Rtadf: Testing for Bubbles with EViews

Caspi, Itamar

Bank of Israel

28 August 2013

Online at https://mpra.ub.uni-muenchen.de/58791/
MPRA Paper No. 58791, posted 25 Sep 2014 15:42 UTC
Rtadf: Testing for Bubbles with EViews*

Itamar Caspi
Research Department, Bank of Israel

Abstract

This paper presents Rtadf (Right Tail Augmented Dickey-Fuller), an EViews Add-in that facilitates the performance of time series based tests that help detect and date-stamp asset price bubbles. Detection strategy is based on a right-tail variation of the standard Augmented Dickey–Fuller(ADF) test where the alternative hypothesis is of a mildly explosive process. The add-in implements four types of tests: Standard ADF, Rolling window ADF, supremum ADF (SADF) (Phillips, Wu, and Yu 2011) and generalized SADF (GSADF) (Phillips, Shi, and Yu 2013). Rejection of the null in each of these tests may serve as empirical evidence for an asset price bubble, and in the case of the SADF and GSADF tests, enables us, as a second step, to date-stamp its occurrence. The add-in calculates the relevant test statistics for each of the above four tests and simulates the corresponding exact finite sample critical values via Monte Carlo methods.

Keywords: Rational bubble, ADF test, Sup ADF test, Generalized Sup ADF test, Mildly explosive process, EViews.

1. Introduction

The recent global financial crisis was preceded by the bursting of the unprecedented US housing bubble. This fact reminds us all of the devastating implications of failing to recognize asset price bubbles in real time. Empirical identification of such bubbles in real time, and even in retrospect, is surely not an easy task, and it has been the source of academic and professional debate for many years.¹ One strand of the empirical literature suggests using time series estimation techniques while exploiting predictions made by finance theory in order to test for the existence of bubbles in the data. The main idea, based on asset pricing theory,

¹There is a large amount of academic debate with regard to the theoretical plausibility of bubbles (Brunnermeier 2008; Iraola and Santos 2008). This research deals with bubbles of the rational type (a.k.a., 'rational bubbles'), i.e., bubbles consistent with the rational expectations hypothesis (Blanchard and Watson 1983).
suggests that the existence of a bubble in an observed asset price should be manifested in its
dynamics and its stochastic properties. More explicitly, theory predicts that if a bubble exists,
prices should inherit its explosiveness property. This in turn enables formulating statistical
tests which aim at detecting evidence of explosiveness in the data.\(^2\)

One of the attempts to test for rational bubbles in the context of the stock market is found in
Diba and Grossman (1988), where the authors suggest using reduced form stationarity tests
with regard to stock prices and observable market fundamentals, and to rule out bubbles
if the former is found no more explosive than the latter. Evans (1991) however, questions
the power of such stationarity based tests in the presence of a periodically collapsing bubble
(i.e., one that spontaneously occur and burst), an apparent feature of actual stock prices
seen in the data. Using simulation methods, Evans (1991) shows that standard unit root and
cointegration tests fail to reject the null of no bubble in the presence of periodically collapsing
bubbles. Despite his findings, Evans (1991) leaves open the question of a better identification
strategy.

More recently, new bubble detection strategies were developed and presented by Phillips,
Wu, and Yu (2011, hereafter PWY) and Phillips, Shi, and Yu (2013, hereafter PSY). These
strategies are based on recursive and rolling ADF unit root tests that enable us to detect
bubbles in the data and to date-stamp their occurrence. These type of tests use a right tail
variation of the Augmented Dickey-Fuller unit root test wherein the null hypothesis is of a
unit root and the alternative is of a mildly explosive process.\(^3\) PWY and PSY show that using
recursive and rolling tests results with higher power in the detection of bubbles, compared
to standard tests on the whole sample. In a Monte Carlo study, Homm and Breitung (2012)
compare several time series based tests for the detection of bubbles and find that the PWY
strategy performs relatively well in detecting periodically collapsing bubbles and in real time
monitoring. Phillips et al. (2013) show through a Monte Carlo study that the PSY strategy
outperforms the PWY strategy in the presence of multiple bubbles.

A number of recent papers published implement the above mentioned bubble detection strate-
gies in different contexts. For example, Phillips and Yu (2011) use the SADF test to date-
stamp bubbles in the US housing market, corporate bond spreads and oil prices, during the
global financial crisis. Bettendorf and Chen (2013) use the SADF and GSADF tests and find
evidence for explosive behavior in the Sterling-Dollar exchange rate, though they conclude it
is probably driven by fundamentals and not by a rational bubble. Yiu, Yu, and Jin (2013)
apply the GSADF test Hong Kong residential property market and find evidence for multiple
bubbles in the data.

This paper introduces \texttt{Rtadf}, an \texttt{EViews} Add-in that allows end-users to easily test for the
existence of bubbles in the data by readily applying four variations of the right tail ADF unit
root test, in line with the reduced form approach for bubble detection described above. Four
tests include the standard ADF test and a rolling window ADF test, and the more recent
PWY supremum ADF (SADF) test and the PSY generalized SADF (GSADF) test. The
add-in capabilities include calculations of the relevant test statistic and the derivation of its
corresponding critical values by Monte Carlo simulations

The rest of the paper is organized as follows. Section 2 presents a basic theoretical model
of rational bubbles in a standard asset pricing model. Section 3 introduces the details of

\(^2\)For recent surveys on econometric tests for bubbles see G¨urkaynak (2008) and Homm and Breitung (2012).
\(^3\)Limit theory for mildly explosive processes are developed in Phillips and Magdalinos (2007).
the econometric strategy used to detect explosive behavior in asset prices. Section 4 provides general instructions on how to use the \texttt{Rtadf} add-in within the \texttt{EViews} environment. Section 5 presents a hands-on illustration of \texttt{Rtadf}. Finally, Section 6 concludes.

2. Asset pricing with rational bubbles

This section presents a simple asset pricing model to better understand the underlying rationale behind indirect (reduced form) time series tests for asset price bubbles. Under the no-arbitrage condition and the assumption of risk neutrality, in equilibrium, the price of an asset at time t equals the expected discounted payoff received at time $t+1$

$$P_t = \frac{1}{R_{t+1}} E_t (P_{t+1} + D_{t+1}), \quad (1)$$

where P_t is the real stock price at time t, D_t is the dividend received for holding the stock from time $t-1$ to t and R_t is the (gross) discount rate. Next, following Campbell and Shiller (1988) and Cochrane (2001) we obtain a log-linear approximation of Equation (1)

$$p_t = \kappa + \rho p_{t+1} + (1 - \rho) d_{t+1} - r_{t+1} \quad (2)$$

where $p_t \equiv \log(P_t)$, $d_t \equiv \log(D_t)$, $r_t \equiv \log(R_t)$, $\rho = 1 / \left[1 + e^{(p-r)} \right]$ with $p-r$ being the average log price-to-dividend ratio, and

$$\kappa = -\log(\rho) - (1 - \rho) \log \left(\frac{1}{\rho - 1} \right).$$

Equation (2) is basically a first order differential equation. Solving Equation (2) by forward iteration and taking expectations yields the following log-linear approximation of the log price-to-dividend ratio:

$$p_t - d_t = \frac{\kappa}{1 - \rho} + \sum_{i=0}^{\infty} \rho^i E_t (\Delta d_{t+1+i} - r_{t+1+i}) + \lim_{i \to \infty} \rho^i E_t (p_{t+i} - d_{t+i}). \quad (3)$$

The right hand side of Equation (3) can be decomposed to two components,

$$p_t - r_t = f_t + b_t \quad (4)$$

where

$$f_t = \frac{\kappa}{1 - \rho} + \sum_{i=0}^{\infty} \rho^i E_t (\Delta d_{t+1+i} - r_{t+1+i}), \quad (5)$$

is the fundamental component, stated in terms of the expected dividend growth rate and expected returns, and where

$$b_t = \lim_{i \to \infty} \rho^i E_t (p_{t+i} - d_{t+i}), \quad (6)$$

is commonly referred to as the rational bubble component. The latter is the focus of the bubble tests described below.
Under the transversality condition, \(\lim_{t \to \infty} \rho^t E_t p_{t+i} = 0 \), and the possibility of a bubble is ruled out. Thus, the observed price equals the fundamental price. In contrast, the existence of a strictly positive bubble component, i.e., the situation where actual price exceeds what is implied by fundamentals, requires that investors expect to be compensated for overpayment (over the fundamental price) by the expected appreciation of the bubble component. In other words, investors are willing to pay a premium over the fundamental price only because they expect this premium to appreciate in the next period. Note that this behavior is completely consistent with the rational expectations assumption, hence the name ‘rational bubble’.

More importantly, note that Equation (6) implies a submartingale property for \(b_t \) since

\[
E_t(b_{t+1}) = \frac{1}{\rho} b_t = \left[1 + \exp(\bar{p} - \bar{d}) \right] b_t,
\]

where \(\left[1 + \exp(\bar{p} - \bar{d}) \right] > 0 \). Thus, when \(b_t \neq 0 \), the log bubble component grows at rate \(g = \exp(\bar{p} - \bar{d}) > 0 \).

This model reveals important insights regarding the stochastic properties of \(p_t - d_t \), according to which, we can formulate an econometric test designed to rule out the presence of a rational bubble component in an observed asset price. To see this, note that the stochastic properties of \(p_t - d_t \), implied by (3), are determined by those of \(f_t \) and \(b_t \). In turn, the dynamics of \(f_t \) are determined by expected \(\Delta d_t \) and \(r_t \). If \(d_t \) and \(r_t \) are at most \(I(1) \) processes, evidence of explosiveness in \(p_t - d_t \), (in this model) can only be the result of the presence of a bubble, i.e., \(b_t \neq 0 \). Thus, a test for the presence of a bubble can be formulated as a test for an explosive behavior in log price-to-dividend ratio, \(p_t - r_t \).

3. Testing for bubbles

Following the conventions of PSY, assume the following random walk process with an asymptotically negligible drift:

\[
y_t = dT^{-\eta} + \theta y_{t-1} + \epsilon_t, \quad \epsilon_t \sim iid N(0, \sigma^2), \quad \theta = 1
\]

were \(d \) is a constant, \(\eta \) is a localizing coefficients that controls the magnitude of the drift as the sample size, \(T \), approaches infinity and \(\epsilon_t \) is the error term.\(^4\)

Four test strategies implemented by the \texttt{R} add-in (which includes the ones suggested by PWY and PSY) are all based on some variation of the following reduced form empirical equation:

\[
y_t = \mu + \delta y_{t-1} + \sum_{i=1}^{p} \phi_i \Delta y_{t-i} + \epsilon_t.
\]

where \(y_t \) is the variable in question (e.g., the price of a stock) \(\mu \) is an intercept, \(p \) is the maximum number of lags, \(\pi_i \) for \(i = 1 \ldots p \) are the differenced lags coefficients and \(\epsilon_t \) is the error term. Testing for a bubble (explosive behavior) is based on a right-tail variation of the standard ADF unit root test where the null hypothesis is of a unit root and the alternative is of a mildly explosive autoregressive coefficient. Formally, we test for

\[
H_0: \quad \delta = 1 \\
H_1: \quad \delta > 1.
\]

\(^4\)PSY set \(d, \eta \) and \(\theta \) to unity, while PWY effectively set \(\eta \to \infty \) (i.e., random walk without a drift).
Before proceeding to a description of the tests included in \textbf{Rtadf}, some notation is needed. For simplicity of exposition, we use a sample interval of \([0, 1]\) (i.e., we normalized the original sample by \(T\)). Denote by \(\delta_{r_1, r_2}\) and by \(\text{ADF}_{r_1, r_2}\) the coefficient estimated by Equation (9) and its corresponding ADF statistic over the (normalized) sample \([r_1, r_2]\). In addition, denote by \(r_w\) the (fractional) window size of the regression, defined by \(r_w = r_2 - r_1\) and by \(r_0\) the fixed initial window, set by the user. The difference between the tests relates to the manner of setting \(r_1\) and \(r_2\).

The first test included in \textbf{Rtadf} is a simple right-tailed version of the standard ADF unit root test. In this case, \(r_1\) and \(r_2\) are fixed to the first and last observations of the whole sample, respectively where in this case, \(r_w = r_0 = 1\) (see Figure 1).\(^5\) However, the critical values for testing the null hypothesis differ from the ones used in the usual ADF unit root test since we now need the right tail of the statistic’s nonstandard distribution.

The second type of test, the rolling ADF (RADF) test, is a rolling version of the first test in which the ADF statistic is calculated over a rolling window of fixed size specified by the user, i.e., \(r_w = r_0\) for all estimations. At each step of the RADF procedure, the window’s start and end point (\(r_1\) and \(r_2\) respectively) are incremented one observation at a time (see Figure 2). Each estimation yields an ADF statistic, denoted as \(\text{ADF}_{r_1, r_2}\). The RADF statistic is defined as the supremum \(\text{ADF}_{r_1, r_2}\) statistic among all possible windows.\(^6\)

The SADF test, suggested by PWY, is based on recursive calculations of the ADF statistics with a fixed starting point and an expanding window, where the initial size of the window is set by the user. The estimation procedure goes as follows (see Figure 3): The first observation in the sample is set as the starting point of the estimation window, \(r_1\), i.e., \(r_1 = 0\). Next, the end point of the initial estimation window, \(r_2\), is set according to some choice of minimal window size, \(r_0\) such that the initial window size is \(r_w = r_2\) (again, in fraction terms). Finally, the regression is recursively estimated, while incrementing the window size, \(r_2 \in [r_0, 1]\), one observation at a time. Each estimation yields an ADF statistic denoted as \(\text{ADF}_{r_2}\). Note that

\(^{5}\)The \(t\)-statistic from this test matches the one reported by EViews.

\(^{6}\)Note that the windows in the RADF procedure are overlapping.
in the last step, estimation will be based on the whole sample (i.e., \(r_2 = 1 \) and the statistic will be \(ADF_1 \)). The SADF statistic is defined as the \textit{supremum} value of the \(ADF_{r_2} \) sequence for \(r_2 \in [r_0, 1] \):

\[
SADF(r_0) = \sup_{r_2 \in [r_0, 1]} \{ ADF_{r_2} \}
\] (10)

The fourth and last test is the generalized SADF (GSADF), suggested by PSY. This test generalizes the SADF test by allowing more flexible estimation windows, wherein, unlike the SADF procedure, the starting point, \(r_1 \), is also allowed to vary within the range \([0, r_2 - r_0]\) (see Figure 4). Formally, the GSADF statistic is defined as

\[
GSADF(r_0) = \sup_{r_2 \in [r_0, 1]} \{ ADF_{r_1}^{r_2} \}
\] (11)

3.1. Date-stamping bubble periods

As PWY and PSY show, the SADF and GSADF procedures can also be used, under general regularity conditions, as a date-stamping strategy that consistently estimate the origination and termination of bubbles. In other words, if the null hypothesis of either of these tests is rejected, one can estimate the start and end points of a specific bubble (or bubbles). The date-stamping procedures will now be presented in brief.\(^7\)

The first date-stamping strategy is based on the SADF test. PWY propose comparing each element of the estimated \(ADF_{r_2} \) sequence to the corresponding right-tailed critical values of the standard ADF statistic to identify a bubble initiating at time \(Tr_2 \). The estimated

origination point of a bubble is the first chronological observation, denoted by T_{re}, in which ADF_{r2} crosses the corresponding critical value (from below), while the estimated termination point is the first chronological observation after T_{re}, denoted by T_{rf}, in which ADF_{r2} crosses below the critical value. Formally, the estimates of the bubble period (as fractions of the sample) are defined by

$$\hat{r}_e = \inf_{r_2 \in [r_0, 1]} \{ r_2 : ADF_{r_2} > cv_{r_2}^{\beta_T} \}$$

$$\hat{r}_f = \inf_{r_2 \in [r_e, 1]} \{ r_2 : ADF_{r_2} < cv_{r_2}^{\beta_T} \}$$

where $cv_{r_2}^{\beta_T}$ is the $100(1 - \beta_T)$% critical value of the standard ADF statistic based on $[Tr_2]$ observations. Similarly, the estimates of the bubble period based on the GSADF are given by

$$\hat{r}_e = \inf_{r_2 \in [r_0, 1]} \{ r_2 : BSADF_{r_2}(r_0) > cv_{r_2}^{\beta_{Tr_2}} \}$$

$$\hat{r}_f = \inf_{r_2 \in [r_e, 1]} \{ r_2 : BSADF_{r_2}(r_0) < cv_{r_2}^{\beta_{Tr_2}} \}$$

where $cv_{r_2}^{\beta_{Tr_2}}$ is the $100(1 - \beta_T)$% critical value of the sup ADF statistic based on $[Tr_2]$ observations. BSADF(r_0) for $r_2 \in [r_0, 1]$, is the backwards sup ADF statistic that relates to the GSADF statistic by noting that

$$GSADF(r_0) = \sup_{r_2 \in [r_0, 1]} \{ BSADF_{r_2}(r_0) \}.$$

4. Instructions

4.1. Installation

In essence, EViews Add-ins are EViews programs packed in a way that makes them feel and look like built-in EViews procedures. This relatively new feature enables adding procedures and functionalities that have yet to be implemented in official releases of EViews. By using the Add-ins feature and program language, the user is able to augment standard written programs with interactive user interface, thus making them more general purpose and user friendly. Moreover, unlike regular EViews programs, add-ins have the ability to run directly from EViews objects and/or by commands.

EViews add-ins are available for EViews users with versions 7.1 and above. Installing the Rtadf add-in (or any other add-ins for that matter) on an existing copy of EViews can be done manually by downloading the self extracting installation file from the download section.

8In order to asymptotically eliminate type I errors there is a need to let $\beta_T \to 0$ as $T \to 0$. However in applied work it is convenient to use a constant β_T such as 5%.

9Phillips and Yu (2011) argue that the dating rule requires that the duration of the bubble be non-negligible. In Phillips et al. (2013) the authors define $\log(T)/T$ as a minimal lasting time for a bubble period.

10To R users, the concept is similar to R packages as with MATLAB users and tool-boxes.
at the EViews website at http://www.eviews.com/Addins/addins.shtml where it is listed under Rtadf*. Alternatively, EViews users with version 8, can download the add-in while inside EViews by clicking Add-ins → Manage Add-ins, selecting the Rtadf add-in from the list presented under the Available tab and clicking the Install button. In general, note that all other add-ins available in the list, are written either by the EViews staff or by outside users.

Each Add-in published on the EViews website (including Rtadf) has a corresponding support thread in the EViews Add-in Support forum, which can be found at http://forums.eviews.com/viewforum.php?f=2.

4.2. Using the add-in

The Rtadf add-in can only be run from a series object. Initiating the add-in’s dialog box is done by opening a series object and than clicking Proc → Add-ins → Right Tail ADF tests. The test dialog box, presented in Figure 5 enables the user to set the sample period, type of test, initial window size (as a fraction or number of observations), deterministic terms in the test equation and the information criteria for selecting the number of lags in the ADF equation (p in Equation 9). In addition, it allows the user to choose the option of simulating critical values for the test (thus prompting the simulation dialog box described below) and whether to view a graph of the sequence of ADF statistics, the corresponding critical value sequence and the actual series.

![Figure 5: Dialog box.](image)

Toggling the “simulate critical values” option prompts the simulation dialog box, presented in Figure 6. Simulations for all four tests are performed according to the following steps:

1. Draw one realization at length T based on the null model (given by Equation (8)).
2. Estimate Equation 9 by OLS and store the relevant test statistic (ADF/RADF/SADF/GSADF).
3. Repeat steps 1 and 2 N times (where N is a large number, say 2,000.)

The asterisk next to the add-in’s name indicates the add-in was developed by an EViews user rather than by IHS EViews.
4. Calculate the 90%, 95% and 99% quantiles of the distribution of the relevant statistic.

Quantiles calculated in step 4 can then be used for testing the null of unit root against the alternative of an explosive process. In addition, the simulation output includes the \(p \)-value of the test statistic, defined as the probability of observing a statistic as extreme as we did under the null, calculated as

\[
p(\hat{\tau}) = \frac{1}{N} \sum_{j=1}^{N} I(\tau_j > \hat{\tau}),
\]

where \(\hat{\tau} \) is the estimated test statistic (ADF, RADF, SADF or GSADF), \(N \) is the number of replications, \(I(\cdot) \) denotes the indicator function which is equal to 1 if the argument is true and 0 otherwise and \(\tau_j \) are the simulated test statistics \((j = 1, \cdots, N) \). The sequences of critical values, which are necessary for the date-stamping procedure, are also derived as a by-product of the recursive and rolling simulations.

Simulation setup in Rtadf is very flexible, allowing the user to specify the type of test, appropriate sample size, number of replications, number of run-in observations, deterministic terms in the test equation, initial window size, significance level for the critical value sequence (i.e., \(\beta \)), specification for the parameters of the data generating process for the null hypothesis (i.e., set values for \(d, \eta \) and \(\theta \) in Equation (8)). In addition the user can choose whether to use \(T \) or \(Tr_w \) in the null model when calculating the simulated critical value sequence (the later is more accurate but can be very time consuming for large samples while the former is less accurate but faster). As mentioned previously, the output of the simulation procedure is the 90, 95 and 99 percent quantiles of the finite sample distribution of the statistic in question, the relevant \(p \)-value of the test statistic and the relevant critical values sequence for the date-stamping process.

Figure 6: Critical values simulation dialog box.

\[\text{Note that by default, sample size and the initial window size used in the previous step are shown in the simulation dialog box.}\]
4.3. Usage via a command line

The Rtadf add-in can also be called upon via a command line. This feature enables using the add-in’s capabilities as an integrated part of other EViews programs. The syntax is given by:

\[\text{series name} \text{.rtadf(options)} \]

Basic options
- \text{const} (default) Include a constant in the test equation.
- \text{trend} Include a constant and a linear time trend in the test equation.
- \text{none} Do not include a constant or time trend.
- \text{info = arg} (default = 'fixed') Either fixed or information criterion to use when computing automatic lag length selection: 'aic' (Akaike), 'sic' (Schwarz), 'hqic' (Hannan-Quinn), 'maic' (Modified Akaike), 'msic' (Modified Schwarz), 'mhqc' (Modified Hannan-Quinn).
- \text{lag = integer} (default = '0') Either a fixed number of lags (if 'fixed' is chosen for the 'info' option) or maximum lag length to consider when performing automatic lag length selection.

Test options
- \text{model = integer} (default = 1) Type of test: '1' (ADF), '2' (RADF), '3' (SADF), '4' (GSADF)
- \text{win = number} (default=0.1) Initial window size (in fraction terms or in number of observations).

Simulation options
- \text{sim} Simulate critical values.
- \text{rep = integer} (default=1000) Simulation’s number of replications.
- \text{d = number} (default=1) See Equation (8).
- \text{eta = number} (default=1) See Equation (8).
- \text{theta = number} (default=1) See Equation (8).
- \text{beta = [0,1]} (default=0.95) Significance level for the critical values sequence. (see section 3.1.)
- \text{Trw} Use Trw instead of T (default) for calculating of the sequence of critical values.

Other options
- \text{graph} Create a graph of the results.
- \text{print} Print output from the test.

Table 1: Options for the command line.

where the available options are detailed in table 1. Next, we show a couple of command line examples. First, the command:

snp.rtadf(const,model=3,print)

preforms an SADF test on the series SNP with the test equation including a constant term and prints the results. Second, the command:

snp.rtadf(const,print)
preforms a GSADF test on the series NASDAQ with the test equation including a constant term and a linear time trend and an initial window size of 2% of the sample, simulates critical values using 2000 replications, generates a graph and prints the results.

5. Illustration

We now demonstrate in detail how to use Rtadf by replicating the results of the SADF test, reported in Phillips et al. (2013), Table 8 (pp. 33) and Figure 8 (pp. 35). The analysis is based on monthly data of the S&P 500 price-dividend ratio (the series object name in this example is SNP) over the period of 1871:M1 to 2010:M12 that include 1680 observations, see Figure 7.

![Figure 7: S&P 500 price-dividend ratio, 1871:M1–2010:M12.](Image)

In order to start the bubble detection process with the price-dividend ratio (SNP) series, first open the SNP series object and then click Proc → Add-ins → Right tail ADF tests (see Figure 8). Next, specify the test parameters as in PSY (see Figure 10a) and then click the OK button. Note that just like in PSY, the initial window size is set to 36 observations (which constitutes approximately 2% of the whole sample), the lag length of the ADF test (p in Equation 9) is set to zero. Make sure that the “simulating critical values” option is checked so that the output includes the necessary critical values for testing the null hypothesis.

Simulation parameters’ specifications are also set in accordance with PSY by adjusting the parameters in the simulation dialog box, which prompts right after clicking the OK button in the main dialog box (see Figure 10b). Clicking OK results in finite sample critical values for the conduction the SADF test.\footnote{The data used by the authors can be downloaded from \url{https://sites.google.com/site/shupingshi/PrgGSADF.zip?attredirects=0}.}

\footnote{The simulation in this example may take a while since it involves running $(1680 - 36) \times 2000 = 3,288,000$ regressions. (On our Intel Core i5 with 4GB of memory it took over an hour.)}
Summary output of the SADF test is displayed in Figure 10. The output is presented as an EViews spool object and it includes two panels. The top panel is a table that holds the estimated SADF t-statistic followed by the corresponding (right tail) 90%, 95% and 99% critical values derived from the simulated statistic’s distribution. Note that the sup value of this sequence is 3.443, whereas in Phillips et al. (2013) it equals 3.30. However, using the MATLAB code published by the authors, gives an SADF statistic that equals 3.443. The simulated critical values, which appear below the SADF statistic, match exactly those in PSY, Table 8.

The add-in’s estimate of the GSADF statistic for the SNP series (not shown) is the same as the one in PSY.
<table>
<thead>
<tr>
<th>Period No.</th>
<th>PSY</th>
<th>Rtadf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1879:M10–1880:M4</td>
<td>1879:M5–1880:M4</td>
</tr>
</tbody>
</table>

Table 2: Comparison of date-stamping procedures results.

The bottom panel of the spool presents the date-stamping procedure for the SADF test. The graph includes the SNP series (in green), the ADF_{r_2} statistic sequence (in blue) and the corresponding 95% critical values sequence (in red). The add-in successfully identifies two bubble periods, just like in PSY, though with minor differences in the start and end point (see Table 2). In addition, the add-in identifies one bubble period lasting four months in the beginning of the sample and a couple of 'blips' of bubbles lasting for one observation (i.e., one month). The source of discrepancy might be due to differences in the random number generator used by each software. However, if we ignore “too-short-lasting” bubble periods (PSY recommend to restrict identification to ones lasting more than $\log(T)$ units of time measures, which in this case equals $\log(1680) \approx 7$ months), the results are very similar. Note that the

![Figure 10: S&P 500 SADF output.](image)

whole procedure described in this section can be accomplished via a single command line:

```r
corners::snp.rtadf(model=3,win=36,sim,rep=2000,Trw,graph,print)
```

Concluding the illustration, the SADF test results point to the presence of at least one bubble
in the S&P 500 price index at the 1% significance level (since $3.443 > 2.141$). However, since there seem to be evidence for at least two bubble periods (1879-80 and 1997-2002), as a second step (which is not perused here), there is a justification to use the GSADF test.

6. Concluding remarks

This paper presents a new EViews add-in, Rtadf, that implements newly developed asset price bubble detection strategies, all based on right tail versions of the standard reduced form ADF unit root test, where the null of unit root is tested against the alternative of a mildly explosive process. In this case, rejection of the null for a specific time series may serve as evidence of an asset price bubble.

This paper began with a short background on the methodological developments of reduced form econometric approaches for bubble detection alongside a theoretical asset pricing model which helps to clarify the rationale behind the reduced form approach. Next, we gave a brief technical discussion on the bubble detection tests included in Rtadf, and finally, a simple illustration of using the add-in in the context of the S&P 500 stocks index was presented.

Acknowledgments

I thank Peter C.B. Phillips, Shuping Shi, Jun Yu, Jonathan Benchimol and Yossi Yakhin for their helpful comments and suggestions. All remaining errors are mine.

The views expressed herein are solely those of the author and do not necessarily reflect the views of the Bank of Israel, or any of its staff.

References

Affiliation:

Itamar Caspi
Research Department
Bank of Israel
POB 780, Jerusalem 91007, Israel
Telephone: +972/2/655-2650 Fax: +972/73/666-9644 E-mail: itamar.caspi@boi.org.il