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Abstract

In this paper, we develop a bargaining model where parties (or
their intermediaries) make errors when reporting their bid. We char-
acterize the Nash equilibria of the game and show that there is a
unique equilibrium where trade takes place. This trade equilibrium
is shown to converge to the Nash Bargaining Solution of the problem
as trembles diminish. Finally, we discuss our results in the context of
the previous literature providing a critique of the model and analysis
found in Carlsson (1991).

Keywords: Nash Program, Nash Bargaining Solution, Equilibrium Se-
lection

JEL Codes: C7, C72, C78

1 Introduction

The typical exchange between a buyer and seller is no longer face-to-face,
but rather takes place in online markets where rules of exchange are pre-
established and governed by a computer program. Since the exact details of
the computer program (e.g., rounding rules, mistakes in computer code, etc.)
are unknown to participants, some shared uncertainty is introduced into the
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exchange process. In this paper, we show this type of shared uncertainty can
serve to coordinate behavior in a well known bargaining game. Additionally,
as the uncertainty diminishes, the prediction of our bargaining game with
errors converges to a unique prediction in the same bargaining game with no
errors — the Nash Bargaining Solution.
The main idea of this paper can be traced back to Nash who, in a col-

lection of papers, built a formal game theoretic framework for the study of
bargaining problems. In 1950, Nash developed his well known axiomatic
bargaining solution. The axiomatic method abstracts away from the spe-
cific procedural details involved in bargaining, but Nash (1953) later argued
that his bargaining solution should also be supported by the equilibria of
a non-cooperative model of the bargaining process.1 The game studied by
Nash, now known as the Nash Demand Game, involves two players who si-
multaneously announce payoff demands. If these demands are “compatible”
according to some pre-established definition, then each player receives his
demand. Otherwise the outcome ends in disagreement. It is well known that
this game has a continuum of Nash equilibria where the parties reach an
agreement and equilibria where the parties disagree.2 In contrast, the Nash
Bargaining Solution suggest a unique payoff pair.
The multiplicity of equilibria in the game therefore forced Nash to con-

sider a refinement.3 In particular, Nash changed the game to allow for some
uncertainty about whether certain pairs of demands would be compatible.
Roughly speaking, the game was altered so the probability of agreement was
equal to one for all compatible demands and then would go to zero quickly
as demand pairs got further from compatibility. The payoff structure in the
original game is discontinuous around the agreement equilibria — i.e., small
changes in behavior may lead to large changes in a player’s payoff. The act
of perturbing the game effectively “smooths” the payoffs in the game. Nash
argued that the equilibria outcomes of the smoothed game should approach
his bargaining solution as the level of smoothing went to zero.4

1This type of exercise of supporting axiomatic solutions with non-cooperative solutions
is called the Nash Program.

2See, for example, van Damme (1991) p.146 or Malueg (2010).
3Young (1993) develops an evolutionary model to study this game where conventions

are derived to deal with the indeterminacy.
4Nash’s argument is informal. See Binmore (1987a,b), van Damme (1991), or Osborne

and Rubinstein (1990) for a formal description and analysis of Nash’s perturbed game
approach to equilibrium selection. Kaneko (1981) uses a similar technique in a bilateral
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This “perturbation” approach taken by Nash generates an attractive out-
come, but the plausibility of the perturbation has been criticized since it is
tailored to the structure of the Nash Demand Game.5 In contrast, Carlsson
(1991) considers a Nash Demand Game with a more plausible perturbation.
In his model, a buyer and seller bargain over the price of an indivisible object
by submitting bids, but the participants’ bids are subject to trembles. For-
mally, bids are determined by adding a random error term to each player’s
action, where the support of the error variables are compact intervals in R.6

Bids are compatible when the buyer’s “random” bid is larger than seller’s
“random” bid. Similar to Nash’s perturbation idea, the addition of the er-
ror terms serves to eliminate the discontinuity in the each player’s payoff
function. Carlsson asserts this game also yields a convergence result where
a Nash equilibrium approaches the Nash Bargaining Solution as the error
terms go to zero. However, while both Carlsson’s model and convergence
claim are attractive, Carlsson fails to take into account how his compact
support assumption affects the derivation of the expected payoff functions
and the derivatives of these functions. This oversight leaves incorrect payoff
functions for the players as well as incorrect derivatives of those functions.
Moreover, because these flawed expressions are used throughout the analysis,
we cannot be certain of the validity of any of the claims found in the paper
— including the convergence result.
In this paper we consider a simplified version of Carlsson’s model and

analyze a Nash Demand Game where the actions taken by players’ bids
are subject to trembles. We develop this model in detail and completely
characterize the set of Nash equilibria. The simplifications in the model
allow us to depart from Carlsson’s approach to the problem and illustrate our
results in a more direct fashion. We show there is a unique equilibrium where
the buyer and seller trade and that this equilibrium converges to the Nash
Bargaining Solution as the magnitude of the errors diminishes to zero. This
provides the intuitive perturbation of the Nash Demand Game envisioned
by Carlsson and illustrates the robustness of Nash’s Bargaining Solution.

monopoly model.
5See, for example, Luce and Raiffa (1957) pg. 141-142.
6A similar model of bargaining with errors was first sketched out by Binmore (1987b,

p.146). In his model, the errors have unbounded support and Binmore illustrates how any
Nash equilibria will likely convergence to the Nash Bargaining Solution — so long as the
distribution functions are not “pathological.” Carlsson’s paper may be seen as an attempt
to formalize some of these ideas.
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Finally, we provide a detailed critique of Carlsson (1991) and discuss our
results in the context of the previous literature.

2 Model

A buyer and a seller are bargaining over the price of an indivisible object.
However, rather than bargaining “face-to-face,” the players interact through
an intermediary. In this interaction, the buyer chooses a bid price b and the
seller chooses an asking price s. These choices are given to the intermediary
who helps arbitrate the sale of the object on the players’ behalf.
The intermediary is known to make a random error when reporting prices.

So, if the buyer submits a bid b, the intermediary reports a bid of b̃ = b+ εb,
where εb is a random error. Similarly, if the seller submits an asking price
s, the intermediary reports an asking price of s̃ = s + εs, where εs is the
error term. These error terms are independently and identically distributed
according to the uniform distribution on the interval [−z, z], where z ∈ R+
is a strictly positive number. Thus, the distribution of the error term is
F (x) = x+z

2z
on [−z, z] with associated density f(x) = 1

2z
.

Finally, the players have agreed to the following rules to govern their in-
teraction. Players simultaneously submit their bids (s, b) to the intermediary
who reports (s̃, b̃). If the buyer’s reported price b̃ is higher then the seller’s
reported asking price s̃, then there is trade. In this case, the buyer receives
the item and pays a price equal to b̃. The seller receives s̃. Otherwise there
is no trade. Thus, if the realized prices (s̃, b̃) are such that b̃ ≥ s̃, then the
seller and buyer payoffs are uS = s̃ and uB = b

∗− b̃ respectively, where b∗ > 0
is the buyer’s reservation price. Both players attach a zero value to the “no
trade” outcome. The Nash Bargaining Solution of the underlying problem is
for the seller and buyer to both demand half of the surplus — i.e., s = b = b∗

2
.

3 Expected Payoff Functions

In the bargaining game, players submit a bid to the intermediary. The error
made by the intermediary induces a distribution of potential reported bids for
each player. As a consequence, a player i knowing the profile (s, b) ∈ R2 must
compute an expected payoff function πi : R

2 → R to evaluate his choices.
We now detail the computation of each player’s expected payoff function.
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The key difficulty in computing the expected payoff function arises be-
cause the support of the error distribution is a bounded interval. The players’
payoff functions will depend on whether b ≥ s and the distance between b
and s in relation to the error parameter z. This gives us four cases.

Case 1

In the first case, trade occurs with certainty. The set of profile with this
property, CI , is the collection of profiles (s, b) where s < b and s̃ ≤ b̃ for all
possible realizations — i.e.,

CI = {(s, b) : s+ z < b− z}.

Therefore, for (s, b) ∈ CI , the expected payoff functions for the seller and
buyer are

πS(s, b) =
1

4z2

∫ z

−z

∫ z

−z

(s+ εs) dεsdεb = s

πB(s, b) =
1

4z2

∫ z

−z

∫ z

−z

(b∗ − (b+ εB)) dεsdεb = b
∗ − b

respectively.

Case 2

In the second case, s ≤ b, but trade does not occur with certainty. The
set of profiles with this property is

CII = {(s, b) : s− z ≤ b− z < s+ z ≤ b+ z}.

Alternatively, (s, b) ∈ CII if s ∈ [b− 2z, b].
The expected payoff function in CII is more complex than CI . There is

trade when b + εb ≥ s + εs. If εb ≤ s − b + z then there is only trade for
small realizations of εs. In contrast, for εb ≥ s − b + z, there is trade for all
realizations of εs — since −z ≤ εs ≤ z. Thus, the expected payoff function
for the seller is

πS(s, b) =
1

4z2

∫ s−b+z

−z

∫ b−s+εb

−z

(s+ εs) dεsdεb +
1

4z2

∫ z

s+z−b

∫ z

−z

(s+ εs) dεsdεb

=
1

4z2

∫ s−b+z

−z

∫ b−s+εb

−z

(s+ εs) dεsdεb + s

(
b− s

2z

)
.
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The expected payoff function for the buyer is similarly computed to be

πB(s, b) =
1

4z2

∫ s−b+z

−z

∫ b−s+εb

−z

(b∗ − (b+ εb)) dεsdεb+
(b− s)

4z
(2b∗ − b− s− 2z) .

Case 3

In the third case, there is again trade with positive probability, but now
b < s. The set of profiles with this property is

CIII = {(s, b) : b− z < s− z < b+ z < s+ z}.

Alternatively, (s, b) ∈ CIII if s ∈ (b, b+ 2z).
Trade occurs whenever εs ≤ b − s + εb. Since s > b, there are values of

εb where no trade occurs. Specifically, if εb ≤ s− b− z, then b̂ is always less
than ŝ. Hence, the expected profit is

πS(s, b) =
1

4z2

∫ z

s−b−z

∫ b−s+εb

−z

(s+ εs) dεsdεb =
1

24z2
(b− s+ 2z)2 (b+ 2s− z)

The expected payoff for the buyer is similarly computed to be

πB(s, b) =
1

4z2

∫ z

s−b−z

∫ b−s+εb

−z

(b∗ − (b+ εb)) dεsdεb

= −
1

24z2
(b− s+ 2z)2 (2b− 3b∗ + s+ z) .

Case 4

In the final case there is never trade. Specifically, we have b < s such
that s̃ > b̃ for all possible realizations — i.e.,

CIV = {(s, b) : b+ 2z ≤ s}.

The traders profits are both zero for (s, b) ∈ CIV .
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Summary: Expected Payoff Functions

We now summarize the different expression for the expected payoff func-
tion.7 The expected payoff function for the seller is

πS(s, b) =






s, if (s, b) ∈ CI

1
4z2

∫ s−b+z
−z

∫ b−s+εb
−z

(s+ εs) dεsdεb + s
(
b−s
2z

)
, if (s, b) ∈ CII

1
24z2

(b− s+ 2z)2 (b+ 2s− z), if (s, b) ∈ CIII

0, if (s, b) ∈ CIV

.

The expected payoff function for the buyer is

πB(s, b) =






b̄− b, if (s, b) ∈ CI

1
4z2

∫ s−b+z
−z

∫ b−s+εb
−z

(
b̄− (b+ εb)

)
dεsdεb

+ (b−s)
4z

(
2b̄− b− s− 2z

)
,

if (s, b) ∈ CII

− 1
24z2

(b− s+ 2z)2
(
2b− 3b̄+ s+ z

)
, if (s, b) ∈ CIII

0, if (s, b) ∈ CIV

.

4 The Best Response Correspondences and

their Properties

In this section, we present two theorems that detail some properties of the
best reply correspondences for the seller and buyer. These properties are
used in the next section to establish existence and characterize the set of
Nash equilibria for each parameter z.

7It is straightforward to verify that both of these payoff functions are continuous.
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Best Response Behavior of the Seller

Theorem 1 presents some properties of the seller’s best response corre-
spondence σ.

Theorem 1: The seller’s best response correspondence σ(b) has the following
features:

1. If b ≤ −z, then any selection in the set {s|s ≥ b + 2z} is a best
response;

2. If −z < b ≤ z, then σ(b) = z;

3. If b > z, then the seller has a unique best response σ(b) such that
z < σ(b) < b and 0 < σ′(b) < 1;

4. For any b, σ(b) ≥ b− 2z.

5. The limb→∞ σ(b) =∞.

Proof: See Appendix.

These properties are derived by examining the partial derivative of the
seller’s expected payoff function with respect to s:

∂πS(s, b)

∂s
=






1, if (s, b) ∈ CI

b−s
2z
+ 1

4z2
(s− z) (b− s− 2z), if (s, b) ∈ CII

− 1
4z2
(s− z) (b− s+ 2z), if (s, b) ∈ CIII

0, if (s, b) ∈ CIV

.

On inspection, several things stand-out. First, the derivative is continuous
in s. Second, since the seller’s reservation price is zero, the best response
behavior depends on the relation of b to the points −z and z. Essentially,
these are cutoff values of b where trades go from “unprofitable” to “potentially
profitable,” and from “potentially profitable” to “always profitable.”
If, for example, b ≤ −z, then any trades that would occur result in a

negative profit for the seller. A best response ensures that no-trade occurs.
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Figure 1: Seller’s Best Response Correspondence

This is done by choosing σ(b) sufficiently large so that b + z ≤ s − z or
b+ 2z ≤ s. This is the first part of the theorem.
Alternatively, if −z < b ≤ z, the second part of the theorem states the

seller should set σ(b) = z. This behavior allows trade to occur with positive
probability. Moreover, it ensures that any trades that occur are profitable.
The seller does not risk receiving a price below his reservation price.
The interesting behavior occurs when b > z and corresponds to the third

part of the theorem. In this range, all trades would be profitable, the seller
therefore responds so trade occurs with positive probability. Specifically, if
b > z, the seller chooses his response σ(b) ∈ (z, b). This response is unique,
increasing in b, and σ(b) is such that 0 < σ′(b) < 1. Finally, for all b, σ(b) is
bounded below by b − 2z. This implies that if trade occurs with certainty,
then the seller is not best responding. Moreover, this implies that as b→∞,
we have σ(b)→∞.
Figure 1 illustrates the seller’s best response correspondence.
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Best Response Behavior of the Buyer

Theorem 2 presents some properties of the buyer’s best response corre-
spondence β.

Theorem 2: The buyer’s best response correspondence β(s) has the follow-
ing features:

1. If s ≥ b∗ + z, then any b ∈ {b : b ≤ s− 2z} is a best response;

2. If b∗ − z ≤ s < b∗ + z, then β(s) = b∗ − z;

3. If s < b∗− z, then the seller has a unique best response β(s) such that
such that s < β(s) < b∗ − z and 0 < β′(s) < 1;

4. For any s, β(s) ≤ s+ 2z.

5. The lims→−∞ β(s) = −∞.

Proof. See the Appendix.

These properties are found by examining the following partial derivative
of the buyer’s expected payoff function with respect to b

∂πB(s, b)

∂b
=






−1, if (s, b) ∈ CI

1
4z2
(b− (b∗ − z)) (b− s− 2z)

− 1
2z
(b− s)

, if (s, b) ∈ CII

− 1
4z2
(b− (b∗ − z)) (b− s+ 2z), if (s, b) ∈ CIII

0, if (s, b) ∈ CIV

.

Not surprisingly, the above derivative is similar to ∂πS(s,b)
∂s

. As a result, we get
analogous properties of the buyer’s best response correspondence in Theorem
2.
Figure 2 illustrates the buyer’s best response correspondence.
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Figure 2: Buyer’s Best Response Correspondence β

5 Nash Equilibrium

In this section, we prove the existence and characterize two types of Nash
equilibria: Nash Equilibrium with Trade (NEWT); and Nash Equilibria with-
out Trade (NEWOT). A NEWT is an equilibrium profile (s̄, b̄) where trade
occurs with positive probability. In contrast, a NEWOT is a equilibrium
profile (s̄, b̄) where there is never trade.

Nash Equilibria without Trade

We start by characterizing the set of NEWOT.

Theorem 3: The profile (s, b) is a NEWOT if and only if s ≥ b∗ + z and
b ≤ −z.

Proof: If s ≥ b∗ + z, then any b ∈ {b : b ≤ s − 2z} is a best response
including b ≤ −z. Similarly, if b ≤ −z, then any s ≥ b+2z is a best response
including s ≥ b∗+ z. Thus, any such (s, b) is a NE and since s ≥ b+2z there
is no trade.
Now suppose (s, b) is a NEWOT. First, we have s ≥ b + 2z. If b > −z,

then s is not a best response since the seller could achieve a positive payoff

11



by setting s = z. Hence, b ≤ −z. Similarly, if s < b∗ + z, then the buyer is
not best responding since setting b = b∗ − z ensures him a positive payoff.
Hence, s ≥ b∗ + z. �

Nash Equilibrium with Trade

The set of NEWOT is large, but there is always a unique NEWT. The
characterization of this NEWT, however, depends on the magnitude of the
error parameter z in relation to b∗

2
. First, for z sufficiently small, we show

that the unique NEWT occurs in the CII payoff region where s ≤ b.

Theorem 4: Suppose z < b∗ − z, then the a unique NEWT is such that

s ≤ b.

Proof: Suppose z < b∗ − z. From Theorem 1, parts 2 and 5, we have
σ(z) = z and we know there exists a b̊ > z such that σ(̊b) = b∗ − z. In
addition from part 3 of Theorem 1 we have that 0 < σ′ < 1 for b > z. We
conclude b̊ > b∗ − z.
Analogously, from Theorem 2, parts 2 and 5, we have β(b∗ − z) = b∗ − z

and we know there exists a s̊ < b∗ − z such that β(̊s) = z. From part 3 of
Theorem 2, we have that 0 < β′ < 1 for s < b∗ − z, we conclude s̊ < z.
Next, for b > z and s < b∗−z, the best responses are determined according

to the Case 2 first order condition and are clearly continuous. Since the
best responses are continuous, they must intersect at some (s̄, b̄) such that
s̄ < b∗−z and b̄ > z. Moreover, since the reaction functions are increasing in
this region each with a slope less than one the intersection must be unique.
�

Figure 3 illustrates the intersection of the two players’ best response cor-
respondences when z < b∗ − z. The set of NEWOT is illustrated by the
darkened rectangle at the south-east corner of the figure. The unique NEWT
is the north-west most intersection of the best response graphs. The inter-
section of the NEWT with the line b + s = b∗ is not a coincidence, but we
defer a proof of this fact until the next section.
Next, if the error parameter z is large so that z ≥ b∗−z, then in the unique

NEWT occurs where both players choose their fail safe bids. The buyer bids
b∗−z and the seller chooses z. At these bids, the players guarantee themselves
a positive payoff, but the size of z makes both players non-responsive (at least
locally) to small changes in their rival’s action.
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Figure 3: Trade Nash Equilibrium (z < b∗ − z)

Theorem 5: If z ≥ b∗ − z, then the unique NEWT is (s̄, b̄) = (z, b∗ − z).

Proof: Suppose z ≥ b∗ − z. Let (s, b) is a NEWT where b > z. From
Theorem 1, we have that b∗ − z ≤ z < σ(b) < b. Since this is NEWT, by
Theorem 3, β(σ(b)) = b∗ − z which is a contradiction. Next, suppose (s, b)
is a NEWT where b ≤ z. Since this is NEWT, by Theorem 2 and Theorem
3, σ(b) = z ≥ b∗ − z and β(z) = b∗ − z. The profile (s, b) = (z, b∗ − z) is a
therefore a NEWT. �

Figure 4 illustrates the intersection of the two players’ best response cor-
respondences when z > b∗ − z.

6 Relation of the Nash Equilibriumwith Trade

to the Nash Bargaining Solution

In this section, we show that the unique NEWT of the game converges to
the Nash Bargaining Solution of the game without errors as the errors go
to zero. The error in the model is parameterized by the support parameter
z. Denote the unique NEWT of the game with parameter z > 0 by

(
s̄z, b̄z

)
.
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Figure 4: Trade Nash Equilibrium (z > b∗ − z)

Since we are interested in a convergence result, without loss of generality, we
set z < b∗

2
.

The main theorem is shown in two steps. We first establish that in a
NEWT, the seller’s bid and the buyer’s bid add up to b∗.8 The lemma allows
us to provide a straightforward proof of the main theorem.

Lemma 1: In every NEWT, s̄z + b̄z = b
∗.

Proof: From Theorem 4, we know the CII payoff function is the one that
applies in equilibrium. The CII first order conditions for the two players that
are satisfied in this equilibrium are

∂πS

∂s
=

b̄z − s̄z
2z

+
1

4z2
(s̄z − z)

(
b̄z − s̄z − 2z

)
= 0

∂πB

∂b
= −

1

4z2
(
b∗ − b̄z − z

) (
b̄z − s̄z − 2z

)
−
1

2z
(b̄z − s̄z) = 0

From ∂πB
∂b
we have

1

2z
(b̄z − s̄z) = −

1

4z2
(
b∗ − b̄z − z

) (
b̄z − s̄z − 2z

)
.

8This lemma is also clearly true when z ≥ b∗ − z and can be directly verified.
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Substituting this expression into ∂πS
∂s
gives us

−
1

4z2
(
b∗ − b̄z − z

) (
b̄z − s̄z − 2z

)
+

1

4z2
(s̄z − z)

(
b̄z − s̄z − 2z

)
= 0

which implies (
b̄z − s̄z − 2z

) (
−b∗ + b̄z + s̄z

)
= 0

Since b̄z < s̄z + 2z, we have b̄z + s̄z = b
∗. �

We now show that the sequence of NEWT converge to the Nash Bargain-
ing Solution.

Theorem 6: The trade equilibrium allocation (s̄z, b̄z) converges to the Nash
Bargaining Solution as z → 0+.

Proof: We have z < b∗

2
. From Theorem 4, we know the CII payoff function

is the one that applies in equilibrium. If we re-arrange the CII first order
condition for the seller we have

b̄z − s̄z = 2z

(
s̄z − z

s̄z + z

)
.

Since s̄z = b∗ − b̄z, from the previous lemma, the above equation can be
re-written

b̄z =
b∗

2
+ z

(
b∗ − b̄z − z

b∗ − b̄z + z

)
.

Note for z > 0, we have

1 >
b∗ − b̄z − z

b∗ − b̄z + z
> 0

since b∗ − z > b̄z. Hence, for all z > 0, we have

b∗

2
≤ b̄z ≤

b∗

2
+ z.

It follows from the Squeeze Theorem that limz→0+ bz =
b∗

2
.

Finally, since s̄z + b̄z = b
∗, we have that the lim

z→0∗
s̄z =

b∗

2
. �
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7 Discussion of Related Literature and Con-

clusion

In this section, we justify some of our remarks concerning the analysis of
Carlsson (1991) and discuss our model and results in the context of the
previous literature.

Discussion of Carlsson (1991)

Carlsson considers a Nash Demand game with two players: a buyer and
a seller. The buyer submits a bid b and the seller submits a bid s. The bids
(s, b) are transformed into random bids. The seller’s random bid is r = s+εs,
where εs is distributed according to F on [−x0, x1] for x0, x1 > 0. Similarly,
let the buyer’s random bid be t = b+ εb, where εb is distributed according to
G on [−y0, y1] for y0, y1 > 0. If the buyer’s random bid t is higher then the
seller’s random bid r, then there is trade. Otherwise not.
The players pay/receive a convex combination of the two random bids.

For brevity, we restrict attention to expressions involving the seller. If r ≤ t,
then the seller receives a price equal to λt + (1 − λ)r where λ ∈ [0, 1] is
commonly known to the players. The seller values these trades according
to a strictly increasing and concave utility function uS and attaches a zero
value to the “no trade” outcome. The following payoff function and partial
derivative for the seller are reported —

πS(s, b) =

∫
∞

−∞

∫ t

−∞

uS ([1− λ]r + λt) f(r − s)g(t− b)drdt.

and

∂

∂s
πS(s, b) = −

∫
∞

−∞

∫ t

−∞

uS ([1− λ]r + λt) f
′(r − s)g(t− b)drdt.

These expressions, and the analogous ones for the buyer, are incorrect.9

In particular, there are three main issues.
First, the notation employed by Carlsson masks the bounds of the inte-

grals in the payoff function. The random variable r has support [s−x0, s+x1]
and the random variable t has support [b− y0, b+ y1]. While this notation is
not incorrect, it hides the fact that the support depends on the choice vari-
ables of the players.10 However, one cannot replace the bounds with their

9These are equations (1) - (4) in Carlsson (1991).
10This matters when differentiating the function.
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correct values and recover the correct expected payoff function — i.e., the
function

πS(s, b) =

∫
∞

−∞

∫ t

−∞

uS ([1− λ]r + λt) f(r − s)g(t− b)drdt

=

∫ b+y1

b−y0

∫ t

s−x0

uS ([1− λ]r + λt) f(r − s)g(t− b)drdt

is not always the correct expected payoff function! In particular, the above
expression only applies when (s, b) and support parameters x0, y0, x1, and
y1 are such that

s− x0 < b− y0 < b+ y1 < s+ x1.

The second issue, therefore, is that the form of the payoff function varies
with b and s and values of the support parameters. Consider the following
example. Let (s, b) and support parameters x0, y0, x1, and y1 be such that

s− x0 < b− y0 < s+ x1 < b+ y1.

We want to determine the expected payoff function. There is trade when
s+ εs ≤ b+ εb. If the realization εb is small (i.e., εb ≤ s− b+ x1), then there
is trade when εs ≤ b−s+ εb. However, for large values of εb there is trade for
all εs ∈ [−x0, x1] or equivalently all r ∈ [s− x0, s+ x1]. Hence, the expected
payoff function is

π̇S(s, b) =

∫ s+x1

b−y0

∫ t

s−x0

u((1− λ)r + λt)f(r − s)g(t− b)drdt

+

∫ b+y0

s+x1

∫ s+x1

s−x0

u((1− λ)r + λt)f(r − s)g(t− b)drdt.

This is different than the function labeled πS. Alternatively, if (s, b) and
support parameters x0, y0, x1, and y1 were such that

b− y0 < s− x0 < b+ y1 < s+ x1,

then

π̈S(s, b) =

∫ b+y1

s−x0

∫ t

s−x0

u((1− λ)r + λt)f(r − s)g(t− b)drdt.
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The expressions for the expected payoff functions πS, π̇S, and π̈S are all
where s− x0 < b+ y1 (i.e., there is trade with positive probability), but the
payoff functions have varied due to the assumption that the supports of the
random variables are finite intervals in R.11 Since Carlsson does not consider
the different support cases when deriving his expected payoff functions he
ends up with an incomplete representation of the expected payoff function.12

Finally, since the player’s choice variables b and s appear in the bounds of
integration of the expected payoff function one needs to apply Leibniz’s Rule
when taking derivatives. This is an important step missing in Carlsson, and
results in incorrect derivatives. It is easily verified that the derivatives ∂πS

∂s
,

∂π̇S
∂s
, and ∂π̈S

∂s
lead to different expressions than the single derivative reported

by Carlsson. This observation is compounded for the higher order derivatives
reported as well.
In summary, the payoff functions and the derivatives found in Carlsson

are all either incomplete or incorrect. Since the majority of the analysis is
based on these expressions, the assertions made in Carlsson (1991) should be
approached with skepticism.

Conclusion

We have provided a careful analysis of a bargaining model where parties
make errors. The model and results presented are primarily related to Nash
(1953), Binmore (1987b), and Carlsson (1991). Our model is “simpler” than
the Carlsson model in several respects. First, our traders had linear utility
functions as opposed to generic utility functions. Second, our traders were
paid/received their random price as opposed to some convex combination of
the random prices.13 Finally, the error terms in our model were indepen-
dently drawn from a uniform distribution on [−z, z] as opposed to general
distribution functions on arbitrary compact intervals. While less general than
Carlsson, the model achieves the desired goal. We have provided a natural

11If the supports are identical — i.e., x0 = x1 = y0 = y1 = z > 0, then one cannot have
the case

s− x0 < b− y0 < b+ y1 < s+ x1.

12While Carlsson’s payoff functions mimic the ones reported in Binmore (1987), but
the same critique does not apply to Binmore’s model. In Binmore’s model, the expected
payoff functions are correct since the support of the error terms is R.
13This is the case consided by Nash (1953) and Binmore (1987a,b).
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perturbation of the Nash Demand Game and precisely demonstrate that the
Nash Bargaining Solution is approximated by the trade equilibrium of this
game as the perturbation becomes small.

8 Appendix

8.1 Proof of Theorem 1

Proof of Part 1: If b ≤ −z, then the best the seller can do is enforce a no
trade outcome. If s− z ≥ b+ z, then there is no trade.

Proof of Part 2: We claim that if b = z, then σ(b) = z.
First, if s < b − 2z, then there is trade for sure and Case 1 applies. In

this region, ∂πS
∂s
= 1 > 0 and s cannot be a best response. Second, if s = z,

then Case 2 applies and ∂πS
∂s
= 0. We also have that if s < z, then ∂πS

∂s
> 0.

Third, if b+ 2z > s > z, then Case 3 applies and

∂πS

∂s
= −

1

4z2
(s− z) (b− s+ 2z) < 0.

Finally, if b + 2z < s, then πS = 0. Since setting s = z results in a strictly
positive expected payoff s > b+ 2z cannot be a best response. Hence, s = z
is the best response to b = z.
Next, we claim that if −z < b < z, then σ(b) = z.
First, if s < b−2z, then there is trade for sure and Case 1 applies. In this

region, ∂πS
∂s
= 1 > 0 and s cannot be a best response. Second, if s ∈ [b−2z, b],

then Case 2 applies and

∂πS

∂s
=
b− s

2z
+

1

4z2
(s− z) (b− s− 2z) .

Since b − s > 0, s − z < 0, and b − s − 2z < 0 we have that ∂πS
∂s

> 0 for
s ∈ [b− 2z, b]. Third, if s ∈ (b, b+ 2z], then Case 3 applies and

∂πS

∂s
= −

1

4z2
(s− z) (b− s+ 2z) .

Since −z < b < z, we have that z < b+2z and therefore that z ∈ (b, b+2z).
Setting s = z gives us ∂πS

∂s
= 0. If s < z, then ∂πS

∂s
> 0. If s > z, then for s

such that Case 3 is satisfied we have that ∂πS
∂s
< 0. Finally, if s is such that
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Case 4 applies then πS = 0. However, such s cannot be a best response since
setting s = z results in profitable trades with positive probability. Hence, if
−z < b < z, then σ(b) = z is the unique best response.

Proof of Part 3: Suppose that b > z and that s = σ(b) is a best response
to b.
We first demonstrate that σ(b) is unique and occurs in CII payoff region.

First, if s < b− 2z, then the CI payoff applies so
∂πS
∂s
= 1 > 0 and s cannot

be a best response. Second, if s ∈ [b− 2z, b], then

∂πS(s, b)

∂s
=
b− s

2z
+

1

4z2
(s− z) (b− s− 2z) .

If s = b − 2z, then we have a marginal payoff of ∂πS
∂s
(b − 2z, b) = 1 > 0. In

addition, setting s = b yields ∂πS
∂s
(b, b) = 1

4z2
(b− z) (−2z) < 0 because b > z

by assumption. Since ∂πS
∂s
is a continuous function in s, by the Intermediate

Value Theorem, there is a σ(b) ∈ (b − 2z, b) such that ∂πS
∂s
(σ(b), b) = 0.

Moreover, this value is unique in this region since

∂2πS

∂s2
= −

1

4z2
(2s− b+ 3z) < 0.

The sign follows since the smallest 2s − b + 3z can be is when s = b − 2z.
Thus, sufficiency for ∂2πS

∂s2
< 0 is b > z which is true by assumption. Third,

if s > b > z and s < b+ 2z, then CIII applies and

∂πS

∂s
= −

1

4z2
(s− z) (b− s+ 2z) < 0

so s cannot be a best response. Last, if s > b+ 2z, then there is never trade
so πS = 0. Trades at σ(b) never yield a negative profit and sometimes yield
a strictly positive profit. Hence, choosing a s that always results in no trade
is not a best response when b > z. Thus, σ(b) is the unique best response if
b > z.
Next, we must also have σ(b) > z. If z < b − 2z, then we have already

shown that σ(b) > z. If z ∈ [b− 2z, b], then

∂πS

∂s
(z, b) =

b− z

2z
> 0

since b− z. Using a similar argument with the Intermediate Value Theorem
we conclude that σ(b) ∈ (max{b− 2z, z}, b).
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Therefore we have shown that for b > z, the seller’s best response σ(b) is
uniquely defined and z < σ(b) < b. The final part of the claim is that the
slope of the σ in this region satisfies 0 < σ′(b) < 1. This follows since

σ′(b) = −
∂2πS
∂b∂s

∂2πS
∂s2

,

where the higher order derivatives are of the CII payoff function. The slope
σ′(b) > 0 because ∂2πS

∂b∂s
= 1

4z2
(s+ z) > 0 and ∂2πS

∂s2
= − 1

4z2
(2s− b+ 3z) < 0.

In addition,

−
∂2πS

∂b∂s
=
∂2πS

∂s2
+

1

4z2
(s+ z)−

1

4z2
(b− z).

So,

σ′(b) = 1 +
1
4z2
(s− b+ 2z)
∂2πS
∂s2

< 1,

since s > b− 2z. �

Proof of Part 4 and Part 5: A strategy s cannot be a best response to
b if s < b − 2z (i.e., if CI applies). In CI , trade occurs with certainty and
∂πS(s,b)
∂s

> 0. The seller’s marginal payoff is increasing in own action so s
cannot be optimal. Hence, σ(b) ≥ b − 2z. It follows that limb→∞ σ(b) = ∞.
�

8.2 Proof of Theorem 2

Proof of Part 1: Since s− z ≥ b∗ any trade that occurs results in negative
profit, the set of best responses are those reports that guarantee no trade
will occur. Any report b ≤ s− 2z is sufficient. �

Proof of Part 2: Suppose Case 3 applies so b ∈ (s− 2z, s]. Since b∗ − z ∈
(s− 2z, s] and

∂πB

∂b
= −

1

4z2
(b− (b∗ − z)) (b− s+ 2z)

setting b̄ = b∗ − z results in ∂πB
∂b
= 0.

In Case 3, if b < b̄ and b > s− 2z, then ∂πB
∂b
> 0; and if b > b̄ and b ≤ s,

then ∂πB
∂b
< 0.
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If b < b̄ and b < s−2z, then Case 4 applies and πB = 0. Setting b̄ = b
∗−z

achieves a strictly positive expected profit since only profitable trades occur
with positive probability. Hence, b < s− 2z cannot be a best response.
If b > b̄ and b > s, then either Case 2 or Case 1 apply. If Case 2 applies

then s < b < s+ 2z

∂πB

∂b
= −

1

4z2
(b∗ − z − b) (b− s− 2z)−

1

2z
(b− s).

Since b > s, b < s + 2z, and b > b̄ = b∗ − z, we have that ∂πB
∂b
< 0. Hence,

there are no critical points in Case 2.
Finally, if Case 1 applies, then b ≥ s+ 2z and ∂πB

∂b
= −1. �

Proof of Part 3: First, if b ≤ s − 2z, then Case 4 applies and πB = 0.
Second, if s− 2z < b < s, then Case 3 applies and

∂πB

∂b
= −

1

4z2
(b− (b∗ − z)) (b− s+ 2z) .

Since b < s < b∗ − z, we have b− (b∗ − z) < 0. In addition, (b− s+ 2z) > 0
because s− 2z < b. Therefore ∂πB

∂b
> 0 for b in Case 3.

Third, if s ≤ b ≤ s+ 2z, then Case 2 applies and

∂πB

∂b
= −

1

4z2
(b∗ − b− z) (b− s− 2z)−

1

2z
(b− s).

If b = s, then ∂πB
∂b

= 1
4z2
(b∗ − z − b) (2z) > 0 since s = b < b∗ − z. In

contrast, if b = s + 2z, then ∂πB
∂b

= −1. From the Intermediate Value

Theorem, there is a b̄ ∈ (s, s + 2z) such that ∂πB
∂b

= 0. Moreover, ∂
2πB
∂b2

=
− 1
4z2
(b∗ − 2b+ s+ 3z) < 0 so long as (b∗ − 2b+ s+ 3z) > 0. The term

b∗− 2b+ s+3z is smallest in b ∈ (s, s+2z) when b = s+2z. In this case, we

have b∗− 2(s+2z)+ s+3z = b∗− s− z > 0 by assumption. Hence, ∂
2πB
∂b2

< 0
for b ∈ (s, s+ 2z) so b̄ is unique.
If b∗ − z ∈ (s, s+ 2z), then b = b∗ − z results in

∂πB

∂b
= −

1

2z
(b∗ − z − s).

The term b∗ − z − s > 0 so ∂πB
∂b
< 0. It then follows if b∗ − z ∈ (s, s + 2z),

then b̄ ∈ (s, b∗ − z).
Finally, if b > s+ 2z, then ∂πB

∂b
= −1 < 0.
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We have therefore shown that b̄ is the unique global maximum. Thus, for
s < b∗ − z, the best response mapping β(s) is a function whose slope is

β′(s) = −
∂2πB
∂b∂s

∂2πB
∂b2

.

The cross partial is ∂
2πB
∂s∂b

= 1
4z2
(b∗ − b− z)+ 1

2z
. Since, b̄ ∈ (s,min{b∗−z, s+

2z}), it follows ∂
2πB
∂b∂s

> 0 and therefore β′(s) > 0.
Next, β′ < 1 if

1

4z2
(b∗ − b+ z) <

1

4z2
(b∗ − 2b+ s+ 3z)

or
b < s+ 2z

Since, s + 2z > b, the above inequality is true. Thus, for s < b∗ − z, the
mapping β is a non-expansive function. �

Proof of Part 4 and Part 5: The action b cannot be a best response to
s if s + 2z < b (i.e., if CI applies). In CI , trade occurs with certainty and
∂πB(s,b)

∂b
< 0 — i.e., the buyer can increase his payoff by decreasing b. Hence,

β(s) ≤ s+ 2z. It follows that lims→−∞ β(s) = −∞. �
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