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SPURIOUS REGRESSION

Daniel Ventosa-Santaulària∗

Abstract

The spurious regression phenomenon in Least Squares occurs for a wide range

of Data Generating Processes, such as driftless unit roots, unit roots with drift,

long memory, trend and broken-trend stationarity. Indeed, spurious regressions

have played a fundamental role in the building of modern time series econome-

trics and have revolutionized many of the procedures used in applied macroecono-

mics. Spin-offs from this research range from unit-root tests to cointegration and

error-correction models. This paper provides an overview of results about spurious

regression, pulled from disperse sources, and explains their implications.
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Introduction

During the last 30 years econometric theory has undergone a revolution. In the late

seventies, economists and econometricians recognized that insufficient attention was

being paid to trending mechanisms and that, in fact, most macroeconomic variables

were probably nonstationary. Such an appraisal gave rise to an extraordinary deve-

lopment that substantially modified the way empirical studies in time-series econo-

metrics are carried out. Research in nonstationarity has advanced significantly since

the early important papers, such as Granger and Newbold (1974), Davidson, Hendry,

Srba, and Yeo (1978), Hendry and Mizon (1978), Plosser and Schwert (1978) Bhatta-

charya, Gupta, and Waymire (1983) and Phillips (1986). Nelson and Plosser (1982)

asserted that many relevant U.S. macroeconomic time series were governed by a unit
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root (a random trending mechanism), based on Dickey and Fuller’s (1979) Unit-root

test. Several years later, Perron (1989) argued that the trending mechanism in macro

variables was deterministic in nature (with some transcendent structural breaks). The

debate continues between ’unit rooters’ and ’deterministic trenders’, though there is

very general consensus as to the presence of a trending mechanism in the levels of

most macroeconomic series. In the words of Durlauf and Phillips (1988):

“Traditional Analyses of Economic time series frequently rely on the assumption that

the time series in question are stationary, ergodic processes [. . .]. However, the assum-

ptions of the traditional theory do not provide much solace to the empirical worker.

Even casual examination of such time series as GNP reveals that the series do not

possess constant means”.

Econometrics should work hand-in-hand with economic theory by providing it with the

tools it requires to understand economic activity. The modeling of such mechanisms

is thus a major goal of time series econometrics.1 Spurious regression can be consi-

dered as having played a fundamental role in this development. To understand it, we

paraphrase Granger, Hyung, and Jeon (2001), who provide an illuminating definition

[Phillips (1986) showed analytically that, when regressing two independent stochastic

trends, the estimates of the regression coefficient do not converge to their real value of

zero.2 Phillips’s (1986) results are detailed in a simple case in Appendix A]:

“A spurious regression occurs when a pair of independent series, but with strong tem-

poral properties, is found apparently to be related according to standard inference in

a Least Squares regression”.

Phillips (1998) presented a counterargument on the usefulness of spurious regression:

trend specifications are just coordinate systems for representing behavior over time.

Phillips argues that even if the series are statistically independent, when they include

a trending mechanism in their DGP, they admit a regression representation (even in

the absence of cointegration). This is in sharp contrast to the usual concept of spu-
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rious regression. We usually conceive this phenomenon as the statistical identifica-

tion of a commonality of trending mechanisms. Phillips ventures that such results–the

’spurious’–constitute an adequate representation of the data. His main result applies for

regressions among stochastically trended series on time polynomials as well as regres-

sions among independent random walks. Phillips (1998) proves that Brownian motions

can be represented by deterministic functions of time with random coefficients. Given

that standardized discrete time series with a unit root (hereinafter UR) converge wea-

kly to Brownian motion processes, it is argued that deterministic time functions may

be used to model them. Such representations include polynomial trends, trend breaks

as well as sinusoidal trends; it is also proved that a stochastic process can represent an

arbitrary deterministic function on a particular interval, so a regression of a UR process

on an independent UR process is thus also a valid representation of the data. In both ca-

ses, the t-statistics diverge at rate T
1

2 , which is consistent since such parameterization

reflects a partial–though correct–specification of the DGP. One of the most significant

conclusions of Phillips concerns the long-standing debate of UR versus Trend Statio-

narity. To quote Phillips:

“[. . .] Our results show that such specifications [Trend stationary processes] are not,

in fact, really alternatives to a UR model at all. Since the UR processes have limiting

representations entirely in terms of these functions (deterministic), it is apparent that

we can mistakenly ’reject’ a UR model in favor of a trend ’alternative’ when in fact that

alternative model is nothing other than an alternate representation of the UR process

itself.’

This perspective has the virtue of allowing variables with different trending mecha-

nism (deterministic or stochastic) to be related without being limited to the somewhat

restrictive case of cointegration. Phillips advances this as an appropriate approach to

study stochastically unbalanced relationships such as the ones that may arise between

variables such as interest rates, inflation, money stock and GDP [for further detail, see
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Phillips (2003)].

To the best of our knowledge, little has been done in the way of bringing the most

important works in this field together, treating them in any kind of standardized way,

making connections between them, and of any real study of the profound implications

for economics they might indicate. This article aims to rectify this situation.

1 Appraisal of the spurious phenomenon

Much progress has been made with Least Squares statistical inference since it was

first proposed more than two centuries ago as a means of estimating the course of

comets (Legendre 1805). Theoretical developments in econometrics address the non-

experimental nature of economic data sets. Least Squares (LS) offers a trade-off bet-

ween simplicity and powerful inference. Nevertheless, LS has certain limitations, such

as potential confusion between correlation and causality, and used unwisely may pro-

duce misleading evidence. Statisticians and econometricians had been aware of the

”spurious phenomenon” since Yule (1897) and Pearson (1897) [for excellent reviews

of these works, see Hendry and Morgan (1995) and Aldrich (1995)]. These results led

to the common expertise in the time-series field that indicated the need to differentiate

potentially nonstationary series when using these to run regressions or detrending these

by fitting trend lines estimated with LS. See Morgan (1990).

There are many examples of spurious regression. Some of these are commented on in

Phillips (1998), where we discover the implausible relationship between ‘the number

of ordained ministers and the rate of alcoholism in Great Britain in the nineteenth

century’; the equally ‘remarkable relationship’ presented in Yule (1926) concerning the

’proportion of Church of England marriages to all marriages and the mortality rate over

the period 1866-1911’; the ‘strange relationship’ between price level and cumulative

rainfall in the UK, which was advanced as a curious alternative version of quantitative

theory by Hendry (1980). Plosser and Schwert (1978) presented another example of
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nonsense correlation when they proposed their quantity theory of sunspots. The main

argument is that the log of nominal income can be explained by way of the log of

accumulative sunspots. Not only did they find statistically significant estimates, but

the goodness of fit, measured with the R2, is quite high: 0.82.3 Granger and Newbold

(1974) computed a Monte Carlo Experiment where a number of regressions, specified

as equation (1), were run using simulated variables, each perfectly independent of the

others.

yt = α + βxt + ut (1)

where t = 1, . . . , T , being T the sample size. The variables xt and yt are independent.

Under standard regularity conditions, LS delivers no evidence of a linear relationship

between y and x. In particular, β̂ should be statistically equal to zero. Nevertheless,

Granger and Newbold’s (1974) they were generated as I(1) processes,4 usually referred

to as random walks, that is, UR processes, but found estimated parameters statistically

different from zero, with its associated t-ratio tβ̂ = β̂
σ̂

β̂

, unusually high.5 Phillips

(1986) provided a theoretical framework that explained the causes of the phenomenon

of spurious regression. In short, it is fair to say that standard LS inference can only

be drawn when the variables are stationary. Even with stationary but highly persistent

variables, spurious regression can occur when the standard errors used in the t-ratio

are inconsistent. Ferson, Sarkissian, and Simin (2003) provide examples in financial

economics. One extremely important exception to this is the case of cointegration.

Even if the series are stochastically trending, when the trend is common to both series

the LS regression then works particularly well in the sense that estimates converge in

probability to their true value at a rate faster than T , but have a nonstandard distribution

(Stock 1987).
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2 Data Generating Processes

Research on spurious regression has been making use of increasingly complex Data

Generating Processes (DGPs). Table (1) provides a summary of those appearing in this

survey:

# Name Model

1 MA(qw) or wt =
∑qw

i=1 Θiwǫwt−i or

AR(pw) wt =
∑pw

i=1 φwiwt−i + ǫwt (stationary)

2 I(0) wt = µw + uwt

3 I(0) + br wt = µw +
∑Nw

i=1 θiwDUiwt + uwt

4 TS wt = µw + βwt + uwt

5 TS + br wt = µw +
∑Nw

i=1
θiwDUiwt + βwt +

∑Mw
i=1

γiwDTiwt + uwt

6 I(1) ∆wt = uwt

7 I(1) + dr ∆wt = µw + uwt

8 I(1) + dr + br ∆wt = µw +
∑Nw

i=1 θiwDUiwt + uwt

9 I(k) ∆kwt = uwt for k = 2, 3, . . .

10 FI(d) (1 − L)
d
wt = uwt for d ∈

(
0, 1

2

)

11 FI(1 + d) ∆wt = uwt with (1 − L)
d
uwt = ǫwt for d ∈

(
0, 3

2

)

Table 1: The DGP’s for wt = xt, yt, zt. Note: TS, br and dr stand for trend-

stationarity, breaks, and drift, respectively.

where uwt are independent innovations obeying Assumption 1 in Phillips (1986), ǫwt

is an iid white noise with mean zero and variance σ2
ǫ , and DUiwt, DTiwt are dummy

variables allowing changes in the trend’s level and slope respectively, that is, DUiwt =

1(t > Tbiw
) and DTiwt = (t−Tbiw

)1(t > Tbiw
), where 1(·) is the indicator function,

and Tbiw
is the unknown date of the ith break in w. We denote the break fraction as

λiw = (Tbiw
/T ) ∈ (0, 1), where T is the sample size; d ∈

(
− 1

2 , 3
2

)
. Only DGPs 1,

2 and 10 (for d < 0.5) satisfy the weak stationarity definition. The remaining DGPs

generate nonstationary series.6 FI processes deserve further discussion; contrary to re-

gular ARMA(p, q) processes–made popular by Box and Jenkins in the 1970s–such as

DGP 1, whose autocorrelation function decays at an exponential rate (short memory),

FI(d) processes have an autocorrelation function that decays at a hyperbolic rate (long
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memory).

There are a number of empirical examples in time series in which dependence falls

slowly across time. This phenomenon, known as Long Memory or Long-Range de-

pendence, was observed in geophysical data, such as river flow data (Hurst 1951) and

in climatological series (Hipel and McLeod 1978), as well as in economic time series

(Adelman 1965). In three important papers (Granger 1980, Granger and Joyeux 1980,

Hosking 1981), the authors extended these processes to provide more flexible low-

frequency or Long Memory behavior by considering I(d) processes with non-integer

values of d. As pointed out by Granger and Joyeux (1980), “It was standard procedure

to consider differencing time series to achieve stationarity”–thus obtaining a form of

the series that can be identified as an ARMA model–however, “Some econometricians

were reluctant to this technique, believing that they may be losing information, by zap-

ping out the low frequency components.” But using infinite variance series without

differencing them was also a source of difficulties at that time. Fractional integration

encompasses ARMA models for d = 0, and ARIMA models for d = 1. The process

is stationary and ergodic when d ∈
(
− 1

2 , 1
2

)
; nonstationary but mean-reverting7 when

1
2 < d < 1, and nonstationary and mean averting when d ≥ 1.

Mean stationary processes (DGPs 2 and 3) have been used to model the behavior of real

exchange rates, unemployment rates, current account, and several great ratios, such as

the output-capital ratio and the consumption-income ratio. Unemployment has also

been conceived as a nonstationary fractionally integrated process (Arino and Marmol

2004). Some examples can be found in Perron and Vogelsang (1992), Wu (2000), Wu,

Chen, and Lee (2001) and D’Adda and Scorcu (2003). Trend Stationarity and I(2)

processes (DGPs 4 and 9, respectively) have been used to model growing variables,

real and nominal, such as output, consumption and prices; several macro variables

have been conceived as DGPs 5, 6, and 7 (Perron 1989, Perron 1997, Lumsdaine and

Papell 1997, Mehl 2000). Variables identified as I(2) processes can also be found
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in Juselius (1996), Juselius (1999), Haldrup (1998), Muscatelli and Spinelli (2000),

Coenen and Vega (2001), and Nielsen (2002). In Table (11) of appendix B, a few

more examples are provided, in which the link between time-series econometrics and

important economic issues is acknowledged.

3 Spurious regression since the roaring twenties

We now begin our survey of the development of the theory of spurious regression. The

related literature is vast, for which reason we focus mainly on a limited selection of

articles which, in our view, are particularly representative.8 Unless otherwise speci-

fied, the regression specification for which all asymptotics are presented is hereinafter

expression (1). We focus mainly on on the rate of divergence of the relevant t-ratios

and let aside in most cases the asymptotic distributions that would be obtained had

the statistics being correctly normalized. This is so because such distributions do have

nuisance parameters that prevent one from making use of these to do correct inference;

moreover, practitioners cannot be aware a priori of the adequate normalization. Ho-

wever, in some cases (Kim, Lee, and Newbold 2004, Sun 2004, Moon, Rubia, and

Valkanov 2006) the asymptotic distributions are important because of the relevance for

practitioners.9

3.1 Yule’s experiment

Spurious correlation was evidenced by Yule (1926) in a computerless Monte Carlo

experiment. Shuffling decks of playing cards, Yule obtained independent series of ran-

dom numbers. In fact, Yule generated independent I(0), I(1), and I(2) series and

computed correlation coefficients amongst them. Such correlation coefficients provi-

ded correct inference when using I(0) series, but became nonsensical when the order of

integration of the variables was higher. With independent I(0) variables the correlation

coefficient remained close to zero. The same estimate achieved using I(1) independent
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variables no longer worked; many times it was close to unity, resulting in what we now

refer to as a spurious correlation. If variables were I(2), the most probable outcome

was actually a correlation coefficient of close to 1: the spurious phenomenon was even

stronger.

3.2 Reappraisal in the seventies: spurious Least Squares

Throughout most of the past century, it was commonly recommended to first-difference

the series if these seemed to have a trending mechanism. However, not every econo-

metrician was in agreement with such a method because, it was argued, differencing

causes losses in the information contained in the original series. A profound reapprai-

sal of this issue began with Granger and Newbold’s (1974) article, which allowed the

spurious regression in Least squares estimators to be identified. The Monte Carlo ex-

periment described above revealed, among other things, that high R2 and low Durbin-

Watson statistics (hereinafter DW) should be considered as a sign of misspecification.

They also pointed out, comparing the outcome of simulation with many results in ap-

plied econometrics, that problems of misspecification seemed to be widespread. It was

proposed that first-differenced series be used, although the authors warned about the

risks of catch-all solutions; their results may be considered as the seed of many fruitful

extensions in time series econometrics.

3.3 Theory at last: asymptotics in nonsensical regressions

Phillips (1986) proposed the theoretical framework necessary to allow an understan-

ding of Granger and Newbold’s earlier results and provided a first insight into the phe-

nomenon of spurious regression. His development set the groundwork for the spurious

regression literature in econometrics. Whilst Granger and Newbold used an i.i.d. noise

in their simulations , Phillips allowed a flexible autocorrelation structure, as well as

some degree of heterogeneity. He then proved that, when specification (1) is estimated
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the following asymptotics are obtained:

β̂ = Op (1) α̂ = Op

(

T
1

2

)

R2 = Op (1)

tβ̂ = Op

(

T
1

2

)

tα̂ = Op

(

T
1

2

)

DW
p
→ 0

Table 2: Orders in Probability: variables yt and xt both independently generated by

DGP 6

where Op(m) denotes the order of magnitude and
p
→ means convergence in probability.

The most relevant results are that the R2 does not collapse, and, the t-statistic associated

to β̂ diverges at a rate T
1

2 . This means that the t-statistic will exceed the classical

5% − level critical values (−1.96 and 1.96) as the sample size grows and, with a

sufficiently large sample, the null hypothesis of the t-statistic (H0 : β = 0) will be

rejected with certainty.

Park and Phillips (1989) demonstrated the presence of spurious regression when the

independent variables are I(2). Marmol (1995) proved that the phenomenon of spu-

rious regression occurs in a more general nonstationary framework; he demonstrated

that spurious regression occurs when independent series xt, yt are integrated of order d

for d ∈ N = {1, 2, . . .} (see DGP 9). Empirically relevant DGPs, such as the I(2) pro-

cess (identified, as mentioned earlier, with uncontrolled inflation) can produce spurious

regression. The asymptotic results are somewhat similar to those of Phillips:

β̂ = Op (1) α̂ = Op

(

T
1

2
−d
)

R2 = Op (1)

tβ̂ = Op

(

T
1

2

)

tα̂ = Op

(

T
1

2

)

DW = Op

(
T−2

)

Table 3: Orders in Probability: variables yt and xt both independently generated by

DGP 9. Both variables are integrated of the same order.

Although the parameter estimate of the constant term, α̂, diverges at a different rate,

the t-statistic associated with β̂ diverges at the same rate as in Phillips’s (1986) seminal
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work, i.e. Op

(

T
1

2

)

.

One limitation of Marmol’s (1995) results is that both the dependent and the indepen-

dent variables share the same order of integration. Banerjee, Dolado, Galbraith, and

Hendry (1993), provided Monte Carlo evidence of spurious regression when the order

of integration of each variable is different. Marmol (1996), later allowed the relevant

DGPs for both y and x to be integrated of different orders; yt ∼ I (d1) and xt ∼ I (d2)

where d1 and d2 ∈ N = {1, 2, . . .}. Marmol’s (1996) results are twofold; either

d1 > d2 or vice versa:

• When d1 > d2:

β̂ = Op

(
T d1−d2

)
α̂ = Op

(

T d1−
1

2

)

tβ̂ = Op

(

T
1

2

)

tα̂ = Op

(

T
1

2

)

DW = Op

(
T−1

)
if d2 = 1 DW = Op

(
T−2

)
if d2 = 2, 3, . . .

Table 4: Orders in Probability: variables yt and xt both independently generated by

DGP 9. Variables are integrated of different orders. d1 > d2

• When d1 < d2:

β̂ = Op

(
T d1−d2

)
α̂ = Op

(

T d1−
1

2

)

tβ̂ = Op

(

T
1

2

)

tα̂ = Op

(

T
1

2

)

DW = Op

(
T−1

)
if d1 = 1 DW = Op

(
T−2

)
if d1 = 2, 3, . . .

Table 5: Orders in Probability: variables yt and xt both independently generated by

DGP 9. Variables are integrated of different orders. d1 < d2

• In both cases R2 = Op (1)

Indeed, spurious regression persists in the presence of the so-called unbalanced regres-

sions. The rate of divergence of tβ̂ remains T
1

2 . de Jong (2003) extended the study of

spurious regression using independent driftless unit root processes; he used DGP (6) to

generate the series and ran the following specification, which operates with logarithmic
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transformation of both variables–a direction which has proved extremely relevant for

empirical purposes:10

ln (yt) = α + β ln (xt) + ut

de Jong discovered similar results to previous works, i.e. β̂ = Op (1) and tβ̂ =

Op

(

T
1

2

)

.

Entorf (1997) made a slight-and yet, fundamental-modification to the Phillips’ DGPs

by adding a drift (DGP 7).11 Amongst the most relevant consequences of such drift is

the fact that there is not only a stochastic trend but also a deterministic one. In the long

run, the deterministic trend dominates the stochastic (see Appendix C). The asymptotic

results of estimating equation (1) using independent variables generated by DGP 7 are:

tβ̂ = Op (T ) tα̂ = Op

(

T
1

2

)

(
1 − R2

)
= Op

(
T−1

)
DW = Op

(
T−1

)

Table 6: Orders in Probability: variables yt and xt both independently generated by

DGP 7.

Note that tβ̂ grows at rate T instead of T
1

2 , contrary to the results presented so far, due

to the presence of a deterministic trend.

3.4 Spurious regression and long memory: an unforgettable exten-

sion

Among the first papers to deal with spurious regression in econometrics12 using long

memory processes are those of Cappuccio and Lubian (1997) and Marmol (1998). The

authors use the nonstationary fractionally-integrated processes specified in DGP 11.

Under these conditions, the asymptotics of an LS regression as specified in expression

(1) are as follows:13
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β̂ = Op (1) tβ̂ = Op

(

T
1

2

)

R2 = Op (1) DW = Op

(
T−(1+2d)

)

Table 7: Orders in Probability: variables yt and xt both independently generated by

DGP 11. The variables are integrated of the same order.

Note that as most of the previous cases the t-statistic of β̂ diverges at rate T
1

2 . The

main difference lies in the DW , the rate of divergence of which varies according to the

degree of long memory, measured by d. These results can be understood as an argu-

ment against the usefulness of the ‘rule-of-thumb’; a regression was usually considered

spurious when R2 > DW . However, when long memory is present in the variables,

the regression may well be spurious even if R2 < DW . It is worth mentioning that the

fractional integration parameter, d, is the same in both variables. This ‘shortcoming’

is fixed by Tsay and Chung (2000), who used a manifold approach. They used two

DGPs (No 10 and 11) and then combined these in a simple regression. Thus, there

are four fractionally-integrated processes, two stationary, [FI(d1) and FI(d2) with

di ∈
(
0, 1

2

)]
, and two nonstationary, [FI (di + 1) for di ∈

(
1
2 , 3

2

)]
. The authors then

studied several specifications using six DGPs. The first four are used in the estimation

of specification (1) whilst the remaining two estimate yt = α + δt + ut:

1. yt ∼ FI (1 + d1) and xt ∼ FI (1 + d2),
14

2. yt ∼ FI (d1) and xt ∼ FI (d2) where d1 + d2 > 1
2 ,

3. yt ∼ FI (1 + d1) and xt ∼ FI (d2) where d2 > 1
2 ,

4. yt ∼ FI (d1) and xt ∼ FI (1 + d2) where d1 > 1
2 ,

5. yt ∼ FI (1 + d1) where d1 > 0,

6. yt ∼ FI (d1) where d1 > 0.

We can summarize the results by stating that tβ̂ = Op (T r) where 0 < r < 1 which

means that the t-ratio always diverges; the divergence rate, r, is, T
1

2 , T d1+d2−
1

2 , T d2 ,

T d1 , T
1

2 , and T d1 for cases 1 − 6.
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Special attention should be given to the Durbin-Watson statistic, which collapses to

zero (as usual) except in the second case, where DW = Op (1) and hence does not

converge to zero as it does elsewhere. This also could be interpreted as an important

indication of the need for caution when using the rule-of-thumb, which states that when

R2 > DW there may be spurious regression. As in Cappuccio and Lubian (1997),

there is evidence that the rule-of-thumb may be a dangerous tool. Another important

result appears when we compare model 1 and model 2. The reader may notice that

the variables used in the second model are merely the first differences of those used in

the first. What is surprising is that the spurious regression persists after the variables

have been differenced.15 This goes against fifty years of tradition (differencing is used

to deal with spurious regression16). Tsay and Chung (2000) actually go further by

suggesting that the spurious phenomenon is due to the long memory properties of the

series and not to the presence of unit roots.17 Sun (2006) shows that spurious regression

can occur between two stationary generalized fractional processes, as long as their

generalized fractional differencing parameters sum up to a value greater than 1
2 and

their spectral densities have poles at the same location.

3.5 Spurious regression with stationary series: size-matters

Granger, Hyung, and Jeon (2001) show, both through Monte Carlo experiments and

theoretically that the spurious regression phenomenon may occur amongst independent

stationary series.18 Two independent AR(1) series (see DGP 2 with Pw = 1) were run

together to estimate regression (1), resulting in a rejection rate of the t-statistic greater

than the expected 5%. Granger, Hyung, and Jeon (2001) provide a theoretical proof of

why this happens (although the variance of the estimates does not diverge, it may not

be unity, depending on the values of the DGP’s parameters).19

These results are extended to long-span MA processes (see DGP 1). Curiously, the

spurious regression does not depend on the sample size, but rather on the MA span
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parameter, qw. What is interesting about this result is the fact that it better explains

the spurious regression phenomenon in small-sized samples. This would complete the

theoretical framework necessary to allow an understanding of the Monte Carlo results

of Granger and Newbold (1974) and Ferson, Sarkissian, and Simin (2003)

Granger, Hyung, and Jeon’s (2001) results differ from all others, the effect being dis-

cussed is not not an asymptotic phenomenon but rather a size distortion. Size distor-

tions arise because standardizing a test statistic is difficult unless the exact form of the

spectral density of the residuals is known. The intuition behind the spurious regression

phenomenon is thus, different from the one that underlies all other results.

Mikosch and de Vries (2006) provide an alternative theory to explain spurious-type

behavior akin to the financial risk measurement literature.20 In the words of Mikosch

and de Vries (2006):

“Estimators of the coefficients in equations of regression type which involve financial

data are often found to vary considerably across different samples. This observation

pertains to finance models like the CAPM beta regression, the forward premium equa-

tion and the yield curve regression. In economics, macro models like the monetary

model of the foreign exchange rate often yield regression coefficients which signifi-

cantly deviate from the unitary coefficient on money which is based on the theoretical

assumption that money is neutral.”.

Mikosch and de Vries (2006) prove that, when the distribution of the innovations is

heavy tailed, that is, when there is a departure from the normality assumption usually

made, using standard statistical tools (such as LS, for example) can be misleading.21

3.6 The last newcomer: Trend Stationarity

Hassler (2000) studied the spurious regression phenomenon from a different perspec-

tive. He considered the possibility of spurious regression when the variables do have a

deterministic trend component (what we have defined earlier as trend stationarity [DGP
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4]). Thus, there are two independent nonstationary variables. Hassler’s (2000) results,

as with those of Kim, Lee, and Newbold (2004), who worked with the same DGPs, are

as follows:

tβ̂ = Op

(

T
3

2

)

β = Op (1) T 2
(
1 − R2

) p
→ 0

Table 8: Orders in Probability: variables yt and xt both independently generated by

DGP 4.

In addition, Kim, Lee, and Newbold (2004) proved that when one of the deterministic

trend components is taken out (that is, either βy = 0 and βx 6= 0 or vice versa), the t-

ratios converge to centered normal distribution, although its variance is not unity, which

may provoke spurious rejection of the null hypothesis that the parameter is zero. That

means that running a trend stationary variable (DGP 4) on a mean stationary variable

(DGP 2) or vice versa lessens the ”spuriosity” in the regression. The authors also

generated independent series with the DGP (4), as did Entorf (1997), although they ran

a different specification:

yt = α + βxt + δt + ut (2)

The asymptotics provided in Kim, Lee, and Newbold (2003) only concern β̂ and tβ̂ . We

computed the orders in probability of the other two parameters, given their relevance.

We included in Appendix D a guide on how to obtain these asymptotics:

α̂ = Op (1) tα̂ = Op

(

T
1

2

)

β̂ = Op

(

T−
1

2

)

tβ̂ = Op (1)

δ̂ = Op (1) tδ̂ = Op

(

T
1

2

)

Table 9: Orders in Probability: variables yt and xt both independently generated by

DGP 4. The estimated specification is eq. (2).
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It should be noted that the t-ratio converges to a normal distribution. However, since

the variance is not unity, spurious regression may well be still present.

A relevant extension of Hassler (2000) and Kim, Lee, and Newbold (2004) was provi-

ded by Noriega and Ventosa-Santaulària (2006b) where (possibly multiple) structural

breaks are added to the Trend Stationary DGP, i.e. DGP 5. Adding breaks to the speci-

fication of the DGPs makes the divergence rate of the t-statistic associated with β̂ return

to the usual T
1

2 ‘norm’. They also proved that adding a deterministic trend into the re-

gression specification (see equation 2) does not prevent the phenomenon of spurious

regression; tδ̂ remains Op

(

T
1

2

)

. In an effort to unify the related literature, Noriega

and Ventosa-Santaulària (2007) filled a number of gaps until then unaddressed. They

studied several previously overlooked combinations of DGPs and summarized most of

the others’ results. DGPs 2-9 may indistinctly generate x and/or y.22 In fact, amongst

the new possible combinations, the divergence rate of tβ̂ usually remains T
1

2 . The

combination of a Trend Stationary and an I(1) plus drift stands out since the diver-

gence rate of the t-ratio is T rather than T
1

2 as in Kim, Lee, and Newbold (2004),

although this result should have been anticipated given the asymptotic dominance of

the deterministic trend over the stochastic. This combination is thus clearly linked to

Entorf’s (1997) results.

Granger, Hyung, and Jeon (2001) showed that the use of an Heteroskedasticity and

Autocovariance covariance matrix diminishes size distortions in some cases but their

Monte Carlo evidence also showed that this is true only when the sample size is large

(greater than 500). The use of HAC standard errors23 when the DGPs are stationary

or have a deterministic trend is not so obvious. We performed a simple simulation to

support this view (see table 10). The variables x and y are independently generated

either by DGP (4), (5), or (6). Lag selection was done as in Granger, Hyung, and Jeon

(2001), that is, using the formula: l = integer
[

4 (T/100)
1/4
]

. Simulation results

show that size distortions are less severe when HAC is used, but remain extremely

17



high (perhaps results would improve further if the data could follow a pre-whitening

procedure).

DGPs LS standard errors HAC standard errors

xi yi Sample size

50 100 200 500 50 100 200 500

4 4 0.21 0.99 1.00 1.00 0.27 0.99 1.00 1.00

5 5 0.20 0.99 1.00 1.00 0.27 0.99 1.00 1.00

6 4 0.45 0.80 0.90 0.95 0.46 0.71 0.79 0.86

6 5 0.65 0.84 0.91 0.95 0.62 0.74 0.80 0.86

6 6 0.68 0.76 0.83 0.90 0.57 0.61 0.67 0.77

Table 10: t-ratio rejection rates using a 1.96 critical value (5% level) for a standard

normal distribution: spurious regression using LS and HAC standard errors.

3.7 Next of kin: statistical tests, Long Horizon, and Instrumental

Variables

Not all work on the spurious phenomenon has been monopolized by the LS simple

estimator. Stochastic trending mechanisms have been used in most of the studies, alt-

hough some exceptions are presented at the end of this section. Equally relevant are

the Instrumental Variables (IV) estimates, which have also been analyzed (Ventosa-

Santaulària 2009).

Giles (2007) studied two important residual tests: the Jarque-Bera test [hereinafter JB;

see Jarque and Bera (1980)] and the Breusch-Pagan-Godfrey test (Breusch and Pagan

1980, Godfrey 1988), used to test for normality and autocorrelation/heteroskedasticity

evidence in the residuals of an LS regression, respectively; he used independent driftless

random walks (DGP 6) and proved that both statistics diverge at rate T , that is:

• Jarque-Bera test: JB = Op (T )

• Breusch-Pagan-Godfrey test:
(
T · R2

)
= Op (T )

The null hypothesis of normality or serial independence/homoskedasticity will be even-

tually rejected even if it is correct, given a large enough sample.24 Furthermore,
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Ventosa-Santaulària and Vera-Valdés (2008) studied the behavior of the classical Gran-

ger-Causality test [see Granger (1969)], hereinafter GC. It is proved that the classical

GC test fails to accept the null hypothesis of no GC between independent broken-trend

(DGP 5) or broken-mean (DGP 3) processes whether the former series are differenced

or not.

Kim, Lee, and Newbold (2005) study several important nonlinearity tests: the RESET

test (Ramsey 1969), the McLeod and Li test (McLeod and Li 1983), the Keenan test

(Keenan 1985), the Neural Network test (White 1989), White’s Information test (White

1992), and the Hamilton test (Hamilton 2000). All these tests were studied by way of

finite-sample experiments using independent driftless random walks (see DGP 6). They

also presented the asymptotics of the RESET and Keenan tests; both test-statistics are

Op (T ), so the null of linearity is eventually rejected as the sample size grows. In the

same vein, Noriega and Ventosa-Santaulària (2006a) proved that, when the variables

are generated independently by any combination of DGPs (3), (5), (7), and (8), the

Engle and Granger cointegration-test spuriously rejects the null of no cointegration25

in an indeterminate number of cases since the relevant t-statistic is Op

(

T
1

2

)

.26

Spurious regression has also been identified in the context of Long-Horizon (henceforth

LH) regressions, which are used in situations where previous “short-term”27 studies

have failed. In fact, Valkanov’s (2003) insight is that rolling summations of I(0) varia-

bles, that is LH variables, behave asymptotically as I(1) series. Hence, the theory of

spurious regression between independent I(1) variables, discussed earlier, should give

readers the intuition. Late eighties’ studies provided interesting results in economics

and finance. As asserted by Valkanov (2003):

“The results [. . .] are based on long-horizon variables, where a long-horizon variable

is obtained as a rolling sum of the original series. It is heuristically argued that long-

run regressions produce more accurate results by strengthening the signal coming from

the data, while eliminating the noise”.
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More precisely, if the specification to be estimated is equation (1), a Long-Horizon

“reinterpretation” is carried out with the building of partially aggregated variables. As

usual, let, w = x, y, then wk
t =

∑k−1
j=0 wt+j . The LH regression specification can

usually be one of the following:

yk
t = α + βxk

t + ut (3)

yk
t = α + βxk

t−k + ut

yk
t = α + βxt + ut

Such specifications are used mostly in the estimation of the equity/dividend relations-

hip and to test both the neutrality of money or the Fisher effect. Based upon the pre-

vious specifications, Valkanov (2003) and Moon, Rubia, and Valkanov (2006) proved

that this regression strategy also presents the spurious regression phenomenon. To do

this, they let time overlap in the summations as a fixed fraction of the sample size,

k = [λ · T ] where λ ∈ [0, 1]. Valkanov (2003) then defines the following DGP:

yt = βxt + uyt (4)

where (1 − L) φ(L)xt = uxt. The variable xt follows an autoregressive process

whose highest root is unity whilst the rest, represented in the polynomial φ(L), is

invertible. Let ω = (uyt, uxt)
′

be defined as a martingale difference sequence with

E (ωtω
′

t | ωt−1 . . .) =
[
σ2

11 σ12;σ21 σ2
22

]
and finite fourth moment. We could argue

that, when β = 0, the t-ratio associated with its estimate should be small enough

for the null hypothesis to be accepted. As in previous results, that does not happen;

tβ̂ = Op

(

T
1

2

)

. Valkanov (2003) and Moon, Rubia, and Valkanov (2006) suggest the

use of a rescaled t-ratio,
t
β̂

T
1

2

. Although the limiting distribution of such t-statistic’s

is neither normal nor pivotal, it can be easily simulated and hence used. Lee (2006)

extends the results for fractionally integrated processes and finds that the t-ratio asso-
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ciated with β̂ in equation (3) diverges: tβ̂ = Op

(

T
1

2

)

.

Ventosa-Santaulària (2009) studies the asymptotics of Instrumental Variables (IV) using

DGPs (5) and (7), not only for x and y, but also for a spurious and independent ins-

trument. It is shown that the t-ratio still diverges at rate T
1

2 which confirms the Monte

Carlo simulations carried out by Leybourne and Newbold (2003). This result can be

also seen as a complement to those presented by Phillips and Hansen (1990) and Han-

sen and Phillips (1990), in which the use of spurious instruments is proposed to im-

prove the estimates whenever strong endogeneity is present between x and the residual

term in cointegrated relationships.

Sun (2004) developed a convergent t-statistic for correcting the phenomenon of spu-

rious regression. The new t-ratio is based on an estimate of the parameter variance

made in the same manner as HAC standard errors. This t-statistic converges to a non-

degenerate limiting distribution for many cases of spurious regression. He considered

the regression between two independent nonstationary I(d) processes with d > 1
2 as

well as the regression between an independent nonstationary I(d) process and a linear

trend [see equation (5)]:

yt = α + δt + ut (5)

In previous studies, the presence of unit roots in the series generally produced a T
1

2

divergent t-ratio. To avoid such divergence, Sun proposes a rescaling of the parameter

estimate using a new standard error. The new Standard Error is computed in the same

way HAC is. The main difference is that HAC estimates usually require a bandwidth

or truncation lag. Sun suggests using the entire sample length:

σ̂2
β̂

=

(
T∑

t=1

(xt − x̄)
2

)−1

· T Ω̂ ·

(
T∑

t=1

(xt − x̄)
2

)−1
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where

Ω̂ =

T−1∑

j=−T+1

κ

(
j

T

)

Γ̂(j)

Γ̂(j) =







1
T

∑T−j
t=1 (xt+j − x̄) ût+j ût (xt − x̄) for j ≥ 0

1
T

∑T
t=−j+1 (xt+j − x̄) ût+j ût (xt − x̄) for j < 0

where κ is a kernel function that belongs to a class that ensures positive definitiveness.

Whether xt ∼ I(d) or xt = t, well-defined asymptotic distributions for the t-ratio are

provided.

4 What to do if one fears spurious regression

The spurious regression phenomenon pervades many subfields in time series analysis.

It might be controlled by using correctly scaled t-ratios, as suggested earlier, but ha-

ving a clear idea of what DGP best emulates the properties of the series (this could

be labeled as DGPi-fication) would therefore be necessary (examples of this can be:

(i) evidence of UR must be obtained before a cointegration analysis is undertaken; (ii)

the nature of the trending mechanism should be identified prior to the application of a

transformation intended to render stationary the series, and; (iii) a test such as Robin-

son’s (1994) could be undertaken in order to identify long-memory behavior). This can

be achieved by means of applying a battery of tests to our series. Such an approach is

not exempted of failures. Many statistical tests are known to yield spurious evidence

under specific circumstances (see the previous subsection). Nevertheless, pretesting the

series remains an adequate strategy and allows the practitioner to be aware of the poten-

cial difficulties he could face. In this section we include a short—and incomplete—list

of tests that are employed in the DGPi-fication of the series:

1. Drawing inference concerning the nonstationarity of the series can be done by
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means of Dickey-Fuller-type (DF) tests [see Dickey and Fuller (1979) and Di-

ckey and Fuller (1981)]. The original DF test distinguishes between the null

hypotheses of UR (DGPs 6 and 7) and the alternatives of stationarity (DGPs 1, 2

and 4). Other well-known UR tests are: (i) the KPSS test (Kwiatkowski, Phillips,

Schmidt, and Shin 1992); (ii) the GLS-detrended DF test (Elliott, Rothenberg,

and Stock 1996); (iii) the Phillips-Perron test (Phillips and Perron 1988), and;

(iv) the Ng and Perron test (Ng and Perron 2001, Perron and Ng 1996).

2. The UR tests previously mentioned provide severely biased results under the

hypothesis of trend-stationarity in the presence of structural breaks;28 several

alternatives are available. Perron (1989) suggested the use of a DF-type test with

(point,level and trend) breaks specified in the auxiliary regression (see DGP 5);

the break dates must be decided by the practitioner. Zivot and Andrews (1992)

also proposed to modify the DF test in the same direction than Perron, only they

allowed the break date to be endogenously specified; their test allows for a single

break [see Lumsdaine and Papell (1997) for an extension that allows for two

breaks] under the alternative hypothesis (DGP 5) and rules out the possibility

of a break under the null hypothesis of UR (DGP 8); Carrion–i–Silvestre and

Sansó (2006) proposed a test where a break under the null hypothesis is taken

into account.

3. Bai and Perron (1998) proposed a test to distinguish between DGPs 2 and 4 and

DGPs 3 and 5. The test presupposes that the trending mechanism is exclusively

deterministic.

4. Long-range dependence: many testing procedures are also available. R/S-type

test [see Hurst (1951), Mandelbrot and Taqqu (1979) and Lo (1991)] are com-

monly used to identify Long Memory (LM) against stationarity. However, Bhat-

tacharya, Gupta, and Waymire (1983) proved that the classical R/S test may

provide evidence of LM even if the series is stationary when the latter contains
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a trending mechanism. Moreover, Mikosch and Stărică (2000) and Mikosch and

Stărică (2004) proved that the sample autocorrelation function (sample ACF) can

also be a misleading statistical tool when used to identify LM; stationary series

that include a non-linear component might yield a sample ACF usually attributed

to LM processes [see also Teverovsky and Taqqu (1997)]. Several Short memory

processes may thus seem to behave as LM processes. This phenomenon can be

labeled as spurious long memory (Mikosch and Stărică 2004).

5. Many other tests have been proposed to identify LM while they control for pos-

sible non-linearities (structural breaks in the mean or the variance of the series).

See Liu, Pan, and Hsueh (1993), Robinson (1994), Lobato and Robinson (1996),

Giraitis, Kokoszka, and Leipus (2001), Giraitis, Kokoszka, Leipus, and Teys-

siere (2003), Berkes, Horváth, Kokoszka, and Shao (2006), Zhang, Gabrys, and

Kokoszka (2007), Aue, Horváth, Hušková, and Kokoszka (2008), and Jach and

Kokoszka (2008).

Concluding remarks

Spurious regression can arise wherever a trending mechanism is present in the data.

Even some stationary-autocorrelated processes cause spurious results.

Applied macroeconomists and financial experts have been steadily incorporating tech-

nical advances in the analysis of the spurious regression, a phenomenon identified for

many empirically-relevant Data Generating Processes. These include stationary pro-

cesses with AR (or long MA) structure and/or level breaks; random walks (with or

without drifts), trend stationarity (with possible level and trend breaks), long-memory

processes (whether stationary or not) and so on. These processes have been associated

with unemployment rates, price levels, real exchange rates, monetary aggregates, gross

domestic product and various financial variables. The use of Least Squares with such
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variables entails a high risk of obtaining a spurious relationship.

Differencing the series may not always prevent spurious estimates; nor should the

R2 > DW rule-of-thumb be seen as an adequate rule to identify a spurious regression.

Cointegration analysis appears to better prevent non-sensical statistical relationships

although, one should bear in mind Phillips’s (2003) and further study the statistical

relationship at hand. Out-of-sample forecasting evaluation could be an option. Most

macroeconomic variables are either nonstationary or very persistent. Pre-testing the

variables in order to identify the nature of the trending mechanism arises as the gol-

den rule to avoid non-sense regression. Once the DGP is correctly identified, spurious

regression is “easier” to deal with.

Attaining a clear understanding of any problem is the first step toward finding its solu-

tion.
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A Spurious regression using independent UR processes

The theoretical explanation of the spurious regression phenomenon documented in

Granger and Newbold (1974) was provided by Phillips (1986). We present here a

simple version of Phillips’s (1986) results. Assume two independent non-stationary

unit root processes:

xt = xt−1 + uxt

yt = yt−1 + uyt

where, for simplicity, uzt ∼ N (0, σ2
z); uxt⊥uyt. By solving recursively both equa-

tions, we obtain:

xt = X0 +

t−1∑

i=1

uxt−i

︸ ︷︷ ︸

ξxt−1

yt = Y0 +
t−1∑

i=1

uyt−i

︸ ︷︷ ︸

ξyt−1

where X0 and Y0 are initial conditions. It can be proved (see, for example, Hamilton

(1994) p. 486 and p.548) that:

T−
3

2

T∑

t=1

ξzt−1
d
→ σz

∫ 1

0

ωz(r)dr

T−2
T∑

t=1

ξ2
zt−1

d
→ σ2

z

∫ 1

0

[ωz(r)]
2dr

T−2
T∑

t=1

ξxt−1ξyt−1
d
→ σxσy

∫ 1

0

ωx(r)ωy(r)dr
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where ωz(1) is a standard brownian motion and
d
→ denotes convergence in law. The-

refore (assume that uz0 = 0):

∑

zt = Z0T +

T∑

t=1

ξzt−1

︸ ︷︷ ︸

Op

(

T
3

2

)

∑

z2
t = Z2

0T +
T∑

t=1

ξ2
zt−1

︸ ︷︷ ︸

Op(T 2)

+
T∑

t=1

ξzt−1

∑

xtyt = X0Y0T + X0

T∑

t=1

ξyt−1 + Y0

T∑

t=1

ξxt−1 +

T∑

t=1

ξxt−1ξyt−1

︸ ︷︷ ︸

Op(T 2)

The LS formula of β̂ is:

β̂ =
T
∑

xtyt −
∑

xt

∑
yt

T
∑

x2
t − (

∑
xt)

2

Replacing the sums that appear in this formula with the above asymptotic expressions

and letting T → ∞ yields:

β̂ =
σy

σx

∫ 1

0
ωx(r)ωy(r)dr −

∫ 1

0
ωx(r)dr

∫ 1

0
ωy(r)dr

∫ 1

0
[ωx(r)]2dr −

(∫ 1

0
ωx(r)dr

)2

= Op(1)

The same can be done with the variance of the regression as well as with the t-ratio

associated to β̂:

σ̂2 d
→ T−1

[∑

y2
t + α̂2T + β̂2

∑

x2
t − 2α̂

∑

yt − 2β̂
∑

xtyt + 2α̂β̂
∑

xt

]

= Op(T )

tβ̂ = Op(T
1

2 )

Note that the t-ratio diverges as the sample size grows. The usual critical values to test

the null hypothesis β = 0 are ±1.96 (level: 5%) so it is straight forward to see that the

null hypothesis will always be rejected for a sample sufficiently large: this is a simple

example of spurious regression.
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B Empirical work and DGP’s

Subject or field Selection of articles

GDP and GNP trending, growth, conver-

gence and Business cycles, Output-Capital

Ratio, exports, unemployment,

(Nelson and Plosser 1982, Perron 1989,

King, Plosser, Stock, and Watson 1991, Zi-

vot and Andrews 1992, Cochrane 1994, Ber-

nard and Durlauf 1995, Bernard and Durlauf

1996, Durlauf 1996, Koustas 1996, Perron

1997, Durlauf and Quah 1998, Li and Papell

1999, Mehl 2000, Durlauf 2001, Nielsen

2002, D’Adda and Scorcu 2003, Arino and

Marmol 2004, Aghion and Durlauf 2005)

Quantitative theory and Money neutrality,

Demand of Money,

(Plosser and Schwert 1978, Campell and

Perron 1991, Faust and Leeper 1997, Mus-

catelli and Spinelli 2000, Coenen and Vega

2001, Valkanov 2003, Coe and Nason 2004,

Moon, Rubia, and Valkanov 2006)

Purchasing Power Parity, Exchange Rates,

Real interest Rate, Taylor Rule, Inflation,

Persistence, Stock Prices, CAPM, Forward

premium equation, Yied curve, Financial

risk, Premium calculation principles (pcp’s),

(Taylor 1979, Corbae and Ouliaris 1988,

Diba and Grossman 1988, Perron and

Vogelsang 1992, Cheung 1993, Crato and

de Lima 1994, Enders and Hurn 1994,

Juselius 1996, Garcia and Perron 1996, Cul-

ver and Papell 1997, Breidt, Crato, and

De Lima 1998, Lobato and Savin 1998,

Zhu 1998, Cati, Garcia, and Perron 1999,

Juselius 1999, Cuddington and Liang 2000,

Mikosch 2003, Pedroni 2004, Taylor 2005,

Cavaliere and Taylor 2006, Furman and

Zitikis 2008, Furman and Zitikis 2009a, Fur-

man and Zitikis 2009b)

Phillip’s Curve, Fisher equation, Balassa-

Samuelson Effect,

(Alogoskoufis and Smith 1991, Evans and

Lewis 1995, Fuhrer and Moore 1995,

Crowder 1997, DeLoach 2001, Drine and

Rault 2003, Faria and León-Ledesma 2003,

Bardsen, Jansen, and Nymoen 2004, Sun

and Phillips 2004, Galı́, Gertler, and López-

Salido 2005, Phillips 2005)

Table 11: Empirical applications in Macroeconomics and Finance
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C Dominance of the deterministic trend over the sto-

chastic trend

In order to explain the dominance of the deterministic trend over the stochastic trend

we may study the sums of a UR with drift. Assume xt is generated by DGP 7; xt =
µx + xt−1 + uxt. By solving recursively this equation we get:

xt = X0
︸︷︷︸

1

+ µxt
︸︷︷︸

2

+ ξxt−1
︸ ︷︷ ︸

3

where the first term (1) is an initial condition, the second term (2) represents the de-

terministic trend, and the third term (3) accounts for the stochastic trend; note that

ξxt =
∑t

i=1 uxt−i. Then (all sums run from 1 to T ),

∑

xt−1 = X0T
︸︷︷︸

Op(T )

+µx

∑

(t − 1)
︸ ︷︷ ︸

Op(T 2)

+
∑

ξxt−1
︸ ︷︷ ︸

Op

(

T
3

2

)

(6)

∑

x2
t−1 = X2

0T + µ2
x

∑

(t − 1)2

︸ ︷︷ ︸

Op(T 3)

+
∑

ξ2
xt−1

︸ ︷︷ ︸

Op(T 2)

+2X0µx

∑

(t − 1)

+2X0

∑

ξxt−1 +
∑

(t − 1)ξxt−1
︸ ︷︷ ︸

Op

(

T
5

2

)

(7)

The orders in probability of the underbraced sums can be found in Hamilton (1994,

chapters 16 and 17). Note that the leading term in expressions (6) and (7) is always the

deterministic component (T 2 in
∑

xt−1 and T 3 in
∑

x2
t−1). This is why it is said that

the time trend asymptotically dominates the stochastic components.

D Asymptotics of LS estimates of specification 2

We present a guide as to how to obtain the order in probability of the estimates and their

associated t-ratios using LS where the variables y and x are generated by DGP 4 and

specification 2 is estimated. Proof of such was provided with the aid of Mathematica
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4.1 software. We use the classical LS. Let Θ̂ = (α̂, β̂, δ̂)′:

Θ̂ = (X ′X)
−1

X ′Y

V ar(Θ̂) = σ̂2 (X ′X)
−1

tα̂ =
α̂
√

σ̂2
α̂

tβ̂ =
β̂
√

σ̂2
β̂

tδ̂ =
δ̂
√

σ̂2
δ̂

where,

X ′X =





T
∑

xt

∑
t

∑
xt

∑
x2

t

∑
xtt∑

t
∑

xtt
∑

t2



 ; Z ′Y =





∑
yt∑

xtyt∑
ytt



 ;

and,

σ̂2 = T−1
[∑

y2
t + α̂2T + β̂2

∑

x2
t + δ̂2

∑

t2 − 2α̂
∑

yt − 2β̂
∑

xtyt

−2δ̂
∑

ytt + 2α̂β̂
∑

xt + 2α̂δ̂
∑

t + 2β̂δ̂
∑

xtt
]

We shall now describe the process involved in establishing the aforementioned proof.

α̂, β̂, δ̂ and their corresponding t-ratios are functions of the following expressions (un-

less indicated otherwise, all sums run from t = 1 to T ). Let w = y, x:
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∑

wt = µwT + βw

∑

t +
∑

uwt
︸ ︷︷ ︸

Op

(

T
1

2

)

∑

w2
t = µ2

wT + β2
w

∑

t2 +
∑

u2
wt

︸ ︷︷ ︸

Op(T )

+2µwβw

∑

t

+2µw

∑

uwt + 2βw

∑

uwtt
︸ ︷︷ ︸

Op

(

T
3

2

)

∑

wtt = µw

∑

t + β2
w

∑

t2 +
∑

uwtt
∑

xtyt = µy

∑

xt + βy

∑

xtt +
∑

xtuyt

∑

xtuyt = µx

∑

uyt + βx

∑

uytt +
∑

uxtuyt
︸ ︷︷ ︸

Op

(

T
1

2

)

where,

∑

t =
1

2

(
T 2 + T

)

∑

t2 =
1

6

(
2T 3 + 3T 2 + T

)

The orders in convergence of the underbraced expressions can be found in Hamil-

ton (1994) ch. 16. We can fill the previously-cited matrices and then compute the

LS parameter estimates and the t-statistic associated with each one. The asymptotics

are computed by the program (available at the following URL: http://www.ventosa-

santaularia.com/JPSappD.pdf).

Notes

1That said, it should be acknowledged that neither unit roots nor deterministic trends are able to model

satisfactorily most series; they are what Phillips (2001) labeled ‘heroically naive’ concepts.
2Particularly noteworthy among the various spin-offs of the aforementioned studies are the Error-Correc-

tion-Model (first proposed by Sargan (1964) as a link between static equilibrium economic theory and dy-

namic empirical models, and further developed by Hendry and Anderson (1977), Davidson, Hendry, Srba,

and Yeo (1978), Hendry and Mizon (1978) and Hendry, Pagan, and Sargan (1984).) and the entire theory of

cointegration (First proposed by Granger (1981), Granger and Weiss (1983) and Engle and Granger (1987).

The linking of Cointegration with Error-Correction-Models can also be found in these articles). Spurious

regression has contributed to the general improvement in the level of empirical work.
3A variant of this example, used by the authors to demonstrate the danger of nonsense correlation was

taken seriously 100 years ago, by Jevons (1884).
4I(d) notation, for d an integer, refers to the number of differences to be performed so the variable

becomes stationary.
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5We could technically refer to this as Type II spurious regression. This distinction was first proposed

by Chiarella and Gao (2002) as an analogy of the classical type I and type II errors in statistics: (1) Type

I spurious regression: rejection of a true relationship, and, (2) Type II spurious regression: acceptance of

a false relationship. Most of the literature refers exclusively to Type II spurious regression, which we will

simply refer to as spurious regression.
6Notice that DGP 6 is a special case of DGP 10; nevertheless, both shall be treated as if they were

different, given that each has been considered independently in the literature.
7That is, it returns to its equilibrium or long-run behavior after any random shock.
8As noted earlier, Pearson (1897) and Yule (1897) became aware of several problems concerning the

interpretation of the correlation coefficient at the end of the nineteen century, forging by the way the concept

of spurious correlation. The debate, in that time, was greatly related with the interpretation of correlation

as causality although the seeds of the modern interpretation that prevails in econometrics are also present;

further details can be obtained from Aldrich’s (1995) historical review.
9Valkanov suggests a T

1

2 normalization of the t-ratio and the simulation of the distribution in the context

of Long-Horizon regressions; Sun proposes a consistent t-statistic with a nuisance-free asymptotic distribu-

tion, and; Kim, Lee and Newbold precisely enfasize the fact that, even if the t-ratios of their regression do

not diverge, inference can not be drawn because of the nuisance parameters
10Applying the logarithmic transformation in econometrics is typical when the practitioner wants either to

homogenize the variance or to directly obtain estimates of average elasticity amongst variables.
11Entorf’s results apply to fixed-effects models where N (the dimension of the cross section) is treated

as fixed. The phenomenon of spurious regression in panel data under more general conditions has been

further developed; Phillips and Moon (1999) provided a regression limit theory for non stationary panel data

with large numbers of cross section and time series. Kao (1999) studied the Least-Squares Dummy Variable

estimator (LSDV) where the spurious regression phenomenon is still present for independent non-stationary

variables generated by DGPs (6) and (7).
12Bhattacharya, Gupta, and Waymire (1983) proved that the R/S test yields spurious inference concerning

long memory when the data have a deterministic trend mechanism. See section 4.
13Here the underlying theory is an invariance principle (see Davydov, 1970, Theorem 2, and Sowell, 1990,

Theorem 1).
14The variables may be integrated of order d ∈

(
1

2
, 3

2

)
which generalizes Phillips’s (1986) results.

15The same argument was advanced by Marmol (1998). It should be mentioned that the alternative stra-

tegy, ‘detrending’ (removing the trend component in the data by running a regression on time) was also

known to provide spurious results (Nelson and Kang 1981, Durlauf and Phillips 1988).
16See Dickey and Pantula (1987), for example.
17See also Cappuccio and Lubian (1997).
18See also Mikosch and Stărică (2004).
19DGP innovations may be drawn from distributions other than normal (Cauchy, Exponential, Laplace

and so on), although these remain i.i.d. and independent of each other.
20Furman and Zitikis (2009a) p.7 suggest that “the validity of the CAPM [Capital Asset Price Model] is

closely related to the linearity of the regression function of the return on asset i given the return on the market

portfolio of all assets”. Nonlinearities such as mean or variance shifts may induce the spurious regression

phenomenon; this implies that the CAPM beta regression estimations should be performed cautiously.
21The non-normal behavior of financial data has been widely documented [see Fama (1965)].
22Obviously not every combination was carried out by Noriega and Ventosa-Santaulària (2007); besides

those presented previously, the following combinations where made by Hassler (1996) and Hassler (2003):

DGP 6-DGP 2, DGP 2-DGP 3, DGP 3-DGP 2, and , DGP 3-DGP 3.
23See Newey and West (1987).
24These residuals are neither normal nor serially independent or homoskedastic; hence, the statistical tests

provide appropriate inference by rejecting the null.
25Of course, there is an important exception: if both variables are independent I(1) processes, the Engle

and Granger test tends to accepts the null of no-cointegration.
26The t-statistic may diverge toward +∞ or −∞; the sign depends on the unknown values of the DGPs;

Monte Carlo evidence is presented to assert that in many cases, such sign is negative.
27That is, using the variables in levels, without doing any kind of temporal aggregation.
28DF-type tests (i) over-accept the null hypothesis of unit root when there is a trend/level break in the—

trend—stationary process (Perron 1989, Perron 1990, Montañés and Reyes 1998, Montañés and Reyes 1999,
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Leybourne and Newbold 2000, Sen 2001, Sen 2003, Kim, Leybourne, and Newbold 2004), and; (ii) over-

reject the null hypothesis when there is a trend/level/variance break in the unit root process (Hamori and

Tokihisa 1997, Leybourne, C. Mills, and Newbold 1998, Kim, Leybourne, and Newbold 2002, Sen 2008).
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