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Abstract

This paper presents Rtadf (Right Tail Augmented Dickey-Fuller), an EViews Add-in
that facilitates the performance of time series based tests that help detect and date-stamp
asset price bubbles. Detection strategy is based on a right-tail variation of the stan-
dard Augmented Dickey—Fuller(ADF) test where the alternative hypothesis is of a mildly
explosive process. The add-in implements four types of tests: Standard ADF, Rolling win-
dow ADF, supremum ADF (SADF) (Phillips, Wu, and Yu 2011) and generalized SADF
(GSADF) (Phillips, Shi, and Yu 2013). Rejection of the null in each of these tests may
serve as empirical evidence for an asset price bubble, and in the case of the SADF and
GSADF tests, enables us, as a second step, to date-stamp its occurrence. The add-in
calculates the relevant test statistics for each of the above four tests and simulates the
corresponding exact finite sample critical values via Monte Carlo methods.

Keywords: Rational bubble, ADF test, Sup ADF test, Generalized Sup ADF test, Mildly

explosive process, EViews.

1. Introduction

The recent global financial crisis was preceded by the bursting of the unprecedented US
housing bubble. This fact reminds us all of the devastating implications of failing to recognize
asset price bubbles in real time. Empirical identification of such bubbles in real time, and
even in retrospect, is surely not an easy task, and it has been the source of academic and
professional debate for many years.! One strand of the empirical literature suggests using
time series estimation techniques while exploiting predictions made by finance theory in order
to test for the existence of bubbles in the data. The main idea, based on asset pricing theory,

*Version 1.2, September 6, 2014.

!There is a large amount of academic debate with regard to the theoretical plausibility of bubbles (Brun-
nermeier 2008; Iraola and Santos 2008). This research deals with bubbles of the rational type (a.k.a., 'rational
bubbles’), i.e., bubbles consistent with the rational expectations hypothesis (Blanchard and Watson 1983).



suggests that the existence of a bubble in an observed asset price should be manifested in its
dynamics and its stochastic properties. More explicitly, theory predicts that if a bubble exists,
prices should inherit its explosiveness property. This in turn enables formulating statistical
tests which aim at detecting evidence of explosiveness in the data.?

One of the attempts to test for rational bubbles in the context of the stock market is found in
Diba and Grossman (1988), where the authors suggest using reduced form stationarity tests
with regard to stock prices and observable market fundamentals, and to rule out bubbles
if the former is found no more explosive than the latter. Evans (1991) however, questions
the power of such stationarity based tests in the presence of a periodically collapsing bubble
(i.e., one that spontaneously occur and burst), an apparent feature of actual stock prices
seen in the data. Using simulation methods, Evans (1991) shows that standard unit root and
cointegration tests fail to reject the null of no bubble in the presence of periodically collapsing
bubbles. Despite his findings, Evans (1991) leaves open the question of a better identification
strategy.

More recently, new bubble detection strategies were developed and presented by Phillips,
Wu, and Yu (2011, hereafter PWY) and Phillips, Shi, and Yu (2013, hereafter PSY). These
strategies are based on recursive and rolling ADF unit root tests that enable us to detect
bubbles in the data and to date-stamp their occurrence. These type of tests use a right tail
variation of the Augmented Dickey-Fuller unit root test wherein the null hypothesis is of a
unit root and the alternative is of a mildly explosive process.> PWY and PSY show that using
recursive and rolling tests results with higher power in the detection of bubbles, compared
to standard tests on the whole sample. In a Monte Carlo study, Homm and Breitung (2012)
compare several time series based tests for the detection of bubbles and find that the PWY
strategy performs relatively well in detecting periodically collapsing bubbles and in real time
monitoring. Phillips et al. (2013) show through a Monte Carlo study that the PSY strategy
outperforms the PWY strategy in the presence of multiple bubbles.

A number of recent papers published implement the above mentioned bubble detection strate-
gies in different contexts. For example, Phillips and Yu (2011) use the SADF test to date-
stamp bubbles in the US housing market, corporate bond spreads and oil prices, during the
global financial crisis. Bettendorf and Chen (2013) use the SADF and GSADF tests and find
evidence for explosive behavior in the Sterling-Dollar exchange rate, though they conclude it
is probably driven by fundamentals and not by a rational bubble. Yiu, Yu, and Jin (2013)
apply the GSADF test Hong Kong residential property market and find evidence for multiple
bubbles in the data.

This paper introduces Rtadf, an EViews Add-in that allows end-users to easily test for the
existence of bubbles in the data by readily applying four variations of the right tail ADF unit
root test, in line with the reduced form approach for bubble detection described above. Four
tests include the standard ADF test and a rolling window ADF test, and the more recent
PWY supremum ADF (SADF) test and the PSY generalized SADF (GSADF) test. The
add-in capabilities include calculations of the relevant test statistic and the derivation of its
corresponding critical values by Monte Carlo simulations

The rest of the paper is organized as follows. Section 2 presents a basic theoretical model
of rational bubbles in a standard asset pricing model. Section 3 introduces the details of

2For recent surveys on econometric tests for bubbles see Giirkaynak (2008) and Homm and Breitung (2012).
3Limit theory for mildly explosive processes are developed in Phillips and Magdalinos (2007).



the econometric strategy used to detect explosive behavior in asset prices. Section 4 provides
general instructions on how to use the Rtadf add-in within the EViews environment. Section 5
presents a hands-on illustration of Rtadf. Finally, Section 6 concludes.

2. Asset pricing with rational bubbles

This section present a simple asset pricing model to better understand the underlying rationale
behind indirect (reduced form) time series tests for asset price bubbles. Under the no-arbitrage
condition and the assumption of risk neutrality, in equilibrium, the price of an asset at time
t equals the expected discounted payoff received at time ¢ + 1

_ 1
Ry

P, Ei (Pig1 + Dita), (1)

where P, is the real stock price at time ¢, Dy is the dividend received for holding the stock
from time ¢t — 1 to t and Ry is the (gross) discount rate. Next, following Campbell and Shiller
(1988) and Cochrane (2001) we obtain a log-linear approximation of Equation (1)

pe =K+ pper1+ (1 —p)diy1 — 141 (2)

where p; = log(P,), di = log(Dy), r = log(Ry), p = 1/ [1 +e(1ﬁ)} with p —r being the
average log price-to-dividend ratio, and

r = —log(p) — (1 —p)log (pi1> :

Equation (2) is basically a first order differential equation. Solving Equation (2) by forward
iteration and taking expectations yields the following log-linear approximation of the log
price-to-dividend ratio:

oo
K . . .
pr—dy = + E P Ey (Adpii14i — reg14i) + im p'Ey (prgi — disi) - (3)
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The right hand side of Equation (3) can be decomposed to two components,

P —1re = fr + b (4)
where
K =
fi = ﬂ + ZZ:% P'Ey (Adgy14i — Tey144) (5)

is the fundamental component, stated in terms of the expected dividend growth rate and
expected returns, and where

by = lim p'Ey (pryi — diti) (6)
1— 00

is commonly referred to as the rational bubble component. The latter is the focus of the
bubble tests described below.



Under the transversality condition, lim;_ s p'Espsr; = 0, and the possibility of a bubble is
ruled out. Thus, the observed price equals the fundamental price. In contrast, the existence
of a strictly positive bubble component, i.e., the situation where actual price exceeds what is
implied by fundamentals, requires that investors expect to be compensated for overpayment
(over the fundamental price) by the expected appreciation of the bubble component. In other
words, investors are willing to pay a premium over the fundamental price only because they
expect this premium to appreciate in the next period. Note that this behavior is completely
consistent with the rational expectations assumption, hence the name ’rational bubble’.

More importantly, note that Equation (6) implies a submartingale property for b; since
1 -
Et(bt+1) = ;bt == [1 + exp(p - d)] bt, (7)

where [1 + exp(p — J)] > 0. Thus, when b; # 0, the log bubble component grows at rate g,
where g = exp(p — d) > 0.

This model reveals important insights regarding the stochastic properties of p; — d;, according
to which, we can formulate an econometric test designed to rule out the presence of a rational
bubble component in an observed asset price. To see this, note that the stochastic properties
of p; — d, implied by (3), are determined by those of f; and b;. In turn, the dynamics of f;
are determined by expected Ad; and 7. If d; and r, are at most I(1) processes, evidence of
explosiveness in p; — d; (in this model) can only be the result of the presence of a bubble, i.e.,
b # 0. Thus, a test for the presence of a bubble can be formulated as a test for an explosive
behavior in log price-to-dividend ratio, p; — 7.

3. Testing for bubbles

Following the conventions of PSY, assume the following random walk process with an asymp-
totically negligible drift:

Yy =dT T+ 0y 1 +er, e ud N(0, 02), =1 (8)

were d is a constant, 1 is a localizing coefficients that controls the magnitude of the drift as
the sample size, T, approaches infinity and e; is the error term.*

Four test strategies implemented by the Rtadf add-in (which includes the ones suggested
by PWY and PSY) are all based on some variation of the following reduced form empirical
equation:

P
Yo =+ Oy + Y Gy + e (9)
i=1
where y; is the variable in question (e.g., the price of a stock) p is an intercept, p is the
maximum number of lags, m; for ¢ = 1...p are the differenced lags coefficients and ¢; is the
error term. Testing for a bubble (explosive behavior) is based on a right-tail variation of the
standard ADF unit root test where the null hypothesis is of a unit root and the alternative
is of a mildly explosive autoregressive coefficient. Formally, we test for

H(): 6=1
Hy: §6>1.

4PSY set d, n and 6 to unity, while PWY effectively set 7 — oo (i.e., random walk without a drift).



Before proceeding to a description of the tests included in Rtadf, some notation is needed.
For simplicity of exposition, we use a sample interval of [0, 1] (i.e., we normalized the original
sample by T'). Denote by 6., ,, and by ADF,, ,, the coefficient estimated by Equation (9)
and its corresponding ADF statistic over the (normalized) sample [r1, ro]. In addition, denote
by 7, the (fractional) window size of the regression, defined by r,, = ro — 1 and by r¢ the
fixed initial window, set by the user. The difference between the tests relates to the manner
of setting 1 and ro.

The first test included in Rtadf is a simple right-tailed version of the standard ADF unit root
test. In this case, r; and ro are fixed to the first and last observations of the whole sample,
respectively where in this case, 7, = ro = 1 (see Figure 1).5 However, the critical values for
testing the null hypothesis differ from the ones used in the usual ADF unit root test since we
now need the right tail of the statistic’s nonstandard distribution.

0 Sample interval 1

Ty =1
1 »| 72

Figure 1: Tllustration of the ADF procedure.

The second type of test, the rolling ADF (RADF) test, is a rolling version of the first test in
which the ADF statistic is calculated over a rolling window of fized size specified by the user,
i.e., 7y = 1o for all estimations. At each step of the RADF procedure, the window’s start and
end point (r; and ry respectively) are incremented one observation at a time (see Figure 2).
Each estimation yields an ADF statistic, denoted as ADF,. ,,. The RADF statistic is defined

as the supremum ADF,, ,, statistic among all possible windows.°
0 Sample interval 1
Tw = T0
1 » 72
T Tw =70 » T2
Tw =T
r s »| 72

Figure 2: Tllustration of the RADF procedure.

The SADF test, suggested by PWY, is based on recursive calculations of the ADF statistics
with a fixed starting point and an expanding window, where the initial size of the window is
set by the user. The estimation procedure goes as follows (see Figure 3): The first observation
in the sample is set as the starting point of the estimation window, r1, i.e., 71 = 0. Next,
the end point of the initial estimation window, r9, is set according to some choice of minimal
window size, 7o such that the initial window size is r,, = 7 (again, in fraction terms). Finally,
the regression is recursively estimated, while incrementing the window size, ro € [ro, 1], one
observation at a time. Each estimation yields an ADF statistic denoted as ADF,,. Note that

5The t-statistic from this test matches the one reported by EViews.
5Note that the windows in the RADF procedure are overlapping.



in the last step, estimation will be based on the whole sample (i.e., 7o = 1 and the statistic
will be ADF1). The SADF statistic is defined as the supremum value of the ADF,, sequence
for ry € [7"0, 1]:

SADF(rg) = sup {ADF,,}

ro€(ro,1] (10)
0 Sample interval 1
Tw = T2 o
——>»
1 » T9
»| 72

Figure 3: Ilustration of the SADF procedure.

The fourth and last test is the generalized SADF (GSADF), suggested by PSY. This test
generalizes the SADF test by allowing more flexible estimation windows, wherein, unlike the
SADF procedure, the starting point, ri, is also allowed to vary within the range [0, 79 — 7]
(see Figure 4). Formally, the GSADF statistic is defined as

GSADF(ro) = sup {ADF;?
r2€[ro,1] (11)

r1€[0,ra—ro]

0 Sample interval 1
Tw=T1—T2 r9
" » "2 w172
»
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»
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Figure 4: Ilustration of the GSADF procedure.

3.1. Date-stamping bubble periods

As PWY and PSY show, the SADF and GSADF procedures can also be used, under general
regularity conditions, as a date-stamping strategy that consistently estimate the origination
and termination of bubbles. In other words, if the null hypothesis of either of these test is
rejected, one can estimate the start and end points of a specific bubble (or bubbles). The
date-stamping procedures will now be presented in brief.”

The first date-stamping strategy is based on the SADF test. PWY propose comparing each
element of the estimated ADF,, sequence to the corresponding right-tailed critical values
of the standard ADF statistic to identify a bubble initiating at time Tro. The estimated

"For a detailed presentation see Phillips et al. (2011), Phillips and Yu (2011) and Phillips et al. (2013).



origination point of a bubble is the first chronological observation, denoted by 7)., in which
ADF,, crosses the corresponding critical value (from below), while the estimated termination
point is the first chronological observation after T, , denoted by T Iy in which ADF,, crosses
below the critical value. Formally, the estimates of the bubble period (as fractions of the
sample) are defined by

fe=_inf {rs: ADF, > cvfr} (12)
r2€[ro,1]

rr= inf {7‘2 : ADF,, < cvg—r} (13)
TEG[f'eul}

where cvl? is the 100(1 — B7)% critical value of the standard ADF statistic based on [T'rs]

observations.®:?

Similarly, the estimates of the bubble period based on the GSADF are given by

7o = inf {7”2 : BSADEF,,(ro) > CUZTTQ} (14)
r2€(ro,1]

’ff = 1I[1Af 1 {’I"Q : BSADFT2 (7"0) < CUiTT2 } (15)
r2€|Te,

where cvPl is the 100(1 — B7)% critical value of the sup ADF statistic based on [T'ro] obser-
vations. BSADF(rg) for ra € [rg, 1], is the backwards sup ADF statistic that relates to the
GSADF statistic by noting that

GSADF(rg) = sup {BSADF,,(ro)}. (16)

TQE[TOJ-}

4. Instructions

4.1. Installation

In essence, EViews Add-ins are EViews programs packed in a way that makes them feel and
look like built-in EViews procedures.!? This relatively new feature enables adding procedures
and functionalities that have yet to be implemented in official releases of EViews. By using
the Add-ins feature and program language, the user is able to augment standard written
programs with interactive user interface, thus making them more general purposed and user
friendly. Moreover, unlike regular EViews programs, add-ins have the ability to run directly
from EViews objects and/or by commands.

EViews add-ins are available for EViews users with versions 7.1 and above. Installing the

Rtadf add-in (or any other add-ins for that matter) on an existing copy of EViews can be
done manually by downloading the self extracting installation file from the download section

8In order to asymptotically eliminate type I errors there is a need to let 87 — 0 as T' — 0. However in
applied work it is convenient to use a constant Bt such as 5%.

9Phillips and Yu (2011) argue that the dating rule requires that the duration of the bubble be non-negligible.
In Phillips et al. (2013) the authors define log(T")/T as a minimal lasting time for a bubble period.

10T R users, the concept is similar to R packages as with MATLAB users and tool-boxes.



at the EViews website at http://www.eviews.com/Addins/addins.shtml where it is listed
under Rtadf*.!! Alternatively, EViews users with version 8, can download the add-in while
inside EViews by clicking Add-ins — Manage Add-ins, selecting the Rtadf add-in from
the list presented under the Available tab and clicking the Install button. In general, note
that all other add-ins available in the list, are written either by the EViews staff or by outside
users.

Each Add-in published on the EViews website (including Rtadf) has a corresponding support
thread in the EViews Add-in Support forum, which can be found at http://forums.eviews.
com/viewforum.php?f=2.

4.2. Using the add-in

The Rtadf add-in can only be run from a series object. Initiating the add-in’s dialog box is
done by opening a series object and than clicking Proc — Add-ins — Right Tail ADF
tests. The test dialog box, presented in Figure 5 enables the user to set the sample period,
type of test, initial window size (as a fraction or number of observations), deterministic terms
in the test equation and the information criteria for selecting the number of lags in the ADF
equation (p in Equation 9). In addition, it allows the user to choose the option of simulating
critical values for the test (thus prompting the simulation dialog box described below) and
whether to view a graph of the sequence of ADF statistics, the corresponding critical value
sequence and the actual series.

r R
Right Tailed ADF Tests e
Series name Indude in test equation
@ Constant
() Constant and trend
Sample -
() Mone
Choose test Lag length selection criteria for unit root
testing
1. ADF |
|ﬁxed =
Initial window size (as a fraction or no. ) ]
of observations, models 2-4 only) Mumber of lags (maximum for automatic

selection)

[ simulate critical values

[ 0K | | Cancel |

Figure 5: Dialog box.

Toggling the “simulate critical values” option prompts the simulation dialog box, presented in
Figure 6. Simulations for all four tests are performed according to the following steps:

1. Draw one realization at length 7" based on the null model (given by Equation (8)).
2. Estimate Equation 9 by OLS and store the relevant test statistic (ADF/RADF /SADF/GSADF).

3. Repeat steps 1 and 2 N times (where N is a large number, say 2,000.)

HThe asterisk next to the add-in’s name indicates the add-in was developed by an EViews user rather than
by THS EViews.



4. Calculate the 90%, 95% and 99% quantiles of the distribution of the relevant statistic.

Quantiles calculated in step 4 can then be used for testing the null of unit root against the
alternative of an explosive process. In addition, the simulation output includes the p-value
of the test statistic, defined as the probability of observing a statistic as extreme as we did
under the null, calculated as

N

PE) = 3 S0 > ), (17)

where 7 is the estimated test statistic (ADF, RADF, SADF or GSADF), N is the number of
replications, I(-) denotes the indicator function which is equal to 1 if the argument is true and
0 otherwise and 7; are the simulated test statistics (j = 1,---, N). The sequences of critical
values, which are necessary for the date-stamping procedure, are also derived as a by-product
of the recursive and rolling simulations.

Simulation setup in Rtadf is very flexible, allowing the user to specify the type of test, appro-
priate sample size, number of replications, number of run-in observations, deterministic terms
in the test equation, initial window size, significance level for the critical value sequence (i.e.,
B), specification for the parameters of the data generating process for the null hypothesis (i.e.,
set values for d, n and 6 in Equation (8)). In addition the user can choose whether to use
T or Try in the null model when calculating the simulated critical value sequence (the later
is more accurate but can be very time consuming for large samples while the former is less
accurate but faster).'> As mentioned previously, the output of the simulation procedure is
the 90, 95 and 99 percent quantiles of the finite sample distribution of the statistic in ques-
tion, the relevant p-value of the test statistic and the relevant critical values sequence for the
date-stamping process.

Simulate finite sample distribution and critical values &J
A. Choose test: C. Choose the critical values sequence's
| 1. ADF = significance level;

B. Choose simulation specifications: beta

Sample size (T}
D. Choose the parameters for the null
model:

RS x(t) = d*T4(-eta) +heta™(t-1)+e()

d

Run-in observations

eta
Indude in test equation
@ Constant
() Constant and trend
(7 None

theta

e - " [ Use accurate sample size for the CV!
Initial wm_dow size (fraction or " equence (T w instead of T)
Bsehvation) L R G e

[ 0K ] | Cancel |

Figure 6: Critical values simulation dialog box.

12Note that by default, sample size and the initial window size used in the previous step are shown in the
simulation dialog box.
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4.3. Usage via a command line

The Rtadf add-in can also be called upon via a command line. This feature enables using the
add-in’s capabilities as an integrated part of other EViews programs. The syntax is given by:

series_name.rtadf(options)

Basic options
const (default)

trend
none

info = arg (default = "fixed’)

lag = integer (default =’0")

Include a constant in the test equation.
Include a constant and a linear time trend in the test equation.
Do not include a constant or time trend.

Either fixed or information criterion to use when computing
automatic lag length selection: ’aic’ (Akaike), ’sic’ (Schwarz),
’hqe’ (Hannan-Quinn), 'maic’ (Modified Akaike), 'msic’ (Modified
Schwarz), ‘mhqc’ (Modified Hannan-Quinn).

Either a fixed number of lags (if "fixed’ is chosen for the ’info’ option)

or maximum lag length to consider when performing automatic lag
length selection.

Test options
model = integer (default = 1)

win = number (default=0.1)

Type of test: "1’ (ADF), "2’ (RADF), '3’ (SADF), "4’ (GSADF)

Initial window size (in fraction terms or in number of observations).

Simulation options

sim

rep = integer (default=1000)
d = number (default=1)

eta = number (default=1)
theta = number (default=1)
beta = [0,1] (default=0.95)

Trw

Simulate critical values.

Simulation’s number of replications.

See Equation (8).

See Equation (8).

See Equation (8).

Significance level for the critical values sequence. (see section 3.1.)

Use T'ry instead of T (default) for calculating of the sequence of
critical values.

Other options
graph

print

Create a graph of the results.
Print output from the test.

Table 1: Options for the command line.

where the available options are detailed in table 1. Next, we show a couple of command line

examples. First, the command:

snp.rtadf (const,model=3,print)

preforms an SADF test on the series SNP with the test equation including a constant term
and prints the results. Second, the command:



nasdaq.rtadf (trend,model=4,info=aic,lag=4,win=0.02,sim,rep=2000,graph,print)
preforms a GSADF test on the series NASDAQ with the test equation including a constant

term and a linear time trend and an initial window size of 2% of the sample, simulates critical
values using 2000 replications, generates a graph and prints the results.

5. Illustration

We now demonstrate in detail how to use Rtadf by replicating the results of the SADF test,
reported in Phillips et al. (2013), Table 8 (pp. 33) and Figure 8 (pp. 35). The analysis is
based on monthly data of the S&P 500 price-dividend ratio (the series object name in this
example is SNP) over the period of 1871:M1 to 2010:M12 that include 1680 observations, see
Figure 7.13

600
500
400+
3004
200

100

— T
1875 1900 1925 1950 1975 2000

Figure 7: S&P 500 price-dividend ratio, 1871:M1-2010:M12.

In order to start the bubble detection process with the price-dividend ratio (SNP) series, first
open the SNP series object and then click Proc — Add-ins — Right tail ADF tests (see
Figure 8). Next, specify the test parameters as in PSY (see Figure 10a) and then click the
OK button. Note that just like in PSY, the initial window size is set to 36 observations
(which constitutes approximately 2% of the whole sample), the lag length of the ADF test (p
in Equation 9) is set to zero. Make sure that the “simulating critical values” option is checked
so that the output includes the necessary critical values for testing the null hypothesis.

Simulation parameters’ specifications are also set in accordance with PSY by adjusting the
parameters in the simulation dialog box, which prompts right after clicking the OK button
in the main dialog box (see Figure 10b). Clicking OK results in finite sample critical values
for the conduction the SADF test.!'

13The data used by the authors can be downloaded from https://sites.google.com/site/shupingshi/
PrgGSADF .zip7attredirects=0.

4The simulation in this example may take a while since it involves running (1680 — 36) x 2000 = 3, 288, 000
regressions.(On our Intel Core i5 with 4GB of memory it took over an hour.)

11
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Summary output of the SADF test is displayed in Figure 10. The output is presented as
an EViews spool object and it includes two panels. The top panel is a table that holds the
estimated SADF t-statistic followed by the corresponding (right tail) 90%, 95% and 99%
critical values derived from the simulated statistic’s distribution. Note that the sup value of
this sequence is 3.443, whereas in Phillips et al. (2013) it equals 3.30. However, using the
MATLAB code published by the authors, gives an SADF statistic that equals 3.443.> The
simulated critical values, which appear below the SADF statistic, match exactly those in PSY,

(A Series: SNP - Workfile: SNP_PSJ::Untitled\

- 8 X

View Proclobject[?mpemes] [PrmtINameIFreeze] [Default

Generate by Equation...

Generate by Classification...

= | [sort[ edit=/- [ smpi-

g1M13-11:48

(o Resample...
187 Interpolate...
187
187 Seasonal Adjustment
_187 Exponential Smoothing...
187

187 Hedrick-Prescott Filter...

187 Frequency Filter...
Make Whitened...

187 Make Distribution Plot Data...

187 Add-ins
1872M01 108.0874
1872M02 107.1438
1872M03 109.3093
1872M04 110.9891
1872M05 109.6253
1872M0G 107.2876
1872M07 105.4178
1672M08 102.9421
1872M09 | «

Automatic ARIMA selection
Beveridge-Nelson Decomposition
Perron unit root test
Zivot-Andrews unit root test

Right Tailed ADF tests

11 3

Figure 8: S&P 500 SADF proc menu.

r
Right Tailed ADF Tests

=

Series name
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Sample
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(3. 5A0F (sup ADF) |

Initial window size (as a fraction or no.
of observations, models 2-4 only)
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[ o
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() Constant and trend
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Number of lags (maximum for automatic
selection)
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(a) Test dialog box.

Simulate finite sample distribution and critical values

[

A, Choose test:

|5, SADF (sup ADF)

B. Choose simulation spedfications:

Sample size (T)
1680

Replications
1000

Run-in observations
"]

Indude in test equation
@ Constant

(7 Constant and trend
17 Mane

Initial window size {fraction or
ol_:sarvaﬁ(_ms)
36

C. Choose the critical values sequence's
significance level:

beta
0.95

D, Choose the parameters for the null
model:

x(t) = d*T~(-eta) +Htheta™x(t-1) +e(t)

d
X

eta
b

theta
i

) Use accurate sample size for the CV
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Figure 9: Parameter settings for the S&P 500 SADF test and simulation.

Table 8.

5The add-in’s estimate of the GSADF statistic for the SNP series (not shown) is the same as the one in
PSY.



Period No. PSY Rtadf
1 1879:M10-1880:M4  1879:M5-1880:M4
2 1997:M07-2001:M8  1997:M7-2002:M5

Table 2: Comparison of date-stamping procedures results.

The bottom panel of the spool presents the date-stamping procedure for the SADF test. The
graph includes the SNP series (in green), the ADF,, statistic sequence (in blue) and the
corresponding 95% critical values sequence (in red). The add-in successfully identifies two
bubble periods, just like in PSY, though with minor differences in the start and end point
(see Table 2). In addition, the add-in identifies one bubble period lasting four months in the
beginning of the sample and a couple of "blips’ of bubbles lasting for one observation (i.e., one
month). The source of discrepancy might be due to differences in the random number gen-
erator used by each software. However, if we ignore “too-short-lasting” bubble periods (PSY
recommend to restrict identification to ones lasting more than log(7") units of time measures,
which in this case equals log(1680) ~ 7 months), the results are very similar. Note that the

Spool: RTADF_SPOOL Workfile: SNP_DATA:Untitled' - B8 X

[V\ewlProclDmecthroperties] [Print[NamelFreeze] I1DD?'; v] [TreefJ-IBorder

-

Right Tailed ADF Tests

Sample - 187101 2010M12
Included observations: 1680

Null hypothesis: SMP has a unitroot
Lag Length: Fixed, lag=0

‘Window size: 36

Date: 03/27/114 Time: 10:10

m

t-Statistic Prob.*

SADF 3.443243 0.0000
Test critical values: 99% level 2166738
95% level 1.706947
90% level 1.457789
*Right-tailed test
SADF test

S
T
w
=
=)

_wwmn
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foward ADF sequence (left axis)
—— 55% aitial valus ssquence (=t sxis)
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Figure 10: S&P 500 SADF output.
whole procedure described in this section can be accomplished via a single command line:
snp.rtadf (model=3,win=36,sim,rep=2000,Trw,graph,print)

Concluding the illustration, the SADF test results point to the presence of at least one bubble
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in the S&P 500 price index at the 1% significance level (since 3.443 > 2.141). However, since
there seem to be evidence for at least two bubble periods (1879-80 and 1997-2002), as a second
step (which is not perused here), there is a justification to use the GSADF test.

6. Concluding remarks

This paper presents a new EViews add-in, Rtadf, that implements newly developed asset price
bubble detection strategies, all based on right tail versions of the standard reduced form ADF
unit root test, where the null of unit root is tested against the alternative of a mildly explosive
process. In this case, rejection of the null for a specific time series may serve as evidence of
an asset price bubble.

This paper began with a short background on the methodological developments of reduced
form econometric approaches for bubble detection alongside a theoretical asset pricing model
which helps to clarify the rationale behind the reduced form approach. Next, we gave a brief
technical discussion on the bubble detection tests included in Rtadf, and finally, a simple
illustration of using the add-in in the context of the S&P 500 stocks index was presented.
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