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In this paper we model the conflict between the group of polluting firms of a country and the 

social planer of the same country which attempts to control the volume of emissions 

generated during the production process. Both players of the game have their own control 

policies which are the rate of emissions on behalf the polluting firms and the rate of pollution 

control (e.g. abatement or taxation) on behalf the home country. The common state variable 

of the model is the number of the polluting firms, which is better to minimized through the 

country’s control policy, but beneficial to maximized on the polluters’ side. From the game 

theoretic point of view the model setup is very simple and belongs in to the special class of 

differential games also called state separable differential games. An important property for 

these games is that the open#loop Nash equilibrium coincides with the Markovian (closed#

loop) equilibrium and in the case of hierarchical moves the analytical solutions are easy 

obtained. The game proposed here is analyzed for both types of equilibrium, i.e. Nash and 

Stackelberg. In the simultaneous move game (i.e. the Nash game) we find the equilibrium 

analytical expressions of the controls for both players as well as the steady state stock of the 

polluting firms. A sensitivity analysis of the crucial variables of the model takes place. In the 

hierarchical move game (i.e. the Stackelberg game) we find the equilibrium values of the 

controls as well as of the state variable. As a result a comparison between the two types of 

equilibrium for the game takes place. The analysis of the comparison reveals that the conflict 

is more intensive (since both controls have greater values) for the case in which the polluting 

firms play as the leader of the hierarchical move game. 

	

(� )�����		 Pollution control; Environmental Economics; Differential games. 
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The choice of the differential game models, in order to design efficiently conflicting 

situations between the polluters and the victims of pollution, is rather the rule than the 

exception. In this paper, we may use the efficiency of the differential game models to study 

the dynamic interactions of the polluting firms in a country and the social planer of the same 

country. The strength of the polluting firms as a group changes over time and it is measured 

by the volume of active polluters, the transactions made among them, by how dangerous for 

the environmental amenities are the polluting firms as a group and so on. New polluting firms 

are initiated and encouraged by the existing.  

Regarding the polluter's attrition, their decay rate is affected by their own actions and 

by the counter–pollution actions of the home country as well. The essential targets of the 

home country are to derive utility from the polluting firms’ emissions reduction, but the home 

country face substantial costs combating the polluters and suffer from disutility stemming 

from the size of the polluters. Conversely, each polluting firm wants to maximize the size of 

the group of the polluters as well as its utility stemming from the emissions.  

In this study we deal with a special class of differential games called the state–

separable game. The state–separable differential games belong into the special class of 

dynamic games which allow, in the most cases, the derivation of the Nash solutions in explicit 

form. The advantage of the analytical solutions, according to Dockner et al. (2000), is of great 

importance because the derived mathematical expressions of the solutions are crucial for the 

study of the qualitative properties of equilibrium. 

Due to the simplicity of the structure the state separable differential games are 

characterized by the linearity of the objective functional with respect to the state variable(s) 

and by no interaction between control and state variables (Dockner et al, 1985). An important 

property of the state separable games is related with the information structure employed. The 

importance of that property is that the open loop Nash solution coincides with the closed loop 

(Markovian) Nash solution. 
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Another important property hinges on the way the game played, i.e. simultaneously 

(Nash) or hierarchically (Stackelberg). As it is known (e.g. Ba>ar and Olsder 1992, Dockner 

et al 2000), in the Stackelberg games, the adjoint variable of the leader w.r.t. the adjoint 

variable of the follower plays a crucial role at the solution process, but due to the state 

separability the interconnection between these variables vanishes. 

In the rest of the paper we determine the Nash and the Stackelberg solutions of the 

environmental differential game and the state–separability advantage allow to write down 

some useful propositions and to carry out sensitivity analyses. On the design efficient 

counter–pollution actions against the polluting firms of a country, the model parameters of the 

game and the relevance of the two solutions offers useful information as well. 

The paper is organized as follows. In section 2 we setup the basic model. Section 3 

considers the solutions of the Nash equilibrium and performs a simple sensitivity analysis. In 

section 4 we compute the analytical expressions of the open–loop Stackelberg equilibrium 

while the polluting firms leads and the social planer of home country follows. Section 5 

compares the two solution strategies, while the last section concludes the paper. 

,�� &��	����	

In the real world scenario, it seems plausible that the mere existence of polluting 

firms (the polluters) is considered as being an intertemporal threat to any home country’s 

environmental quality. Translating into strategies, the polluting firms on one hand, have to 

decide about the volume of the emission attacks will carry out, while the home country on the 

other hand has to defend in the “war of pollution”. In the model presented here the state 

variable of the above clash is the volume of polluting firms, which denoted by � .  

Moreover, we make the assumption that the new polluting firms are supported and 

financed by the existing, thus it is reasonable to face the growth of the polluting firms as in 

the population models in the absence of controls. Analogously to the models of population a 

very simple equation that is suitable to describe the evolution of population of the polluting 

firms at time � , ( )� � , is the following differential  
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                                         ( ),        0 0� �� �= >ɺ
     

    ( )1  

where �  denotes the endogenous growth rate of the polluting firms.  

The volume of emissions realizations (denoted by υ ) reduces the number of polluting 

firms due to  the compliance costs, i.e. the more (stronger) the emissions the higher the 

penalties imposed by authorities, consequently the lower the number of the polluting firms 

that survive from the curse of compliance costs. We assume for simplicity that this fact is 

proportional to the number of emissions realizations, i.e. γυ ,  and as reduces the volume of 

the polluters, it is added as an outflow term to equation ( )1 , i.e. it is entered into ( )1  with the 

minus sign. 

Moreover, we set as the control variable of the home country the intensity �  of the 

counter–emissions effort. The greater the intensity of the counter–emissions effort, the more 

resources there are that can be devoted to investigating the implications of emissions 

realization. Moreover, the stronger the home country’s counter–pollution effort, the more 

effective is the reduction of the polluting firms. We assume that this fact is the linear term 

( )� � �β= , and the parameter β  denotes the percentage looses per emission realization, on 

behalf the polluters, when the social planer of the home country, abates (or taxes) the 

pollutants (is counter–offensive). Again, the above term reduces the volume of the polluting 

firms, and therefore we add a second outflow term to ( )1 that weights the volume of emissions 

υ  with �β .  

Regarding the control variable of the home country, i.e. the intensity of counter–

pollution effort, this control certainly reduces the volume of the polluters and therefore a new 

negative term is entered into the equation ( )1 . This term represents the looses due to the 

intensity of counter–measures at the initiation phase and is proportional to the control � , i.e. 

is the term �φ . Here we note that taking measures against the polluting firms’ initiation is 

very sensitive process as the planer of the home country has to discriminate among the firms. 

Since the discrimination process lurking risks (e.g. the taxation must be not a blind taxation), 
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we designate this inflow to equation ( )1 , as a quadratic, with respect to the intensity of 

pollution control measures, cost function (e.g. the square of abatement or taxation).                                          

             After all, the volume of polluting firms evolves according to the following equation:                  

                           
2

2

�� �
� �� � � �

��
φ γυ β υ= = − + − −ɺ  

where: 

0�≥  the state variable (the volume of polluting firms) 

0�≥  the control variable of the home country i.e. the intensity of the home country’s 

counter pollution effort,  

0υ≥  emissions’ rate (control variable of the polluting firms) 

0� ≥  endogenous growth rate of the group of polluters 

0φ≥  rate at which the counter pollution measures would reduces the polluting firms  

2
0� ≥  the cost factor which faces the home country due to the unsuccessful discrimination 

among the overall firms during the abatement (or taxation). 

 0β ≥  percentage looses of the polluters per emission  

0γ ≥  average number of polluting firms which are not able to face the compliance costs. 

 In this paper, we assume that the social planer of home country wishes to minimize 

the following objectives. First, he wants to minimize the volume of emissions υ  and second 

to minimize the volume of the polluting firms �  (which is the state variable of the model). 

An important reason the social planer may wish to minimize the volume of polluters is that 

the threat of pollutants concentration is costly for the home country, because of costs 

associated with the uncertainty of business investments which in turn leads to the market 

shrinkage.  As the third objective, the home country has an interest in minimizing the 

counter–pollution effort (e.g. in lowering the environmental tax factor), by minimizing its 

control variable � . It is well known that the pollution–control activities cost money, as 

almost any control policy execution.  
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In the decision making literature, the social planning, in intertemporal formulations, 

is described as trying to minimize a weighted sum of the state �  and the opponent's control 

υ , as well as the effort cost stemming from its own control variable � . Therefore after the 

above simplified assumptions and with a positive discount rate 1ρ , the intertemporal home 

country’s minimized functional will be the following 

                                      
( )

( )1

1 2 3
.

0

min �

�
� 	 � 	 	 � ��ρ υ

∞
− + +∫                 ( )2  

The polluting firms as a group, on the other hand, are interested to increasing their 

number �  in order to exert more market power. The emissions’ rate υ  is their control 

variable which is maximized. But the emission realizations cost money and this cost is 

represented in the objective functional by the quadratic cost function( ) 2

4
2	 υ . Regarding the 

polluting firms benefits with respect to the counter pollution effort, i.e. the home country's 

control variable � , the high values of that control may work as an indirect way of stirring up 

sentiments against the home's environmental policy. Therefore we represent this displeasure 

as a polluting firms' benefit  and we set in their objective functional as the weighted term 
� .  

Finally, for a positive discount rate 2ρ  the intertemporal objective function of the 

polluting firm may be the following 

                          
( )

2 24
1 2 3

.
0

max
2

� 	
� 
 � 
 
 � ��ρ

υ
υ υ

∞
−   + + −   ∫                 ( )3  

with                                          � �ρ >
   

1, 2�=                                   ( )4  

the home country minimizes functional (2) and the polluting firms maximizes (3) subject  to 

( )1  and the path constraints  

                                   ,   ,   0� � υ≥    

In the next sections we proceed with the calculation of both Nash and Stackelberg  

equilibrium solutions. 
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The Nash equilibrium computation is derived under the assumption that both players 

play the game at the same time. Then, every player of the game (i.e. the home country and the 

polluting firms) has to solve their own optimal control problem, taking the opponent's 

reaction as given. Finally, the two optimal control solutions determine the game optimal 

controls 
* *,  � υ . In the following we denote by λ  and �  the shadow prices of the state 

variable �  for the home country and the polluters respectively. Now the current value 

Hamiltonians of the game described above are given by 

               
2

1 1 2 3
2

�
� 	 � 	 	 � �� � � �υ λ φ γυ β υ

 =− − − + − + − −   
          ( )5  

     
24

2 1 2 3
2 2

	 �
� 
 � 
 
 � �� � � �υ υ � φ γυ β υ

     = + − + + − + − −      
    ( )6
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The result is obtained through the Pontryagin’s maximum principle optimality 

conditions, i.e., 

                                       ( )1 1� 	λ ρ λ= − +ɺ                               ( )7  

with the equilibrium   0λ=ɺ ⇒  1

1

ˆ 0
	

�
λ

ρ
=− <

−
                      ( )8�  

and the polluting firms’ shadow price evolves according to the following equation 
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                            ( )2 1
� 
� ρ �= − −ɺ  

with equilibrium                     1

2

ˆ 0



�
�
ρ

= >
−

                            

( )8
  

According to ( )8�  the long–run damage to the home country, implied by having one more 

polluting firm (λ̂ ), increases. This is the result of an increasing cost associated with the 

existence of a polluting firm (i.e. the factor 1	  in the home country's objective functional). 

Note that according to basic theorems of the optimal control theory the transversality 

conditions hold for all admissible state trajectories (e.g. Grass et al, 2008). 

For the following analysis presented here it is assumed that only interior solutions 

exist and they are positive, i.e. ,   0� υ> . According to Pontryagin's maximum principle, the 

maximizing condition of the Hamiltonian for the intensity of the home country’s pollution–

control effort (the home country's control variable) is given by 

     1
30      0      

�
	 ��

�
λφ λβυ λ

∂
= ⇔ − + − + = ⇔

∂
  

* 31 	
�

�
γ βυ

λ

 = + +   
   ( )9  

The result ( )9  is recorded in proposition 2. 
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 �����������	������!�����������������
*� ���	�����������"�

��#��������������������������������


#������	�����������	���������������������������������������������( )β ���

	#������	�������������������	�����������!	�����������	����������������������( )γ ���

 ���	������	�������	����	������������	����������������������		����������	�����������������

���� �������������	����������������������	������� ����	�������������������������� ( )2� �������

��	���������������	��������������	����������������������	����	����������
������������

 



	 

 

Looking at the control variable analytical expression ( )9 , it is worth noting that if the 

cost of control ( 3	 ) is large relative the home's shadow price λ  (which is negative along the 

optimal path), the home country's optimal control 
*�  becomes low and possibly meets  the 

boundary at 
* 0� = . Conversely, if the cost of the control is negligible with respect to the 

shadow price λ , the home's optimal control collapses into a linear function of emissions υ , 

since the term 3	 λ  in ( )9  vanishes. Therefore it is optimal, in the former case, for the home 

country to not exert any counter–pollution control. 

Turning in the polluters' problem and regarding their emissions, the Hamiltonian 

maximizing condition is determined by 

  ( )2
2 40          0     

�

 	 υ � γ βυ

υ

∂
= ⇔ − − − = ⇔

∂    
( )* 2

4 4



�

	 	

�
υ γ β= − +         ( )10  

We record the result ( )10 , as 

���
�������	-	

 ��������������������������������������������
*υ ��	�����������"��

�#������	�������������������
���������������������������
����������( )γ ���


#������	��������percentage looses per emission�( )�β �������

	#������	���������������������
�������������	��� ���������������������������  

	

According to ( )10  if the shadow price of the polluting firms is raised, then it is optimal for 

the polluters to curb the emissions' rate. Conversely, along the polluters' optimal path, the rate 

of emissions increases as the emissions' benefits( )2
  increases relative to the costs( )4	 . 

A useful corollary according to the optimality conditions (9) and (10) it must be the 

following: "Along the home country's optimal path the intensity of pollution–control 

measures raises while the rate of emissions increases, and the rate of emissions declines while 

the intensity of the counter#pollution measures is increasing". 
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The stationary values of the controls in the Nash equilibrium are the following 

                                       

( ) ( )

( ) ( )

2 4 3

2

4

2 3

2

4

ˆˆ
ˆ

ˆ

ˆˆ ˆ
ˆ

ˆ

$

$


 	 	
�

	 �

� 
 	

	 �

β �γ φ λ

�β

�γ �β φ λ
υ

�β

− + +
=

+

− − +
=

+

                     ( )11  

with ˆ ˆ,   λ �  given by ( )8�  and ( )8
 , where N in ( )11  means the Nash solution. The Nash 

equilibrium value for the polluting firms is given by 

                                  ( )1
ˆ ˆ ˆ ˆ ˆ

2
$ $ $ $ $

�
� � � �

�
φ γ β υ
   = − + +    

              ( )12  

and ˆ ˆ,  $ $� υ  as in ( )11 . 

Here it is worth noting the advantage regarding the structure of the state separable 

games, due to which we have the opportunity to find the analytical expressions of the controls 

as well as of the state variable. The solution ( )11  is a unique closed loop Nash equilibrium.   

This advantage is rather unusual, since the multiple solutions in differential games is the rule. 

Due the analytical expressions � �11   and ( )12  it is easy to proceed with sensitivity analysis 

with respect to the model parameters.   

Table 1 represents the results of sensitivity analysis. Taking the partial derivatives 

( ) ( ). parameter   ∂ ∂ , the symbol “+” means that the partial derivative is greater than zero, 

the symbol “–“ means the opposite case, 0 indicates  that the result of the partial derivative is 

zero (the parameter is not a part of the control), and ? denotes that the result is unknown. The 

results in Table 1 make some economic sense. Taking into account (8
) the polluters' shadow 

price �̂  decreases with the discount factor 2ρ , but increases with the factor 1   
 and with the 

endogenous growth rate   � .Taking into account (11) the stationary value of the polluting 

firms ˆ
$�  decreases with increasing endogenous rate �  (as the control factor 3	  is equal to 

zero).  
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&����	*�	A summary of the sensitivity analysis results	

 φ  α  β  γ  
1	  2	  1
  2
  4	  1ρ  2ρ  

ˆ
$�  + –� ? �� 0 0 0 + 0 0 0 

ˆ
$υ  �� ? ? 0 0 0 0 + + 0 0 

ˆ
$�  + �� + + 0 0 0 0 0 0 0 
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In the Nash equilibrium solution, as illustrated above, it is assumed that the two 

player game played simultaneously. i.e. the moves of the rivals are made at the same time. As 

it is mentioned  above, in this paper we explore and the other class of games in which one 

player, the leader, moves first, and the opponent, the follower, makes his/her decision at the 

second time. As it is known, this hierarchical or sequential mode of playing the game is the 

leader–follower or Stackelberg mode. In the game theoretic literature, e.g. Olsder and Ba>ar, 

1999, it has been developed at least one stepwise procedure to derive the equilibrium solution. 

In order to describe (for completeness) the solution procedure we assume, without any loos of 

generality, that the first player is the leader and the second is the follower. The control and 

adjoint variables of the leader are denoted with ,   � λ  respectively, and with ,   υ �  we denote 

the same variables for the follower. We assume moreover that the cost of pollution control 

vanishes, i.e. 3 0	 = . 

The three step procedure for the (open–loop) Stackelberg solution (e.g. Grass et al, 

2008, Dockner et al., 2000, Basar T., Olsder G.,1999): 

���
	*�  The polluting firms, as group, announce their common strategy, υ  

���
	,:  For the given strategyυ , the home country (the follower) solves the same Nash 

optimal control problem. As it is mentioned in the Nash case (see ( )9 ), the home’s optimal 

response to the polluters’ strategy υ , will be               

                                ( ) ( )* * 1
� �

�
υ γ βυ= = +           ( )13  

since it is assumed  that 3 0	 = . 



�� 

 

the adjoint λ  variable for the follower is given by equation ( )7 . 

���
	-: Now, in the last step, the leader has to solve the same as in the Nash case optimal 

control problem, but for the known reaction function ( )13 of the follower: 

                           
( )

( )2 *4
1 2 3

.
0

max
2

� 	
� 
 � 
 
 � ��ρ

υ
υ υ υ

∞
−
    + − +      ∫  

subject to the following state equations 

                        ( ) ( ) ( )* * *

2

�
� �� � � �φ υ υ γυ β υ υ

 = − − − −  
ɺ           ( )14  

                                               ( )1 1� 	λ ρ λ= − +ɺ                              ( )15  

with ( )*� υ  given by ( )13 . 

The Hamiltonian of player 2 (the follower) becomes 

                      ( )*4
2 1 2 3

2

	
� 
 � 
 
 � �υ υ υ � ψλ

 = + − + + +  
ɺɺ              ( )16  

The adjoint variables are the shadow values of the states ,  � λ  for which the equations of 

motion are given by ( )14  and ( )15  respectively. Taking the first order condition for the 

Hamiltonian ( )16 , i.e., 2 0� υ∂ ∂ =  we found the optimal strategy 
*υ . The calculations of 

the stationary strategies are made through the substitutions in ( )13  the player’s 2 optimal 

strategy. After the rearrangement the final expressions are: 

                      

( ) ( )

( ) ( )

2

2 4 3

2

4

2 3

2

4

ˆ
ˆ

ˆ

ˆ ˆ
ˆ

ˆ

%

%


 	 
 �
�

	 �

� 
 


	 �

β �γ φ β

�β

�γ β �φ
υ

�β

− + +
=

+

− − −
=

+

                   ( )17       

with % to denote the Stackelberg strategy. The number of polluting firms is given by 

                         ( )1
ˆ ˆ ˆ ˆ ˆ

2
% % % % %

�
� � � �

�
φ γ β υ
    = − + +     

             ( )18  
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and the optimal controls are given by ( )17 . Since the analytical expressions of the optimal 

strategies are computed for both types of the game, in the next section we compare these 

values. 

Note that, In the reverse case at which the home country moves first as a leader and 

the polluting firms follow the following controls are optimal
1
 

                         

( ) ( )

( ) ( )

2

2 2
2 2

4

ˆ2 4

, 2

4

ˆ

ˆˆ2 3

, 2

4

ˆ ˆ
ˆ

ˆ2

ˆ
ˆ

ˆ2

	

% &


 	

	

% '


 	
�

	 �


 � � 


	 �

λ

β �

� λ

β �γ φ β� γ

β �

� γ βφ β
υ

β �

− + − +
=

+

− + + + +
=

+
 

	

4�		��
������	��	���	�)�	���������	

Taking the Nash solutions ( )11  and the Stackelberg solutions ( )17  the optimal 

controls can be expressed as 

                                  ˆ ˆ
% $� �

�

β
= + �  

              ˆ ˆ
% $υ υ= +�  

while                                   3

2

4

0
ˆ




	 �

β

β �
�= >

+
           ( )19  

 

the difference between the optimal stationary strategies is given by ( )19 . Some remarks can 

be drawn about the difference of the two solutions of the same game. These observations 

could be:  

�3 The fewer the polluting firms losses per emission ( )β , the smaller the difference � . If the 

losses rate β  vanishes ( )0β= , the Nash and Stackelberg equilibrium solutions become 

equal.   

                                                           
1
 The analysis of the latter Stackelberg equilibrium case is left for future research. 



�� 

 

��3 if the polluting firms have no objective which is related with the unsuccessful 

discrimination on behalf the social planer ( 3 0
 = ), the Nash and Stackelberg equilibrium 

solutions are equal. If the same factor 3
  is positive, the group of polluting firms announces a 

volume of emissions, %υ , such that the home country reacts with a higher of counter–

pollution effort, %� . As a result the number of polluting firms �  increases which in turn 

increase the volume of emissions.  

As follows from the comparison of  ( )11  and ( )17   

                                  ˆ ˆ
% $� �>     and     ˆ ˆ

% $υ υ>  

the conflict will be more intensive if the group of polluting firms has the first mover 

advantage and announces the volume of emissions to be carried out (compared to the 

simultaneous move game). Consequently, the next result becomes obvious. 
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 ��� ���������� 	������� ������	��	��� ����� ��� ���	�� ���� ������ ��� ���������� ������ 
����� ����

������� ���� ���� ����� 	������� ���� ���������� ������ �� ������� ���������� �������������� �������

����������	������!���������������������������	�����	��
��������������������������������������

 

The difference between the equilibrium values ( )12  and ( )18  is positive, that is 

ˆ ˆ 0% $( � �= − > 5	and therefore we can conclude that the polluting firms being the leader 

verifies its better position due to the increase(  in its size. 

The linear state equations ( )12  and ( )18  can explicitly solved with respect to the 

state ( )� � , yielding: 
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And the value functions for the Nash and Stackelberg equilibrium is easy computed as: 
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Moreover, the difference of the two value functions 
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is positive, and therefore becomes better for the group of the pollutin firms to lead playing the 

Stackelberg strategy than playing the Nash strategy. This result is recorded as Proposition 5. 
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In this paper we setup a differential game model between the polluting firms of a 

country and the social planer of the same country. The model belongs into the special 

tractable class of the state separable games. This class of games has the special feature, in the 

Nash equilibrium, for which the open#loop equilibrium coincides with the closed#loop 

(Markovian) equilibrium. During the solution process, of the simultaneous move game, we 

found the analytical expressions of both players’ controls as well as the steady state of the 

stock variable (which is the volume of the polluting firms). A sensitivity analysis, which is an 

analysis between the controls and the crucial variables of the model, makes economic sense.  

Moreover a number of propositions are stated from the same Nash equilibrium game. 

As an extension of the model, we setup the game in the case of hierarchical move, i.e. we 

transform the Nash game into a Stackelberg game. With the above transformation the 

computed equilibrium values become different. The analysis of the control values 

comparison, for both equilibrium concepts, reveals that the conflict between the players of the 

game becomes more intensive in the case of the Stackelberg game. Moreover we found, 

comparing the payoffs of the polluting firms for both equilibrium concepts, that is better to 

play as leaders in a Stackelberg game. Finally, some results, recorded as propositions, are 

stated as well as in the case of the Stackelberg equilibrium. 
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