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Non Linear Moving-Average ConditionalHeteroskedastiityDaniel Ventosa-Santaul�aria�Alfonso Mendoza V.yAbstratEver sine the appearane of the ARCH model (Engle 1982a), an im-pressive array of variane spei�ations belonging to the same lass ofmodels has emerged. Despite numerous suessful developments, severalempirial studies seem to show that their performane is not always sat-isfatory see Boulier (1994).In this paper a new alternative to model onditional heteroskedasti vari-ane is proposed: the Non-Linear Moving Average Conditional Heteroske-dastiity: (NLMACH). While NLMACH properties are similar to those ofthe ARCH-lass spei�ations this new proposal represents a onvenientalternative to modeling onditional volatility through a non-linear mov-ing average proess. The NLMACH performane is investigated using aMonte Carlo experiment and modeling exhange rate returns. It is foundthat NLMACH outperforms GARCHs foreasts whereas the appliationto exhange rates provides mixed evidene.Keywords: Conditionally heteroskedasti models, NLMACH(q), Volatility,Fat tails.JEL lassi�ation: C22, C13, C12.1 IntrodutionThe ARCH lass models, introdued by Engle (1982a), quikly beame an im-portant domain in the eonometri literature beause of their potential useful-ness in �nanial appliations. During the last twenty years, a vast quantity ofARCH type models appeared, some of them possessing statistial properties ex-tremely appealing to �nanial eonometris. Among them, the GARCH model(Bollerslev 1986) has proved to be a very useful tool in the modeling of a widearray of �nanial variables. Other extensions suh as the ARCH �M (Engle,�Corresponding Author: Esuela de Eonomia, Universidad de Guanajuato. Address:UCEA-Campus Mar�l Fra. I, El Establo, Guanajuato Gto 36250 Mexio. e-mail:daniel�ventosa-santaularia.omyDepartamento de Eonomia, Universidad de las Amerias, Puebla. Address: Santa Cata-rina Martir, Cholula, Puebla 72820 Mexio. e-mail: alfonso.mendoza�udlap.mx1



Lilien, and Robins 1987) and the EGARCH (Nelson 1991) have sueeded ingeneralizing ARCH models by inorporating the volatility of a variable in itsmean equation and taking into aount asymmetri e�ets respetively.The evolution of the ARCH models seems to follow a pattern. Eah newspei�ation tries to inorporate more harateristis typial of �nanial seriessuh as leptokurtiity, asymmetry and di�erent kinds of non-linearity. Suhprogress is made at a ost of inreasing omplexity. The latter eventually makessome of the spei�ations to appear as having little robustness in empirialstudies. This is perhaps why the popular GARCH(1; 1) model remains one ofthe best options for pratitioners of �nanial eonometris.When dealing with onditionally heteroskedasti models, the aent has al-ways been put in Autoregressive spei�ations, negleting the potential useful-ness of Non-Linear Moving Average type spei�ations (although some mod-els, suh as GARCH an be reinterpreted as very partiular Moving-Averagespei�ations). In that sense, Robinson (1977) proposed a Non-Linear Moving-Average model (NLMA) inspired by a trunated version of a Volterra expan-sion. He also gave the statistial properties of suh model as well as severalproperties of a maximum likelihood estimator. Sadly, he did not present anempirial appliation of the NLMA and did not onsider it a pratial modelfor �nanial variables. Indeed, NLMA models are nowadays seen as beingine�etual for empirial purposes (Tong 1990, Gu�egan 1994, Granger 1998).Despite these ritiisms, we believe NLMA an play a role similar to theone played by MA in linear modeling, although the proess must be rede-�ned in order to avoid the main diÆulties of Robinson's (1977) proposal, i.e.non-invertibility and diÆult estimation due non-linearity. We de�ne a di�er-ent spei�ation, the Nonlinear Moving Average Conditionally Heteroskedastimodel, NLMACH . Basially, we replae the explanatory variable X2t�1of theonditional variane in an ARCH model with a non-observed white noise andobtained a model with simple theoretial properties and, most importantly, easyto estimate. Suh spei�ation an reprodue several of the typial harater-istis of �nanial variables, suh as: (1) high frequeny of large variations; (2)tendeny of large variations (in absolute terms) to luster, and very interest-ingly, (3) leptokurtiity. There are important advantages of this model whenompared to the ARCH-lass ones. Stationarity onditions are, for example,less stringent. The NLMACH is estimated using simulation tehniques and aset of urrenies. Its properties are then ompared to ARCH and GARCH .Also, using Monte Carlo simulations, we present evidene that the estimatorsperform well.This paper is divided in four setions. The seond introdues the NLMACHmodel and the third deals with the estimation and identi�ation problem. Con-lusions appear in setion four.2 New proposal: the NLMACHEngle's (1982a) ARCH model brought about an impressive array of variane2



spei�ations belonging to the same lass. Despite ARCH's suessful develop-ments, it an be argued that the NLMACHmay be more relevant for the studyof some partiular phenomena. Some variables may be heteroskedasti, and yetbeing poorly adjusted by ARCH models. NLMACH may be a suitable alter-native in suh ases.This setion proposes a new onditional heteroskedasti variane model: theQuadrati Moving-Average Conditional Heteroskedastiity (NLMACH). Itsproperties are roughly the same as those of ARCH-lass spei�ations but ourmodel has in addition several important advantages. It is simple, easy to esti-mate, aptures the high kurtosis observed in �nanial returns and impose fewerand less stringent existene onditions (stationarity). Indeed, it represents analternative to the ARCH � lass when dealing with heteroskedastiity. As itwill be explained later, NLMACH heteroskedastiity is fundamentally di�erentto ARCH one.2.1 The NLMACH modelAlthough the NLMACH model is a non-linear MA, it annot be enompassedin Robinson's (1977) NLMA spei�ations. The latter has several unappealingproperties, among them non-invertibility (Granger and Andersen 1978, Granger1998) stands out. We propose a di�erent model still possessing some very at-trative harateristis; the NLMACH(1):Xt = Vth1=2t (1)ht = Æ0 + Æ1V 2t�1Where, Vt �iid N (0; 1) and Æ0; Æ1 > 0.As an be inferred from (1), the NLMACH(1) is deeply inspired from anARCH(1). Yet, in our ase, the explanatory variable of the onditional varianeis not X2t but rather V 2t . Parameters must satisfy a ondition in order to ensurepositiveness (Æi > 0 for i = 1; 2) of the onditional variane. Normality -and unit variane- of the white noise an also be seen as a ondition of themodel1. Its interesting to notie that the NLMACH(q) yields a naturally fat-tailed distribution, onveying automatially a must wanted harateristi among�nanial eonometriians.2.1.1 Distribution of the �rst-order NLMACH proessThe NLMACH(1) has the advantage of being a very simple spei�ation. Mostof its properties an be inferred straightforward. In order to make a brief om-1It may be interesting to modify suh ondition (using a t distribution instead, for example),so the model an broaden its sope. This will be This will be address in the empirial setionof this paper. 3



parison with the ARCH(1), we present the �rst two - unonditional and ondi-tional - moments of the proess:E(Xt) = 0E(XtXt�j) = � Æ0 + Æ1 for j = 00 otherwise (2)Et�1(Xt) = 0Et�1(X2t ) = Æ0 + Æ1V 2t�1where Æ0; Æ1 > 0.Expression (2) shows that the NLMACH(1) is weakly stationary. Figure(1) shows a simulation of a �rst order NLMACH .
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Figure 1: NLMACH(1) Simulation: ht = 1 + 0:7V 2t�1It an be seen that, ontrary to most of the spei�ations of onditionallyheteroskedasti models, there are fewer onditions for the existene of the seondmoment2.2.1.2 Stationarity of the NLMACHCovariane stationarity of the NLMACH spei�ation was fairly easy to prove.In this setion we demonstrate that, under the already mentioned hypothesis(normality of the white noise, and positiveness of the parameters), all the mo-ments of a NLMACH(q) exist.theorem 1 Let Xt be a NLMACH(q) proess satisfying the following equa-tions:2Of ourse, we must not forget the hypothesis made on Vt. The latter must be a gaussianiid zero-mean white noise with unit variane. Also, there are positiveness onstraints on theparameters. 4



Xt = Vth 12t (3)ht = Æ0 + qXi=1 ÆiV 2t�iWith Vt �iid N (0; 1) and Æi > 0 8i = 1; 2; � � � ; q.Then, all the moments of Xt, E (Xrt ) 8r = 1; 2; � � � exist.proof of theorem 1.Odd moments an be easily alulated beause of the properties of the gaus-sian white noise Vt. Indeed, all odd moments are equal to zero. We thusonentrate in even moments. The general formula of even moments is:E(X2rt ) = E(V 2rt ) �E(hrt )= rYj=1(2j � 1) � E " Æ0 + qXi=1 ÆiV 2t�i!r#It an be seen that the �rst term,Qrj=1(2j�1), has no onditions of existene.We have to develop the seond term to look for "possible" onditions.E(hrt ) = E " Æ0 + qXi=1 ÆiV 2t�i!r#= E 24 rXj=0�rj�Ær�j0 � qXi=1 ÆiV 2t�i!j35= rXj=0�rj�Ær�j0 �E qXi=1 ÆiV 2t�i!jWe realize that we have to obtain the value of the seond term, that is,E �Pqi=1 ÆiV 2t�i�j . We an develop the latter by means of Newton's Formulae,as follows:E qXi=1 ÆiV 2t�i!j = E " jXz=0�jz��Æ1V 2t�1�j�z � qXi=2 ÆiV 2t�i!z#= jXz=0�jz�Æj�z1 E �V 2(j�z)t�1 � �E qXi=2 ÆiV 2t�i!z= jXz=0�jz�Æj�z1 j�zYk=1(2k � 1) � E qXi=2 ÆiV 2t�i!z5



We notie, one again that we should only worry about a single element,in this ase E �Pqi=2 ÆiV 2t�i�k. The sum has now fewer elements (it goes fromi = 2 to q). This sum an indeed go over the same proess (basially anotherappliation of Newton's Formulae) in order to redue the number of elements.Eventually, we'll arrive to a sum with only one element:E �ÆqV 2t�q�s = Æsq � sYl=1 2l� 1So, we have "eliminated" all the expetation operators of the expression.There are thus, no onditions (exept the normality of the white noise andthe positiveness onstraint) of existene for the unonditional moments of aNLMACH(q). Q.E.D.We have also alulated the degree of Kurtosis, whih is superior to 3, ifÆi > 0 for at least one i, i = 1; � � � ; q and if Æi � 08 i = 1; � � � ; q:K = (Xt)4�4= 3 h(Æ0 +Pqi=1 Æi)2 + 2Pqi=1 Æ2i i(Æ0 +Pqi=1 Æi)2 (4)> 3proof.By rearranging the terms of expression (4), we get:qXi=1 Æ2i > 0Whih is true if, and only if Æi 6= 0 for at least one i, i = 1; � � � ; q.Q.E.D.2.1.3 Invertibility of the NLMACHInvertibility has always been a problem when dealing with moving average pro-esses, whether they are linear or not. As pointed out earlier, a NLMACH(1)satisfying the normality hypothesis Vt �iid N (0; 1) yields the autoovarianestruture stated in equation (2). The latter allows us to obtain the autoo-variane funtion of the proess, whih is similar to the one yielded by a whitenoise: 6



gx(z) = Æ0 + Æ1 (5)Thus, the autoovariane funtion is a onstant. The invertibility of thespei�ation may appear now learly. On typial NLMA, it happens thatdi�erent sets of parameters, yield the same autoovariane funtion (so theparameters are not identi�able). For theNLMACH this does not ours thanksto the positiveness onstraint imposed on the parameters, Æ0; Æ1 > 0. It must beremembered that suh ondition appears naturally if we want the onditionalvariane to be always positive. Suh ondition not only ensures the positivenessof the onditional variane, but it also solves the identi�ation problem of theparameters. We are thus able to reonstrut the unobserved white noise whihan be seen as a proof of invertibility (Granger and Terasvirta 1993).For the linear MA(q) proess, onditions ensuring invertibility are well known.Our partiular model, when manipulated algebraially, an exhibit analogousonditions. From the onditional variane expression stated in (1), we an get:ht = Æ0 + qXi=1 Æi �V 2t�i � 1�+ qXi=1 Æi (6)= & + qXi=1 ÆiWt�iwhere & = Æ0 +Pqi=1 Æi is a onstant and Wt = V 2t�i � 1 is a non gaussian noisesuh that: E(Wt) = 0E(WtWt�j) = � 2 for j = 00 otherwise (7)We realize that ht an be understood as a non gaussian MA(q) and thus, theusual invertibility onditions apply, that is, the proess is invertible if the rootsof the polynomial �1 + Æ1z + Æ2z2 + : : :+ Æqzq� = 0 lie outside the unit irle.2.1.4 De�ning the value of q in a NLMACH(q)In the next setion, we present a estimation tehnique dealing in partiular witha NLMACH(q). Of ourse, one this model is to be used with real data, thereis an additional requirement; the identi�ation of the parameter q. The orderof the NLMACH(q) proess an be inferred by means of its sample squaresautoorrelation funtion. This is true beause of the strutural properties of themodel we develop here. So identi�ation of q must be done through the SACFof the squares of the proess. Undoubtedly, other tools allowing suh inferenean be found, but in this work we onentrate our e�orts in the SACF . Firstof all, the theoretial shape of the autoorrelation funtion is to be developed:7



Let Xt be a NLMACH(q) spei�ed in expression (3). Then, the autoor-relation funtion of the squares of Xt is:� �X2t ; X2t�j� = 8><>: i for j < qÆq(Æ0+Pqi=1 Æi)(Æ0+Pqi=1 Æi)2+3Pqi=1 Æ2i for j = q0 8 j > q (8)where, i = ÆjPqi=0 Æi +Pqi=j+1 ÆiÆi�jÆ20 + 2Æ0Pqi=1 Æi + (Pqi=1 Æi)2 + 3Pqi=1 Æ2iWe now should be able to identify empirially the value of q by meansof the sample autoorrelation funtion of the proess's squares. In order toillustrate this, we simulated a NLMACH(4) and plotted both, the sample andthe theoretial autoorrelation funtion.
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Figure 2: NLMACH(4): (a) Theoretial ACF and (b) SACFThe autoorrelation funtion may yield a shape that approximates fairly wellthe one proposed by the stylized fats in �nane theory. Yet, to ahieve thiswe are fored to use a NLMACH(q) with q greater than unity. An alternativeto this is to generalize the proess by inluding lags of ht in the onditionalvariane spei�ation. Although this seems to be an attrative option, it willnot be done here. 8



3 Estimation of the NLMACH(1)One the main statistial properties have been established, the next step isestimation. The NLMACH(1) estimation is simple despite the fat of beinga highly non-linear model. In order to show the performane of the estimatingtehnique, we present a Maximum Likelihood (ML) estimate. It works in thesame way as with ARCH models. The ML estimation of the NLMACH(q) isstraightforward. We take advantage of the fat that the onditional distributionis N (0; h1=2t ), that is, Xt=	t � N (0; h1=2t ), where 	t is the past information set3. Under the usual regularity onditions, we are thus able to ompute theorresponding Likelihood and maximize it using a gradient algorithm.We performed a Monte Carlo Experiment to illustrate theML estimator. Table(1) exhibits the estimation results for a variety of parameters(both parametersadopt the following values: 0.25, 0.50 and 0.75). 1,000 repliations where madefor eah ase. Table (1) shows the averages of suh estimations as well as thestandar deviations 4.Parameters Sample sizeT=200 T=500 T=700Æ0 Æ1 bÆ0 bÆ1 bÆ0 bÆ1 bÆ0 bÆ10.25 0.250 0.248 0.251 0.249 0.251 0.249(0.04) (0.07) (0.04) (0.05) (0.02) (0.04)0.25 0.50 0.249 0.494 0.251 0.498 0.250 0.506(0.04) (0.12) (0.03) (0.08) (0.02) (0.07)0.75 0.251 0.742 0.253 0.748 0.250 0.749(0.04) (0.18) (0.03) (0.11) (0.02) (0.09)0.25 0.501 0.249 0.500 0.246 0.500 0.249(0.08) (0.10) (0.04) (0.06) (0.04) (0.05)0.50 0.50 0.502 0.499 0.498 0.501 0.500 0.497(0.08) (0.15) (0.05) (0.09) (0.04) (0.08)0.75 0.501 0.743 0.499 0.754 0.502 0.747(0.08) (0.20) (0.05) (0.13) (0.04) (0.10)0.25 0.756 0.243 0.754 0.247 0.749 0.251(0.11) (0.12) (0.07) (0.07) (0.06) (0.06)0.75 0.50 0.753 0.504 0.751 0.492 0.749 0.502(0.11) (0.18) (0.07) (0.11) (0.06) (0.09)0.75 0.759 0.752 0.752 0.748 0.747 0.745(0.12) (0.22) (0.07) (0.14) (0.06) (0.12)Table 1: Monte Carlo Simulation of estimates for a NLMACH(1); N=200, 500and 7003	t = fXt�1; Xt�2; � � � ; X0; Vt�1; Vt�2; � � � ; V0g4Standard deviations are given in parentheses.9



The Monte Carlo experiment reveals that, using a standard quasi-newton al-gorithm (Matlabs default) a onvenient estimation an be performed, althoughits eÆene ould be improved. It is urious to notie that the standard devia-tion inreases with the value of the parameter.3.1 Foreasting apability of the ModelsIt must be said that our proposal (NLMACH) would not be partiularly in-teresting if it was unable to o�er good foreasting apabilities of the volatilityof a variable. In order to study its performane in this domain, we simulatetwo DGPs; an NLMACH(1) and a GARCH(1,1). Over eah simulated serieswe performed the estimation of both the NLMACH(1) and the GARCH(1,1)using only a fration of the sample and onstruted an out-of-sample foreast(one period ahead). Then we add an observation and rebuild the foreast untilwe use T-1 observations. Using these foreasts and knowing the real values we
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Figure 3: Monte Carlo Experiment: NLMACH(1) and GARCH(1; 1) out-of-sample foreasts: NLMACH, ases a, b and : Æ1 = 0:30, GARCH, ases a, band : � = 0:30 and � = 0:30a) NLMACH: Æ1 = 0:15; GARCH(1,1):  = 0:10b) NLMACH: Æ1 = 0:30; GARCH(1,1):  = 0:30b) NLMACH: Æ1 = 0:45; GARCH(1,1):  = 0:50ompute the Root Mean Square Error for eah spei�ation and then omputethe ratio: RMSENLMACH(1)RMSEGARCH(1;1) . We repeat the latter experiment 1000 times andshow the results (averages) in �gure (3)5.5We need to be autious about this result. Bollerslev, Chou, and Kroner (1992) havewarned that "[� � � ℄ out of sample foreasting is marred with diÆulties and simply extrapo-lating the future vitality of the �eld based on past observations does not neessarily result in10



The �gure exhibits interesting results. when the real DGP is anNLMACH(1; 1),(�rst row of �gure)the NLMACH(1) spei�ations foreasts outperforms theGARCH(1,1)s foreasts but the inverse is not ompletely true (seond row of�gure). If the DGP is a GARCH, there are several ases where the NLMACH(1),even if it is the wrong spei�ation, yields better foreasts.3.2 Appliation to Exhange RatesIn order to examine the NLMACH performane using real market data, in thissetion we estimate theNLMACH(1) model and ompare it with the ARCH(1)and GARCH(1; 1) proesses. In addition we estimate the ARCH(1) modelassuming a Student-t distribution in order to apture the fat tails frequentlyobserved in �nanial returns. Eight major urrenies are employed for thisexerise6. Daily exhange rate returns from January 2, 1991 to Deember 29,1995 are alulated by taking the �rst log di�erene orresponding to a totalof 1,303 observations for eah urreny. In partiular the exhange rates underexamination are the Australian Dollar (AUS), British Pound (GBR), CanadianDollar (CAN), Duth Guilder (NLG), Frenh Fran (FRA), German Dmark(DEU), Japanese Yen (JPY) and Swiss Fran (CHF). Desriptive statistis areshown in Table (2) below.Curreny Mean Median StdDev. Min. Max. Skew. Kurt.Australian D. 0.0013 -0.0117 0.1997 -0.6954 0.8527 0.4171 1.6811British P. 0.0075 -0.0079 0.2906 -1.2548 1.4271 0.3502 2.5506Canadian D. 0.0055 0.0033 0.1213 -0.7040 0.5911 0.0320 2.7627Duth G. -0.0016 -0.0083 0.3179 -1.2581 1.3060 0.0917 1.6173Frenh F -0.0012 -0.0019 0.3004 -1.1734 1.1519 0.0700 1.6761German M. -0.0013 -0.0115 0.3190 -1.2578 1.3476 0.1233 1.6865Japanese Y. -0.0088 -0.0087 0.2828 -1.4727 1.4014 -0.2492 3.3761Swiss F. -0.0030 0.0000 0.3470 -1.6933 1.3517 -0.0223 1.5817Table 2: Statistial harateristis of the exhange rate time seriesTables 3,4,5 and 6 present the estimation results for eah urreny for severalmodel spei�ations. Di�erent orders of the proess were investigated. The NL-MACH(1) was hosen aording to the Akaike Information Criterion (AIC) andthe Shwartz Bayesian Criterion (SBC). The optimization algorithm employedin the estimations was the BFGS and all the programs are written in RATS.Using robust standard errors it is observed that apart from the interept allestimated parameters are highly signi�ant{see Æ1 and Æ2 in eah panel7.optimal preditions [� � � ℄". Having said this, we should keep in mind the many limitations oftime series foreasting performane.6The data has been extensively examined by Franses and van Dijk (2000) for this subsampleand from Deember 1979. The data is available in the authors' website.7Note that Æ1 is assoiated to either the Nonlinear or ARCH e�et respetively, whereasÆ2 is assoiated to GARCH e�ets. 11



Duth Guilder Swiss FranNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆientsC �0:0019 �0:0019 �0:0046 �0:0056 �0:0011 �0:0010 �0:0070 �0:0036(0:0079)a (0:0074) (0:0080) (0:0093) (0:0093) (0:0098) (0:0074) (0:0082)Æ0 0:0794� 0:0794� 0:0032� 0:0502� 0:0992� 0:0986� 0:0039� 0:0669�(0:0030) (0:0055) (0:0006) (0:0027) (0:0037) (0:0034) (0:0007) (0:0025)Æ1 0:0212� 0:2138� 0:0715� 0:1620� 0:0204� 0:1781� 0:0575� 0:1309�(0:0035) (0:0466) (0:0097) (0:0289) (0:0035) (0:0271) (0:0083) (0:0281)Æ2 � � 0:8967� � � � 0:9098� �� � (0:0022) � � � (0:0015) �V b � � � 5:4836� � � � 6:1327�� � � (0:4327) � � � (0:7747)Deision CriteriaL(�) 867:34 866:99 894:99 804:94 746:01 746:21 763:93 934:56AICd 8753:71 8753:18 8796:28 8659:16 8558:86 8559:20 8591:54 8852:14SBCe 8769:20 8768:67 8816:94 8679:82 8574:35 8574:69 8612:20 8872:79Table 3: Model Adjustment for the Duth guilder and the Swiss Fran. *,** Signi�ant at the 1% and 10% level respetively.aRobust Standard errors in parenthesis.b Shape parameter. Optimizaed likelihood value.d AIC =Akaike information Criterionand e SBC =Shwartz Bayes Criterion
12



Frenh Fran German MarkNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆientsC �0:0043 �0:0039 �0:0057 �0:0062 �0:0016 �0:0016 �0:0039 �0:0058(0:0081)a (0:0079) (0:0070) (0:0070) (0:0083) (0:0081) (0:0078) (0:0079)Æ0 0:0745� 0:0745� 0:0024� 0:0449� 0:0796� 0:0796� 0:0033� 0:0507�(0:0025) (0:0051) (0:0017) (0:0038) (0:0028) (0:0029) (0:0018) (0:0017)Æ1 0:0153� 0:1749� 0:0596� 0:1405� 0:0217� 0:2180� 0:0711� 0:01618�(0:0032) (0:0459) (0:0189) (0:0269) (0:0035) (0:0319) (0:0200) (0:0253)Æ2 � � 0:9135� � � � 0:8969� �� � (0:0348) � � � (0:0337) �V b � � � 5:1436� � � � 5:5298�� � � (0:6332) � � � (0:4059)Deision CriteriaL(�) 931:73 931:12 962:74 735:18 863:72 863:23 888:54 808:74AICd 8846:30 8845:45 8890:63 8541:95 8748:29 8747:56 8786:93 8665:25SBCe 8861:79 8860:94 8891:29 8562:61 8763:79 8763:05 8807:59 8685:91Table 4: Model Adjustment for the Frenh Fran and the German Mark. *,** Signi�ant at the 1% and 10% level respetively.aRobust Standard errors in parenthesis.b Shape parameter. Optimizaed likelihood value.d AIC =Akaike information Criterionand e SBC =Shwartz Bayes Criterion
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Japanese Yen Canadian DollarNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆientsC �0:0065 �0:0062 �0:0098 �0:0046 �0:0059 0:0059 0:0025 0:0029(0:0073)a (0:0076) (0:0080) (0:0065) (0:0032) (0:0031) (0:0032) (0:0029)Æ0 0:0702� 0:0693� 0:0020� 0:0347� 0:0123� 0:0119� 0:001� 0:0067�(0:0022) (0:0018) (0:0014) (0:0020) (0:0004) (0:0004) (0:0001) (0:0004)Æ1 0:0089� 0:1286� 0:0484� 0:0751� 0:0024� 0:1992� 0:0517� 0:1178�(0:0021) (0:0212) (0:0164) (0:0219) (0:0004) (0:0252) (0:0152) (0:0281)Æ2 � � 0:9251� � � � 0:9404� �� � (0:0279) � � � (0:0185) �V b � � � 3:8234� � � � 4:3438�� � � (0:3451) � � � (0:4418)Deision CriteriaL(�) 1005:55 1006:56 1045:43 616:82 2100:63 2102:25 2139:88 451:57AICd 8944:88 8946:19 8997:17 8319:99 8897:44 9898:43 9923:38 7912:92SBCe 8960:38 8961:68 9017:83 8335:65 9912:94 9913:93 9944:04 7933:58Table 5: Model Adjustment for the Japanese Yen and the Canadian Dollar. *,** Signi�ant at the 1% and 10% levelrespetively.a Robust Standard errors in parenthesis.b Shape parameter. Optimizaed likelihood value.d AIC =Akaike in-formation Criterion and e SBC =Shwartz Bayes Criterion
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British Pound Australian DollarNLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-tEstimated CoeÆientsC 0:0026 0:0020 �0:0015 �0:0041 �0:0003 �0:0001 �0:0011 �0:0061(0:0078)a (0:0076) (0:0069) (0:0066) (0:0050) (0:0056) (0:0055) (0:0050)Æ0 0:0701� 0:0672� 0:0008� 0:0329� 0:0367� 0:0367� 0:0025� 0:0206�(0:0022) (0:0019) (0:0005) (0:0020) (0:0012) (0:0011) (0:0023) (0:0011)Æ1 0:0144� 0:2138� 0:0507� 0:1490� 0:0032� 0:0813� 0:0595� 0:0723�(0:0025) (0:0294) (0:0143) (0:0321) (0:0014) (0:0228) (0:0355) (0:0239)Æ2 � � 0:9403� � � � 0:8794� �� � (0:0187) � � � (0:0903) �V b � � � 3:8423� � � � 4:4480�� � � (0:3606) � � � (0:4853)Deision CriteriaL(�) 975:20 979:79 1052:46 655:30 1441:20 1441:02 1457:70 219:87AICd 8905:26 8911:33 9005:84 8393:00 9410:28 9410:13 9427:01 6981:21SBCe 8920:76 8926:83 9026:50 8413:89 9425:78 9425:62 9447:67 7001:87Table 6: Model Adjustment for the British Pound and the Australian Dollar. *,** Signi�ant at the 1% and 10% levelrespetively.a Robust Standard errors in parenthesis.b Shape parameter. Optimizaed likelihood value.d AIC =Akaike infor-mation Criterion and e SBC =Shwartz Bayes Criterion
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If we ompare the NLMACH(1) against ARCH(1) or GARCH(1,1), the AICand SBC riteria provide mixed evidene. For instane aording to these ri-teria NLMACH(1) is preferred to the ARCH(1) for the Swiss Fran, theJapanese Yen, the Canadian Dollar and the British Pound. When the NL-MACH(1) is ompared to GARCH(1,1) it is observed that in all ases the NL-MACH(1) is preferred to GARCH(1,1). Surprisingly, aording to these riteria,the ARCH(1) model is also preferred to GARCH(1,1). However, we need to beautious about using these riteria to disriminate between models. The useof these statistis might not be entirely appropriate sine the two types of pro-esses have a distint nonlinear nature. Moreover, the statistial properties ofAIC and SBC have not been investigated for the lass of nonlinear models hereproposed. Using the Optimized Likelihood value as the seletion riterion, theGARCH(1,1) is the model that �ts the data best. This however is not nees-sarily bad news for the NLMACH(1) sine it only indiates that GARCH(1,1)aptures well a spei� type of onditional heteroskedastiity. One last asehas been investigated: the ARCH(1) with a t-distribution in order to apturethe fat tails and non-normality of the data8. It turns out that, as indiated bythe AIC and SBC, this model is strongly preferred to all other spei�ationsinluding the NLMACH(1) with the only exeption of the Swiss Fran. Aswe have already shown, our NLMACH(1) model reprodues the fat tails quitenaturally without the need of imposing a di�erent onditional distribution torepliate this behavior. However, as suggested by these results, imposing a on-ditional distribution di�erent than a normal might apture other properties ofthe data. For instane, it might be that the soure of non-normality is due tothe existene of outliers; this feature is not obviously taken into aount by theNLMACH(1) model.8Notie that, as required, the degrees of freedom parameter is signi�ant and greater thanfour in all urrenies exept the Yen and the British Pound.
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4 ConlusionsThis paper has presented a new model, deeply inspired by the Non-Linear Mov-ing Average models, but with the approah typially used when dealing withonditionally heteroskedasti models. A very simple spei�ation modi�ationsolves the typial problems of this lass. NLMACH has simple statistial prop-erties and is easy to estimate. It should indeed be seen as a new instrument todeal with heteroskedastiity. Several tools presented here aim to ful�ll this pur-pose. On one hand, NLMACH an be easily estimated byML. This estimationtehnique proved to be eÆient and reliable. On the other hand, the theoretialresults, suh as the autoorrelation funtion form of the squared proess shouldfailitate identi�ation, and provide statistial evidene of either the preseneor the absene of NLMACH behavior. for some partiular ases (spei�ed inthe DGPs and the sample size of the Monte Carlo experiments) NLMACH(1)'foreasting apabilities outperform 9 the ones yielded by GARCH(1; 1) evenwhen the true DGP is a GARCH(1; 1).This new spei�ation will have to ompete with the many variants belong-ing to the ARCH lass. Suh ompetitors vary in omplexity and robustness.NLMACH is the repliation of fat tails; the estimation results indiate howeverthat this proess is preferred to ARCH models using a student-t as onditionaldistribution only in one ase{the Swiss Fran. The NLMACH model, despiteits simpliity, still o�ers extremely interesting harateristis. All in all, therelative evidene in favor of NLMACH varies in omplexity and robustness andall we hope is to inrease empirial interest for Non-Linear Moving Averagemodels, whih have been virtually negleted along the past deades.

9omparison made using the RMSE riterion17
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