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Abstract 

Models decomposing the redistributive effect of fiscal systems into vertical and horizontal effects 

are extensively used by practitioners. The Duclos, Jalbert, and Araar’s (2003) model, despite its 

advantages, has not yet been widely employed in empirical research, possibly due to a relatively 

challenging implementation procedure that involves the estimation of expected post-fiscal incomes. 

To override these difficulties the designers of the software DAD (Duclos, Araar, and Fortin 2010) 

have incorporated a module for implementation of the model. However, the application of this 

module on Croatian tax-benefit system data revealed certain inaccuracies in the results. Carefully 

unfolding the calculation and estimation procedures needed for implementation of the model, this 

paper instructs practitioners on how to correctly apply the model and helps DAD designers improve 

their module.  

Keywords: redistributive effect, vertical equity, horizontal inequity, pre-fiscal equals 
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1 INTRODUCTION 

Duclos, Jalbert, and Araar (2003) (henceforth DJA) have designed a comprehensive model to 

decompose the redistributive effect (RE) of a fiscal system into vertical, classical horizontal inequity 

(henceforth CHI), and reranking effects. The model is built into the framework of the Atkinson-Gini 

social welfare function (henceforth AGF), which first converts incomes into utilities employing the 

Atkinson’s (1970) utility function, and then aggregates utilities using rank-dependent weights, 

which underlie the S-Gini and S-concentration coefficients proposed by Donaldson and Weymark 

(1980) and Yitzhaki (1983).1 

The DJA model has certain advantages over its competitors, the widely acknowledged 

Kakwani’s (1984) (henceforth K84) and the Aronson, Johnson, and Lambert’s (1994) (henceforth 

AJL) decompositions of RE. To measure the CHI effect, the researcher must determine the set of 

counterfactual CHI-free or expected post-fiscal incomes (EPIs). While the AJL model relies on the 

formation of arbitrary groups of close equals in this task, the DJA model employs purposefully 

designed statistical procedures. Consequently, the implementation of the DJA model requires a 

certain expertise related to data smoothing and curve-fitting methods. To facilitate the application 

of the DJA model in empirical analysis, a module for calculation of the DJA indices from the sample 

data is incorporated into the software DAD (Duclos, Araar, and Fortin 2010) (henceforth DAD-DJA).  

The use of DAD-DJA in research on the Croatian tax-benefit system revealed certain 

inaccuracies in the results. Specifically, when the ethical parameter of AGF is set to zero, the CHI 

effect in the DJA model should be equal to zero by construction. However, the estimated value of the 

CHI effect was significantly different from zero. Analysis has shown that DAD-DJA produces upward 

biased estimates of EPIs in the low pre-fiscal income region. Furthermore, it was revealed that the 

fitting procedure in DAD-DJA contains a ‘bug’, producing unreasonably high estimates of EPIs for the 

top pre-fiscal income units in the sample.  
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In an attempt to obtain fully accurate estimates of DJA indices, independent procedures have 

been developed. They are thoroughly explained in this paper to assist practitioners in implementing 

the DJA model and to help DAD designers improve the working of DAD-DJA. A brief overview of data 

smoothing methods is provided, accompanied by advice on how to accurately obtain EPIs estimates. 

Relationships with other measurement models are explained. 

The rest of the paper is organized as follows. Section 2 briefly exposes the elements of the 

DJA model and its connections with other decompositions. Section 3 extensively describes the 

procedures of data preparation, estimation and calculation of various elements of the DJA model, 

and employs them on a simple hypothetical population of four income units. In section 4 the 

procedures are applied to data on the Croatian tax-benefit system, and the results are compared 

with those obtained by DAD-DJA. Section 5 concludes the paper. 

2 THE DUCLOS-JALBERT-ARAAR MODEL 

Post-fiscal income is equal to pre-fiscal income minus taxes plus benefits. The change of income 

inequality induced by a fiscal system consisting of taxes and benefits is called the redistributive 

effect (RE). In measurement terms, we have that ∆� ���� � ����, where ∆ represents RE, and ���� 

and ���� are indices of pre- and post-fiscal income inequality.  

In the DJA model, inequality indices ��·� are derived using the Atkinson-Gini social welfare 

function, proposed by Araar and Duclos (2003, 2006). For pre-fiscal income we have that 


��, �, ν� �  ������, ��
�

�
���, ν���       �1� 

where � is the ethical parameter configuring the Atkinson’s (1970) utility function, ������, �� �

���������/�1 � �� for � � 1, and ������, �� � ln������ for � � 1, with � denoting the quantiles of 

the pre-fiscal income distribution, and ���� the income at quantile �. The term ν is another ethical 

parameter, characterizing the Donaldson and Weymark’s (1980) and Yitzhaki’s (1983) S-Gini rank-

dependent weighting scheme, ���, ν� � ν�1 � ��ν��. The equally distributed equivalent income is 
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an inverse function of 
�·� and is obtained as ξ��, �, ν� � ��1 � ��
��, �, ν���/����� for � � 1, and 

ξ��, �, ν� � exp�
��, �, ν�� for � � 1. Finally, the Atkinson-Gini inequality index is calculated as 

follows: 

���� � 1 � ξ��, �, ν�/!"        (2) 

where !" is the mean pre-fiscal income. ���� is obtained analogously, using the quantiles of the 

post-fiscal income distribution. 

The DJA model decomposes RE as follows: 

∆� # � $ � % � ����� � ���&�� � ����'� � ���&�� � ����� � ���'��   (3) 

The vertical effect, # � ���� � ���&�, represents the potential RE or the reduction of 

inequality that would be achieved by the counterfactual, CHI-free system. The discrepancy between 

potential and actual RE is divided into a CHI effect, $ � ���'� � ���&�, and a reranking effect, 

% � ���� � ���'�, which measure two different manifestations of horizontal inequity (HI). The 

former effect (C) measures HI emerging from violation of the ‘classical horizontal equity principle’, 

which says that equals should be treated equally. The latter effect (R) evaluates HI arising from 

infringement of the ‘no-reranking principle’, which requires the fiscal process to not change the 

ranks of income units in transition from pre- to post-fiscal income. Take, for example, four 

households of equal size. A and B have pre-fiscal incomes of 10 each, whereas C and D have pre-

fiscal incomes of 20 each. Suppose that A, B, C, and D end up with post-fiscal incomes of 8, 16, 12, 

and 24, respectively. Between pre-fiscal equals (A and B; C and D) CHI has occurred, whereas 

between pre-fiscal unequals (B and C) reranking has taken place. 

In equation (3), ���&� is the inequality index obtained for EPIs, equal to �&��� �
 ��(|���(�� , where ��(|�� denotes a post-fiscal income at the qth quantile among all those income 

units belonging to the pth quantile of the pre-fiscal income distribution. ���'� represents the 
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inequality index obtained for expected post-fiscal utilities (EPUs) at quantile p, �'��, �� �
 ����(|��, ���(�� . For �&��� and �'��, �� we obtain the respective social welfare functions 


��& , �, ν� �  ���&���, ���� ���, ν��� and 
��', �, ν� �  �'��, ���� ���, ν���, while the 

corresponding inequality indices are ���&� � 1 � ξ��& , �, ν�/!*  and ���'� � 1 � ξ��' , �, ν�/!*, 

where !* is the mean post-fiscal income. 

In the special case where � � 0, utilities are identical to incomes: ��:, 0� � :. Therefore, we 

have that ����(|��, �� � ��(|�� across all p and ��(|��, and it follows that 
��& , 0, ν� �


��' , 0, ν� and ���& , 0, ν� � ���', 0, ν�. The consequence for the DJA model is that the CHI effect 

collapses to zero, and the decomposition �3� can be rewritten as 

∆�0, ν� � #�0, ν� � %�0, ν� � ����, 0, ν� � ���& , 0, ν�� � ����, 0, ν� � ���& , 0, ν�� (4) 

It can be shown that ���, 0, ν�, ���, 0, ν�, and ���&, 0, ν� are the S-Gini coefficient of pre-fiscal 

income, H��, ν�, the S-Gini coefficient of post-fiscal income, H��, ν�, and the S-concentration 

coefficient of post-fiscal income, I��, ν�, respectively.2 

Consequently, #�0, ν� is equal to the S-Gini Kakwani’s (1984) index of vertical effect, 

#J�ν� � H��, ν� � I��, ν�, and %�0, ν� is the S-Gini Atkinson (1980), Plotnick (1981), and 

Kakwani’s (1984) index of reranking, %K'J�ν� � H��, ν� � I��, ν�. The Kakwani’s (1984) 

decomposition of RE into vertical and horizontal components can be rewritten in S-Gini terms as 

∆�ν� � #J�ν� � %K'J�ν� � �H��, ν� � I��, ν�� � �H��, ν� � I��, ν��  (5) 

In another special case, where ν � 1, the weights ���, ν� are equal for all p and the 

reranking effect disappears. For � L 0, the vertical and CHI effect, #��, 1� and $��, 1�, become the 

indices consistent with the Duclos and Lambert’s (2000) model of HI measurement.3 
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3 CALCULATION OF INDICES 

3.1. Data Preparation 

A typical research uses the following data for a household or family i: (a) unequivalized pre- and 

post-fiscal incomes, �MN  and �MN; (b) survey frequency (or sampling) weights, ON; and (c) equivalence 

factor PN. The equivalized pre- and post-fiscal incomes are �N � �MN/PN and �N � �MN/PN (hereafter we 

deal only with equivalized incomes, calling them plainly pre- and post-fiscal incomes). The 

frequency weights are defined as φN � ONPN. Thus, the equivalence factor PN is employed both for 

deriving the equivalized income and for weighting households of different types.4 

We form the 3 Q R matrix S�, where R is the number of households in the sample: 

S� � T�� …     �N …     �V�� …    �N …     �V
φ� …    φN …     φV

W        (6) 

To obtain the matrix SX (SY), the columns in S� are sorted in increasing order of the 

values from the first (second) row: 

SX � T��X …    �NX …     �VX��X …    �NX  …     �VX
φ�X …    φNX …     φVX

W;             SY � T��Y …    �NY …     �VY��Y …    �NY  …     �VY
φ�Y …    φNY …     φVY

W  (7) 

From SX we take out the values �NX, �NX, and φNX , while from SY the values �NY and φNY . and 

are extracted. Notice that the superscript x (n) denotes that income units are sorted in increasing 

order of pre-fiscal (post-fiscal) income. 

The sample estimates of quantiles p and the weights ���, ν� are obtained in the following 

manner: 

�ZNX � �2Σ��� ∑ ]φX̂ _ φ^��X `N̂ a�           �bNX,ν � �Σ���ν�1 � �ZNX�ν��        (8) 
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where Σ � ∑ φX̂V̂a�  and φ�X � 0. 

When a large group of pre-fiscal exact equals exists in the sample, one of the inequality 

indices would be biased if based on the weights �bNX,ν, namely, �cd�NX, �, ν; �bNX,νf from equation (17) 

(see later discussion). Therefore, we derive a new set of weights, ωgNX,ν. Assume that income units 

h � 1, … , i have zero pre-fiscal incomes, i.e., ��X � �jX � k � �lX � 0, and corresponding post-fiscal 

incomes ��X, �jX, … , �lX. The procedure described by equation (8) automatically ascribes to these 

units the weights that are strictly decreasing in i and �ZNX, i.e., �b�X,ν L k L �blX,ν, although all these 

units have equal pre-fiscal income and rank. Therefore, we replace them with the new set of weights 

obtained as follows: 

ωgNX,ν � d∑ φmXlma� f�� ∑ φnX · �bnX,νlna� ,  for h � 1, … , i        
ωgNX,ν � �bNX,ν,     for h L i     (9) 

Thus, the original weights �bNX,ν of pre-fiscal equals are transformed into their group average. 

An analogous procedure should be applied to other large groups of pre-fiscal equals, if they exist in 

the sample. 

Alternatively, we could use the original weights and randomize the order of income units 

within each group of exact pre-fiscal equals. This procedure would reduce the bias to an 

insignificant level, but each possible ordering of income units would still result in different values of 

�cd�NX, �, ν; �bNX,νf. However, for purposes of consistency and transparency, the use of weights ωgNX,ν is 

recommended. For all the other indices derived below, it is irrelevant whether the weights �bNX,ν or 

ωgNX,ν are employed, because the income vectors they are based upon (namely, �NX, �N,�' , and �N&) have 

identical values within a group of exact pre-fiscal equals.  

Finally, analogously to the above procedures, the estimates ωgNY,ν are obtained from φNY  (for 

calculation of the inequality index based on �NY). 
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3.2 Indices of Inequality 

The following equations show how to obtain utilities, the Gini-Atkinson welfare index, and the 

inequality index for pre-fiscal incomes �NX, when � � 1: 

���NX, �� � ��NX����/�1 � ��          


o d�NX, �, ν;ωgNX,νf � ∑ �d�̂X, �f · φX̂ · ωg X̂,νV̂a�         

�pd�NX, �, ν;ωgNX,νf � 1 � q�1 � ��
o d�NX, �, ν;ωgNX,νfr sstu/!̂��NX�    (10) 

where !̂��NX� � �Σ��� ∑ φX̂ ·V̂a� �̂X is the mean pre-fiscal income. To shorten the presentation, the 

formulas referring to the case where � � 1 are omitted. Analogously, the utilities and indices for 

post-fiscal incomes �NY are obtained, as shown by equation (16) in the Appendix. 

�pd�NX, �, ν;ωgNX,νf and �pd�NY, �, ν;ωgNY,νf from (10) and (16) are the sample estimates of the 

indices of pre- and post-fiscal income inequality, ���� and ����. As equation (3) indicates, the 

application of the DJA model requires the estimates of two other indices, ���&� and ���'�, derived 

from EPIs, �&���, and EPUs, �'��, ��. 

To obtain the sample estimates of EPUs, �N,�' , we should smooth a dataset 

w�NX, ���NX, ��; φNXxNa�V
. For each value of ε , we estimate the regression relationship ���NX, �� �

y',���NX� _ zN , to obtain the approximation y{',��·�. Subsequently, the vector of fitted values is 

calculated as �N,�' � y{',���NX�.  

However, the following identity says that the whole procedure of estimating EPUs can be 

circumvented, saving the practitioner’s time and energy in sensitivity analysis using multiple 

scenarios for ν and �. Genuinely, the sample estimate of ���'� is equal to �pd�N,�' , �, ν;ωgNX,νf from 

equation (20), but it can be derived more simply by the inequality index �pd�NX, �, ν;ωgNX,νf from 

equation (18), because of the following equality: 

�pd�N,�' , �, ν;ωgNX,νf � �pd�NX, �, ν;ωgNX,νf       (11) 
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To understand why (11) holds, recall that �'��, �� �  ����(|��, ���(��  and notice that the 

theoretical values ��(|�� are represented by the sample values ��X. Imagine the population 

consisting of two groups of exact pre-fiscal equals: B income units have pre-fiscal income ����X  and 

post-fiscal incomes ��X, … , �|X, while F income units have pre-fiscal income ��j�X L ����X  and post-

fiscal incomes �|}�X , … , �|}~X . Their rank-dependent weights are ωg�X,ν � k � ωg|X,ν � ωg���X,ν  and 

ωg|}�X,ν � k � ωg|}~X,ν � ωg�j�X,ν. For given �, the values of expected post-fiscal utilities, �N,�' , are obtained 

as averages of utilities ����,�' � ��� ∑ �d�̂X, �f|̂a�  and ��j�,�' � ��� ∑ �d�̂X, �f|}~^a|}� . The welfare is 

then obtained by (20) as 


o d�N,�' , �, ν;ωgNX,νf � � · ωg���X,ν · ��� � �d�̂X, �f|
^a� _ � · ωg�j�X,ν · ��� � �d�̂X, �f|}~

^a|}�
 � ωg���X,ν · � �d�̂X, �f|

^a� _ ωg�j�X,ν · � �d�̂X, �f|}~
^a|}�  

Observe that according to (18) we would obtain the identical result for 
o d�NY, �, ν;ωgNY,νf. 

Consequently, �pd�N,�' , �, ν;ωgNX,νf and �pd�NX, �, ν;ωgNX,νf are also identical. 

3.3 Estimation of Expected Post-fiscal Incomes and Utilities 

Unlike the estimation of EPUs, the evaluation of EPIs cannot be avoided. To obtain the sample 

estimates of �&���, we must smooth a dataset w�NX, �NX; φNXxNa�V
, i.e., approximate the mean response 

curve y& in the regression relationship �NX � y&��NX� _ �N . The estimates of EPIs are then obtained 

as �N& � y{ &��NX�, where y{ &��NX� is the approximation of y&. 

The estimation of EPIs represents the greatest challenge in the implementation of the DJA 

model. Although parametric models (such as polynomial regression) can be appropriate for some 

datasets, it is better to rely on non-parametric approaches, assuming no a priori functional 

relationship between post- and pre-fiscal incomes. One such approach is the ‘kernel-weighted local 

polynomial regression’ (KWLPR). A description of the method can be found in Fan and Gijbels 
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(1996), Wand and Jones (1995), Keele (2008), and Härdle (1990), while the software applications 

include Stata 12 (function lcpoly), R (function loess, package lokern, etc.), and XploRe (function 

lpregxest).  

The choice of the degree of polynomial (p), the type of the kernel function, and the size of the 

kernel half-bandwidth rests on the analyst. For � � 0, KWLPR becomes the ‘Nadaraya-Watson 

estimator’ (NWE), while for � � 1 we obtain the ‘local linear estimator’ (LLE). Fan and Gijbels 

(1996) explain that the odd degree polynomials achieve the best balance between bias and 

variability and automatically correct the boundary problem. 

Another interesting smoothing technique came to light during the research: the ‘Fourier 

series in trigonometric form’ (FSTF), which is a sum of sine and cosine functions describing a 

periodic signal (Faunt and Johnson 1992). The estimation procedure is programmed in Matlab 

R2011b’s Curve Fitting Toolbox 3.2, which contains several other fitting methods, such as 

smoothing splines. 

DAD-DJA and supporting documentation5 do not inform us which fitting method is used to 

obtain EPIs for estimation of DJA indices. However, DAD incorporates a separate module, ‘Non 

Parametric Regression’, enabling us to estimate EPIs independently of DAD-DJA. Two basic methods 

are offered: NWE and LLE (henceforth DAD-NWE and DAD-LLE). Experimentation with different 

options and choices offered by the module revealed that in estimating EPIs DAD-DJA in fact employs 

DAD-LLE, using the default set of parameters. 

Before moving further, we offer the following advice to help judge whether the estimates �N& 

are appropriate for use in the DJA model implementation.  

(a) Although the fitting methods and their software implementations ensure optimality in the 

statistical sense, the analyst still has the freedom and the responsibility to change some of the 

parameters or the whole estimation method if the results contradict her/his knowledge of the 

appropriate shape of the EPIs curve. An example is a too ‘wiggly’ curve, in which case we have to 
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‘stretch’ it, perhaps by raising the kernel half-bandwidth. Another example may be the existence of 

certain kinks or local minimums (maximums) we are aware of, which are not reflected by the EPIs 

estimate. 

(b)  For certain data points the programmed fitting procedures may produce irregular results. 

Some software tools are ‘smart’ in such cases, leaving a blank space instead of the estimate, while 

others are not. Anyway, if this happens we should fill in the corresponding estimate manually, using 

the best-guess approach.  

(c) A simple preliminary test of the correctness of the approximation y{ &��NX� is to check 

whether the mean value of the estimated values �N& is approximately equal to the mean of the 

sample values �NX, i.e., if 

!̂d�N&f � !̂��NX�         (12) 

(d) The discussion in section 2 indicated that when � � 0, we have that ���NX, 0� � �NX, and 

�N,�' � �N&. Therefore, equation (11) becomes 

�pd�N& , 0, ν;ωgNX,νf � �pd�N,�' , 0, ν;ωgNX,νf � �pd�NX, 0, ν;ωgNX,νf     (13) 

From equation (13) follows another test: the inequality indices �pd�N& , 0, ν;ωgNX,νf, obtained by 

equation (19), for different values of parameter ν should be (approximately) equal to the inequality 

indices obtained for �pd�NX, 0, ν;ωgNX,νf. Otherwise, the estimates of the DJA indices would be biased, 

and we should try to obtain an alternative configuration of y{ &��NX�. 

3.4 Decompositions  

Having defined all the indices needed, we can present RE and its decompositions in terms of sample 

estimate formulas. RE is obtained as ∆�� �p��NX� � �p��NY�. According to the DJA model from (3), RE is 

decomposed as follows: 

∆�� #� � $p �  %� � 
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� q�p��NX� � �pd�N&fr � q�pd�N,�' f � �pd�N&fr � q�p��NY� � �pd�N,�' fr � � q�p��NX� � �pd�N&fr � q�p��NX� � �pd�N&fr � q�p��NY� � �p��NX�r    (14) 

where the last row in equation (14) arrives from the property (11), by which �pd�N,�' f � �p��NX�. The 

differences in the brackets, i.e., #� � �p��NX� � �pd�N&f, $p � �pd�N,�' f � �pd�N&f � �p��NX� � �pd�N&f, and 

%� � �p��NY� � �pd�N,�' f � �p��NY� � �p��NX�, are respectively the sample estimates of the vertical, CHI, and 

reranking effects of the DJA model. Note that, if �c��NX� is used instead of �p��NX�, the CHI and 

reranking effects would be biased. Furthermore, if the estimates �N& are inappropriate, the vertical 

and CHI effect would be biased. 

Setting � � 0 and following (4) and (5), we can calculate the S-Gini K84 decomposition as 

∆��  #J� �ν� �  %K'J� �ν� � q�pd�NX, 0,ν;ωgNX,νf � �pd�NX, 0,ν;ωgNX,νfr � q�pd�NY, 0, ν;ωgNY,νf � �pd�NX, 0, ν;ωgNX,νfr  (15) 

3.5 Simple Hypothetical Example  

We return to the example of four hypothetical households from section 2 to illustrate how the DJA 

model implementation procedures work. There are two groups of pre-fiscal equals in the sample: A 

and B with pre-fiscal income of 10 each belong to the lower quantile, whereas C and D with pre-

fiscal income of 20 each belong to the upper quantile of pre-fiscal income distribution.  

The first column in Table 1 shows the ‘original’ weights �bNX,ν obtained by (8) for ν � 2; 

observe that A (C) obtains larger weight than B (D), although they belong to same pre-fiscal 

quantile. Therefore, analogously to the procedure from equation (9), we obtain the new set of 

weights, ωgNX,ν: for A and B (C and D) we have ωg�X � ωgjX � ��b�X _ �bjX�/2 [ωg�X � ωg�X � ��b�X _ �b�X�/2]. 

Table 1 

As equation (11) explains, the estimate of ���'� can be obtained in two ways: by �pd�N,�' f or 

by �p��NX�. In the former case, we first obtain the values �N,�' , which are the sample estimates of 

�'��, �� �  ����(|��, ���(�� . The values ��(|�� for the lower (upper) quantile are represented by 
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��X and �jX (��X and ��X), and the corresponding utilities are ����X� and ���jX� [����X� and ����X�]. 

The expected post-fiscal utility at each quantile is simply the average utility of units belonging to the 

corresponding quantile: ��' � �j' � �����X� _ ���jX��/2 and ��' � ��' � �����X� _ ����X��/2, for 

the lower and the upper quantiles, respectively.  

According to (20), for ν � 2 and � � 0.5 we have that 


o d�N,�' , �, ν;ωgNX,νf � 2 · ��' · ωg�X _ 2 · ��' · ωg�X � 7.21 

and �pd�N,�' , �, ν;ωgNX,νf � 0.133. Substituting back previously obtained utility terms into the expression 

for welfare, we obtain  


o d�N,�' , �, ν;ωgNX,νf � �����X� _ ���jX�� · ωg�X _ �����X� _ ����X�� · ωg�X � 7.21 

which is identical to the result that would be obtained by (18): 


o d�NX, �, ν;ωgNX,νf � ����X� · ωg�X _ ���jX� · ωgjX _ ����X� · ωg�X _ ����X� · ωg�X � 7.21, 

Thus, our hypothetical example confirms the identity (11). On the other hand, indices based 

on the ‘wrong’ weights, �bNX,ν, would produce quite a different picture. By (17) we have  


� d�NX, �, ν; �bNX,νf � ����X� · �b�X _ ���jX� · �bjX _ ����X� · �b�X _ ����X� · �b�X � 6.89, 

and �cd�NX, �, ν; �bNX,νf � 0.210. 

The estimate of ���&� is obtained as �pd�N& , �, ν;ωgNX,νf from (19), which is in turn based on 

sample estimates �N& of �&��� �  ��(|���(�� . In this example we can simply calculate ��& � �j& �
���X _ �jX�/2 and ��& � ��& � ���X _ ��X�/2. According to (19), 


o d�N& , �, ν;ωgNX,νf � 2 · ��& · ωg�X _ 2 · ��& · ωg�X � 7.32, 

and �pd�N&, �, ν;ωgNX,νf � 0.108. 
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All inequality indices for ν � 2 and � � 0.5 are presented in the first column of Table 2, 

together with the DJA decomposition results. Although the vertical effect of the hypothetical system 

is positive (#� � 0.081), the redistributive effect is negative (∆�� �0.052), because the CHI effect 

($p � 0.026) and especially the reranking effect (%� � 0.107) are very large. 

Table 2 

Another set of CHI and reranking effects is derived using �c��NX�, which is based on the 

weights �bNX,ν. They show a completely different picture of the relative contributions of CHI 

($c � 0.102 vs. $p � 0.026) and reranking (%� � 0.030 vs. %� � 0.107) to the overall HI. We have 

indicated that the weights ωgNX,ν are the ‘right ones’, but to demonstrate this in our example, we have 

to obtain the indices for ν � 2 and � � 0, shown in the second column of Table 2. 

Recall that equation (13) says that the inequality indices based on �NX, �N,�' , and �N& must be 

equal when � � 0; this is true for �p��NX� � 0.100, but not for �c��NX� � 0.183. The difference 

�c��NX� � �p��NX� � 0.083 presents by how much the CHI effect, which should be zero when � � 0, is 

overestimated if the weights �bNX,ν are used in computation of the inequality index for post-fiscal 

incomes �NX. 

Finally, we look at how DAD-DJA deals with this small hypothetical case. The DAD 

supporting documentation tells us that the estimate of ���'� is obtained by the index based on �NX; 

its value for ν � 2 and � � 0 (0.183) is identical to �c��NX�. This indicates that DAD-DJA does not 

envisage the presence of exact equals in the sample. The third column in Table 2 shows the other 

results. The index �pd�N&f diverges highly from our estimate (0.500 vs. 0.100), but this may be due to 

the small sample size. We deal with the DAD-DJA estimates of EPIs in the next section. 



15 
 

4 APPLICATION: CROATIAN TAX-BENEFIT SYSTEM 

4.1 Data 

We analyze the fiscal system consisting of social security contributions (SSC) for the pension, health, 

and unemployment insurance funds, personal income tax and surtax (PITS), public pensions, and 

cash social benefits.6 The data on incomes come from the Croatian household budget survey (Anketa 

o potrošnji kućanstava; APK) for 2008, whose sample contains 3,108 households. Since APK 

registers only net incomes of household members, the amounts of pre-fiscal income, PITS, and SSC 

are obtained by a microsimulation model. 

Post-fiscal income of a household i is obtained as �MN � �MN � �MN _ �M N, where �MN, �MN, and �M N are 

pre-fiscal income, the sum of all taxes paid, and the sum of all benefits received. To obtain �N and �N, 
�MN and �MN are deflated by the equivalence factor PN according to the ‘modified OECD scale’, 

PN � 1 _ 0.5��N � 1� _ 0.3�N, where �N  and �N are numbers of adults and children in household i. 

Before analyzing the results of the DJA decomposition, we observe the features of the data 

set. The dots in the scattergram (Figure 1) are the post-fiscal and pre-fiscal incomes of sample 

income units, expressed in terms of the mean pre-fiscal income (mpfi). The full line shows EPIs 

obtained by KWLPR (see next section for details on estimation). The dotted line represents the 

cumulative density, which tells us, for each pre-fiscal income X, the proportion of all income units 

having pre-fiscal income below X (on the right axis). We can observe that quite a large proportion of 

units, about 7 percent, have zero pre-fiscal income (group A), while the next 13 percent of units 

have pre-fiscal income below 10 percent of mpfi (group B). 

Figure 1 

The mean post-fiscal incomes of groups A and B are 64 and 54 percent of mpfi, respectively. 

Observe that the EPIs curve is decreasing on the interval [0, 0.1]. The following three facts taken 

together can explain the curious feature that the mean post-fiscal income is decreasing. First, for the 
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majority of pensioners’ households a public pension is the only source of income; since public 

pensions are benefits in the current scenario, the pre-fiscal income of most pensioners’ households 

is zero. Second, majority of households with zero pre-fiscal income (group A) are pensioners’ 

households. Third, pensions are on average higher than other social benefits.  

4.2 Estimation of Expected Post-fiscal Incomes and the Decomposition 

The indices of the DJA decomposition are estimated by three models, using three different fitting 

methods described in section 3.3.  

In model A, EPIs are estimated by KWLPR programmed in Stata 12. Following Bilger (2008), 

we use the 3rd degree local polynomials, employing the Epanechnikov kernel. The optimal half-

bandwidth of the kernel obtained by the program was equal to 6.7 percent of mpfi and it was 

increased by one half. In model B, EPIs are obtained using FSTF programmed in Matlab R2011b’s 

Curve Fitting Toolbox 3.2. The number of harmonics is set to 7; the “Trust-Region” algorithm is 

employed with the robust fitting option turned off. In both models the top five pre-fiscal income 

units are excluded from the fitting process, and their values of �N& are set to the values of �NX. The 

size of the half-bandwidth in model A and the number of harmonics in model B are chosen to 

minimize the bias �pd�NX, 0, ν;ωgNX,νf � �pd�N&, 0, ν;ωgNX,νf. For the estimates of ���'�, we used 

�pd�NX, �, ν;ωgNX,νf with weights ωgNX,ν obtained by equation (9). 

The aim of model C is to replicate the results obtained by DAD-DJA. We employ DAD-LLE to 

estimate EPIs, with all observations included in the fitting process. To estimate ���'�, DAD-DJA also 

uses the index based on �NX, but does not envisage the possibility of pre-fiscal exact equals. To play 

down the bias in the calculation of reranking and CHI effects, we randomize the order of income 

units within the group of zero pre-fiscal equals; these data are then put into DAD-DJA to obtain the 

original estimates, while in the replication we calculate �cd�NX, �, ν; �bNX,νf. 
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Before moving on to the results, let us look at the shapes of the different EPIs curves, shown 

in Figure 2, concentrating first on the bottom part of the income distribution. While A and B both 

reflect the initial fall in expected post-fiscal income, discussed above, C does not, i.e., its EPIs curve is 

rather flat on the whole interval. For pre-fiscal income of zero all estimates are roughly the same, 

but in the pre-fiscal income interval [0.025, 0.42] of mpfi, C’s EPIs lie above those estimated by A 

and B. On the pre-fiscal income interval [0, 0.5] of mpfi the mean of EPIs obtained by A (B) is 0.5764 

(0.5775) of mpfi, which is very close to the mean post-fiscal income for actual values, equal to 

0.5762. On the other hand, the mean of EPIs obtained by C is 0.5881, or 2 percent above the actual 

mean. This suggests that C overestimates EPIs for the lowest incomes. For pre-fiscal incomes above 

0.5 of mpfi, the EPIs of B and C are almost identical, while the EPIs curve of A is “more flexible” and 

intertwining the other two curves. 

Figure 2 

Models A and B convincingly pass the test from equation (12), as the ratios !̂d�N&f/!̂��NX� in 

Table 3 are 0.999732 and 1.0, respectively. On the other hand, for method C, !̂d�N&f is 1.75 percent 

higher than !̂��NX�. This is partly the consequence of the earlier noticed overestimation on the 

interval [0, 0.5] of mpfi. However, there is another feature that is particularly odd: the estimate �N& 

for the two income units with top pre-fiscal incomes are 2.4 and 6.4 times larger than their 

respective actual post-fiscal incomes �NX! In this case we can talk about a ‘bug’ in DJA-LLE, which 

seriously damages the estimate of !̂d�N&f, which will lead to biased estimates of vertical and CHI 

effects, as we will soon observe. Table 3 shows the results of the DJA decomposition for ν � 2 and 

� � 0. All three models obtain equal values of �p��NX� and �p��NY�. Models A and B obtain the value of 

�p��NX� equal to 0.244337, which is almost insignificantly different from the value of �c��NX� obtained 

by model C, thanks to randomizing the order of income units within the group of zero pre-fiscal 

equals. If the units within the group of zero pre-fiscal equals were, by chance, sorted in increasing 
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(or decreasing) order of post-fiscal income, the difference ��c��NX� � �p��NX�� for the given data set 

could be as high as 0.001183. The reranking and CHI effects in model C could be seriously biased. 

Table 3 

The estimates �pd�N&f obtained by A and B are close to the value of  �p��NX�, as expected from 

equation (13); the differences �p��NX� � �pd�N&f are -0.000203 and -0.000180, or between -0.09 and 

0.08 percent of the corresponding RE (∆�). For the model C, the difference  �p��NX� � �pd�N&f is no less 

than -0.007104, or -3.3 percent of RE, meaning that the bias produced by C is about 35 times larger 

than the bias of A and B. 

Table 4 

Model C thus underestimates the vertical effect by about 3 percent of RE for  ν � 2 and � � 0. 

This underestimation is even larger (somewhat smaller) for  ν � 1.5 and � � 0 ( ν � 3 and � � 0) 

and amounts to 5.9 (2.4) percent of RE, as Table 4 indicates. Among the scenarios shown in Table 4, 

the differences in the estimates of vertical effect obtained by models C and A (B) are lowest when 

 ν � 2 and � � 0.9, equaling 0.8 (0.9) percent of RE. 

5 CONCLUSION 

Models decomposing the redistributive effect of fiscal systems into vertical and horizontal effects 

are extensively used by practitioners. The Duclos, Jalbert, and Araar (2003) model, despite its 

advantages over some other models, such as the Kakwani’s (1984) and the Aronson, Johnson and 

Lambert’s (1994) decompositions of RE, has not yet been broadly employed in empirical research. 

The reason may be the relatively complex implementation procedure, which involves non-

parametric methods in estimation of expected post-fiscal incomes. 

To override these estimation and calculation difficulties, the designers of the software DAD 

have incorporated a module for estimation of the DJA model indices, here referred to as DAD-DJA. 
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However, as the application data on the Croatian tax-benefit system indicates, DAD-DJA produces 

somewhat inaccurate estimates of EPIs, resulting in biased values of DJA model indices. This paper 

carefully explains the estimation procedures needed to obtain the indices of the DJA model, and the 

problems occurring in DAD-DJA implementation. 

The estimates of expected post-fiscal incomes are obtained by two fitting methods, kernel-

weighted local polynomial regression and Fourier series in trigonometric form. Both achieve 

reasonable fit of the data at stake, unlike the method built into DAD-DJA, which seems to 

overestimate EPIs at the bottom region of pre-fiscal income distribution. Furthermore, we have 

realized that the fitting procedure in DAD-DJA contains a ‘bug’, producing unreasonably high 

estimates of EPIs for the top pre-fiscal income units in the sample. 

We have shown how the estimation of EPUs can be circumvented, saving a practitioner time 

when doing multiple-scenario analysis. Instead of estimating EPUs for each different value of 

parameter ε , the index of inequality based on EPUs can be obtained simply by using post-fiscal 

incomes ordered according to pre-fiscal incomes. In this procedure, however, caution must be taken 

in the presence of large groups of exact pre-fiscal equals: they should all be ascribed identical 

ranking weights. Otherwise, an estimate of reranking effect would be biased. 
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APPENDIX 1 SAMPLE ESTIMATES OF INEQUALITY INDICES 

The sample estimates of Atkinson-Gini Inequality indices based on �NY , �NX , �N&  and �N' are obtained 

in the following equations: 

���NY, �� � ��NY����/�1 � ��          


o d�NY, �, ν;ωgNY,νf � ∑ �d�̂Y, �f · φŶ · ωgŶ,νV̂a�         

�pd�NY, �, ν;ωgNY,νf � 1 � q�1 � ��
o d�NY, �, ν;ωgNY,νfr sstu/!̂��NY�    (16) 

 ���NX, �� � ��NX����/�1 � ��          


� d�NX, �, ν; �bNX,νf � ∑ �d�̂X, �f · φX̂ · �bX̂,νV̂a�         

�cd�NX, �, ν; �bNX,νf � 1 � q�1 � ��
� d�NX, �, ν; �bNX,νfr sstu/!̂��NX�    (17) 

  
o d�NX, �, ν;ωgNX,νf � ∑ �d�̂X, �f · φX̂ · ωg X̂,νV̂a�         

�pd�NX, �, ν;ωgNX,νf � 1 � q�1 � ��
o d�NX, �, ν;ωgNX,νfr sstu/!̂��NX�    (18) 

 �d�N&, �f � d�N&f���/�1 � ��          


o d�N& , �, ν;ωgNX,νf � ∑ �d�̂& , �f · φX̂ · ωg X̂,νV̂a�         

�pd�N& , �, ν;ωgNX,νf � 1 � q�1 � ��
o d�N& , �, ν;ωgNX,νfr sstu/!̂d�N&f    (19) 

 
o d�N,�' , �, ν;ωgNX,νf � ∑ �N,�' · φX̂ · ωg X̂,νV̂a�         

�pd�N,�' , �, ν;ωgNX,νf � 1 � q�1 � ��
o d�N,�' , �, ν;ωgNX,νfr sstu/!̂��NX�    (20) 

where !̂��NY�, !̂��NX�, and !̂d�N&f are means of post-fiscal income variables, equal to !̂��NY� �
�Σ��� ∑ φŶ ·V̂a� �̂Y, !̂��NX� � �Σ��� ∑ φX̂ ·V̂a� �̂X, and !̂d�N&f � �Σ��� ∑ φX̂ ·V̂a� �̂& , respectively. It is 

clear that !̂��NX� � !̂��NY�, because �NX and �NY contain the same sample values, only differently 

sorted. 
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ENDNOTES 

1 Araar and Duclos (2003, 2006) describe the properties of AGF based inequality indices: “Income 

inequality aversion is captured by decreasing marginal utilities, and aversion to rank inequality is 

captured by rank-dependent ethical weights, thus providing an ethically-flexible dual basis for the 

assessment of inequality and equity” (Araar and Duclos 2006, 192). Furthermore, it is shown that 

AGF is the only family of social evaluation functions “to obey a set of popular axioms in the income 

distribution literature” (Araar and Duclos 2006, 204). 

2 Independent proof of this relationship can be found in Yitzhaki and Olkin (1991), who derive the 

“relative concentration curve” of post-fiscal income N with respect to pre-fiscal income X as 

$��, �, �� � �!*���  y�����"���~�ts����� , where y��� � ���|� � �� corresponds to �&���. Duclos 

and Araar (2006) present the same concentration curve as $��, �, �� � �!*���  �&������� , from 

which the S-Gini concentration coefficient is obtained as I��, ν� �  qd� � $��, �, ��fr�� ϖ��, ν�, 

where ϖ��, ν� � ν�ν � 1��1 � ��ν�j are rank-dependent weights. 

3 These authors have derived their indices using the “cost of inequality” approach, compared with 

the “change of inequality” approach used in this paper. Duclos, Jalbert, and Araar (2003) employ 

both approaches. 

4 According to Ebert (1997, 1999) this is the right approach to investigate the concepts of Lorenz 

dominance, social welfare function, and progressive transfers when populations are heterogeneous. 

Using the number of ‘real’ household members, �N, instead of the number of ‘equivalent’ members, 

PN, leads to “some unpleasant and unsatisfactory paradoxa or impossibility results”. The usual 

objection to this approach is that “not all persons have the same weight and significance”, which 

contradicts the democratic principles; for the rebuttal of this objection see Ebert (1999, 251). 

5 Available online at: http://132.203.59.36/DAD/manual/help_44.htm. 
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6 Basic support allowances, unemployment benefit, child allowance, sick-leave benefit, maternity 

and layette supplement, and supplement for the injured and support for rehabilitation and 

employment of people with disabilities. 
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TABLES 

Table 1 

Hypothetical population: weight, incomes, and utilities 
# �bNX ωgNX  �NX  �NX �NY �N&  ���NX� ���NX� ���NY� ���N&� �N,�'  

1 (A) 0.438 0.375 10 8 8 12 6.32 5.66 5.66 6.93 6.83 

2 (B) 0.313 0.375 10 16 12 12 6.32 8.00 6.93 6.93 6.83 

3 (C) 0.188 0.125 20 12 16 18 8.94 6.93 8.00 8.49 8.36 

4 (D) 0.063 0.125 20 24 24 18 8.94 9.80 9.80 8.49 8.36 

 1 1 60 60 60 60 30.54 30.38 30.38 30.83 30.38 

Note: weights are obtained for ν � 2; utilities are obtained for � � 0.5. 

 

 

 

 

Table 2 

Indices obtained for hypothetical population 

 
ν � 2 � � 0.5 

ν � 2 � � 0 

DAD-DJA 
ν � 2 � � 0 �p��NX� 0.188 0.167 0.167 �p��NY� 0.240 0.217 0.217 �c��NX� 0.210 0.183 0.183 �p��NX� 0.133 0.100  �pd�N,�' f 0.133 0.100  �p��N&� 0.108 0.100 0.500 ∆�� �p��NX� � �p��NY� -0.052 -0.050 -0.050 #� � �p��NX� � �p��N&� 0.081 0.067 -0.333 $p � �p��NX� � �p��N&� 0.026 0.000  %� � �p��NY� � �p��NX� 0.107 0.117  $c � �c��NX� � �p��N&� 0.102 0.083 -0.317 %� � �p��NY� � �c��NX� 0.030 0.033 0.033 
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Table 3 

Decomposition of redistributive effect for ν � 2 and � � 0 

 A B C A B C 

    As percentage of �p��NX� �p��NX� 0.506665 0.506665 0.506665 100.00 100.00 100.00 �p��NY� 0.291511 0.291511 0.291511 57.54 57.54 57.54 �c��NX�   0.244328   48.22 �p��NX� 0.244337 0.244337  48.22 48.22  �p��N&� 0.244540 0.244517 0.251432 48.26 48.26 49.62 

      As percentage of ∆�  ∆�  0.215154 0.215154 0.215154 100.00 100.00 100.00 #�  0.262124 0.262148 0.255233 121.83 121.84 118.63 $p  -0.000203 -0.000180 -0.007104 -0.09 -0.08 -3.30 %�  0.047174 0.047174 0.047183 21.93 21.93 21.93 

          !̂��N&�/!̂��NX�
 

0.999732 1.000000 1.017489    
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Table 4 

Decomposition of redistributive effect for different combinations of ν and � 

 A B C A B C 

 ν � 1.5 and � � 0 As percentage of ∆�  ∆�  0.143358 0.143358 0.143358 100.00 100.00 100.00 #�  0.167811 0.167880 0.159522 117.06 117.11 111.28 $p  -0.000139 -0.000070 -0.008432 -0.10 -0.05 -5.88 %�  0.024592 0.024592 0.024596 17.15 17.15 17.16 

 ν � 3 and � � 0 As percentage of ∆�  ∆�  0.287304 0.287304 0.287304 100.00 100.00 100.00 #�  0.374837 0.374568 0.368302 130.47 130.37 128.19 $p  -0.000258 -0.000527 -0.006815 -0.09 -0.18 -2.37 %�  0.087792 0.087792 0.087813 30.56 30.56 30.56 

 ν � 1.5 and � � 0.5 As percentage of ∆�  ∆�  0.303136 0.303136 0.303136 100.00 100.00 100.00 #�  0.350112 0.350366 0.343239 115.50 115.58 113.23 $p  0.023835 0.024088 0.016965 7.86 7.95 5.60 %�  0.023142 0.023142 0.023138 7.63 7.63 7.63 

 ν � 2 and � � 0.5 As percentage of ∆�  ∆�  0.352147 0.352147 0.352147 100.00 100.00 100.00 #�  0.422453 0.422651 0.416784 119.96 120.02 118.36 $p  0.026372 0.026570 0.020713 7.49 7.55 5.88 %�  0.043934 0.043934 0.043924 12.48 12.48 12.47 

 ν � 2 and � � 0.9 As percentage of ∆�  ∆�  0.577556 0.577556 0.577556 100.00 100.00 100.00 #�  0.670484 0.670828 0.665771 116.09 116.15 115.27 $p  0.051673 0.052018 0.047002 8.95 9.01 8.14 %�  0.041255 0.041255 0.041213 7.14 7.14 7.14 

 ν � 1 and � � 0.9 As percentage of ∆�  ∆�  0.592622 0.592622 0.592622 100.00 100.00 100.00 #�  0.635048 0.635456 0.627648 107.16 107.23 105.91 $p  0.042426 0.042834 0.035025 7.16 7.23 5.91 %�  0.000000 0.000000 0.000000 0.00 0.00 0.00 
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FIGURES 

 

Figure 1 

Scattergram of pre- and post-fiscal incomes 
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Notes: (a) each point represents one sample income unit; (b) EPIs – expected post-fiscal incomes 

obtained by KWLPR (see details in section 4.2); (c) CD – cumulative density function. 
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Figure 2 

Scattergram of pre- and post-fiscal incomes 
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Note: (a) each point represents one sample income unit; (b) A, B, and C – estimates of expected post-

fiscal incomes obtained by KWLPR, FTTF, and DJA-LLE fitting methods, respectively (see details in 

section 4.2). 

 


