squares. In order toillustrate this, we simulated a NLMACH(4) and plotted both, the sample andthe theoreti
al auto
orrelation fun
tion.
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Figure 2: NLMACH(4): (a) Theoreti
al ACF and (b) SACFThe auto
orrelation fun
tion may yield a shape that approximates fairly wellthe one proposed by the stylized fa
ts in �nan
e theory. Yet, to a
hieve thiswe are for
ed to use a NLMACH(q) with q greater than unity. An alternativeto this is to generalize the pro
ess by in
luding lags of ht in the 
onditionalvarian
e spe
i�
ation. Although this seems to be an attra
tive option, it willnot be done here. 8



3 Estimation of the NLMACH(1)On
e the main statisti
al properties have been established, the next step isestimation. The NLMACH(1) estimation is simple despite the fa
t of beinga highly non-linear model. In order to show the performan
e of the estimatingte
hnique, we present a Maximum Likelihood (ML) estimate. It works in thesame way as with ARCH models. The ML estimation of the NLMACH(q) isstraightforward. We take advantage of the fa
t that the 
onditional distributionis N (0; h1=2t ), that is, Xt=	t � N (0; h1=2t ), where 	t is the past information set3. Under the usual regularity 
onditions, we are thus able to 
ompute the
orresponding Likelihood and maximize it using a gradient algorithm.We performed a Monte Carlo Experiment to illustrate theML estimator. Table(1) exhibits the estimation results for a variety of parameters(both parametersadopt the following values: 0.25, 0.50 and 0.75). 1,000 repli
ations where madefor ea
h 
ase. Table (1) shows the averages of su
h estimations as well as thestandar deviations 4.Parameters Sample sizeT=200 T=500 T=700Æ0 Æ1 bÆ0 bÆ1 bÆ0 bÆ1 bÆ0 bÆ10.25 0.250 0.248 0.251 0.249 0.251 0.249(0.04) (0.07) (0.04) (0.05) (0.02) (0.04)0.25 0.50 0.249 0.494 0.251 0.498 0.250 0.506(0.04) (0.12) (0.03) (0.08) (0.02) (0.07)0.75 0.251 0.742 0.253 0.748 0.250 0.749(0.04) (0.18) (0.03) (0.11) (0.02) (0.09)0.25 0.501 0.249 0.500 0.246 0.500 0.249(0.08) (0.10) (0.04) (0.06) (0.04) (0.05)0.50 0.50 0.502 0.499 0.498 0.501 0.500 0.497(0.08) (0.15) (0.05) (0.09) (0.04) (0.08)0.75 0.501 0.743 0.499 0.754 0.502 0.747(0.08) (0.20) (0.05) (0.13) (0.04) (0.10)0.25 0.756 0.243 0.754 0.247 0.749 0.251(0.11) (0.12) (0.07) (0.07) (0.06) (0.06)0.75 0.50 0.753 0.504 0.751 0.492 0.749 0.502(0.11) (0.18) (0.07) (0.11) (0.06) (0.09)0.75 0.759 0.752 0.752 0.748 0.747 0.745(0.12) (0.22) (0.07) (0.14) (0.06) (0.12)Table 1: Monte Carlo Simulation of estimates for a NLMACH(1); N=200, 500and 7003	t = fXt�1; Xt�2; � � � ; X0; Vt�1; Vt�2; � � � ; V0g4Standard deviations are given in parentheses.9



The Monte Carlo experiment reveals that, using a standard quasi-newton al-gorithm (Matlabs default) a 
onvenient estimation 
an be performed, althoughits eÆ
en
e 
ould be improved. It is 
urious to noti
e that the standard devia-tion in
reases with the value of the parameter.3.1 Fore
asting 
apability of the ModelsIt must be said that our proposal (NLMACH) would not be parti
ularly in-teresting if it was unable to o�er good fore
asting 
apabilities of the volatilityof a variable. In order to study its performan
e in this domain, we simulatetwo DGPs; an NLMACH(1) and a GARCH(1,1). Over ea
h simulated serieswe performed the estimation of both the NLMACH(1) and the GARCH(1,1)using only a fra
tion of the sample and 
onstru
ted an out-of-sample fore
ast(one period ahead). Then we add an observation and rebuild the fore
ast untilwe use T-1 observations. Using these fore
asts and knowing the real values we
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Figure 3: Monte Carlo Experiment: NLMACH(1) and GARCH(1; 1) out-of-sample fore
asts: NLMACH, 
ases a, b and 
: Æ1 = 0:30, GARCH, 
ases a, band 
: � = 0:30 and � = 0:30a) NLMACH: Æ1 = 0:15; GARCH(1,1): 
 = 0:10b) NLMACH: Æ1 = 0:30; GARCH(1,1): 
 = 0:30b) NLMACH: Æ1 = 0:45; GARCH(1,1): 
 = 0:50
ompute the Root Mean Square Error for ea
h spe
i�
ation and then 
omputethe ratio: RMSENLMACH(1)RMSEGARCH(1;1) . We repeat the latter experiment 1000 times andshow the results (averages) in �gure (3)5.5We need to be 
autious about this result. Bollerslev, Chou, and Kroner (1992) havewarned that "[� � � ℄ out of sample fore
asting is marred with diÆ
ulties and simply extrapo-lating the future vitality of the �eld based on past observations does not ne
essarily result in10



The �gure exhibits interesting results. when the real DGP is anNLMACH(1; 1),(�rst row of �gure)the NLMACH(1) spe
i�
ations fore
asts outperforms theGARCH(1,1)s fore
asts but the inverse is not 
ompletely true (se
ond row of�gure). If the DGP is a GARCH, there are several 
ases where the NLMACH(1),even if it is the wrong spe
i�
ation, yields better fore
asts.3.2 Appli
ation to Ex
hange RatesIn order to examine the NLMACH performan
e using real market data, in thisse
tion we estimate theNLMACH(1) model and 
ompare it with the ARCH(1)and GARCH(1; 1) pro
esses. In addition we estimate the ARCH(1) modelassuming a Student-t distribution in order to 
apture the fat tails frequentlyobserved in �nan
ial returns. Eight major 
urren
ies are employed for thisexer
ise6. Daily ex
hange rate returns from January 2, 1991 to De
ember 29,1995 are 
al
ulated by taking the �rst log di�eren
e 
orresponding to a totalof 1,303 observations for ea
h 
urren
y. In parti
ular the ex
hange rates underexamination are the Australian Dollar (AUS), British Pound (GBR), CanadianDollar (CAN), Dut
h Guilder (NLG), Fren
h Fran
 (FRA), German Dmark(DEU), Japanese Yen (JPY) and Swiss Fran
 (CHF). Des
riptive statisti
s areshown in Table (2) below.Curren
y Mean Median StdDev. Min. Max. Skew. Kurt.Australian D. 0.0013 -0.0117 0.1997 -0.6954 0.8527 0.4171 1.6811British P. 0.0075 -0.0079 0.2906 -1.2548 1.4271 0.3502 2.5506Canadian D. 0.0055 0.0033 0.1213 -0.7040 0.5911 0.0320 2.7627Dut
h G. -0.0016 -0.0083 0.3179 -1.2581 1.3060 0.0917 1.6173Fren
h F -0.0012 -0.0019 0.3004 -1.1734 1.1519 0.0700 1.6761German M. -0.0013 -0.0115 0.3190 -1.2578 1.3476 0.1233 1.6865Japanese Y. -0.0088 -0.0087 0.2828 -1.4727 1.4014 -0.2492 3.3761Swiss F. -0.0030 0.0000 0.3470 -1.6933 1.3517 -0.0223 1.5817Table 2: Statisti
al 
hara
teristi
s of the ex
hange rate time seriesTables 3,4,5 and 6 present the estimation results for ea
h 
urren
y for severalmodel spe
i�
ations. Di�erent orders of the pro
ess were investigated. The NL-MACH(1) was 
hosen a

ording to the Akaike Information Criterion (AIC) andthe S
hwartz Bayesian Criterion (SBC). The optimization algorithm employedin the estimations was the BFGS and all the programs are written in RATS.Using robust standard errors it is observed that apart from the inter
ept allestimated parameters are highly signi�
ant{see Æ1 and Æ2 in ea
h panel7.optimal predi
tions [� � � ℄". Having said this, we should keep in mind the many limitations oftime series fore
asting performan
e.6The data has been extensively examined by Franses and van Dijk (2000) for this subsampleand from De
ember 1979. The data is available in the authors' website.7Note that Æ1 is asso
iated to either the Nonlinear or ARCH e�e
t respe
tively, whereasÆ2 is asso
iated to GARCH e�e
ts. 11



Dut
h Guilder Swiss Fran
NLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆ
ientsC �0:0019 �0:0019 �0:0046 �0:0056 �0:0011 �0:0010 �0:0070 �0:0036(0:0079)a (0:0074) (0:0080) (0:0093) (0:0093) (0:0098) (0:0074) (0:0082)Æ0 0:0794� 0:0794� 0:0032� 0:0502� 0:0992� 0:0986� 0:0039� 0:0669�(0:0030) (0:0055) (0:0006) (0:0027) (0:0037) (0:0034) (0:0007) (0:0025)Æ1 0:0212� 0:2138� 0:0715� 0:1620� 0:0204� 0:1781� 0:0575� 0:1309�(0:0035) (0:0466) (0:0097) (0:0289) (0:0035) (0:0271) (0:0083) (0:0281)Æ2 � � 0:8967� � � � 0:9098� �� � (0:0022) � � � (0:0015) �V b � � � 5:4836� � � � 6:1327�� � � (0:4327) � � � (0:7747)De
ision CriteriaL(�)
 867:34 866:99 894:99 804:94 746:01 746:21 763:93 934:56AICd 8753:71 8753:18 8796:28 8659:16 8558:86 8559:20 8591:54 8852:14SBCe 8769:20 8768:67 8816:94 8679:82 8574:35 8574:69 8612:20 8872:79Table 3: Model Adjustment for the Dut
h guilder and the Swiss Fran
. *,** Signi�
ant at the 1% and 10% level respe
tively.aRobust Standard errors in parenthesis.b Shape parameter. 
Optimizaed likelihood value.d AIC =Akaike information Criterionand e SBC =S
hwartz Bayes Criterion
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Fren
h Fran
 German MarkNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆ
ientsC �0:0043 �0:0039 �0:0057 �0:0062 �0:0016 �0:0016 �0:0039 �0:0058(0:0081)a (0:0079) (0:0070) (0:0070) (0:0083) (0:0081) (0:0078) (0:0079)Æ0 0:0745� 0:0745� 0:0024� 0:0449� 0:0796� 0:0796� 0:0033� 0:0507�(0:0025) (0:0051) (0:0017) (0:0038) (0:0028) (0:0029) (0:0018) (0:0017)Æ1 0:0153� 0:1749� 0:0596� 0:1405� 0:0217� 0:2180� 0:0711� 0:01618�(0:0032) (0:0459) (0:0189) (0:0269) (0:0035) (0:0319) (0:0200) (0:0253)Æ2 � � 0:9135� � � � 0:8969� �� � (0:0348) � � � (0:0337) �V b � � � 5:1436� � � � 5:5298�� � � (0:6332) � � � (0:4059)De
ision CriteriaL(�)
 931:73 931:12 962:74 735:18 863:72 863:23 888:54 808:74AICd 8846:30 8845:45 8890:63 8541:95 8748:29 8747:56 8786:93 8665:25SBCe 8861:79 8860:94 8891:29 8562:61 8763:79 8763:05 8807:59 8685:91Table 4: Model Adjustment for the Fren
h Fran
 and the German Mark. *,** Signi�
ant at the 1% and 10% level respe
tively.aRobust Standard errors in parenthesis.b Shape parameter. 
Optimizaed likelihood value.d AIC =Akaike information Criterionand e SBC =S
hwartz Bayes Criterion
13



Japanese Yen Canadian DollarNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆ
ientsC �0:0065 �0:0062 �0:0098 �0:0046 �0:0059 0:0059 0:0025 0:0029(0:0073)a (0:0076) (0:0080) (0:0065) (0:0032) (0:0031) (0:0032) (0:0029)Æ0 0:0702� 0:0693� 0:0020� 0:0347� 0:0123� 0:0119� 0:001� 0:0067�(0:0022) (0:0018) (0:0014) (0:0020) (0:0004) (0:0004) (0:0001) (0:0004)Æ1 0:0089� 0:1286� 0:0484� 0:0751� 0:0024� 0:1992� 0:0517� 0:1178�(0:0021) (0:0212) (0:0164) (0:0219) (0:0004) (0:0252) (0:0152) (0:0281)Æ2 � � 0:9251� � � � 0:9404� �� � (0:0279) � � � (0:0185) �V b � � � 3:8234� � � � 4:3438�� � � (0:3451) � � � (0:4418)De
ision CriteriaL(�)
 1005:55 1006:56 1045:43 616:82 2100:63 2102:25 2139:88 451:57AICd 8944:88 8946:19 8997:17 8319:99 8897:44 9898:43 9923:38 7912:92SBCe 8960:38 8961:68 9017:83 8335:65 9912:94 9913:93 9944:04 7933:58Table 5: Model Adjustment for the Japanese Yen and the Canadian Dollar. *,** Signi�
ant at the 1% and 10% levelrespe
tively.a Robust Standard errors in parenthesis.b Shape parameter. 
Optimizaed likelihood value.d AIC =Akaike in-formation Criterion and e SBC =S
hwartz Bayes Criterion
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British Pound Australian DollarNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆ
ientsC 0:0026 0:0020 �0:0015 �0:0041 �0:0003 �0:0001 �0:0011 �0:0061(0:0078)a (0:0076) (0:0069) (0:0066) (0:0050) (0:0056) (0:0055) (0:0050)Æ0 0:0701� 0:0672� 0:0008� 0:0329� 0:0367� 0:0367� 0:0025� 0:0206�(0:0022) (0:0019) (0:0005) (0:0020) (0:0012) (0:0011) (0:0023) (0:0011)Æ1 0:0144� 0:2138� 0:0507� 0:1490� 0:0032� 0:0813� 0:0595� 0:0723�(0:0025) (0:0294) (0:0143) (0:0321) (0:0014) (0:0228) (0:0355) (0:0239)Æ2 � � 0:9403� � � � 0:8794� �� � (0:0187) � � � (0:0903) �V b � � � 3:8423� � � � 4:4480�� � � (0:3606) � � � (0:4853)De
ision CriteriaL(�)
 975:20 979:79 1052:46 655:30 1441:20 1441:02 1457:70 219:87AICd 8905:26 8911:33 9005:84 8393:00 9410:28 9410:13 9427:01 6981:21SBCe 8920:76 8926:83 9026:50 8413:89 9425:78 9425:62 9447:67 7001:87Table 6: Model Adjustment for the British Pound and the Australian Dollar. *,** Signi�
ant at the 1% and 10% levelrespe
tively.a Robust Standard errors in parenthesis.b Shape parameter. 
Optimizaed likelihood value.d AIC =Akaike infor-mation Criterion and e SBC =S
hwartz Bayes Criterion
15



If we 
ompare the NLMACH(1) against ARCH(1) or GARCH(1,1), the AICand SBC 
riteria provide mixed eviden
e. For instan
e a

ording to these 
ri-teria NLMACH(1) is preferred to the ARCH(1) for the Swiss Fran
, theJapanese Yen, the Canadian Dollar and the British Pound. When the NL-MACH(1) is 
ompared to GARCH(1,1) it is observed that in all 
ases the NL-MACH(1) is preferred to GARCH(1,1). Surprisingly, a

ording to these 
riteria,the ARCH(1) model is also preferred to GARCH(1,1). However, we need to be
autious about using these 
riteria to dis
riminate between models. The useof these statisti
s might not be entirely appropriate sin
e the two types of pro-
esses have a distin
t nonlinear nature. Moreover, the statisti
al properties ofAIC and SBC have not been investigated for the 
lass of nonlinear models hereproposed. Using the Optimized Likelihood value as the sele
tion 
riterion, theGARCH(1,1) is the model that �ts the data best. This however is not ne
es-sarily bad news for the NLMACH(1) sin
e it only indi
ates that GARCH(1,1)
aptures well a spe
i�
 type of 
onditional heteroskedasti
ity. One last 
asehas been investigated: the ARCH(1) with a t-distribution in order to 
apturethe fat tails and non-normality of the data8. It turns out that, as indi
ated bythe AIC and SBC, this model is strongly preferred to all other spe
i�
ationsin
luding the NLMACH(1) with the only ex
eption of the Swiss Fran
. Aswe have already shown, our NLMACH(1) model reprodu
es the fat tails quitenaturally without the need of imposing a di�erent 
onditional distribution torepli
ate this behavior. However, as suggested by these results, imposing a 
on-ditional distribution di�erent than a normal might 
apture other properties ofthe data. For instan
e, it might be that the sour
e of non-normality is due tothe existen
e of outliers; this feature is not obviously taken into a

ount by theNLMACH(1) model.8Noti
e that, as required, the degrees of freedom parameter is signi�
ant and greater thanfour in all 
urren
ies ex
ept the Yen and the British Pound.
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4 Con
lusionsThis paper has presented a new model, deeply inspired by the Non-Linear Mov-ing Average models, but with the approa
h typi
ally used when dealing with
onditionally heteroskedasti
 models. A very simple spe
i�
ation modi�
ationsolves the typi
al problems of this 
lass. NLMACH has simple statisti
al prop-erties and is easy to estimate. It should indeed be seen as a new instrument todeal with heteroskedasti
ity. Several tools presented here aim to ful�ll this pur-pose. On one hand, NLMACH 
an be easily estimated byML. This estimationte
hnique proved to be eÆ
ient and reliable. On the other hand, the theoreti
alresults, su
h as the auto
orrelation fun
tion form of the squared pro
ess shouldfa
ilitate identi�
ation, and provide statisti
al eviden
e of either the presen
eor the absen
e of NLMACH behavior. for some parti
ular 
ases (spe
i�ed inthe DGPs and the sample size of the Monte Carlo experiments) NLMACH(1)'fore
asting 
apabilities outperform 9 the ones yielded by GARCH(1; 1) evenwhen the true DGP is a GARCH(1; 1).This new spe
i�
ation will have to 
ompete with the many variants belong-ing to the ARCH 
lass. Su
h 
ompetitors vary in 
omplexity and robustness.NLMACH is the repli
ation of fat tails; the estimation results indi
ate howeverthat this pro
ess is preferred to ARCH models using a student-t as 
onditionaldistribution only in one 
ase{the Swiss Fran
. The NLMACH model, despiteits simpli
ity, still o�ers extremely interesting 
hara
teristi
s. All in all, therelative eviden
e in favor of NLMACH varies in 
omplexity and robustness andall we hope is to in
rease empiri
al interest for Non-Linear Moving Averagemodels, whi
h have been virtually negle
ted along the past de
ades.

9
omparison made using the RMSE 
riterion17
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