

Nepal-Potential Projects in a New Model of Economy

Paunić, Alida

1 October 2014

Online at https://mpra.ub.uni-muenchen.de/59012/ MPRA Paper No. 59012, posted 02 Oct 2014 18:48 UTC

NEPAL - POTENTIAL PROJECTS

NEPAL - POTENTIAL PROJECTS IN A NEW MODEL OF ECONOMY

Summary

Rising GDP level is aim of each economy in the world and in that respect Nepal doesn't differ. Difficulties in obtaining better impulse in the growth creation shows signs of short and long term weaknesses in economic or political process. Some help in achieving better standards are presented by three projects as well as offering some new insight into possible model change. Building a new model or growing from existing one is not a matter of copy/ paste data from country to country, but necessity and recognition that numerous possibilities to improve exist by cooperation with region ,world but at the same time being aware of its own standards, limitations and strengths. This process is area of constant development, error recognition and correction what is also to be recognized and to further develop in a process of finding economic and social path to go.

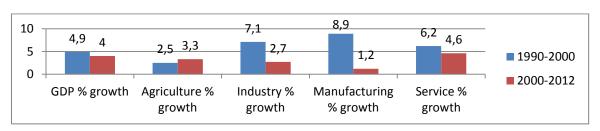
NEPAL - POTENTIAL PROJECTS IN A NEW MODEL OF ECONOMY

- 1. INTRODUCTION
- 2. MODEL
- 3. THREE PROJECTS
- 3.1. Hotel resort
- 3.2. Greenhouse, agriculture
- 3.3. Lift, Rope System and Water potentials
- 4. STATISTICAL ANALYSIS
- 5. CONCLUSION

Literature

NEPAL - POTENTIAL PROJECTS IN A NEW MODEL OF ECONOMY

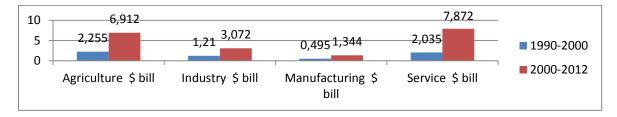
1. INTRODUCTION


Very unique geographical position makes Nepal not just beautiful scenery four tourist but also a place that is capable to have wider perspective in shaping economic policy worldwide. This mountain range hosts top of the world with 240 peaks above 6 000 m. This fact brings us closer to believe that Nepal is not just a cloud rich area but a place with potentials to see further in human development, shaping environmental and economic long term strategies and communicate its vision to the rest of the world. This can be possible if new model is observed and we incorporate in our economical thinking some new variables like mercy, relationship between human and nature, human and human in the spot position and not placing profit on the first and the only position in economical calculation.

Nepal has a long and at periods not easy history which today put the country on 145 th place on the scale that measures Human Development Index. This is partly consequence of past where in periods inequality hindered progress, and late history which tells us that monarchy rule Shah Dynasty (ruled from 1768) ended in civil war. Political parties made agreement on 22 nd November 2005 to stop the violence. In 2008 Nepal put an end to the monarchy and establishes a federal multiparty representative democratic republic.

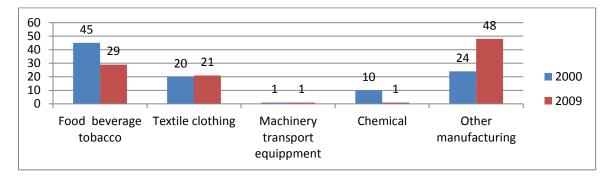
Being part of the highest world chain one would expect that high horizon would bring additional benefits in respect of environment, economy and more influential peaceful spiritual understandings of the world. Still, it is hard to win a place among many stronger military and economic powers with the system that is lagging behind, try to copy some western style types instead of develop its own type of economic beliefs in respect of currently existing systems. The progress can be made if its own values are recognized and appreciated and then fit into modern world.

The aim of paper is to offer some projects in light of possible new economics models. It is a way where each human is put into spotlight of importance and value where care in human and economic system is deeply rooted, type of model that values nature and mercy and understands that profit is important but not strongly and only followed in the high hills of Himalaya. It is a place that understands that for nature sometimes there is no bifurcation diagram for future but some actions toward nature preservation need to be done in time.

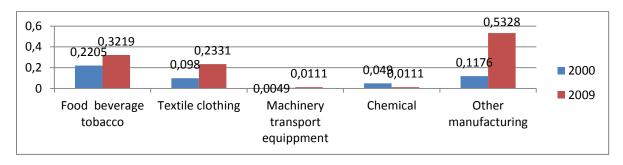

Structure of economy shows signs of GDP rise after period of crises in 2000. It is observed a strong downturn in industry growth, decline of growth in manufacturing sector and only to less extent fall in service industry. Progress is made in agricultural sector with rise of 3, 3 % in period from 2000-2012. Very strong competition of neighboring economies in respect of manufacturing (India, China, and Bangladesh) and inner power struggle contributed to this decline. Country however needs to put strong strategy toward diversification of manufacturing activities and support economy for further growth without putting a negative pressure on agricultural development.

Structure of output -% growth

The strongest part of nominal GDP account are by far service sector with around 7,872 bill \$, and agriculture with 6,912 bill \$ in the 2000-2012 period.

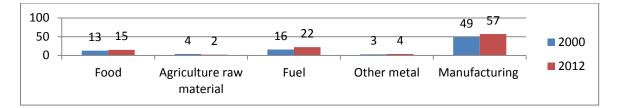


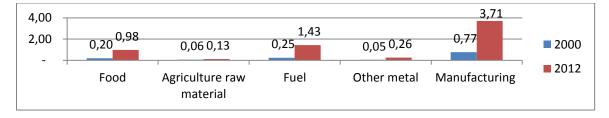
Structure of output bill \$



Manufacturing sector is strongly represented by food, beverage industry and clothing but stronger push can be made especially in international business- export policy.

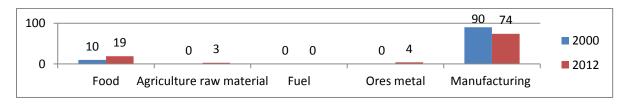
Manufacturing structure - % of Total Manufacturing Output


Manufacturing structure in \$ bill

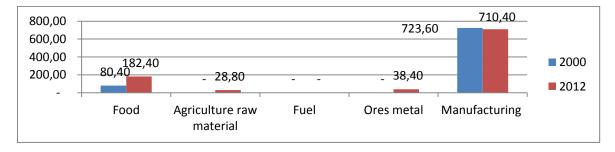

With decline of manufacturing share of imported goods rises what is disturbing fact for the future diversification and potential new projects. It can be partly explained by inner struggle as well as by growing number of immigrants who contributes with money but without creation of in country jobs import raises.

Share of merchandise import %

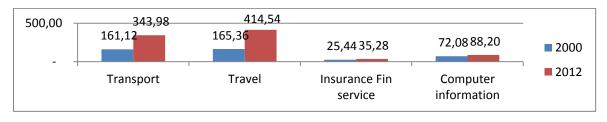
Picture 5


Share of merchandise import \$ mill

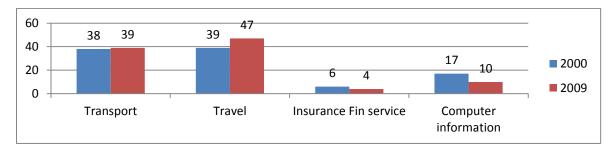
Picture 6


Share of merchandise export have potential to rise in the future if the right political and economic policy measures are put into place. It can be achieved in food, agriculture as well as manufacturing and reverse some of negatively trends observed.

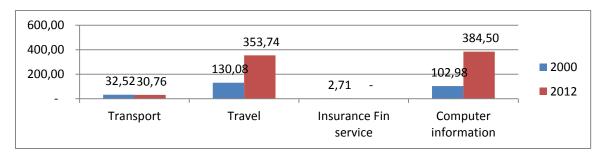
Share of merchandise export %



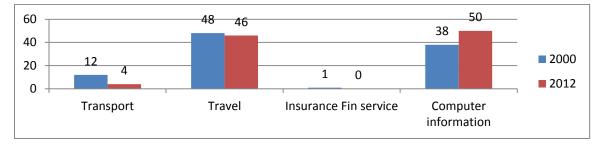
Share of merchandise export \$ mill



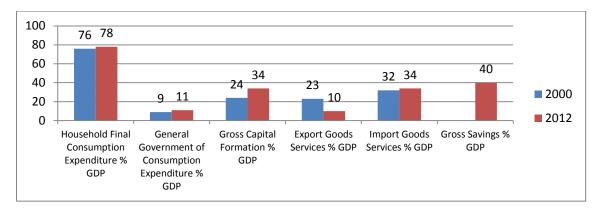
Structure of service import mill \$


Nepal have potentials to develop its own service industry in respect of travel, computer information by adding additional value to education in this field giving scholarships, having on line studies at foreign universities or establish good high level educational system in country.

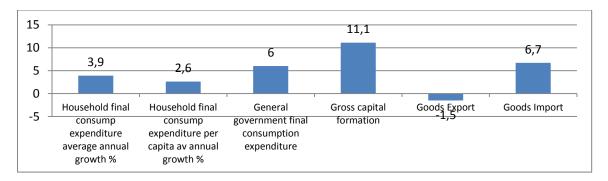
Structure of service import in % of all service import


Picture 10

Structure of service export \$ mill

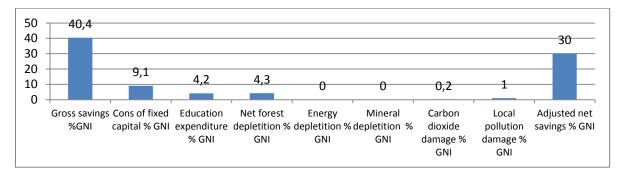


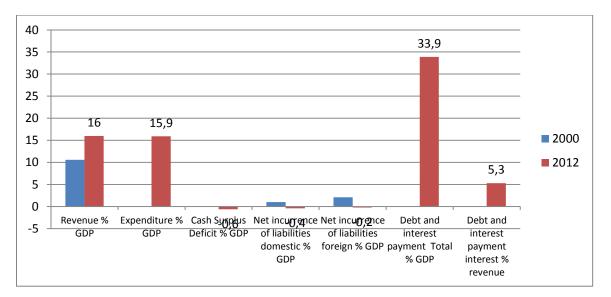
Structure of service export in % of Total Service Export


Demand structure is very similar as the structure that is observed by low to low mid-level income countries with household final expenditure by far reaching the highest levels. What can be improved is to stop declining export of goods and services, and to slow down import of goods and services what is further task of political and economic decisions put in place in country.

Structure of demand

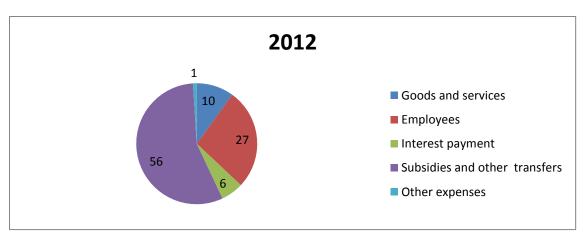
Picture 13


Household final consumption expenditure -Growth of consumption investment –average e annual growth % (average annual, average per capita %)



Although high debt services to some extent slowdowns Government actions it is possible with current resources to impulse economy further if savings are put into praxes to bring benefits to nature, humans and obtain further push to growth.

Toward a broader measure of saving % GNI



Central Government Finances % GDP

By far the largest part of Government expense is currently allocated to subsidies and other transfers with 56% of total expense, 27 % of expense is distributed to employees while 10% goes to goods and service purchase.

Central Government Expenditure as % of Total Expense in 2012

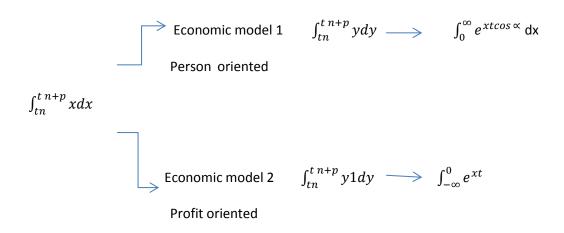
Picture 17

2. MODEL

Before setting some proposals for the model itself set of assumptions are laid down in order to explain motivation for the work.

Assumption 1.

Nepal has a unique geographical position with Mount Everest followed by 240 peaks over 6000 meters. This position makes the country more aware of potentials and limitations that come from geographical position. They are closer to Sun who is still 150 mil. km away, closer to Moon 42 th. km away, and stars which according to modern physicists tend to spread further from Earth as time goes by.


This position is a place of high geographical vulnerability and potential to understand value of each human being in respect to mercy of God.

The second reason is potential to change from certain old strictly Law oriented policy to one that is aimed at people benefit.

$$\int_{tn}^{tn+p} x dx < \int_{-\infty}^{0} e^{xt} \, \mathrm{dx} < \int_{0}^{\infty} e^{xt\cos\alpha} \, \mathrm{dx}$$

```
Assumption 2.
```

The second assumption is a prior calculation procedure that reasons pro and contra of solo profit oriented economies its ability to grasp attention and end people calculation of Community Service.

Y=f(person, employment, health care, human rights, social care, school, etc.)

Y1=f (profit maximization, human freedom nature protection as part of profit maximization scheme, new jobs as cost minimization policy etc.)

Assumption 3.

The third assumption is to realize that potentials can be achieved but significant effort in place of communication, explanation, community service creation have to be make. Current misbalances that exist on territory can be sometimes escaped as situation of running away from singularity potentials and calculating Schwarzschild ratio.

 $dc^2 = dq^2 + sin^2 q dt L$

ds 2 = (1- 2GM /r) dt 2 + (1- 2 GM /r) $^{-1}$ dr 2 + r 2 dq 2

 $dw^{2} + dr^{2} + r^{2} dt^{2} = -c^{2} dt^{2} = (dr^{2} / (1 - (rs/r)) + r^{2} dq^{2})$

y=a1+a2* economic model + a3* energy policy +a4* human policy +a5*agriculture, industry, manufacturing policy +a6 environmental policy +a7* praying

Assumption 4.

Once the model is put into consideration all market and economic participants and different population groups need to be aware of tasks, difficulties and desired results.

Y₁=a1+a2*x1+a2*x3+a3*x4+e

F (economic reality) = f(opportunities, rights basic, right to express, right to school, job opportunities, pension fund, business opportunities, tax inequality / equally distributed, community service potentials etc.)

From one relationship potentials it further grows to more mixed and harmonious connections in society.

Y₂= a1+x1x2+x2x3+x3*x4+y1*y2+y2*y3+z1*z2+x1*y1*z3+z2*x3*y4+e

Function of relationships can be:

Employee –employer

Government -tax payer

Banks - entrepreneurs

Companies = market opportunities

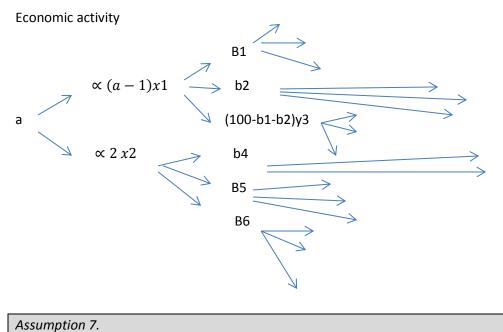
Nature = best interest, pollution, fertilizer usage, usage of resources on optimal way

School= opportunities, new knowledge, way of teaching

Subvention-Government, Community Need

Assumption 5.

Too slow incorporation of ideas or prolonging certain measures can further contribute to slower GDP growth, or not enough Community Based Society.


 $A_1 = dx/dy t + dy/dz dt$ activity in period time

Economic activity = right time

Prospect =con+ A_1^* time +e ; A_2 = A_1 +policy in time +e

Assumption 6.

Once the model is established further acceptance of different economic paths need to be put into consideration.

Assumption 7.

It is needed to stress importance that two ways are possible and decide for the one that is nearer Community Progress instead of pure profit calculation without having in its calculation environmental or social issues.

$$\int_0^{t n+k} x \frac{dy}{dx} dt$$

Assumption 8.

Economic reality -what is possible and what will stay behind . This question asks whether this activity will stood the test of time or not in relation to:

- a. Each person
- b. Family
- c. Local Community
- d. State
- e. Region
- f. Continent
- g. World

h. Plan that incorporates relationships and possibilities inside the current economic model with each step that pushes boundaries toward strategic goals with positive line of thinking-no harm policy

Assumption 9.

What is end aim and where the model leads :

Human Transformation

Potential Goals

Current Spiritual, Economic, Energy Activities

Past knowledge, experience, myths etc.

Past ,experience,intelle ctual. property, myths

Current Economic Model 1

Plans, interactions, improved Economic model 2 Transformation-Human society The main idea of this proposed model is that in center of Economy stay relationship of man with other man, man in relation to nature and all relationships aware of enormous power of God and his mercy. This again can be put in the more simple formula linearly related main variables.

If this is calculated on Present Value

 $PV=PV_1+PV_2+PV_3$

Where PV_1 1% relationship person to person

PV₂ 5% relationship person to nature

PV₃ 94% relationship person to God's will and mercy

In PV₁ we have some values that are currently present but not available in any known model.

Economic Model Base = b_1+b_2 *social surrounding+ b_3 *love care+ b_4 *security+ b_5 *job activities + b_6 *schools+ b_7 * pension security +e

This can be put in formula of net present values

$$PV_{1} = \frac{(Positive monetary relation man to man-Negative monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monatary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monetary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man-Negative non monetary relation man to man)}{(1+r1)1...n} + \frac{(Positive non monetary relation man to man)}{(1+r$$

(1+r1)1....n

Error in model that is corrected in time t-1+ Existed error but not observed in model +e other

For calculating PV_2 we need information about land that is under protection as valuable natural resource, land under different agricultural cultures, used fertilizer, number of cattle, started projects in nature, planned project that could harm or benefit nature etc.

Again it can be written in the formula

$$PV_{2} = \frac{(Positive monetary relation man to nature - Negative monatary relation man to nature)}{(1+r1)1....n} +$$

 $\frac{(Positive \ non \ monetary \ relation \ man \ to \ nature - Negative \ non \ monatary \ relation \ man \ to \ nature)}{(1+r1)1...n} + \\$

Error in model that is corrected in time t-1+ Existed error but not observed in model +e other

 $PV_{3} = \frac{(Awareness of Gods mercy in relation human to human)}{(1+r1)1....n} +$

(Awarness of Gods mercy in relation humans to nature) (1+r1)1....n (Awarness of Gods mercy in relation to person itself) (1+r1)1....n

Error in model that is corrected in time t-1+ Existed error but not observed in model +e other

We are all used to different measurement and calculations when talking about economy. The most recognized and widely spread measure is in terms if profit calculation. In simplest form it states:

Profit = (Revenue-Costs) (1-Tax rate)

Although the profit is the most interesting topic at the end of conversion it still opens the way for tax calculation and sharing. Taxes in its various forms are further distributed on the way that needs to serve the public in general.

Tax Income Tax Profit+Tax VAT +Tax Luxury Goods +Tax Other =CurrentExpenditure +Funds+Housing+ Pension+ Health Care+ Schools +Other

Overburden of tax obligation can hinder economic growth, while to low tax can support groups that can contribute more not just in country but in the world as whole. While Nepal is a low income country it should concentrate on the distribution of wealth on the more social base and oriented firstly on social activities inside country.

Тах	Represents/Can be allocated to	Measures, Publish
Tax on Profit	Profit on revenue after all tax	Number of new schools, new
	allowable costs are deducted/ Can	hydroelectric facilities, new
	be used for new Government	roads, lift service, hotels, etc.
	projects in infrastructure etc.	Place and project costs
Value Added Tax	It is added on goods service on the	Number of new houses for
	invoice/ While it is on all products	poor, new families, number of
	it should serve to all population	new schools, number of
	through nature protection, new	pension funds, new protected
	housing, social programs, new	natural sites, irrigation, etc.
	schools and pension homes.	
Income Tax	It is part of personal income the	Number of personnel that work
	best on progressive rate /	for Government, in hospitals, as
	Scholarships, government	social workers, institutions that
	payment/payment for social	help in community service,
	service medical care	savers in different emergency
		cases etc.
Tax on property	Tax on property – low level-	Infrastructure – what where

It would be of benefit to closely monitor followings and publish on web pages of authorities:

+

	infrastructure and project for	
	nature	
Tax on dividend	Tax on dividend- new factories	Diversity on manufacturing in
	open, new manufacturing facilities	country, diversity in type of
	partly finance from this	business, equal opportunity to
		find job
Tax on savings	Tax on savings over certain	How many medical visits, old
	amount/ use for investment and	homes, minimum amount to
	care for older population	pay without any income,
		additional amount paid to old
		people etc.
Tax on luxury goods	Tax on very expensive products or	What humanitarian projects is
	one that harms the nature; Divide	finance? How many poor
	it on social programs	families are helped in what
		sense?

3.)

The economy is changing constantly inside some given parameters. There is a significant advantage for the high income countries in respect of base, strength and experience in applying different tools and methods for further development. Part of this is government stimulus, taking the best scientists all over the world to work for further advances.

Y= a+y _{t-1} + e

Y= a+ a₂ *Y _{t-1} +a₃ * y _{t-2} +e

 $Y=a+a_2 Y_{t-1}+b X_1+e$

In the case that a GDP lingers at the same rate some change need to be incorporated into current model to provide stimulus. It can have different forms: increasing decreasing certain tax rates, improving political measures toward manufacturing agriculture, more meetings with international partners to improve export possibilities etc.

Additional measures can be:

Creativity = $a+a1^*$ help creative people in expressing themselves+ $a2^*$ reduce tax rate on creative industry+ $a3^*$ creativity in respecting nature man and offer growth solution +e

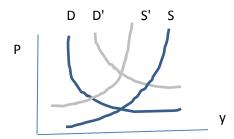
Innovation=b1+b2* offer young people good condition for innovative activities+ b3* offer foreigners good work condition to innovate+ b4* pray +e

Technological advances $=c1+c2^*$ open technological centers+ c3 *open software companies -no tax+ c4 *open manufacturing that create new technological advances +e

New model =d1+ d2 *consider some changes in current economic model+ d3* consider some changes in law model* d4* consider some changes peaceful in political model + e

Center of policy is a Man and human development with respect to nature, and Gods mercy.

Kindergarten = a1+a2 *number of kindergarten+ a3*number of children+a4*number of teachers + a5*activities available +e


School =b1+b2*number of childldren+b3*facilities+b4 teacher/child ratio+ b5* educational achievments+b5 artistic, technological, sport, science other achievments+a6 achievements in work (school garden) + a7*social activities +e

Job =c1+c2*number of working population+c3*number of unemployed person+c5* long term unemployment +c6 *short term unemployment +c7* sectors +c8 *number of job oppenings+c9equal opportunity to open company +e

Each person =d1+d2* physical strengths+ d3* intellectual 6+d4 *technical skills +d5 innovation possibilities +e

Each economic activity is related to man but is not without profit consideration that is further directed toward all population advances.

Modern economic theory offers a large body of literature that explains relations between supply and demand sides of economy. Everything is tending to find certain equilibrium at output level and price. Some changes in policy can bring new equilibrium and set whole range of activities that work through economic multipliers.

Demand –Nepal	Supply -Nepal
Finding the equilibrium values of interest rate and output demanded by consumers , government , businesses given the price level	Supply in respect of labor supply policies (classical case complete and adjustment of P expected to Price); Keynesian case (no adjustment of P expected to Price) ; cost reasoning- average and marginal costs and productive efficiency reasoning
Changes in equilibrium variables on the demand side of the economy as a result of price changes are movements along the demanded curve. Changes in exogenous variables on the demanded side such as g-government spending an interest rate -r money supply-m or the tax schedule , shifts the saving function or the transactions demand for money shift the demanded curve	Different productive potentials, and labor union can bring additional changes in this structure
Demand shift - supply of money and its application further, shift in saving consumption habits, tendencies etc.	Supply comes from natural resources – water storage, management of water hydro potentials, labor competition in line with innovation etc.
Demand can be managed by government – what investment when, how, by issuing new bonds, influencing central interest rate etc.	Wage policy by government , industry , peer productive potentials etc.
Demand in country or for foreign projects; demand how influence private public sector; Demand influence on nature potentials and pollution, demand to much demand and too little quality on community service etc.	Supply- strong worker protection policy , supply natural resources potentials and natural degradation, expectations how they formed and what are the consequences for each sector etc.

5.)

Human activities are filled with aims, processes, procedures, relationships and measurement. Besides setting right goals it is periodically reported what is achieved and what else need to be done. Sometimes in that respect is visible that policy change drastically, or same small differences occur. To avoid errors transparent way of communication, and common decision making is wise to establish. It is especially needed in case of tax decision and way of tax usage.

Activities =
$$\frac{\sigma x \sigma y}{Corr xy}$$

	Positive	Negative
Military	Certain allocation of resources for population to obtain minimum first aid, defense skills	Budget can be too high, not all population know basics about self-defense, first aid, is not transparent, can overstep boundaries ,etc.
Kindergarten	Number of new places, new buildings, modernization of existing, new activities inside current kindergarten, number of teacher per kind – standards , etc.	Too high cost over budget, to low interest for improving things, not enough financial capacities to carry on activities etc.
School	Type of education, teacher per pupil, illiteracy ratio low, number of computer per pupil, Internet usage, variety of education, extra program for talented, less skilled children, work with children to find the best possible solution for further education, travel from school to home is partly / fully finance by state	Only nominal measures are important, no real interest to obtain activities useful for life, improved educational system but pupils immigrate, too low rate of building new infrastructure etc.
Pension Homes, Care, Fund	Established secure, stable, center for old population where they can find medical care, have fund from population fees, government revenue and revenue from old pension homes itself (through various activities that are possible)	Care fund are not established, pension homes do not exist – everything is on family care, too high cost of pension homes, low transparency of costs and possibilities
Fund for nature	Fund for nature can be established in order to protect existing and widen its position	Do not exist, not all level of population are part of fund issues, profits and

Tax f (income, profit, work, asset, gains, lux us, sales, other)

6.)

	on broader area, manage wild	management of natural
	life, and do engage in	resources, too high costs, non-
	afforestation activities. Fund is	transparent way of running, do
	established with lump sum of	not involve population in
	all citizen, all have one vote –	afforestation
	right to express opinion about	
	issues related, one share of	
	right is given by birth in	
	country, part of financing	
	comes from funds /dividend	
	yield from infrastructure	
	projects	
Expenditure	Transparent usage of tax	Varies significantly with each
Experiance	means, change usage with the	new political party, is not
	change in economic cycles in	transparent, there are no long
	order to prevent bigger crises,	term goals etc.
	protect the most vulnerable,	
Investment	protect the most vulnerable,	Investment made from one
Investment	protect the most vulnerable, be future oriented, etc.	
Investment	protect the most vulnerable, be future oriented, etc. Have a long term strategy that	Investment made from one
Investment	protect the most vulnerable, be future oriented, etc. Have a long term strategy that is agreed on national level, projects ideas comes from	Investment made from one occasion to another, no long term aims, no regional
Investment	protect the most vulnerable, be future oriented, etc. Have a long term strategy that is agreed on national level, projects ideas comes from community itself, allow	Investment made from one occasion to another, no long term aims, no regional cooperation in building and
Investment	protect the most vulnerable, be future oriented, etc. Have a long term strategy that is agreed on national level, projects ideas comes from	Investment made from one occasion to another, no long term aims, no regional cooperation in building and

7.)

Model imp lays system of new values, monitoring, corrections and reevaluation procedures .They are all part of system and some activities can be seen in the new light once the model is accepted.

Activities =a1+a1* one big activity+ a2* many small steps (usually agriculture, small manufacturing) + a3*creative +a4*sports +a5*humanitarian activities +e

Errors=b1+b2*one significant error +b3 *many small errors +b4*cannot influence + b5 *is possible to change +b6* error of system +b7* error of calculation+ b8* error of negligence + b9* error of wrong system of beliefs + b10* history errors+ b11* error from positive relations+ b12 * error from conflicts, negative relations +e

To resolve the error potential problems and ambiguities some measures again can be established

	Positive	Negative
1.Measurement	To know how the economy and	Some non-important things are
	society progress different kind	measured , while the most
	of measures need to be done.	significant that relates to
	They should not narrow related	human wellbeing not taken into
	to economy but include social,	consideration
	environmental , political	
	decision ,nature protection	
	decisions	
2.Control	Controlling the actions prevent	Too high or low control brings
	unwanted results, ambiguities	additional imbalances in weak
	in spending decisions	system. Can be used to
		overburden ones in that way
		avoiding the real issues that
		need to be solve. Some
		possibilities of adverse selection
		and moral hazard need to be
		recognized
3.Transparency	More transparent approach less	Vague transparent reporting, not all variables taken into
	ambiguities involved – do not omit poor population ,	consideration
	foreigners, ill, disabled or in any	consideration
	way make discriminatory rules	
4.Conversation and prior	Lower level of future problems,	Many people involved in
conflict resolution, number	help instead of litigation ,	problem can reduce real issues,
of litigation cases	during the process new ideas of	, there is a problem of partiality
significantly decrease	community improvement can	especially if opposite sides are
	arise	minorities or other unfavorable
		group, further division, etc.
5.Community meeting	Conversation, issues seeing	Only laud are visible,
	from many sides , real	communication is on the side of
	conversation is needed to be	aggressive parties, money talks
	heard all members of society	problems etc.
6. Creative skills, work on	Work brings people together	Do not tackle real life issues ,
agriculture good,	and resolves many obstacles in	problem of financing can occur
humanitarian work	real job activities ; new ideas,	
	way of economic progress can	
	significantly improve	
7. Praying , different	Where is error, ambiguity,	Praying is allowed only to one
religious possibilities	non-transparent picture of	religious, beliefs, not enough
	current or future position	appreciated God's mercy not
	praying helps to improve the	incorporated respect for
	road this economic and social	positive forces
	society goes	

Errors in system are possible and part of normal working process. It is a problem when they are overvalued or understated so right correction is not put in place. Certain possible issues can arise and are seen as follows:

Systemic error

	Systemic Error	How to avoid
Government	Frequent changes brings only cosmetic change without tackling the life related issues	Having long term strategic goals, firm economic model that is visible, clear and understandable to all, make transparent changes with political and economic
		change in the world without tackling the important – human oriented economic model
Tax Authority	Too high tax rates on new investment, some tax rates not incorporated, very rigid tax policy or changing to fast and rejecting investors further	Long term strategic goals visible, usage of tax means clearly defined and agreed on national scale, tax policy always need to attract new investors
Local Authorities	Do not collect proposals from population, do not communicate with population etc.	Day to day communication, incorporating programs in real life projects etc.
Fund managers	Only one profit measure, do not develop different kinds of model according to risk and ownership	Have different fund portfolios, measures are based on profit, future potentials, human satisfaction, ability to offer job, create new job etc.
Manufacturing Industry	Accept pollution industry , accept industry that is not able to adapt to world processes, not enough creative or oriented to quality products	Organize pre-feasibility study discussion for economic but also for environmental issues. Compare standards in the world, potential quality and innovation potentials.
Agriculture Policy	Rising level of fertilizers without control, spending too much water, not having long term agricultural political aims	Long term policy Closely monitor pollution Planned irrigation Wide base for skills Government supported activates are subsidized or with lower tax rates Offer supporting loans on certain mechanization facilities etc.

8.)

		Have government – people land – that everybody are accepted to work
Monetary Policy	Set to low or high interest rates, increase money supply on too high levels, do not control or try to influence main variables with economic cycles that are present in the world	Good monetary understanding of processes and acting according the need in country and out of small open economic model

Random error

	Random error	How to avoid
Government	Make one way popular	System of public decision making
	decision that solve	
	current problem but is	
	not long term oriented,	
	Some investment , tax	
	decision based on lobby	
	related interest etc.	
Tax Authority	Make constant change of	Public discussed issues
	tax rates , set tax rates on	
	income profit too high	
	for current level of GDP	
Fund Managers	Investment based on	Many funds available,
	vague profit promises,	Strongly diversify natural
	manage other money	resource fund, pension fund with
	with low level of care,	high risk profit stocks
	too small options, do not	
	offer additional	
	information for investors	
Manufacturing	Investment that is not in	Workers cooperation, community
Industry	line with profit, human	response
	job skills, not nature	
	friendly	
Agriculture Policy	Too high level of taxes,	Control groups, social workers
	repeal subsided where	that protect the low income
	are needed and improved	groups, Strong environmental
	on false base , do not	friendly community system
	support small income	
	family farms, etc.	
Monetary Policy	Rise interest too high/low	Economy declines – changes need
	Rise money supply too	to be made- possibilities of
	high /low	public to influence

Although model starts from bottom of the society structure and is pointed toward community service, realization of full scale skills and potentials of each individual it is also dependent upon government decisions, their model of management and communication with regional and world economies.

Conversation= $a1+a2^*$ clear methods + $a3^*$ legal demands + $a4^*$ letters of recommendations + $a5^*$ oral skills + $a6^*$ presentation, marketing +e

Information Top Bottom/ Bottom Top = b1+b2* clear understandable +b3 vague +b4* need additional clarification +b5* requires immediate response +b6* have no priority demands +b7*informative + other

Providing right information from community to local social, humanitarian, manufacturing industry, natural reserves, community authorities, regional and country authorities and the other way round is essential for clear understanding the need, priorities, potential dangers, projects observed, etc.

To have this communication as clear and correct as possible avoiding noise in channel, miss interpretations, personal preferences and believes different channels of communication need to be put in place. It is achievable with greater number of computers, Internet connection, reliable post, fax, telephone but also community meetings and spots where ideas are possible to interchange would be good to establish.

The aim is a human welfare and recognition of all problems that can occur in labor or capital reasoning. In other word saying proper communication –not a one with spins and conversation for its own sake- but one that tackles real problems of production.

Production is in relation of capital, energy and labor and these are in this respect more thoroughly observed with additional suggestions to improve.

G=f(K,L,E)

 $Y = K^{a} * L^{(a-1)} + E$

 $L = K + \frac{dK}{dL}dt + \frac{dK}{dE}dt + \frac{dE}{dL}dt + \frac{dL}{dLeff}dt + e$

L = labor f(number of new openings, potential places to work, efficiencies, free time, utility preferences, measurement of time value, creative potentials, all life learning opportunities etc.)

K t= a+ K t-1 + Investment t-1 + New Financing Opportunities +e

K= capital f (initial capital, additional requirement, potential projects, small scale projects, problems of capital pollution relationships etc.)

A strong input force in production and communication relations are in form of energy. To have available, low pollution, low cost energy is an aim of even by the greatest economies on Earth. Nepal can have energy from hydro power but need to invest in operative measures and establish small

scale additional projects that are in line with environmental protection. In that respect Community will growth with potentials of direct job openings but as place of additional opportunity to invest in small scale manufacturing or industry potentials.

E = f (Energy/Capital; Energy / Liability debt Existence; Energy /GDP growth; Energy / new manufacturing or industry projects; Energy /direct labor opportunity; Energy / indirect labor opportunity; Energy /Vouchers for CO_2 free production in respect of trading with this with China or India etc.)

10.)

Different kind of economic systems are present in today's economic structures around the world. Some of them have cyclical appearance, some are transitional with more or less clear aim where they are going, and a few of them behave as others letting the market to regulate all problems. Beside a desire that each country is specific with its own goals and systems – what to some extent is true – it is observed that in crises open market oriented economies such as USA problems are solved on state level (State/ Banks in 2008), while former socialist economies behaves randomly leaving the market to establish demand/supply relations. Still some basics are possible to be marked and Nepal economy can learn from them in order to avoid same mistakes.

Question of :	Formula	Note
Profit	Revenue -Costs	Profit strongly demanded and put in relation to everything:
		-Profit calculated from past achievements
		-Profit in future discounted in today's picture
		-Profit from having or not certain natural resource
		-Profit from humanitarian activities as tax deductible item etc.
Capital	Capital t =Capital t-1 + New Financing Opportunities	Capital is important and strongly protected. Strong difference between private /state; Financing make available on all possible ways – interest reduction to their negative values, stock issue possibilities etc. Different kind of games in obtaining existing capital in one ownership structure etc.

A) Profit Oriented

Banks	Banks = f (Capital, Political Protection, Country of Origin, Question of Collusion between Other Banks etc.)	Smaller banks are often part of wider network, Capital is important as well as political position, Creator of potential economic policy with different kind of loan possibilities, Interest rates differ so poorer countries have a greater risk of default so are charged with high interest rates etc.		
Labor	Many forms of self- employment to work for private or state ownership structure	Salary varies significantly, huge difference between a common worker and manger who has many benefits (the most of them are put in special contract and they can be rewarded according to company profit potentials)		
Nature	Form of good /private or natural protection sites	Fee to enter, protected private goods,		

B) Socialist Economy - Ex Yugoslavia

Question of :	Formula	Note		
Labor	The majority of workers employed at state - public work places	Very small difference between a common worker and manager (1,5 -2 times max) salary. It is not possible to fire a worker- he is the most valued and protected social welfare. Labors are rewarded with state apartments ; have various benefits of low cost hotel resorts at Adriatic Sea or in winter resorts		
Ownership	Everything is in hand of society state ; Small number of private entrepreneurs			
Profit	Calculated as Revenue Cost	In many companies profit calculated as must result		
Loan	Many burdened with loan	Domestic loan and credit institutions Foreign loan credit institution No financing with stock issues		
Compensation	Widely spread	Those who have help those with problems- circulation of money among companies so everybody can be able to pay salary to workers		
Nature	Common good	Protected as must, have natural protected areas that are runner on same principles as western counterparts-entrance fee		

C) Transition Economy

Question of :	Formula	Note			
Ownership	Change of ownership	In many cases not clear what is			
		basic principle of ownership			
		change. It can vary from case to			
		case.			
Profit	Become important category	Profit becomes important once			
	can vary with different	ownership is firmly established.			
	accountant techniques	Until this time profit can be			
		decreased in order for more			
		favorable purchase of a certain			
		facility			
Labor	Labor is differentiated to	Different treatment for workers			
	Private/state	at private and in state run			
	In labor union /out	facilities; Different treatment of			
	Part of political party /not	worker when parties are			
	Other differentiations	changing place etc.			
Capital	Become important in obtaining	Relation between capital/banks			
	initial newly privatized good	Capital / eligible buyer			
Nature	Become a part of transition	Partly privatized, partly run as			
	process	state good			

D) New Economic Model - Nepal Model

Question of :	Formula	Note		
Social Protection	All citizens are paid minimum sum of money	No one is hungry or left the street or the person itself rely only to himself		
Human Values	Well established	All equally valid and with equal chance for school , job .Those with less natural capabilities find their place in system		
Nature	Increased value of nature and area under protection	Fees to natural goods as part of tourist sites and common good; Funds that include all citizens that own natural resources but without possibility to sell		
Relationships	Relationships important and source of GDP growth	Potentials in respect of communication Community – Government-Industry Agriculture-Education etc.		
Profit	Is recognized and calculated as Revenue –Costs	Profit potentials recognized in large infrastructure projects - manufacturing facilities, industry -profit from tourist and agriculture also put in picture		

An individual	Guaranteed rights	Each has the right to
		kindergarten school job and
		pension fund. All minimum
		amount of salary. Potentials
		are established at school and
		community helps with
		progress

11.)

One the model is chosen the way of putting it into practice is needed. It is a project without end and with constant widening of different relationship potentials.

Gravity model –pyramid of relations

X1

X2 x2x3 x1x3

X4 x4x3x2 x3 x2 x1 x1

X5 x5x4x3x2 x4x3x2x1 x5x1 x2x3 x3

X6 x6x5x3x4 x6x2x3x1 x6x5x4x2 x6x3x2x1 x1

Possibilities and strategies inside the Nepal Economic model:

Model	The majority of population is agreed on Economic model					
Fiscal Policy	iscal policy exists, but is oriented toward human benefits; It can be					
	changed from top/bott	om and other way roun	d			
Tax rates	Low tax rates to low	Mid to high tax rates	Allow tax			
	income groups , new	according to profit,	distribution			
	families, smaller	income, Allow new	change as the			
	agricultural	investment to start	priorities in			
	producers,	with lower than	country change –			
	manufacturing	from poor				
	startups etc.	country to mid				
	tax rates in case of		income –different			
		polluting activities	priorities to			
			finance			
Saving	Reward saving with	Saving brings				
	law tax rates,	additional potential,				
	Differ saving from	and security to				
	individual and individual, company					
	companies in tax	state- offer different				
	policy	models to combine				
		current future level				

[1			
		of savings with		
		housing facilities		
Government	Potential for	Clean calculation and	Can be done	
spending	investors, individuals,	understanding of	with foreign	
	transparent	cost benefits in	partners investors	
		future for population	but certain	
			ownership share	
			(no more than	
			25%) should not	
			be overstepped	
Monetary policy		measures. Central bank	in charge of main	
	variables but it is possil			
Interest	Offer lower interest	••• •	Offer new	
rates	rates for new	reduce interest rates	models of	
	projects	if Community is	financing house,	
		behind the project	land,	
			manufacturing	
			facility etc.	
Loans	Different kind of loan	Collateral can be	Government	
	as in western	Community	financing of new	
	economies		housing facilities	
			have favorable	
			loan potentials	
Foreign relation	Important in respect	Important in	Vivid and strong	
	of promoting peace	promoting tourism	relation in	
			promoting	
			medical ,	
			agricultural	
			goods,	
			manufactured	
			products etc.	
Export	Based on high quality	Services- creativity,	Infrastructure	
	agricultural end	Tourism,	related- water	
	products	development of	storage,	
		software for	potential of	
		example	irrigation, hydro	
			energy etc.	
Import	High tech products,	Agricultural product	Machinery etc.	
	products	that cannot growth ;	,	
		pesticide , plant		
		protection		
Custom	Differ priorities and	set custom rates acc	cording to ; many	
		roduced in country are i		
	have higher custom rate			
Social policy		iscriminatory values, eq	ual protection of all	
1/	population	, ,		
Pension	· · ·	to minimum amount of	pension, it growth	
	-	ts ,risks, effort etc. durir		
Health				
nearth	medical protection even setting out in foreign countries, or buying			
	medicine abroad.	in setting out in foreign (countries, or buying	
	medicine abroau.			

Population policy and future consumption are strongly interrelated at low level of income but as the income brackets differ consumption pattern also shows wide range of possibilities. It should be of benefit that some consumption pattern are kept in borders (*additional caution is observed by Nepali economist who establish that rising immigration brings further rising import of goods and lower manufacturing and poverty reduction measures in the country itself*).

dY= di+c'di+c'(c'di)+....

 $\begin{array}{l} \mathsf{PV}\ \mathsf{consumption}\ =\ \frac{(\mathit{Receivables-Consumpton})}{(1+\mathit{inflation})\ 1}\ +\\ \frac{(\mathit{Receivables-Consumpton})}{(1+\mathit{inflation})\ 2}\ +\ \frac{(\mathit{Receivables-Consumpton})}{(1+\mathit{inflation})\ n}\ +\ e \end{array}$

PV _{consumption} = f(domestically produced goods, imported products,price, income, consumption habits, savings potentials ,age, preferences, etc)

Ways to reduce the poverty are:

a)Right tax policy

Change tax rates in line with aim to reduce poverty

b) Subvention

Offer subvention on agricultural production , cooperation between sectors, new innovative manufacturing potentials, etc

c) Funds

Have many funds that are related to large profitable infrastructure projects and end up by end consumer

d) Social service

Each village street need to have social service or a person in charge to collect and try to solve problems that can arise. It can be as monthly money support, physical help, emotional support etc. Further Community Involvment can be of use. Develop medical team on voluntary basis that help in case of natural disaster, Mountain Rescue Service, etc.

f) Basic school and medical care free for everybody

g) Very strong policy toward child labor, discrimination, abuse etc.

12.)

Geographical special position points toward natural leader in many issues and topics. Country potential to peacefully resolve issues can be of benefit to others. Some international center that could have variety of impacts on world matters can be build and put into operation.

Income in that way would be as

Y total = Y f (Advisory role in international matters) + Y f(Goods, Services) = $\frac{A(L)}{B(L)}$ xt+ $\frac{C(L)}{D(L)}$ *e t

Advise = f(web pages, spiritual prayer for peace and harmony in the world, prayer for all people to be healthy, international center meetings, magazines, etc.)

Who	What			
Government	How to have a model that is directed toward human satisfaction and			
	welfare strategy that is equally oriented toward all level of population			
Spiritual Guidance	Pray for Peace, Pray for Harmony, Pray for Mercy			
Nature	How to increase number of protected sites, achieve afforestation with work of all population			
School	How to rise creativity, happiness in school, new knowledge's with cooperation among pupils themselves and teacher who can also be part of cooperation / creative process among pupils and other teachers			
Social service	Rise a level of social awareness with voluntary works, door to door help, a guarantee minimum wage to everybody			
Humanitarian Organization	How to resolve peacefully conflict situation –training advise praying			
Industry	More cooperation between population and industry in respect of new projects, improving existing etc.			

13.)

Nepali model do not imply the same wage rate for all population and do not tolerate that some good work, effort or new and innovative ideas are not rewarded. Also what is to note that work is necessary because of basic human need to create and to share its achievements with Community whether is it a word about local or global village we are placed into. In that respect tax rates are tailored as official corrector and some good deeds and sharing is implied and incorporated in educational and spiritual process of each individual.

Different jobs and occupation have demands that differ and end salary formula can observe and recognize this specificities. It is a usual in modern economic theory that salary formula is a function of some pre agreed base, incentive, observed and unobserved exogenous effect. This effect can be in form of revenue increase, new markets demands, some good and potential innovative thoughts that brings further benefits etc.

W 0=a+b*(e+x+gy) ; a= base salary ; b=incentive ; e =observed effort ; x= observed exogenous ; g=unobserved efficiency ; y = exogenous effect

Beside these widely recognized and general salary statements some specific occupational requirements and achievements can be put in work:

W1= b+b1* hours worked

W2=b+b1*hour worked+b2*articles finished +b3 *tolerated errors +e

W3=b+b1* new creative ideas + b2 *creative products+ b3 *goods finished +e

W4=b+b2* number of people to communicate +b2* potential impact on marketing +e

W5=b+b2* work with children +b3* hour worked+b4*extra curriculum offered+b5* creative social work outside school +e

This methods and lines of thinking can be found in very advance and rich societies. The expression however that is unique to Nepal model is general one:

Each individual = Same number of shares in funds for natural resources given by birth not sellable + Base amount that is guaranteed after 18 years till dead (social security small amount) + Potential to invest in funds with infrastructure projects –not sellable outside community + Work achievements w0 + Specific demand of work occupation W1 + other no specific potential secondary occupation in line with moral and spiritual standards laid down in educational process + e

For worker protection salary can incorporate some ideas of errors. It can be laid down in the first steps of working experience. What is new for this model is that errors are not subject of punishment but conversation and process of learning. Errors are limited to person ability, job opportunities and if repeated some new possibilities need to be found inside the system but educational process /experience is the base for each working place to be matched with potential employees.

W= a+b*(e+x+gy) -errors to agreed amount +e

The potentials to expand the wage formula are different insurance policies that protect either investment or to some extent cover management mistakes. There are many insurance agreements that actually only cover construction leaving workers unprotected. This imbalance of importance in working process sometimes can lead to moral hazard problems which can be avoided if the worker and his working place are insured together and seen as important for working process. Management decision can be also insured but to some certain pre agreed job description.

W= a+b*(e+x+gy) -errors to agreed amount + Insurance workers and working place pre agreed job description +e

15.)

Model recognizes the need to be part of modern economical working and decision processes but is always aware that some specific determinant and measures need to be done in line with Nepal history and desired place in the future. What is actually creative in model is that it incorporates future economic model on today's base but not as wild balloon type economy that lives cycles on expense on people but well-tailored community model that put each individual in the spot place.

In that respect model recognizes the main drivers of modern economic thoughts such as income, savings, tax rates, consumer behavior:

- 1) Y= C+I+G
- 2) Y=T+S+Ct+I
- 3) $C = C_{t-1} + C_{t-2} + C_{t-3} + ...$
- 4) C= (Y-S(I)) Function of Tax policy

But tailors future and current model always considering the potential to improve, to go back to community and resolve issues

Ci= b0+T_{t-1}+e Stochastic (e – determine to observe historic, possible future happenings)

Planning and analysis can be useful tool for economic thoughts. Some community decision making process, or recommendations made by experts can be further laid down to explore real life, financing, implication measures.

Communication and implementation plans;	
people who are in process (workers, users of	potentials
services, goods, end consumer, policy etc.)	
Drawbacks	Combination of activities :social and
Financing opportunities	infrastructure, educational and agricultural for
	example

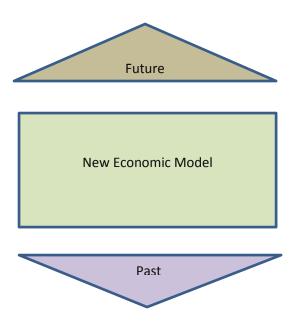
Each step can be divided further into many new potential jobs, opportunities, realized obstacles and historic back up processes.

Future communication	Communication on the	Current regional	Future in each region	
between regions	regional, world level	potentials		
Current procedures in	Current	Certain region now	Many regions current	
each place	communication		economic structure	
	between villages,			
	towns, industry and			
	population,			
	Government and			
	population			
Current problems	Future possible	Where to place which	With whom to realize	
	problems	activity	certain project ,idea	
Financing	Realizing errors and	When to introduce	How to properly	
opportunities	ways to prevent those	new measures	combine activities	
	observed		between different	
			sectors	

This pro and contra, different scenarios using many variables as possible can be good as a measure of learning, prevention of negative scenarios, further improvement of Nepal model, better project understanding in future etc.

16.)

Some of mistakes this ways of economic thoughts can be improved in this model as realizing that the base can be personal achievements, but without a sense that individual strength are limited and subject to enormous mercy of nature, space and God some basics can be omitted.


Y= y t-1+e systemic+	e individual + e nature	+e spiritual
----------------------	-------------------------	--------------

	Note 1	Note 2
Systemic	System follows world economy	System is too much oriented on
	in the way only copy and not	past ; or future benefits
	incorporating specific	
	geographical spiritual needs of	
	people	
Individual	Too much dependent on	Put a right man on the wrong
	success and little on mercy	place
Nature	Do not recognize the danger of	Pollution out of control, too
	taking nature richness for	much profit calculation out of
	granted	nature potentials
Spiritual	Do not recognize the spiritual	Omit mercy and pray out of life
	values of each human beings	

18.)

Model in that respect incorporates set of existing values and historic errors shaping it in the way always looking at current, historic and future goals.

Model now= Model in future / On current model + Model in past *(1 + errors)^{1.n} + Model now f(history, future needs) +e

How to calculate the potential investment, secure the investors and shareholders wanted profit is examined to high potentials in profit economies. Transitional economies on the other hand enjoyed the period of selling existing facilities, making high flyers who manage to profit from newly shareholder structure and new potential of emerging markets as a profit oriented means to local and global players. Socialist economy also realizes the potentials of profit but was more readily to distribute it evenly and limit the high profit gains. In that respect some of findings in modern calculation of profit rate by means of recognized method WACC –weighted average cost of capital is presented. Basic formula starts from notion:

PPTK=r e* (E/(E+D)) + rd*(D/ (E+D))

and with tax rate incorporated it states followings

PPTK=r e* (E/(E+D)) + rd*(1- spd/100) * (D/ (E+D))

		Note/Potential issues
E / (E+D)	Equity share in Total liability structure - current or aimed	Does not take into account different equity structure or shareholder preferences
D / (E+D)	Debt share in current Total liability structure – current or aimed	Can be very quickly changed –if certain market disturbances arise, what is preferred debt structure is different between loan taker and bank for example
R _f	Risk free rate- interest on long term government bonds	Some future deterioration are not incorporated
R _M	Return on market – market index for certain period of time	To some degree correct- but maybe there are many companies small manufacturers that are not listed but present a significant economic potential
Beta industry company	Systemic risk, measure of volatility with market	Can be changed with new market potentials, dangers, cannot be right measure if not all companies are listed
r _{e=} rf+b *(r _M - rf)	Return on equity	
r _d	Interest rate - measure of debt- can be calculated as interest on some debt or risk rate added on risk free rate	It can differ from bank to bank, vary variable on different markets in rule it is higher in poor areas and lower almost negative in high income economies, these can be changed if banks for people are open inside the country, banks for small manufacturers, government

19.)

		offers certain loan arrangements etc
spd	Tax rate	Tax rate can be changed in future periods with new legislation, government decision, etc
WACC	PPTK=r e* (E/(E+D)) + r _d *(1- spd/100) * (D/ (E+D))	WACC –general measure have limitations do not offer right rate if it is related to social project or environmentally aimed project

20.)

For Nepal Agriculture presents a place of stability, growth in times when other sectors are under strong influence either from region or inner inefficiencies and this sector need to be helped and supported further. In that respect all data need to be put into data base. In that way for example agriculture is further helped in respect to animal, plant, vegetables and fruit production. This is the base for further manufacturing growth possibilities measures that makes all human activities (taxes, subvention, work in schools, institutes, industry) can be related to this sector as well.

Agriculture A = a1+ a2* X1 (Type of production - vegetable, fruit, husbandry, cattle, sheep, goats etc.) +a2*X2 (Yield per measure convenient for geographical structure of country) +a3*X3 weather conditions +a4*x4* (Labor force only income) +a5* x5 (Labor force second income) +a6* x7 (Labor force third income, additional activities in schools, in old homes, by factories, by Government institutions etc.) + a6 *x6 (Fertilizer consumption, production activities yields) +a7*x8 (Real emissions, pollutions directly linked) +a8* X8 (Indirect pollution through production of fertilizers, other activities) +a9* x9 (price of goods at domestic market) +a10 *x10 (Price of goods at regional market) +a11* x11 (Potential for further manufacturing sale) +a12*x12*(Potential to export –if manufactured on far markets Europe, South America, Australia, South East Asia etc.) a13*x13 (Constant education of agricultural workers) +a14*x14 (Care and tax benefits to older and weak members of societies that has agriculture as only income) + a15* x15 (All other relevant issues –prices of fuel, mechanization, weather disturbances, subvention etc.)

While this sector means broad base of activities some local centers can be put in place that have several services:

- 1. Peaceful resolution of conflicts
- 2. Very fast and just resolution of ambiguities arose in activities in village, agricultural land, town etc.
- 3. Fast information about potential to growth possible lease of manufacturing equipment, type of seed, fertilizer measure etc.
- 4. Distribution of information to/from local to center

21.)

Community Centers are places where information's, measures, support and any help can be given for local population but also four tourists. It is a helpful to have this centers that would provide swift information and service. The stress is on fast and all –where especial role is given to the weakest members of society.

$$f'=f^* \frac{1-\cos\alpha}{sqrt(1-\frac{v}{v \, fastest \, observe \, measure})} t=t^*$$

=t *sqrt($\frac{time \max poss - v real}{time \max poss + v real}$

	Problems	Aims	Gains	Future
Primary	Live far from	All children free	All population	Sound base for
school	school, not	education ,equal	literate and	future
	enough	opportunities,	available to have	achievements in
	educational	measure personal	several options	any field that
	possibilities, lack	interest and	according to	child is directed
	of money,	advise for further	personal	to, healthy base
	obligation to work	possibilities	possibilities	for satisfied
	at home on the			individual
	farm etc.			
Secondary	Lack of funds,	Distribution of	Right person at	Base for further
university	No school in	resources that	the right place,	labor, capable to
	wanted field of	can help	more educated	achieve goals of
	study	overcome	and healthy	society
	Problem with	financial barriers	nation	
	housing			
	Do not know			
	future labor			
	market needs			
Labor	Not enough jobs,	Full employment ;	Additional effort,	Each aware of his
	hard to pre-	each individual	some more ideas	potentials, can
	qualified, very	paid for services,	and possibilities	contribute with
	hard to change	worker is	in land and on	extra work and
	occupation	satisfied with job	international	innovative ideas
		and his	market, high GDP	and have real
		contribution to	growth for society	award for
		society ; no man		achievements in
		is extra for		respect of money
		company,		and better
		institution or		opportunities for
		system of labor		others in society
Pension	Lack of system,	Stabile and good	Stable system	Development in
	system is not	system where	brings additional	stability , rise
	functioning,	each is guarantee	benefits in	amount, invest in
	system often	a minimum	respect of people	concrete on Earth
	changes what	amount of	that decide to	projects
	brings ambiguities	pension whether	stay or	

	for management	worked in factory	contribute to	
	of resources	or staid at	country	
		agriculture		
Unemployed	Not able to find	No	Stabile country ,	Security and
	work, not able to	unemployment	no immigrants	potentials to rise
	find work in	or those who are		in respect of
	specialized field,	unemployed to		population
	work is far from	contribute on		planning ,
	home , etc.	some other ways		business set up
				etc.
III, not able to	Lack of hospitals,	Build more	Help others and	Each member
work, other	no home care,	hospitals,	create new	aware of his
problem –social	lack of proper	modernize	potentials in that	importance and
structure	education etc.	existing, exchange	way	value
		knowledge with		
		international		
		community		

The second arm of productive society is industry and manufacturing. While Nepal is surrounded with very competitive strong powers in that respect it faces difficulties in making his economy diversified and competitive if compared with potentials of India or China. This fact should not stop the country to develop, diversify manufacturing and industry in country while this is the sector that can bring further help to the above mentions aims.

The first step is some basic economic reasoning's:

Industry, Manufacturing =a0+a1 * type of industry +a2* set up investment costs +a3* financing burden +a4*market for products +a6* workers educated +a7* right type of management process +a8* possibility to transfer production to other type of goods + a9* other topics

The second step is putting toward society and government :

Industry Manufacturing =a1+b1*loans possibilities +b2* Government resources help to small entrepreneurs +b3* paying a right amount of taxes (not to heavily or too low tax burden) + b4* (broaden market from products in support of government) + b5 * employs local workers +e

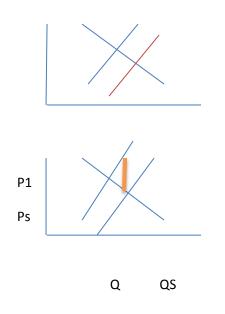
The third step is involvement in society:

Industry / Manufacturing =a 1+c1 *obligation to contribute to education +c2* building reparation of schools+ c3* building modernization of pension homes + c4 * involvement in social activities + c5 * measure of income allocated to local community projects+ e

22.)

To achieve a certain goal policy short, mid and long term measures must be collected, evaluated and further prioritize in order to realize.

Measures in each vulnerable sector dependent upon government help, donation, goes from tax collection or is part of community /industry cooperation.


	Policy measure 1	Housing	Funds
School			
Unemployed			
Employed			
Pension			

A subsidy is a form of financial or in kind support extended to an economic system -sector institution individual business – generally with the aim of promoting economic and social policy.

The most common are those for producer /consumer. Product subsidies ensure producers are better off by either supplying market price support, payment for factors of production. Consumer subsidy commonly reduces the price of goods and services to the consumer. Government promotes welfare –housing tuition.

If it is assumed that the market is in competition equilibrium a subsidy increases the supply of the goods beyond the equilibrium competition quantity. This imbalance creates loss. The magnitude of the loss is dependent of the size of the substitution.

Some activities in former socialist or Asian countries are more subsidies than other. It can be a word that subsidies go too long for one measure and do not give results. For example if gasoline price is subsidized than there is lower incentive for people to use train , bus or investment in biofuel some other transport means does not goes as planned. To high subsidies for too long are subject of discussion among economist especially market oriented who consider they are one of causes for market distortions.

This line of reasoning can be correct if subsidies go to industries or production facilities that can easily be substituted or can increase production without additional support.

Subsidies are however very useful in creating new opportunities, goes into social sector, changes its end goals making competitive edge to all potential and existing low income groups, works toward support and creation of market in country but as well abroad etc.

23.)	

What is usually measured on the market is following indicators: market capitalization, profit, and revenue and future business opportunities. Varieties of management decisions, small steps and inner politics are often unobserved.

One particular expenditure that could have a high social value and is often widely publicized lies in the field of donation. This cost can be part of tax exemption procedure what brings further benefits to company profit structure. It often lies in the hand of management who prefer one sport over other or decides about one donation among many different social needs.

For Nepal there is new approach to the subject. Donations are part of business and way of life with community; they came from community itself and region not from management preferences. They are fully tax deductible and serve as measure to improve cumulative wealth of population.

This donation end goal are later followed by Lorenz curve that shows on one axes cumulative share of income earned and on the other cumulative share of people from lowest to highest level of income. This curve that is a good representation of inequality where the lowest point measure perfect inequality can be good measure to show how step by step work in line with common goal can achieve results.

Fi=i/n si =
$$\sum_{j=1}^{i} yi$$

L(F(x)= $\frac{\int_{-\infty}^{t} t f(t)dt}{\int_{-\infty}^{\infty} t f(t)dt} = \frac{\int_{-\infty}^{\infty} f(t)dt}{\mu}$
L(f) = $\frac{\int_{0}^{F} x(f1) dF1}{\int_{0}^{1} x(F1)dF1}$

X(F1) =inf (y: F(y)>F1')

Today's trend and necessity by many economic and market participants are collecting and presenting various Data Bases. It is possible to collect and present all sort of data – in this paper ones that are of especial interest are economic and environmental ones. It is a system that collects, compares, put some forward looking statements in order to inform, make certain benefits to organization that are involved or put in line certain policy procedures. If put on web freely serves the public interest as well.

For country it would be of benefit to establish its own system of measurement to compare its own strength weaknesses and to promote its own model successes.

Classical Data Base

	GDP	GDP/growth	Inflation	Unemployment	Sectors as % of GDP
Country 1					
Country n					

New Types of data

	Inequality	Social	New	New housing	Number of
	decline	participation	innovative	for low	new trees etc.
			skills from	income groups	
			community		
Country 1					
Countryn					

24.)

Part of process of model making as well as economy management is to deal with expectations. They are firmly incorporated in the life of each individual in all aspects. The increasing number of valuable research papers comes daily and explains different results of expectations –large number deals with price expectations. Two major lines of expectations are present:

The first one is the group that changes its expectations in line with adaptive process - the prices are changed in due course following certain rules.

 $P_t = a(P_{t-1} - a * P_{t-2}) + e$

Another line of reasoning lies in the area of random process – prices are changed in the process of random jump procedure.

 $P_t = a + a_1 * P_{t-y-1} + e$

In making model to work a certain goals for each period are to be established and policies and procedures put in practice.

 $M_1 = \text{step}_1 + \text{step}_2 + \text{step}_3 \dots + \text{step}_n + e$

It is important that complex structures are explained as clearly as possible, be published and agreed publicly and tried by all levels of population to put into praxes. The level of error in that case will be minimized. It is a probably the case that errors are higher at the first years and decrease in time. This type of management is partly present in today economy, management policy, political structure or even by culture such as for example new movies or music presentations. It is observable and differs in pre work, work and post work period.

Issue = $Y_2 - Y_1 - Y_3 - Y_4 + e$

Positive numbers (news) are interrelated and controlled by those who manage the process. Sometimes it is possible that some bad news that is expected tried to be compensated with series of goods news or time between these processes is controlled. These expectations management can be valid to certain extent but could also lead to further deepening of existing problem.

What is new in Nepal model is clear understanding of the importance of involvement of all population in economic model, no calculation, or strategies that puts its own burden on others usually weaker members of society, playing with good/bad news as part of tactic or strategy but real desire for better life in line with nature for all.

Errors are to be expected in the first time but as the model is implemented errors are less visible Problems or errors to speak can be managed in the way to recognize the difficulties in the process and manage weak spots. In that way insurance of accident or preventing of negative turn of events is clearly understood by population and not the subject of potential misunderstandings, dangers, under cover problems.

INFORMATION	Information about potentials are clearly
	understood and presented publicly. No hidden
	agenda
ACCIDENTS	Put in operation –weather service and protection
	force, educate people about environmental and
	weather dangers, do not allow some extra high
	dangerous activities from domestic or tourists etc.
ENVIRONMENTAL DEGRADATION	Insurance, education, fund , expand the territory
	of protected area, common works
UNREGULATED ACTIVITIES	Activities do not need to be regulated carefully and
	monitored in the policy type of action.
	All activities –made freely in line with best interest
	of human relation, relation with nature, and
	relation with positive -God's intention
ACTIVITIES BETWEEN	Determine population that is long term
	unemployed - establish system of help; observe
	population between activities (school- job) center
	to redirect to company , government activities, or
	nonprofit institutions, population newly in pension
	-offer activities help service, population in danger
	from environmental problems –offer service and
	help etc.
COMPANIES THAT FACE BANCRUPTCY	Bankruptcy can arose due to unfavorable market
	conditions, some in company's difficulties or other
	factors that can have outer or inner source.
	Establish institution that help company in difficulty
	in order to reorganize, pay debts, prolong its
	obligation, etc.
	-Process of reorganization of company, individual
	-Process of paying the debt- establish causes and
	priorities -can be from case to case - while
	bankruptcy source differs,
	-In end case bankruptcy occurs- system of social
	adaptation on current procedures
OTHER PROBLEMS	Community Center in charge but also complains
	can be made to regional Centers

In that respect some cases are presented as follows:

26.)

Today the product itself is not enough. The pottery need glaze and as history shows it has sometimes better or simpler picture or structure. Although at the end it is important that the glass holds the water and in other words speaking quality still matters.

The question is how can small country that is struggling as numerous other places with GDP growth and quality grow attract new customers and offer new services. Marketing is part of economic strategy that grew immensely in private sector surrounding and in that respect mostly for export of goods and services. So, Nepal should consider right strategies in that respect.

a) Product

For product or end result of any material made in industry or manufacturing quality And innovation can immensely contribute to marketing strategy

b) Promotion

When considering promotional activities keep in mind true meaning of product, service, potentials, customer wishes and aims, long term and short term implication of strategy, likeness of product to aimed group, not to forget to stress correlation with human satisfaction while making it, nondiscriminatory policy in production and promotion, and close linked between production and nature

c) Price

There is huge discrepancy between prices in Nepal and Western Europe, or USA. This can further contribute to end price of product and bring additional benefits in reaching new markets. Do explore other markets, their potentials and prices and offer product that can compete and win the market. End price incorporates transport costs – so stress value of low CO_2 transport potentials. Have different prices at home and abroad.

For the service industry – small hotel especially- it is of a high importance to manage costs and prices adopt toward demand, tourist stay and other relevant factors. Some range of values can bring additional benefits and offer new tourist enquiries.

d) Place

Place is important in respect that can bring clean agricultural product, to have large markets of India and China to offer good medicine, juices, food products or service that is affordable and pleasant to western tourist as well as regional guests.

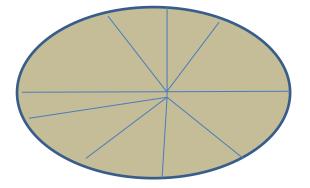
In that respect consider marketing strategy with grain of salt, make good customer focus, be aware that herd behavior is reality in modern global world and good/bed crituitiqe can be easily done, sometimes competition can bring additional problems and burdens to marketing strategies, do not forget that basics is important but small innovative things can bring extra benefits.

Sharing the success and work effort is the one of aims that community need to solve as the potential of further progress or way to new obstacles. In classical capitalist society profit is a measure of difference between revenue and costs regarding many issues in tax and cost cut policy measures. After these issues are resolved –never fully while each group has its own preference schemes – profit for dividend or Government distribution is available.

Profit= (Revenue –Costs)(1-Tax rate)

In company that has to certain extent a clear picture of shareholder structure it is easier to base decisions about current future profit share policy. Partly it is determined by Law, or Statutes inside the Company itself.

Net profit	Dividend for shareholder
	Reserves
	Statutory reserves
	Legal reserves
	Kept profit


What can be further subject to debate is Fund participation, management of infrastructure projects, natural resource funds, pension fund etc.

PROJECT TYPE	CONSIDER POSSIBILITIES					
Infrastructure -large	It is determined by Law dividend share to social groups that are under certain level of poverty					
Infrastructure- small	It can be determined by Law dividends share to Community or involvement in small scale community projects further					
Corporate -profit	If the investor is foreign origin dividend can fully go abroad. It can be agreed or determined by Law certain obligatory further investment in country, dividend share to employees, obligation to invest part of profit in land Funds etc. If the investor is domestic- same procedure but with greater obligation to participate in domestic issues					
Nature Fund	Since the ownership is by population each year decide small –determined -amount to share and other invest further in keeping or widening the richness of natural resource					
Pension fund	Determine level of risk for further investment Determine the right diversification strategy Determine possibility to invest abroad(under what conditions)					

28.)

The aim of creating the new model is to define and follow the path of economy that benefits relationships between human, nature and God's mercy. In that respect population and measure of satisfaction, human growth should be carefully monitored.

Population = Population t_{t-1} + Population t_{t-2} + Population t_{t-3} + ...

Classical measures can be finding in following marks:

Population - measures of satisfaction = f (number, satisfaction with life, health, school years, school achievements, number of new jobs started, computer literacy, family members -number, minimum salary number, state social minimum benefits, innovation achievements, etc.)

Potential measures can additionally bring some extra knowledge in the model:

Population – measures of satisfaction = f (Relation, difference, future, job occupation, job satisfaction, number of innovative works, community service participation, etc.)

It also can tackle vulnerable groups and bring additional knowledge, awareness dangers:

Population – measures of satisfaction = f (decline in number of certain nationals, religion groups, forbidden activities, forbidden legal ways of expression, unexplained accidents, low level of satisfaction, do not enter work market, too long on social benefits, do not have a proper means to communicate, difficulty to travel, difficulty to sell products etc.)

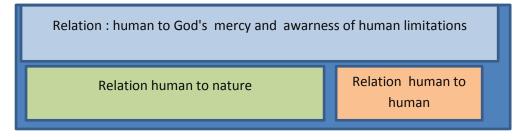
These signs are visible in each society that wants to see. If are ignored long term negative consequences can appear to currently "strong" ones.

Each model that has its marks on Earth has its own advantages and faults. What is also to be marked is that the largely presented model does not mean that is the most efficient or good one (remember feudal or slave based societies). It can only present current way of thoughts that is the strongest, the most persuasive, and the simplest form but can also be evaluated from the time perspective. To evaluate and reevaluate models is the constant task of economists. Some difficulties and periods when main models fail in its presentation are noted in the table that follows:

Capitalist Model	Socialist Model	Nepal Model
-Did not stood the test of time : in	-Did not stand the test of time	Will stood the test of
failing to progress in East Europe	in early 1990 when the large	time if:
Asia beginning of 20 th century	part of system went through	
	transition phase to capitalist	-Simple
-Did not stood the test of time in	economies etc.	
colonial countries –additional		-Oriented toward each
injustices , non-natural state of	-Did not stand the test of time	individual
order	in respect of communication its	
	strategies and business	-Work with own values
-Did not stood the time in South	objectives on the world level	in respect of
America- high debt, risk of country	etc.	relationships with
bankruptcies (Argentina) rose		nature, other humans,
	-Did not stood the test of time	God's mercy
-Did not stood test in great financial		
in 2008 overvalued asset, stocks	itself on some neutral grounds	-Guarantees small
brought collapse to world finances- i	such as former colonies etc.	income –social
in America did not felt human		contribution to each
care and protection while ended		member of society
up in tent cities		
		-Do not discriminate on
-Did not stand the test of time in		any rate
respect of desire to realize change-		
in period's aggressive		-Be aware of time
communication, etc.		change and revalue
		economic policies
		without changing basics
		etc.

When considering Nepal economy and further economic progress it is important that country develop strategy toward world recognition in following ways:

-Have unique, special product or service:


-Have 10 products that are quality products recognizable in the whole world

- Do keep your agriculture and develop medicine, cure – at least 10 excellent products recognizable in the whole world

- Promote equal human values for all people around the world –in tourism –balance between nature man and God

Secondly, once the model is made and implemented it can change, improve or deteriorate in time. Constant examination of existing aims and praxes and keeping the eye on potential future gains as well as threats is the task of that would bring the Model $_1$ to Model $_2$ in future again valid and stable in harmony with nature and humans.

 MODEL_1 in time t to MODEL_2 in time t+n

3. THREE PROJECTS

3.1. Hotel resort

1. PROJECT -BUILDING A HOTEL

Rising number of tourist arrivals (1975 / 100.000; 2011/800.000 people of which foreign nationals 628.000 and Indian nationals 174.000) has contributed to Nepal's national GDP account. These further pointes to unused potentials in field what is described in many modern scientific papers of Nepal economist.

Just to mention a few excellent works in the field: Mr. Bishnu Prasad Gautam contributed in period 2008-2014 with interesting works that relates economic growth with tourism, as well as showing economic dynamics of tourism in Nepal by a VECM approach. Besides relaying on Cochrane Orcutt (C-O) iterative procedure when considering robustness of models some valuable additional literature can be found which relates tourism with economics. Mr. Wicckremansinghe Gace with ECM significant two way causal relationship from receipts to the GDP; further method that is used often is Cointegrated and Granger causality test by Kim Chen Jang: Reciprocal relationship between tourism development and economic growth; ECM Khalil, Khar Waliullah (2007) Pakistani economic expansion is necessary for tourism development; VECM Toda and Ymamamoto – causality test positive unidirectional causality on tourism expenditure Brida, Carrea, Risso (2008); Zartuk M (2009) made additional contribution about Granger causality, as well as Kreishna (2010) who explained unidirectional link from tourism earning to economic growth in the long run; Mr. Mirsha explained by VECM long run unidirectional causality from tourism activities to economic growth and no short run causalities between variables; large number of economist use Johansen's co-integrated test to prove positive relationship between tourism spending and economic growth.

Growing number of tourist point out to additional need for infrastructure projects, new ways of offering services, better promotional activities, quality of building and offering different services and extra caution to save natural resources and protect nature from further deterioration.

Very large spec tar of activities can be further added to basic tourist arrivals such as developing extra services, promoting herbal, medical tourism and growth as well as developing construction manufacturing in country. Few results – very rough calculation -are presented as follows in order to show that there exist large discrepancies among costs of construction between countries (USA has very large construction cost, than west European countries, where cost can be lowered with lower labor costs that are available in Asia) and that these costs are dependent about type of hotel that is planned to build: from economic to luxury resorts costs vary significantly per m².

PROMOTION	PROMOTION	PROMOTION
Tourists from	Tourists from	Tourists from
Europe/USA/other going to	Europe/USA/other going to	Europe/USA/other going to
Australia	Australia	Australia
7 days Nepal	7 days Nepal	7 days Nepal
7 days Australia	7 days Indonesia	7 days India
Medical treatments with	Visit to natural resources,	Spiritual healing with praying
herbal medicine-	biological exploration etc.	and walking in nature
Available through whole		
year but mostly in summer		
time		
Business trips	Business trips	Business trips
Few days Nepal	Few days Nepal	Few days Nepal
Peking	Shanghai Hong Kong	
Indian tourist in Nepal, from	n Pakistani tourist in Nepal , China tourist in Nepa	
Nepal to India	from Nepal to Pakistani-	Nepal to China – region –
	large number of potential	large number of population
	tourist	-growing potentials

Table1: Hotel business in Nepal-Promotion

It is of a primary importance to have not just excellent infrastructure for start- than develop further small scale apartments housing facility etc. - but to promote the country in different tourist agencies that would incorporate offerings in its yearly program.

Further to present are some possibilities directed toward calculation and building a hotel resort that suits international tourist preferences. In that respect a significant role is played by Government, Architects and Constructors.

Table 2: Role of Government, Architects, and Constructor in planning and building a Hotel Resort

Government	Tax policy						
Local Authorities	Permits						
	Environmental policy						
	Jobs						
	Promotion						
Architects	Determine: scope of project, preliminary budget., draft list of works,						
	create scenic design, draft floor plans, work with structural engineers,						
	meet with planning agents, finalize drawings, incorporate all details						
	about materials, work with project manager						
Constructor	Provide services materials, hire subcontractors, suggest plans ideas to						
	owner architect, deliver final work, have all permits for work utility						
	installation etc.						

As mentioned investment cost can vary significantly and some options that are available in east Europe are presented in table 3.

Table 3: Cost	per m ² for	Facility	/-Investment
---------------	------------------------	----------	--------------

		EUR/m ²	EUR/m ²	EUR/m ²	EUR/m ²
	%	1000	2000	4000	500
Material	40,00	1.784.000,00	3.568.000,00	7.136.000,00	892.000,00
Labor	36,00	1.605.600,00	3.211.200,00	6.422.400,00	802.800,00
Machin cost	4,00	178.400,00	356.800,00	713.600,00	89.200,00
Sum1		3.568.000,00	7.136.000,00	14.272.000,00	1.784.000,00
Architect	6,00	267.600,00	535.200,00	1.070.400,00	133.800,00
Permits,	,	,	,	,	,
Other costs	14,00	624.400,00	1.248.800,00	2.497.600,00	312.200,00
Total	100	4.460.000,00	8.920.000,00	17.840.000,00	2.230.000,00
Total m ²	4.460,00	4.460.000,00	8.920.000,00	17.840.000,00	2.230.000,00

With this possibilities in mind and being aware that costs in Nepal are much less than in European countries some small hotel resort of 110-115 rooms can be build based on:

With Table 4: Investment Cost for hotel of 115 rooms or 4 460 m^2 - per room, per m^2 coca.

Per Room	Land	Building Improving	Soft Costs	FF E	Pre- Opening and Working Capital	Total per room	Total per m ²	115 rooms of 4460 m ²
Hotel								
Budget								
Economy	4.550	30.520,00	840	3.570	1.050,00	35.910	1.197,00	5.338.620
Midscale								
Hotel	6.500	43.600,00	1.200	5.100	1.500,00	51.300	1.710,00	7.626.600
Full								
Service/								
Luxury	21.100	132.700,00	4.600	21.500	13.700,00	158.400	5.280,00	23.548.800

Further to note investment cost can be calculated per m^2 .

Table 5:	Investment	Cost for hote	l of115 rooms	or 4 460 m ² - PER m²
----------	------------	---------------	---------------	--

Per m ²	Land	Building Improving	Soft Costs	FF E	Pre- Opening and Working Capital	Total m ²	115 rooms per 30 m ² +lobby outside 4460 m ²
							Total cost
			Per	m2			4460 m2 EUR
Hotel							
Budget							
Economy	151,67	1.017,33	28,00	119,00	35,00	1.197,00	5.338.620,00
Midscale							
Hotel	216,67	1.453,33	40,00	170,00	50,00	1.710,00	7.626.600,00
Full							
Service/							
Luxury	703,33	4.423,33	153,33	716,67	456,67	5.280,00	23.548.800,00

Based on this research some Pre-Feasibility calculation can be made.

Let's assume that investment costs are in *Table 6*:

Table 6: Investment costs

TOTAL	8.991.360,00
Permits other	624.400,00
Architect	267.600,00
Sum1	3.568.000,00
Machin cost	178.400,00
Labor	1.605.600,00
Material	1.784.000,00
Land	963.360,00

Operative costs varies significantly and are dependent upon: energy input, labor costs, labor number, potentials to builds scenery, potentials of private parks, material used, type of food used, etc. It can also vary from income and adapt according to different structure of guests.

	Tabl	Per	D	Per room per	Fire	Marra
	Total	month	Per room	day	Fix	Vary
Material (food, material other, transport						
costs)	500.000,00	41.666,67	362,32	12,08	50	50
Energy	100.000,00	8.333,33	72,46	2,42	60	40
Labor						
Student	60.000,00	5.000,00	43,48	1,45	20	80
Professional	100.000,00	8.333,33	72,46	2,42	80	20
Other fees	200.000,00	16.666,67	144,93	4,83	70	30
Other costs	150.000,00	12.500,00	108,70	3,62	40	60
Total	1.110.000,00	92.500,00	804,35	26,81		

Table 7: Operative expenditure can take following form in mid luxury hotel

Table 8: Revenue is assumed to be charged to foreign tourist for following number of days:

Room	Price	Days	Revenue
115	70	273	2.197.650,00

Than Output shows following results:

Table 9: Balance Sheet

	2015	2016	2017	2024	2031
TOTAL ASSET	4.100.000,00	9.100.000,00	9.730.334,10	14.121.083,33	18.511.833,33
Short term asset	36.640,00	3.676.640,00	4.429.624,10	9.678.923,33	14.928.223,33
Long term asset	4.063.360,00	5.423.360,00	5.300.710,00	4.442.160,00	3.583.610,00
TOTAL					
LIABILITIES	4.100.000,00	9.100.000,00	9.730.334,10	14.121.083,33	18.511.833,33
Short term					
liabilities			3.084,10	3.083,33	3.083,33
Stock capital	4.100.000,00	9.100.000,00	9.100.000,00	9.100.000,00	9.100.000,00
Reserves				4.390.750,00	8.781.500,00
Profit kept			627.250,00	627.250,00	627.250,00
Net worth	4.100.000,00	9.100.000,00	9.727.250,00	14.118.000,00	18.508.750,00
CAPITAL / Total					
liabilities (%)	100	100	93,521969	64,442648	49,157746
Net worth /Total					
asset (%)	100	100	99,968304	99,978165	99,983344
Short term					
assets / Short					
term liabilities			1.436,28	3.139,11	4.841,59

Table 10: Profit Loss Account

	2017	2018	2024	2013
Revenue from sale	2.197.650,00	2.197.650,00	2.197.650,00	2.197.650,00
Less variable cost	508.000,00	508.000,00	508.000,00	508.000,00
VARIABLE BORDER	1.689.650,00	1.689.650,00	1.689.650,00	1.689.650,00
% REVENUE FROM				
SALE	76,884399	76,884399	76,884399	76,884399
Less fixed costs	724.650,00	724.650,00	724.650,00	724.650,00
OPERATIVE BORDER	965.000,00	965.000,00	965.000,00	965.000,00
in % revenue from				
sale	43,910541	43,910541	43,910541	43,910541
NET PROFIT	965.000,00	965.000,00	965.000,00	965.000,00
in % revenue from sale	43,910541	43,910541	43,910541	43,910541
PROFIT BEFORE TAX	965.000,00	965.000,00	965.000,00	965.000,00
Tax on profit	337.750,00	337.750,00	337.750,00	337.750,00
NET PROFIT	627.250,00	627.250,00	627.250,00	627.250,00
in % revenue from				
sale	28,541852	28,541852	28,541852	28,541852
EARNINGS KEPT	627.250,00	627.250,00	627.250,00	627.250,00

Net profit /stock capital (%)	6,892857	6,892857	6,892857	6,892857
Net profit / Net worth				
(%)	6,44838	6,057753	4,44291	3,388938
Net profit+interest /				
Investment (%)	11,546903	11,546901	11,546901	11,546901

Project is under stated consumptions positive and return will be visible after 13 years in discounted form. Of course this is the best possible assumption; negative values can come from loan conditions and input, lower revenue, lower number of guests etc.

Table 11: Discounted Economic Flow with Net Present Valu
--

	2015	2016	2017	2020	2028
RECEIVABLES			2.197.650,00	2.197.650,00	2.197.650,00
Business			2.197.650,00	2.197.650,00	2.197.650,00
EXPENDITURES	4.063.360,00	1.360.000,00	1.456.582,56	1.447.750,00	1.447.750,00
Asset increase	4.063.360,00	1.360.000,00			
Increase of net working assets			8.832,56		
Costs of			8.832,50		
production			1.110.000,00	1.110.000,00	1.110.000,00
Tax on profit			337.750,00	337.750,00	337.750,00
NET RECIVABLES	-4.063.360,00	-1.360.000,00	741.067,44	749.900,00	749.900,00
Cumulative net			-	-	
receivables	-4.063.360,00	-5.423.360,00	4.682.292,56	2.432.593,33	3.566.606,67
Net present					
value	-4.063.360,00	-1.271.028,04	647.277,00	534.668,34	311.181,84
Cumulative net					
discounted			-	-	
receivables	-4.063.360,00	-5.334.388,04	4.687.111,04	2.968.206,43	224.457,80
NPV	7,00%	2.257.982,14			
IRR	11,62%				
MIRR	11,62%				
Years of return	0,00%	9.24 years	2024		
Years of return					
discounted	7,00%	13.28 years	2028		

1.2. SECOND EXAMPLE -HOTEL WITH DIFFERENT PRICES

Having said that cost are variable and can depend upon revenue different pricing strategy is presented:

Duration of stay	Room number	Price per room per day	Revenue	Quantity Days	Quantity stay
1 year	2	20	14.600,00	365	
1/2 year	7	25	31.500,00	180	
1 month	7	30	37.800,00	30	6
2 weeks	39	40	655.200,00	14	30
1 week	40	60	672.000,00	7	40
1 day	5	80	40.000,00	100	1
	100	42,5	1.451.100,00	341,44	

Table 12: Different Pricing Strategy

With reduced revenue NPV Nep Present Value is negative and some cost decrees need to be considered.

Table 13 : Discounted Economic Flow with Net Present Value

	2015	2016	2017	2024	2031
RECEIVABLES			1.449.250,00	1.449.250,00	1.449.250,00
Business			1.449.250,00	1.449.250,00	1.449.250,00
EXPENDITURES	4.063.360,00	1.360.000,00	1.194.642,56	1.185.810,00	1.185.810,00
Asset					
increase	4.063.360,00	1.360.000,00			
Increase of net					
working assets			8.832,56		
Cost of					
production			1.110.000,00	1.110.000,00	1.110.000,00
Tax on profit			75.810,00	75.810,00	75.810,00
NET					
RECIVABLES	-4.063.360,00	-1.360.000,00	254.607,44	263.440,00	263.440,00
Cumulative net			-	-	-
receivables	-4.063.360,00	-5.423.360,00	5.168.752,56	3.324.673,33	1.480.593,33
Net present					
value	-4.063.360,00	-1.271.028,04	222.384,00	143.293,91	89.236,24
Cumulative net					
discounted			-	-	-
receivables	-4.063.360,00	-5.334.388,04	5.112.004,04	3.871.936,19	3.099.683,87
NPV	7,00%	-1.882.799,02			
IRR	2,83%				
MIRR	2,83%				
Years of return	0,00%	17.41 year	2032		
Years of return					
discounted	7,00%	not found			

Table 14: Profit Loss Account

	2017	2018	2024	2031
Revenue from sale	1.449.250,00	1.449.250,00	1.449.250,00	1.449.250,00
Less variable cost	508.000,00	508.000,00	508.000,00	508.000,00
VARIABLE BORDER	941.250,00	941.250,00	941.250,00	941.250,00
% REVENUE FROM				
SALE	64,947387	64,947387	64,947387	64,947387
Less fixed costs	724.650,00	724.650,00	724.650,00	724.650,00
OPERATIVE BORDER	216.600,00	216.600,00	216.600,00	216.600,00
in % revenue from				
sale	14,945662	14,945662	14,945662	14,945662
NET PROFIT	216.600,00	216.600,00	216.600,00	216.600,00
in % revenue from				
sale	14,945662	14,945662	14,945662	14,945662
PROFIT BEFORE TAX	216.600,00	216.600,00	216.600,00	216.600,00
Tax on profit	75.810,00	75.810,00	75.810,00	75.810,00
EARNINGS KEPT	140.790,00	140.790,00	140.790,00	140.790,00
Net profit/stock				
capital (%)	1,547143	1,547143	1,547143	1,547143
Net profit / Net				
worth (%)	1,523571	1,500707	1,376742	1,255725
Net profit+interest /				
Investment (%)	2,591771	2,591771	2,591771	2,591771

Table 15: Balance Sheet

	2015	2016	2017	2024	2031
TOTAL ASSET	4.100.000,00	9.100.000,00	9.243.874,10	10.229.403,33	11.214.933,33
Short term asset	36.640,00	3.676.640,00	3.943.164,10	5.787.243,33	7.631.323,33
Long term asset	4.063.360,00	5.423.360,00	5.300.710,00	4.442.160,00	3.583.610,00
TOTAL					
LIABILITIES	4.100.000,00	9.100.000,00	9.243.874,10	10.229.403,33	11.214.933,33
Stock capital	4.100.000,00	9.100.000,00	9.100.000,00	9.100.000,00	9.100.000,00
Reserves				985.530,00	1.971.060,00
Profit kept			140.790,00	140.790,00	140.790,00
Net worth	4.100.000,00	9.100.000,00	9.240.790,00	10.226.320,00	11.211.850,00
Capital / Total					
liabilities (%)	100	100	98,443574	88,959245	81,141811
Net worth /Total					
asset (%)	100	100	99,966636	99,969858	99,972507
Short term					
assets / Short					
term liabilities			1.278,54	1.876,94	2.475,02

The third example is in line with cost management system .Costs are adapted to current lower revenue potentials. Of course all is just for the sake of explaining the possibilities. Real life issues and prices are much lower in Nepal than in East Europe.

Reduced revenue with reduced costs- costs management. Costs management:

Table 3	16:	Reduced	Operative	Costs	in	EUR
---------	-----	---------	-----------	-------	----	-----

	Total	Lower costs
Material (food, material		
other, transport costs)	500.000,00	250.000,00
Energy	100.000,00	50.000,00
Labor Student	60.000,00	30.000,00
Labor Professional	100.000,00	70.000,00
Other fees, costs	200.000,00	200.000,00
Other costs	150.000,00	150.000,00
Total	1.110.000,00	750.000,00

Series of Financial reports than takes different result also what is further to be noted.

	2015	2016	2017	2020	2031
RECEIVABLES			1.449.250,00	1.449.250,00	1.449.250,00
Business			1.449.250,00	1.449.250,00	1.449.250,00
EXPENDITURES	4.063.360,00	1.360.000,00	957.642,95	951.810,00	951.810,00
Asset					
increase	4.063.360,00	1.360.000,00			
Increase of net					
working assets			5.832,95		
Cost of					
production			750.000,00	750.000,00	750.000,00
Tax on profit			201.810,00	201.810,00	201.810,00
NET					
RECIVABLES	-4.063.360,00	-1.360.000,00	491.607,05	497.440,00	497.440,00
Cumulative net			-	-	
receivables	-4.063.360,00	-5.423.360,00	4.931.752,95	3.439.433,33	2.032.406,67
Net present					
value	-4.063.360,00	-1.271.028,04	429.388,64	354.667,85	168.500,14
Cumulative net					
discounted			-	-	-
receivables	-4.063.360,00	-5.334.388,04	4.904.999,40	3.764.778,06	1.105.239,39
NPV	7,00%	110.629,25			
IRR	7,24%				
MIRR	7,24%				
Years of return	0,00%	12.91 year	2027		
Years of return					
discounted	7,00%	17.91 year	2032		

Table 17: Discounted Economic Flow with Net Present Value

Table 18: Profit Loss Account

	2017	2018	2019	2024
Revenue from sale	1.449.250,00	1.449.250,00	1.449.250,00	1.449.250,00
Less variable cost	333.000,00	333.000,00	333.000,00	333.000,00
VARIABLE BORDER	1.116.250,00	1.116.250,00	1.116.250,00	1.116.250,00
% REVENUE FROM SALE	77,022598	77,022598	77,022598	77,022598
Less fixed costs	539.650,00	539.650,00	539.650,00	539.650,00
OPERATIVE BORDER	576.600,00	576.600,00	576.600,00	576.600,00
in % revenue from sale	39,786096	39,786096	39,786096	39,786096
NET PROFIT	576.600,00	576.600,00	576.600,00	576.600,00
in % revenue from sale	39,786096	39,786096	39,786096	39,786096
PROFIT BEFORE TAX	576.600,00	576.600,00	576.600,00	576.600,00
Tax on profit	201.810,00	201.810,00	201.810,00	201.810,00
NET PROFIT	374.790,00	374.790,00	374.790,00	374.790,00
in % revenue from sale	25,860963	25,860963	25,860963	25,860963
EARNINGS KEPT	374.790,00	374.790,00	374.790,00	374.790,00
Net profit /stock capital (%)	4,118571	4,118571	4,118571	4,118571
Net profit / Net worth (%)	3,955655	3,805137	3,665654	3,097868
Net profit+interest /				
Investment (%)	6,903236	6,903235	6,903235	6,903235

Table 19: Balance Sheet

	2015	2016	2017	2024	2031
TOTAL ASSET	4.100.000,00	9.100.000,00	9.476.873,72	12.100.403,33	14.723.933,33
Short term asset	36.640,00	3.676.640,00	4.176.163,72	7.658.243,33	11.140.323,33
Long term asset	4.063.360,00	5.423.360,00	5.300.710,00	4.442.160,00	3.583.610,00
TOTAL LIABILITIES	4.100.000,00	9.100.000,00	9.476.873,72	12.100.403,33	14.723.933,33
Short term liabilities			2.083,72	2.083,33	2.083,33
Stock capital	4.100.000,00	9.100.000,00	9.100.000,00	9.100.000,00	9.100.000,00
Reserves				2.623.530,00	5.247.060,00
Profit kept			374.790,00	374.790,00	374.790,00
Net worth	4.100.000,00	9.100.000,00	9.474.790,00	12.098.320,00	14.721.850,00
Capital / Total liabilities (%)	100	100	96,023227	75,204105	61,804137
Net worth /Total					
asset (%)	100	100	99,978013	99,982783	99,985851
Short term assets /					
Short term liabilities			2.004,19	3.675,96	5.347,36

3.2. Greenhouse, agriculture

Greenhouse, Agriculture Calculation

With rising tourism potential for more fresh all year food raises potential for different greenhouse possibilities by or near Hotel Resort. It can be part of Hotel System or done by village population as part of primary or secondary income.

Table 20: Greenhouse – Remarks

Excavation and	Costs will vary according to the level of work necessary, but all such						
preparation	projects would require the leveling of the site in order to receive the						
	concrete and the drilling of a well. This might be problematic in						
	areas of heavy frost.						
Concrete	The knee walls and flooring of the greenhouse						
Mataviala							
Materials	Greenhouse could demand a heavy steel frame, 8' walls						
	constructed of multi-wall polycarbonate or glass, roofing vents, and						
	electronic exhaust fans.						
Heating	Greenhouses located within areas that receive freezing weather						
	might require the addition of a heating unit.						

Picture a: Under earth Greenhouse - all year round very cheap

Picture b: Modern Greenhouse - expensive

In such an environment different cultures can be considered.

				Cucumb	Cucumb	Tomat	
		Paprika	Paprika	er	er	0	Tomato
		-					
Engl.	Deutsch	note	EUR	note	EUR	note	EUR
						250	
						km/0,2	
Seed links	Sampling		58	220 km	44,35	€/com	50,4
Foil black	Folie Schwartz	2 kg	6	2 kg	6	2 kg	5,91
Foil		0	_	0		0	- / -
transpare							
nt	Folie transparent	3 kg	6	3kg	6,5	3 kg	6,45
Mineral							
organic	Mineral organisch						
fertilizer	Dungen		22,5		24,9		33,43
Plant							
protection	Pflanzenschuthmit						
product	tel		14		12,5		13,32
Binder	Binder	5 kg	10,75	2,5 kg	5,35	2,5kg	5,38
Setup -of	Abbindenden						
binder	Bindemittel	3,5h	7,53	2 h	4,75	2,5h	6,72
Plastic	Kunststoff-	1440ko				100	
buckles	Schnallen	m	19,35	880kom	11,8	kom	13,44
		8kg/ko					
Carton	Karton	m	70	10 kg/	80,5	8 kg	80
Irrigation							
pipes	Bewässerungsrohr	150m	13,1	150 m	13,1	150m	13,1
Hand							
pruning	Hand Beschneiden	14h	2,15	1 h	2,5	1 h	2,15
Hand	Hand	21	C 45	2.1	C 45		6.45
tillage	Bodenbearbeitung	3h	6,45	3 h	6,45		6,45
set up foil	Folie setzen	9h	19,35	7h	15,05	8h	17,2
		251	4.42	501 /	400.0	30	4.67
Harvest	Ernte	25kg	143	50 kg/h	100,8	kg/h	167
Pruning	Beschneidung	20h	43	15h	32	25h	53
Removal	Entfernen von						
of plants	Pflanzen	3h	6,45	3 h	6,45		6,45
Other	sonstige		07		07	21	07
costs	Aufwendungen		87		87	3h	87
SUM	SUM		<u>534,63</u>	0	460		<u>567,4</u>
Cost of own	Kastan dar						
own machinery	Kosten der Eigenen Machine		125		125		125
Price of			123		125		123
cost			0,85		0,47		0,57
Price -			0,05		0,47		0,57
revenue			1,3		0,7		0,9
levenue			1,5		60x60		0,5
Seedings			80x35 cm		cm		
Jecumps	I	1	55755 CIT	I	CIII	1	

Table21: Costs Investment and operating calculations based on Europe benchmark

		12		
		presadnic		
one foil		а		
		1300	1500	1500
Yield		kg/100m	kg/100	kg/100m
	Ertrag	2	m2	2
REVENUE		1.690,00	1.050,00	1.350,00
COSTS		659,63	585	692,4
PROFIT		1.030,37	465,00	657,60

If we assume that the cost of building a greenhouse is around 3000 € following results are obtained:

	2015	2016	2017	2021	2024
RECEIVABLES	0	4.090,00	4.090,00	4.090,00	4.090,00
Business	0	4.090,00	4.090,00	4.090,00	4.090,00
Other	0	0	0	0	0
EXPENDITURES	3.000,00	1.575,41	1.562,39	1.562,39	1.562,39
Asset increase	3.000,00	0	0	0	0
Increase of net working					
assets	0	13,01992	0	0	0
Cost of production	0	1.562,39	1.562,39	1.562,39	1.562,39
Costs of marketing	0	0	0	0	0
Tax on profit	0	0	0	0	0
	-				
NET RECIVABLES	3.000,00	2.514,59	2.527,61	2.527,61	2.527,61
Cumulative net	-				
receivables	3.000,00	-485,41	2.042,20	12.152,64	19.735,47
	-				
Net present value	3.000,00	2.372,25	2.249,56	1.781,87	1.496,09
Cumulative net	-				
discounted receivables	3.000,00	-627,745	1.621,82	9.416,80	14.179,74
NPV	6,00%	16.268,71			
IRR	83,94%				
MIRR	83,94%				
		2.19			
Years of return	0,00%	years	2017		
Years of return		2.28			
discounted	6,00%	years	2017		

Table 22: Economic Flow: Discounted Cash Flow-Net Present Value

With high costs different cash flow structure is recognized:

	2015	2016	2017	2020	2024
RECEIVABLES	0	4.090,00	4.090,00	4.090,00	4.090,00
Business	0	4.090,00	4.090,00	4.090,00	4.090,00
Other	0	0	0	0	0
EXPENDITURES	10.000,00	1.575,41	1.562,39	1.562,39	1.562,39
Asset increase	10.000,00	0	0	0	0
Increase of net working					
assets	0	13,01992	0	0	0
Cost of production	0	1.562,39	1.562,39	1.562,39	1.562,39
Costs of marketing	0	0	0	0	0
Tax on profit	0	0	0	0	0
NET RECIVABLES	-10.000,00	2.514,59	2.527,61	2.527,61	2.527,61
Cumulative net			-		
receivables	-10.000,00	-7.485,41	4.957,80	2.625,03	12.735,47
Net present value	-10.000,00	2.372,25	2.249,56	1.888,78	1.496,09
Cumulative net			-		
discounted receivables	-10.000,00	-7.627,75	5.378,18	634,9299	7.179,74
NPV	6,00%	12.200,28			
IRR	24,14%				
MIRR	24,14%				
		4.96			
Years of return	0,00%	years	2019		
Years of return		5.66			
discounted	6,00%	years	2020		

Table 23: Economic Cash Flow if Investment in Greenhouse 10.000€

Table 24: Balance Sheet Account 3000 €

	2015	2016	2017	2021	2024
TOTAL ASSET	3.000,00	5.456,95	7.909,56	17.720,00	25.077,83
Short term asset	0	2.531,95	5.059,56	15.170,00	22.752,83
Long term asset	3.000,00	2.925,00	2.850,00	2.550,00	2.325,00
TOTAL LIABILITIES	3.000,00	5.456,95	7.909,56	17.720,00	25.077,83
Short term liabilities	0	4,339972	4,339972	4,339972	4,339972
Stock capital	3.000,00	3.000,00	3.000,00	3.000,00	3.000,00
Reserves	0	0	2.452,61	12.263,05	19.620,88
Profit kept	0	2.452,61	2.452,61	2.452,61	2.452,61
Net worth	3.000,00	5.452,61	7.905,22	17.715,66	25.073,49
Capital / Total liabilities (%)	100	54,97577	37,92879	16,93002	11,96276
Net worth /Total asset (%)	100	99,92047	99,94513	99,97551	99,98269
Short term assets / Short term					
liabilities		583,4023	1.165,80	3.495,41	5.242,62

Table 25: Balance Sheet Account 10.000 €

	2015	2016	2017	2020	2024
TOTAL ASSET	10.000,00	12.281,95	14.559,56	21.392,39	30.502,83
Short term asset		2.531,95	5.059,56	12.642,39	22.752,83
Long term asset	10.000,00	9.750,00	9.500,00	8.750,00	7.750,00
TOTAL LIABILITIES	10.000,00	12.281,95	14.559,56	21.392,39	30.502,83
Short term liabilities	0	4,339972	4,339972	4,339972	4,339972
Stock capital	10.000,00	10.000,00	10.000,00	10.000,00	10.000,00
Reserves			2.277,61	9.110,44	18.220,88
Profit kept		2.277,61	2.277,61	2.277,61	2.277,61
Net worth	10.000,00	12.277,61	14.555,22	21.388,05	30.498,49
Capital / Total liabilities (%)	100	81,4203	68,68339	46,7456	32,78384
Net worth /Total asset (%)	100	99,96466	99,97019	99,97971	99,98577
Short term assets / Short term					
liabilities		583,4023	1.165,80	2.913,01	5.242,62

Table 26: Profit Loss Account 10.000 €

	2016	2017	2018	2021	2025
Revenue from sale	4.090,00	4.090,00	4.090,00	4.090,00	3.040,39
Less variable cost	1.562,39	1.562,39	1.562,39	1.562,39	1.562,39
VARIABLE BORDER	2.527,61	2.527,61	2.527,61	2.527,61	1.478,00
% REVENUE FROM					
SALE	61,799756	61,79976	61,79976	61,79976	48,6121
Less fixed costs	250	250	250	250	250
OPERATIVE BORDER	2.277,61	2.277,61	2.277,61	2.277,61	1.228,00
in % revenue from					
sale	55,687286	55,68729	55,68729	55,68729	40,38946
PROFIT BEFORE TAX	2.277,61	2.277,61	2.277,61	2.277,61	1.228,00

Table 27: Profit Loss Account Account 3.000 €

	2016	2017	2018	2022	2025
Revenue from sale	4.090,00	4.090,00	4.090,00	4.090,00	3.040,39
Less variable cost	1.562,39	1.562,39	1.562,39	1.562,39	1.562,39
VARIABLE BORDER	2.527,61	2.527,61	2.527,61	2.527,61	1.478,00
% REVENUE FROM SALE	61,79976	61,79976	61,79976	61,79976	48,6121
Less fixed costs	75	75	75	75	75
PROFIT BEFORE TAX	2.452,61	2.452,61	2.452,61	2.452,61	1.403,00

Hotel resort of village that is situated in climate favorable protected areas can consider some fruits to growth as part of tourist attraction and offerings. Some investment and costs based on European calculations are presented. Of course they would be much less in Nepal and for some plants growth would be only possible in protected areas.

			INVESTME	NT		REVENUE	
		Number	Price	Investment		Price	
Deutsch	Engl.	of trees	per tree	costs	Yield kg	kg	Revenue
Apfel	apple	2700	4,79	12.933,00	40.000,00	0,27	10.800,00
Birne	pear	2000	4,79	9.580,00	20.000,00	0,73	14.600,00
Pfirsich	peach	740	5,48	4.055,20	20.000,00	1,03	20.600,00
Mandarine	tangerine	1125	10,96	12.330,00	25.000,00	0,41	10.250,00
Nussbaum	walnut	170	6,16	1.047,20	4.000,00	1,64	6.560,00
Haselnuss	hazelnut	600	7	4.200,00	2.000,00	1,92	3.840,00
Brombeere	blackberry	2800	16	44.800,00	15.000,00	1,23	18.450,00
Himbeere	raspberry	2800	16	44.800,00	12.000,00	1,64	19.680,00
Aprikose	apricot	400	5,48	2.192,00	10.000,00	1,1	11.000,00
Kirsche	cherry	1250	5,48	6.850,00	10.000,00	1,1	11.000,00
Kirsche	cherry	500	8,22	4.110,00	10.000,00	0,69	6.900,00
Pflaume	plum	800	4,79	3.832,00	15.000,00	0,82	12.300,00
Blaubeere	blueberry	3000	16,44	49.320,00	15.000,00	8,22	123.300,00
Aronia	aronia	2000	13,77	27.540,00	8.000,00	13,7	109.600,00
Erdbeere	strawberry	40000	0,25	10.000,00	24.200,00	1,8	43.560,00

Table 28: Investment Fruits – Euro Standards

Table 29: Cost of growing

	Mineral	Plant						
	Organic	protection					Other	
Eng.	fertilizer	product	Boxes	Binder	Harvest	Pruning	costs	SUM1
Deut	Mineral						sonstige	
sch.	organisch Dungen	Pflanzensch utzmittel	Kiste	Binder	Ernte	Beschnei dung	Aufwendu ngen	Summe1
			2.006,00					
apple	365,00	1.662,00	2.006,00	134,00	1.919,00	907,00	134,00	7.127,00
pear	182,00	1.365,00	1.478,00	134,00	1.343,00	1.007, 00	134,00	5.643,00
peac	102,00	1.505,00	1.470,00	134,00	1.343,00	00	134,00	3.043,00
h	127,00	878,00	2.150,00	67,00	1.679,00	766,00	134,00	5.801,00
tange	127,00	070,00	2.130,00	07,00	1.075,00	700,00	134,00	3.001,00
rine	470,00	430,00	1.079,00	1.399,00	806,00	262,00	201,00	4.647,00
waln	,	,	,		,	,	,	,
ut	54,00	430,00	64,00	33,00	671,00	201,00	67,00	1.520,00
hazel								
nut	182,00	430,00	13,00		767,00	241,00	134,00	1.767,00
black								
berry	255,00	1.143,00	1.108,00		4.031,00	483,00	134,00	7.154,00
raspb								
erry	255,00	1.143,00	887,00		4.031,00	483,00	201,00	7.000,00
apric								
ot	164,00	702,00	739,00		767,00	268,00	268,00	2.908,00
cherr								
У	200,00	702,00	1.075,00		1.343,00	503,00	268,00	4.091,00
cherr								
У	420,00	531,00			767,00	403,00	268,00	2.389,00
plum	127,00	481,00	806,00	67,00	671,00	604,00	67,00	2.823,00
blueb					12.594,0			17.168,0
erry	347,00	161,00	2.925,00		0	940,00	201,00	0
aroni								
а	310,00	134,00	1.560,00		4.479,00	940,00	268,00	7.691,00
straw	6.600,0							18.268,0
berry	0	2.625,00	3.902,00		4.336,00	537,00	268,00	0

+costs of own mechanisation

	2015	2016	2017	2018	2024
RECEIVABLES		425.322,60	425.322,60	425.322,60	425.322,60
Business		425.322,60	425.322,60	425.322,60	425.322,60
EXPENDITURES	239.795,40	104.122,47	103.761,17	103.757,00	103.757,00
Asset					
increase	239.795,40				
Increase of net					
working assets		860,465733	4,172114	0,003819	
Cost of					
production		103.262,00	103.757,00	103.757,00	103.757,00
NET					
RECIVABLES	-239.795,40	321.200,13	321.561,43	321.565,60	321.565,60
Cumulative					
net					
receivables	-239.795,40	81.404,73	402.966,16	724.531,76	2.653.925,36
Net present					
value	-239.795,40	303.018,99	286.188,53	269.992,68	190.334,18
Cumulative					
net discounted					
receivables	-239.795,40	63.223,59	349.412,12	619.404,80	1.947.046,36
NPV	6,00%	2.260.990,22			
IRR	134,01%				
MIRR	134,01%				
Years of return	0,00%	1.75 years	2016		
Years of return					
discounted	6,00%	1.79 years	2016		

Table 30 : Economic Cash Flow - NPV

Table 31: Profit Loss Account –Euro

	2016	2017	2021	2024
Revenue from sale	425.322,60	425.322,60	425.322,60	425.322,60
Less variable cost	96.661,00	96.661,00	96.661,00	96.661,00
VARIABLE BORDER	328.661,60	328.661,60	328.661,60	328.661,60
% REVENUE FROM				
SALE	77,273486	77,273486	77,273486	77,273486
Less fixed costs	6.601,00	7.096,00	7.096,00	7.096,00
OPERATIVE BORDER	322.060,60	321.565,60	321.565,60	321.565,60
in % revenue from				
sale	75,721488	75,605105	75,605105	75,605105
PROFIT BEFORE TAX	322.060,60	321.565,60	321.565,60	321.565,60

Table 32 : Balance Sheet Account

	2015	2016	2021	2024
TOTAL ASSET	240.600,00	562.947,49	2.170.776,81	3.135.473,61
Short term asset	804,6	323.152,09	1.930.981,41	2.895.678,21
Long term asset	239.795,40	239.795,40	239.795,40	239.795,40
UKUPNA PASIVA	240.600,00	562.947,49	2.170.776,81	3.135.473,61
Short term liabilities		286,889823	288,213889	288,213889
Stock capital	240.600,00	240.600,00	240.600,00	240.600,00
Reserves			1.608.323,00	2.573.019,80
Profit kept		322.060,60	321.565,60	321.565,60
Net worth	240.600,00	562.660,60	2.170.488,60	3.135.185,40

For hotel is important to have domestic offering so certain type of Agreement with agricultural producers can be of benefits.

FARMING HUSBANDRY

Engl.	Deutsch.	kg/ha	EUR/kg	Revenue EUR/ ha	Profit Eur/ ha	Price profit EUR / kg
wheat	weizen	5.500,00	0,21	1.145,21	239,21	0,04
barley	gersten	5.500,00	0,23	1.280,82	489,82	0,09
rye	rye	4.500,00	0,23	1.047,95	372,95	0,08
mais		8.000,00	0,19	1.545,21	424,95	0,09
ryps		3.500,00	0,45	1.591,78	447,21	0,06
sunflower	sonnenblumen	3.000,00	0,37	1.097,26	637,78	0,18
soy		3.000,00	0,37	1.097,26	302,26	0,10
sugar beat	zuckarrube	50.000,00	0,05	2.739,73	509,26	0,17
potato	kartoffeln	35.000,00	0,23	8.150,68	1.329,73	0,03

 Table 33 : Yield ,Price per kg; revenue- Potential for Nepal cost effectiveness

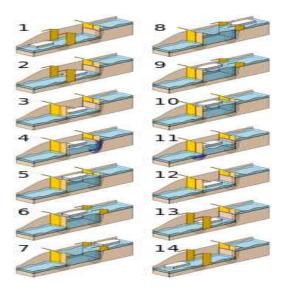
Table 34: Seed Investment and costs to growth EUR/ha without machinery

Engl.	Seed	Fertilizer	Org fertil	Plant protect	Other cost	Sum1 EUR/ha
wheat	137,00	351,00	201,00	156,00	61,00	906,00
barley	67,00	398,00	201,00	125,00		791,00
rye	69,00	259,00	201,00	146,00		675,00
mais	119,00	463,00	201,00	138,00	177,00	1.098,00
ryps	66,00	402,00	201,00	183,00	102,00	954,00
sunflower	73,00	240,00	201,00	202,00	79,00	795,00
soy	66,00	225,00	201,00	96,00		588,00
sugar beat	275,00	525,00	201,00	409,00		1.410,00
potato	2.068,00	410,00	403,00	530,00		3.411,00
tobacco	159,00	446,00		715,00		1.320,00
chamomile	40,00	222,00		152,00		414,00

3.3. Lift, Rope System and Water potentials

Rope Lift system, Water Management

The third project or projects are naturally connected to infrastructure and energy while this can be lucrative and secure investment to Government and population as whole. Possibilities of all population to have a share by birth in profit share are: hydro production, water storage and management and different kinds of rope systems, lifts at ski resorts or simply rope system for goods transport etc.


All these projects need careful planning and financing in line with long term revenue potentials and opportunities not just for individual investors but population as whole making its building everyone's gain. Besides financing costs and opportunities careful planning need to be undertaken in respect of environmental impacts. We are all aware of rising number of flooding in Pakistan, India and Bangladesh, severe weather change, periods of draughts and rain instability. Each infrastructure project need careful planning firstly in that area and then profit calculation.

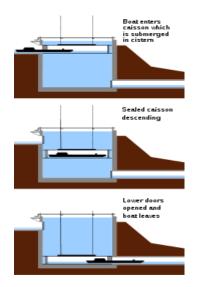

	Positive	Negative
Financing	Large number of population can be part of project	Only rich investors involved in that way profit is taken and loss from environmental danger burdens population
Environment	Best technology used, best place can further improve progress in manufacturing, housing, industry	Can bring additional dangers noise, flooding etc. if not properly made
Economy	For each project small study that incorporates booth Finance and Environment; Small scale projects allowed and help by government subsidies	If studies and projects are not done in best interest of nature and economy long run negative impact can occur

Table 35: Hydro Projects

Table 36: Other Water Projects

	Positive	Negative
Storage of water	Storage facilities need to be made in order to save and have water in period of draught, and for controlled irrigation purposes- it can be made in common achievements with neighboring states	Make facilities in areas that are not suitable for that activity, costs are largely overvalued, not in long term best interest of local or regional population, irrigation is not made, water management and cooperation is not clearly explained and made etc.
Transport with water	Water can be managed by different transport possibilities Large goods can be moved from one spot to another with low costs, population from rural areas benefits with selling the goods in this way,	Some river beds overrun by transport, possible pollution if ships are run with oil, river beds can be additionally polluted and some rare species put in danger etc.
Flooding prevention	System of measurement and control of water , system of information, system of risk prevention and help etc.	Lack of system, lack of water management can further endanger neighborhood countries etc.

Picture c: Source Wikipedia .org

Rope system has been used more than 2000 years ago and comes from Asian rugged countries like China, India and Japan. Economically advanced countries in western world pushed this system to high lux us goods with application mostly done for skiing resorts. These discrepancies between costs and potentials should not be the obstacle for Nepalese to consider this kind of transport either for tourist, passengers in high hills or for good movement. Rope system is used for crossing ravines, rivers, river gorges, transferring themselves by hand over cliff etc. for long time in Asia. Only in 1908 when DC motor was implemented into system in Grindlewald Switzerland this system realize some new potentials that can be explored further.

For Nepal construction was made in late 1924 linking Halchowk Lainhour to carry stones, than in 1927 between Dhorsing and Matatirha and in 1964 to transport cement Hetauda to Katmandu. In 2000 Government constructed several ropeways for hydropower stations.

This kind of transport is especially suited – if considered carefully, and done with innovative but solid constructional solution -for difficult terrain, unstable mountains regions, where some places are hard to get with roads, to put a goods to markets - where is dangerous to go with planes or there are no lines, in places where number of accidents occurs etc.

Different types of rope system can be building: from gravity ropeway to life for skiing resorts. Gravity ropeway have many positive economic effects such as: cost effectiveness, short route, energy efficiency, environmental friendly, simple technology, low value of maintenance costs, low transport costs, community involvement etc.

For ropes and lift system is of primary important security, construction solidity, good material implemented at high efficiency low costs values, and possibilities to be near inhabited placed where potential for tourists usage, good transport, other commercial opportunities can be made in one system.

If a system costs 8 mil Euro, with 5% discount rate (strong Government support and community best interest to further developed with that project), 30 years life span and usage for tourist (180 days 500 tourist tickets per $10 \in \text{ticket/365}$ days x 273 tourist tickets and goods transport 5 times a day 365 days x5times a day or 5 transport possibilities x100 \in) a positive NPV value can exist. Of course rising number of tourists, extra purpose, higher selling price for goods can further contribute to the project likeness.

	work 2015	2016	2017	2018	2030
RECEIVABLES		1.000.500,00	1.182.500,00	1.182.500,00	1.182.500,00
Business		1.000.500,00	1.182.500,00	1.182.500,00	1.182.500,00
EXPENDITURES	8.000.000,00	264.799,15	344.833,64	344.250,54	434.250,00
Asset increase	8.000.000,00				
Increase of net					
working assets		1.749,15	583,641975	0,540123	
Cost of					
production		210.000,00	280.000,00	280.000,00	380.000,00
Tax on profit		53.050,00	64.250,00	64.250,00	54.250,00
	-				
NET RECIVABLES	8.000.000,00	735.700,85	837.666,36	838.249,46	748.250,00
Cumulative net	-		-	-	
receivables	8.000.000,00	-7.264.299,15	6.426.632,79	5.588.383,33	3.569.783,33
	-				
Net present value	8.000.000,00	700.667,48	759.788,08	724.111,40	359.921,04
Cumulative net					
discounted	-		-	-	
receivables	8.000.000,00	-7.299.332,52	6.539.544,45	5.815.433,04	57.414,50
NPV	5,00%	3.941.417,56			
IRR	8,98%				
MIRR	8,98%				
Years of return	0,00%	11.23 years	2026		
Years of return					
discounted	5,00%	15.84 years	2030		

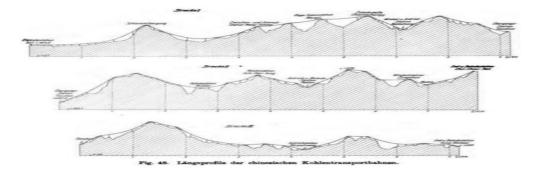

Table 37 : Economic Flow Net presents Value

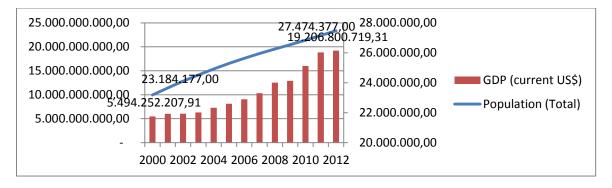
Table 38: Balance Sheet Account

	2015	2016	2024	2044
TOTAL ASSET	8.100.000,00	8.578.034,18	12.844.505,56	23.014.505,56
Short term asset	100.000,00	838.034,18	7.184.505,56	22.104.505,56
Long term asset	8.000.000,00	7.740.000,00	5.660.000,00	910.000,00
TOTAL LIABILITIES	8.100.000,00	8.578.034,18	12.844.505,56	23.014.505,56
Short term liabilities		584,182099	1.055,56	1.055,56
Stock capital	8.100.000,00	8.100.000,00	8.100.000,00	8.100.000,00
Reserves			4.255.200,00	14.380.200,00
Profit kept		477.450,00	488.250,00	533.250,00
Net value	8.100.000,00	8.577.450,00	12.843.450,00	23.013.450,00
Capital / Total				
liabilities (%)	100	94,427229	63,061984	35,195195
Net worth /Total				
asset (%)	100	99,99319	99,991782	99,995414
Short term assets /				
Short term liabilities		1.434,54	6.806,37	20.941,11

Table 39: Profit Loss Account

	2016	2017	2024	2044
Revenue from sale	1.000.500,00	1.182.500,00	1.182.500,00	1.182.500,00
Less variable cost	210.000,00	280.000,00	380.000,00	380.000,00
VARIABLE BORDER	790.500,00	902.500,00	802.500,00	802.500,00
% REVENUE FROM SALE	79,010495	76,321353	67,864693	67,864693
Less fixed costs	260.000,00	260.000,00	260.000,00	210.000,00
OPERATIVE BORDER	530.500,00	642.500,00	542.500,00	592.500,00
in % revenue from sale	53,023488	54,334038	45,877378	50,105708
NET PROFIT FROM SALE	530.500,00	642.500,00	542.500,00	592.500,00
PROFIT BEFORE TAX	530.500,00	642.500,00	542.500,00	592.500,00

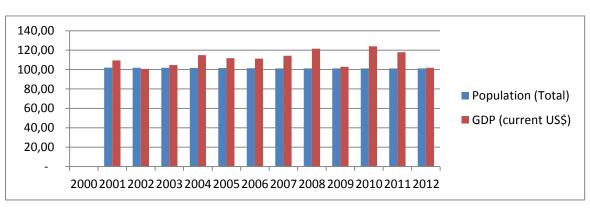
Picture d: Rope system


Picture f: Lift

Different possibilities, shapes, end usage aims can be achieved with air lift system. Although creative thinking can form different shapes security still lies in the first place, than environmental conditions (wind, rain, snow) influence. It is not a bad idea to use wind or sun as energy resource in that respect but more security would come if small fishing boat similar to lotus shape(air bags, fishing nets, floating parts)would be manufactured for sea purposes (for low income population for example Bangladesh) than to float in air.

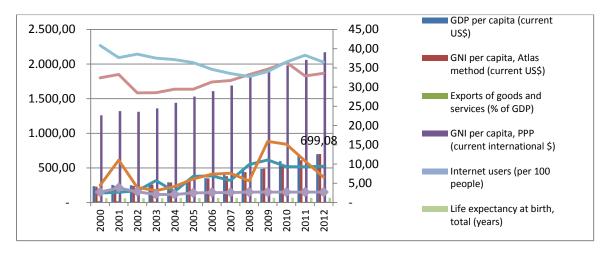
4. STATISTICAL ANALYSIS

4.1. Statistical analysis region


Population in Nepal rose from 23 mil in 2000 to 27, 5 mil in 21012 what presents 17% increase. In that respect GDP increase of 3,5 times over 2000 that is from 5,4 bill USD to 19,2 bill USD is significant achievements and trend that have a potentials to grow further if right political and economic measures are put in place.

Nepal – GDP population

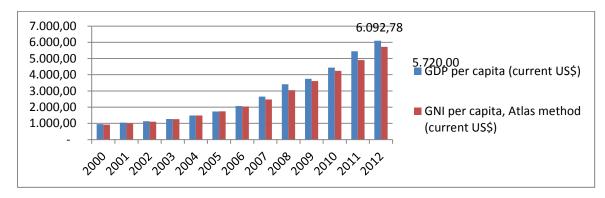
Population policy can be supported by measures that help young population, prevent growing immigration, help with housing facilities and open a new and stimulus working places. Population policy does not mean only supporting the working population but offering social care to elderlies and having the right infrastructure such as kindergarten places as measures that put the population policy in place. If this task is done than slowing GDP growth 2010-2012 can reverse trend and with new potentials turn back on growing path.



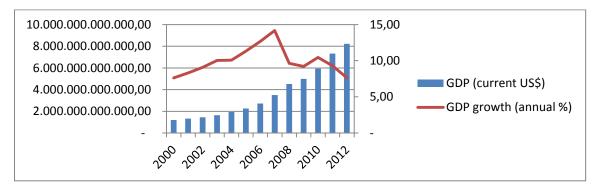
Nepal 2000=100 Index Population GDP

Model need to fit various variables that each has a short or long run implication on further economic potentials. With GDP capita slowing in 2012 Gini declined, export and import shrank to grow again, inflation somewhat lessened although Internet users grew in number. With GDP growth decline

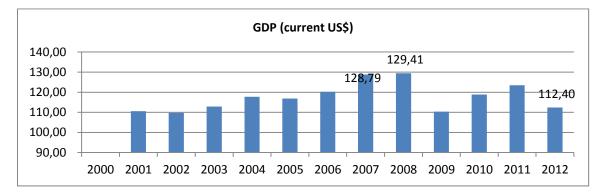
firstly after great economic crises in 2008 when reached more than 6% it decline to 4%, and further lost the strength in 2011 with only 3, 4 % growth. In that period all main variables felt except agricultural share of total GDP.

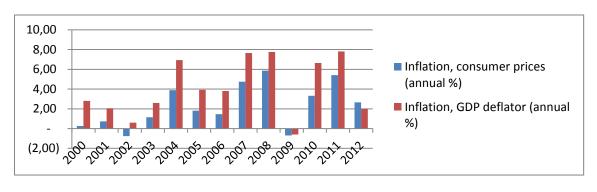


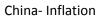
There is a huge difference between GDP capita in China that reached the 6092 USD /capita and Nepal around 700 \$/ capita what presents 8, 7 times more income in this large neighboring country. This can also presents the opportunity in tourist sector and dangers and problems when considering industrial or manufacturing production when competing with such a large economy.



Picture 21


Additional burden and explanation for problems in Nepalese economy can be explained by enormous competition by neighboring countries that are well established on the world market as producers of many different products. From the picture that follows is visible that China's GDP growth slows down although in absolute terms it reaches highest level ever of 8.229 bills USD. Growth decline from amazing 14 % 2007 to only 7, 6% in 2012 is partly a consequence of global economic slowdown.

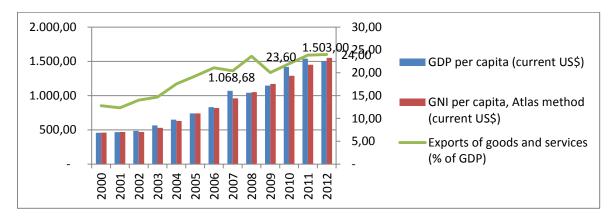

This situation is more vividly presented on picture that follows and where index shows sharp decline in 2009, increase and again period of slow down after 2012 in one of the fastest economies in the world.

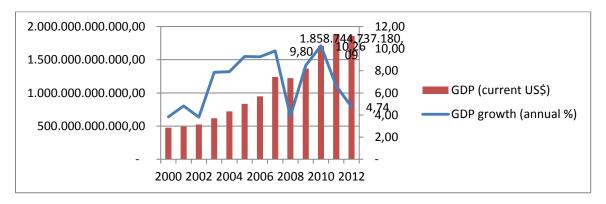


China GDP current USD 2000=100 Index

Picture 23

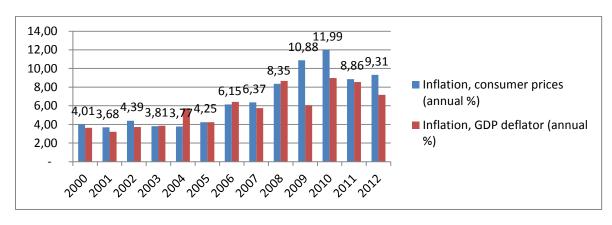
For China it is visible from the picture itself that strong relation between GDP growth and inflation exist where with prices decrease domestic consumption is supported.



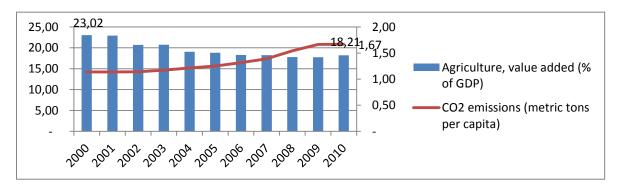

Another important economy that is in Nepal neighborhood is India. It also felt world economic crises of 2008 where export of goods and services fell from 23, 6% (of GDP) to 20, and 05 % in 2009 and then slowly continued with rising path to have 24% share of GDP. This is significantly more than for Nepal who only manages to have its export of goods and services as 10 % of GDP. India has a four time less GDP income than China but still two times more GDP/capita than Nepal. In that respect it is more interesting economy to potential investors than China and Nepal while it have a still low cost of work and is open to sea routs while Nepal is landlocked country. This measure shows additional problems for Nepal to attract investment in industry and manufacturing and some creative and new strategies need to be implemented when having such a great economic powers by its side.

India- GDP (per capita current USD), GNI per capita (Atlas current USD), Exports of goods and services (% GDP)

Picture 25

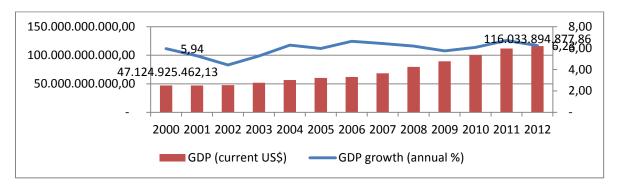

Having said that it is good to know that much more competing and rising economies such as India have marked strong GDP growth decline from 10 % in 2010 to 4, 7 in 2012 what makes them vulnerable on the world market. This decline however need to unlock potentials of regional markets and try to bust domestic demand by whole region what is task of political and economic reasoning in region.

India –GDP (current USD), GDP growth (annual %)

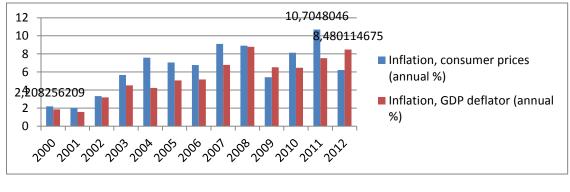

India unlike its great competitor China did not create an opportunity of domestic demand with price decline in 2009 what explains much worse performance in later GDP growth and potentials. It teaches us that export oriented economies need to develop more resilient structure of domestic management of economy.

India –Inflation

Picture 27


Addition caution for the whole region need to be oriented toward harmful emissions that are a result of agriculture and industrial production. Countries with lower level of GDP /capital are less likely to have a good and secure defense toward potential weather dangers that can be related with environmental pollution.

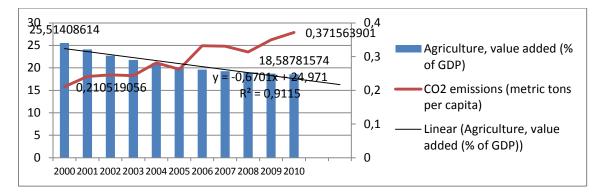
India Agricultural Value CO₂ emissions


Nepal has also the third neighbor-Bangladesh – that uses its sea position, has a low cost of production and in this way presents potential economic power interesting for investment. However this country has a stable GDP growth of around 6% and absolute GDP amount grew much less than Nepalese only 2, 4 times from 47 bill USD to 116 bill USD.

Bangladesh -GDP growth Current USD

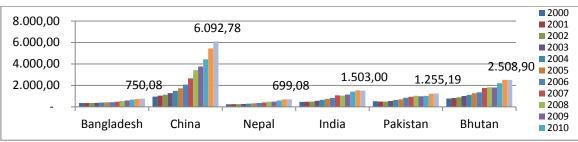
Picture 29

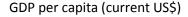
Bangladesh tried to lessen the crises of 2008 with inflation slowdown in 2009 as China but this was to small effort so inflation again knocked with full strength in periods that follows.

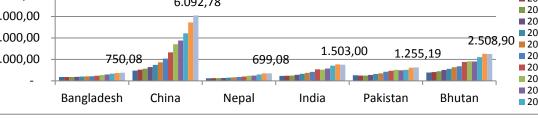


Bangladesh Inflation

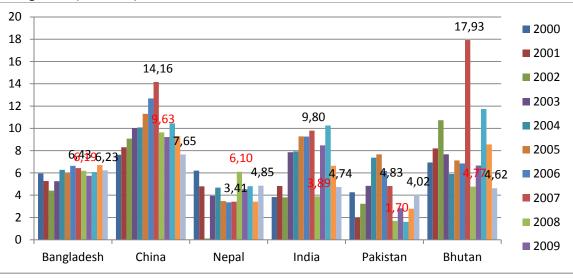
Beside of too slow domestic development Bangladesh can face problems of agriculture decline, CO₂ rise and having its position on sea (monsoon problems,) delta of river, under high hills of Himalaya the country is placed in extremely vulnerable environmental position.

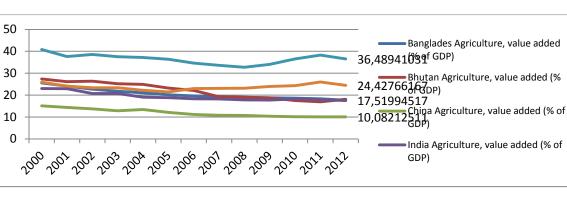

Bangladesh - Agricultural Value CO2 emissions



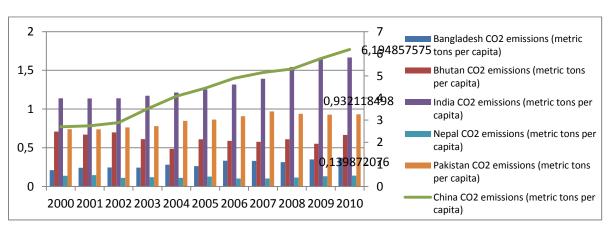

Picture 31

4.2. Region statistical analysis -comparison

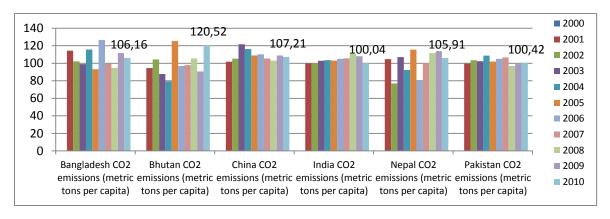

When comparing together all regional countries it is visible that China managed to boost its effort and strongly pushed toward GDP growth in period from 2000 -2012. Strong production, human capital and positioning on the world markets put strong advantage of this economy. But 2008 crises had warned China to develop domestic demand what is partly successfully done. The second thing that is partly successful for the richest economy in region is regional development of all neighbors. It doesn't mean helping the competition but growing together in having the stable and prosperous South East Asia Community. In that respect Nepal can offer regional tourist potentials and smaller specialized manufacturing facilities that can be over Bangladesh export to region and world.



GDP growth (annual %)

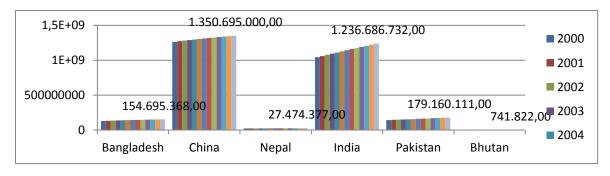

As seen in picture above GDP growth decreased significantly after 2008 what is clear mark for country to boost domestic demand and develop regionally more vivid and aggressive growth cooperation? Only in this way further GDP will continue undisturbed from the world cycles that can be influenced by these economies. While this is largely still poor region agriculture plays significant role in shaping GDP picture. Unfortunately this is not recognized enough so agriculture has declining trend almost in all countries. It can be further developed by government subsidies, promoting healthy food production, by informative activities, more supportive loan policy, carefully observation and strong decline/stop of child labor, organizing land that is supportive to all unemployed population etc.

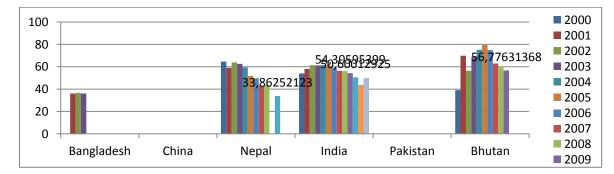
Strong industrial production in China led to rise in CO_2 emissions in absolute and relative terms. This negative consequence of growth can be felt in the region where more vulnerable countries such as Bangladesh and Nepal can pay a high price. This incorporation of negative externalities needs to be recognized by China and allocation of resources to these economies made (in form of manufacturing potentials, payment, or some other contribution acceptable to vulnerable economies).



CO₂ emissions

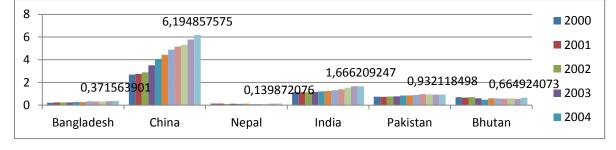
CO₂ index is clearly important so it would be valuable that is roughly approximated by emission that arose due to industry, agriculture, transport and housing potentials. Only in that respect wright measures can be made and burdens more justly divided.


CO₂ emissions index

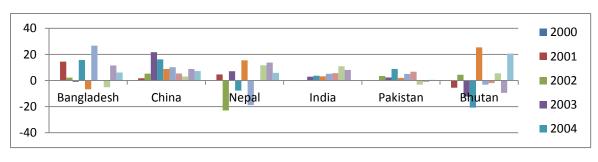

From the pictures 35, 36 it is clear that emissions are by far the largest in China, than India in absolute terms. Type of emission, source and quality solution to this problem can be one of activities that Nepal can engage into.

Population

Too high debt can mean the cycles of negative relationships which can further deteriorate potentials to growth. This is why debt policy need to be carefully considered and other mean such as supporting the manufacturing, industrial or agricultural development need to be made with tax, funds investor potentials possibilities.

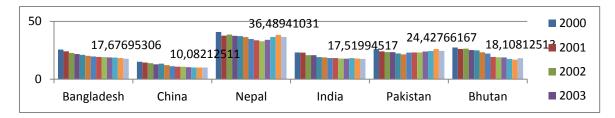


Central Government Debt, Total (% of GDP)

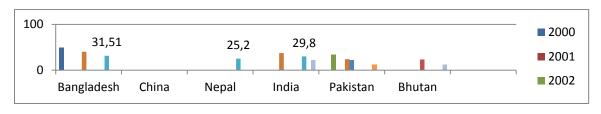

Picture 37

Although Nepal has by far the lowest CO₂ emission per capital it still can burden consequences of neighbor's standard (respect to industry transport housing heating etc.). Country can face dangers of strong weather change, decline in agricultural production what is one of the main source of GDP and this damage further slow down its growth potentials. Right measurement, regional talks and willingness to take into account negative consequences of growth to others in region can be one of many tasks region and Nepal are facing. Software development, instruments manufactured, fees shared and talks on regular bases in that respect need to be part of normal and regular business activity in region.

CO₂ metric ton Per Capita

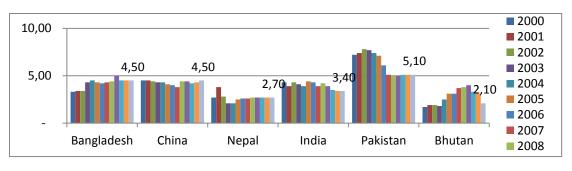


CO₂ per Capital Index

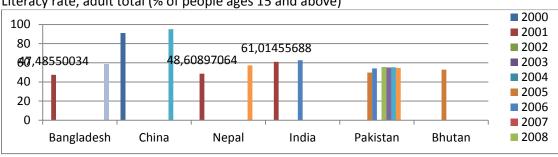

Nepal's agricultural activities can be reduced significantly if level of harmful emissions continues in region with that phase. Also shows some potential of clean production, specialized medical goods and services if proper economic measures are taken.

Agriculture, Value Added (% of GDP)

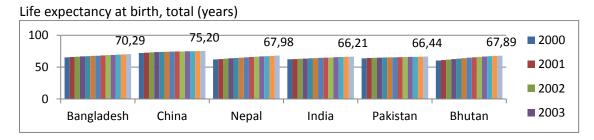
Picture 40


Facing high rate of poverty index as large number of population struggles with basics South East Asia can develop more economic and regional cooperation, helping each other with providing manufacturing, transport opportunities and develop model that is flexible to world crises.

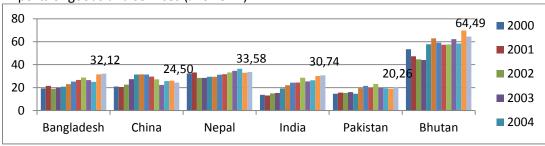
Poverty headcount ratio at national poverty line (% of population)


Strong world economic growth contributed to employment potentials in this region but if crises continue some negative consequences can be felt in terms of employment. It is good to carefully watch on long term and short term unemployment structure and dangers.

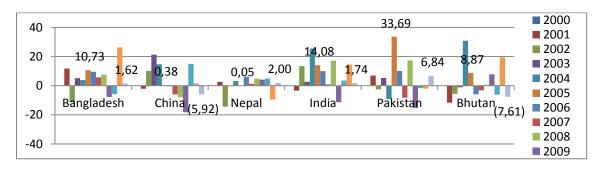
Unemployment, total (% of total labor force) (modeled ILO estimate)


The good start is education and right job adaptation to crises: large government agricultural facilities that can accommodates workers, better education providing new types of job occupation, more quality service etc.

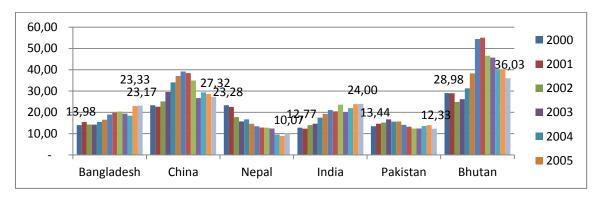
Literacy rate, adult total (% of people ages 15 and above)


One of potentials is care for elderly population and right social service to these age groups.

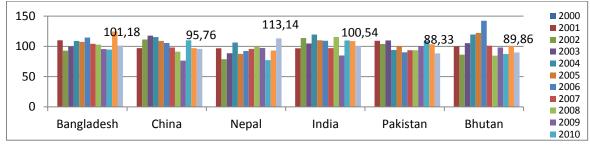
Picture 43


Import is strongly correlated to GDP growth and potentials. It can be managed with regional import of goods and services and some job sharing done in that respect reducing import costs.

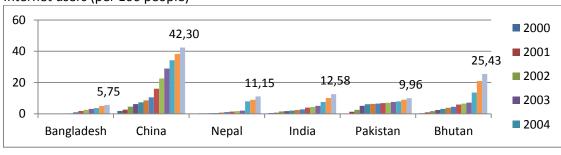
Imports of goods and services (% of GDP)

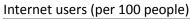

Imports of goods and services (% of GDP) index 2000=100

Picture 46

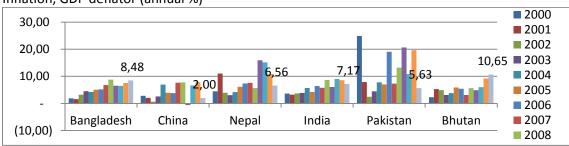

It was to be expected that export potential will slow down after 2008, but a problem continue to appear for longer period of time in Nepal economy. Stability, promotion, building new infrastructure as well as regional cooperation can reverse this trend. Also it would be good for high income economies who contribute significantly with CO₂ emissions to compensate the environmental pollution with some kind of economic support - tourist arrival, small manufacturing non pollution possibilities, market for agricultural goods and medicine etc.

Exports of goods and services (% of GDP)

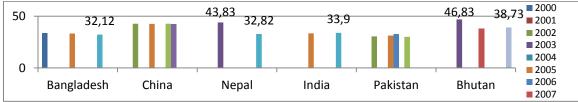


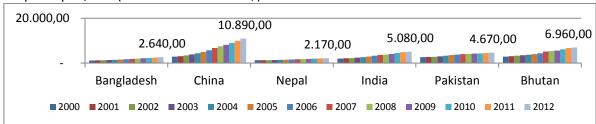

Exports of goods and services (% of GDP) Index 2000=100


```
Picture 48
```


Although rising number of Internet users is growing in region there is a still large unexplored potential of this resource. Internet can be used for communion, promotion, obtaining knowledge and as source of new business potentials.

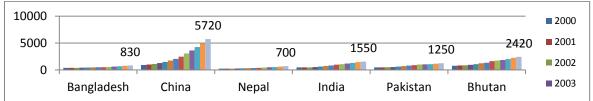
How to manage prices and domestic demand is the lesson of region that can be copied from China. More flexible approach in economic decision, some new innovative solutions, quick reaction in times of market disturbances and more cooperative game approach to regional economic base is the way out of future negative economic cycle.


40 2000 2001 13,65,69 11,0845 10,8831 <u>10,9</u>2 4,36 20 2002 5,40,22 2,65 2003 2004 0 2005 Pakistan Bhutan China India Bangladesh Nepal 2006 -20 (0,70) 2007 2008 -40 2009

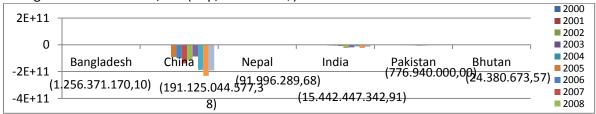


Having tackled some new model opportunities in paper human welfare GINI index is having a special significance. Although it rises with GDP, some additional measures as GINI in housing facility potentials, quality, future plans, and equal chances for school, medical care can be observed etc. Further rise in inequality in region cannot bring long term good news even for the richest in region while it reduces potential market in the case of future world market instabilities. Also what is to note that direct foreign investment can induce growth, but real quality grows comes from inside and cooperation in region and that is the task that South East Asia will probably pursue more vividly in the future.

GINI index

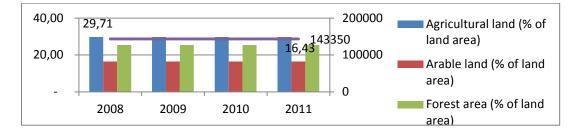

Picture 52

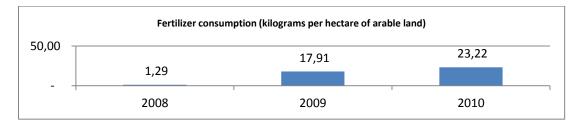
GNI per capita, PPP (current international \$)



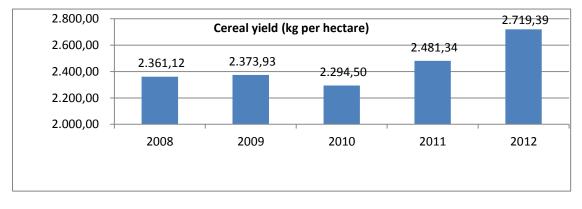
GNI per capita, Atlas method (current US\$)

Picture 54

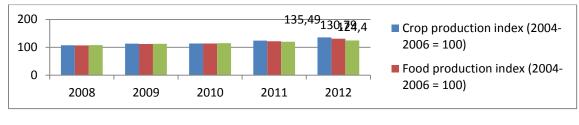

Foreign direct investment, net (Bop, current US\$)


Picture 55

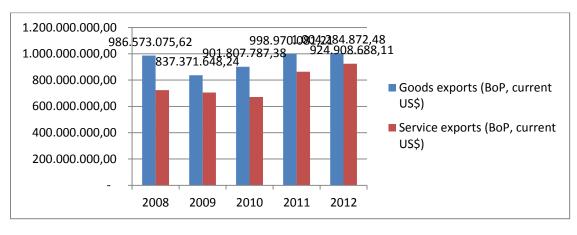
4.3. Nepal statistics

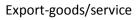

High mountain region means touristic beauty but limited space for agricultural production. Still Nepal is using its natural resources to obtain the maximum from domestic production, have increased fertilizer consumption and yield per hectare that is half of those on the most fertile lands in the world. Yield can be improved with different ways of irrigation, optimal plant protection and fertilization.

Picture 56

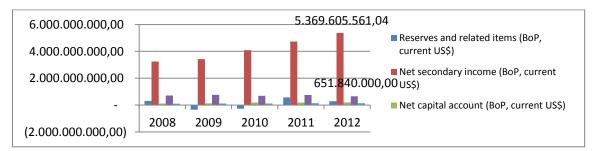


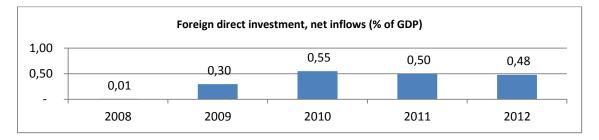
Picture 58


Agriculture production proved to be important source of income and area that should be further cherished and production maximized with as smallest number of negative environmental implications as possible.

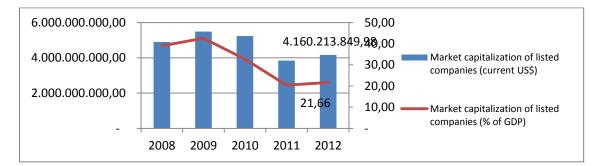

Production Agriculture -Index

Although service export declined rapidly in the last years with 2012 showing some marks of recover it is to be expected more aggressive policy toward this area of income in respect of promotion, possibilities and variety of opportunity that country can recognize in its position and capabilities.

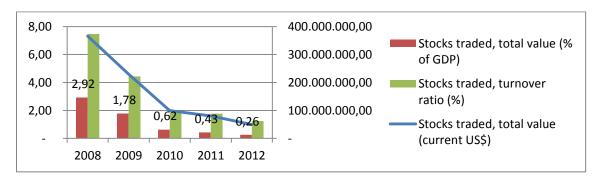



Rising secondary impact shows potentials but and low GDP/capita structure. More aggressive approach toward capital formation that brings high income tourist, reach export markets with high quality goods are to be explored further.

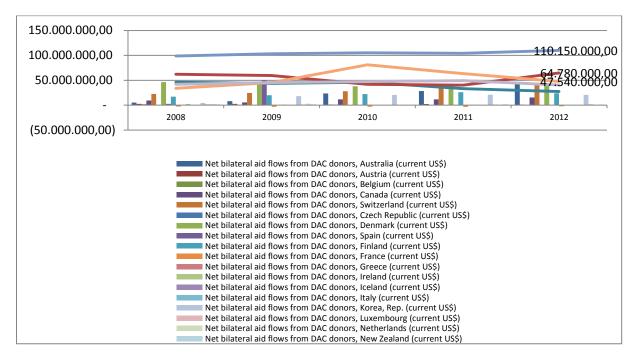
Reserves, Net secondary income, Net capital account (Bop current US\$)

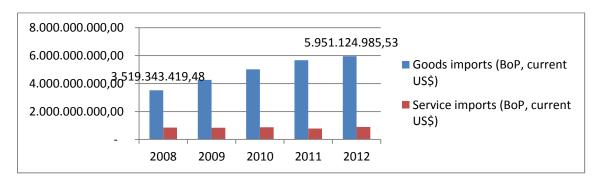

Picture 61

Although foreign investment should not be the only measure that grows, relay to, its slowdown could point to some government inefficiency, rigidities in sectors that need impetuous and not further problems, to high taxation policy in times when is not appropriate etc.

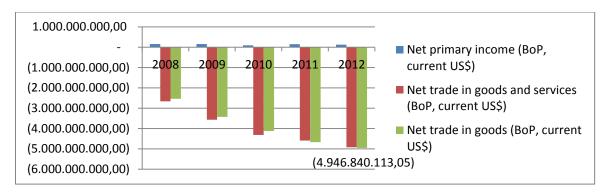


Declining market capitalization can point toward weakness in industrial manufacturing sector, too high taxes, too low efficiency, smaller than possible export opportunities. Some boost can be made by different fund structure and possibilities.

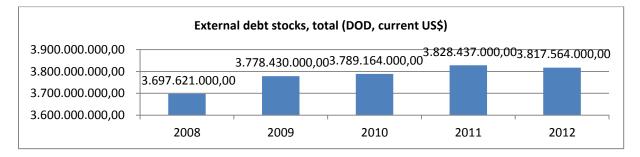



Picture 64

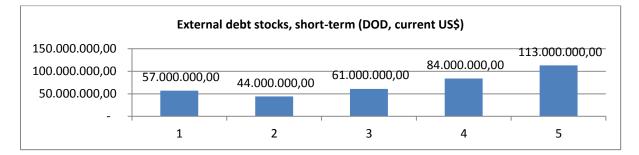
Nepal is still dependent upon donor help. Large amount comes from UK, Germany, Australia and USA. Although it seems as help some arrangements upon investment tourist arrivals etc. That could further boost economy are better to achieve. Donor help means dependency in its worst case.

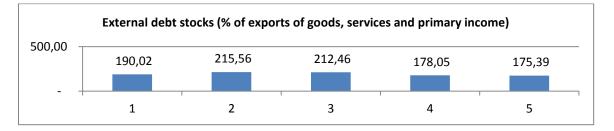

Picture 65

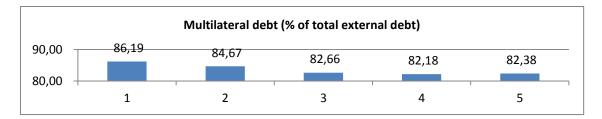
In addition to declining export another bad news in Nepal economy comes from strong rise in good import. Service import would mean potential for transport facilities but this lingers at the same level for the last five years that are observed.

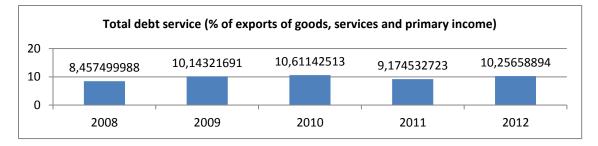

Picture 66

With these negative inputs it is to be expected negative results in net trade in goods whose rise almost double.

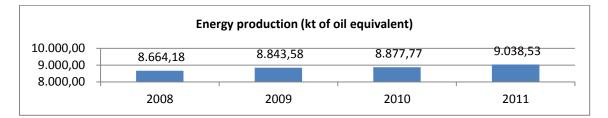



Further to point is external debt level that can be reduced by more aggressive export approach manufacturing specialized products, software innovative potentials and greater tourist arrival.

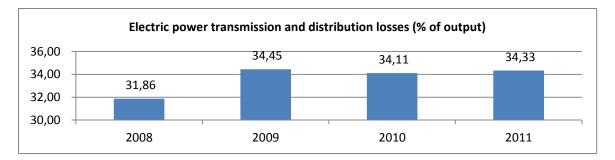

Picture 68

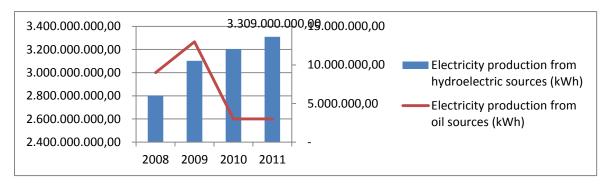

Picture 69

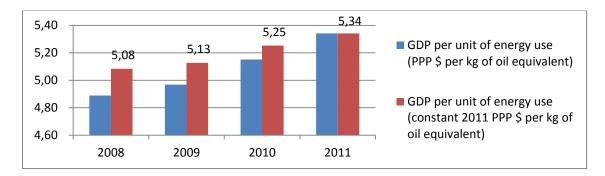
Picture 70

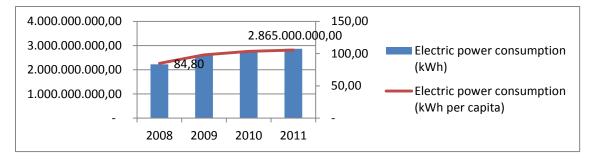


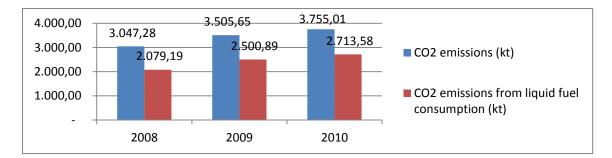


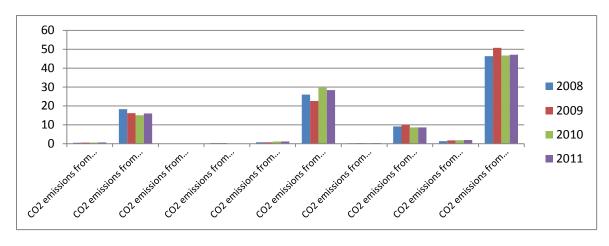

Potentials in water management, production of hydroelectricity and export to China India, Pakistan can further boost economy. There is a potential to attract foreign investors but should keep in mind that ownership can to be transferred to fund that is owned by population and foreign investor share is better to be kept under 25 %.

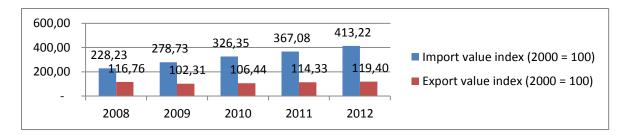


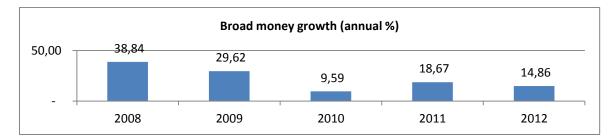

Picture 74

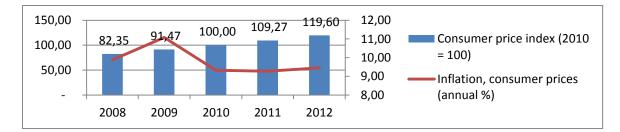


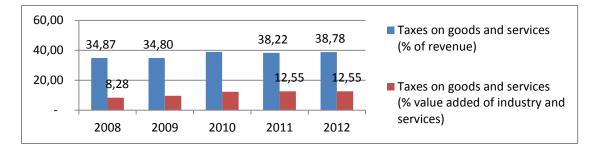


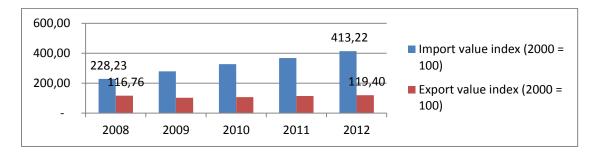




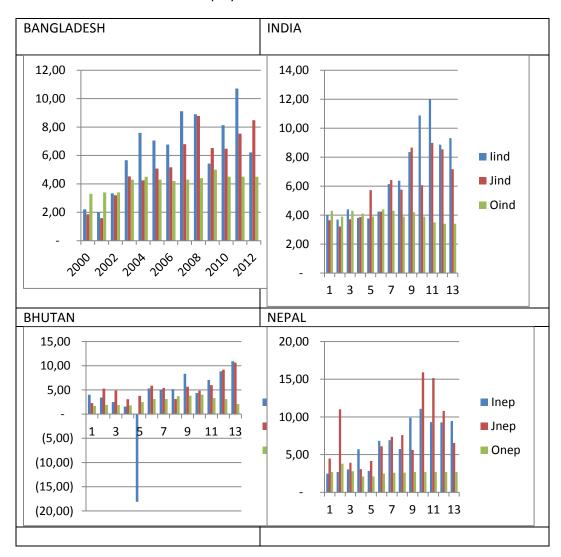



Picture 80

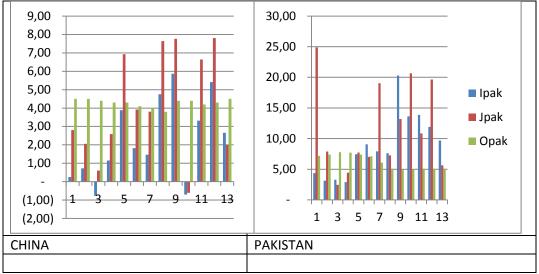

Picture 81


Picture 82

Picture 83



Picture 85


4.4. Analysis

After all basic statistical data are presented in the form of graphs relation between main variables is explored further.

The first relationship is between inflation and unemployment (*where O is unemployment and I inflation consumer prices (% annual) J inflation GDP deflator - annual %*).

Relation inflation unemployment:

Picture 86

Country markings are : pak -Pakistan, nep –Nepal, Ind india, CHi China, Bhu Butan.

Negative relation between unemployment and inflation is observed by majority in region. There is lower positive relation between variables in Bhutan and Bangladesh.

UNEMPLOYMENT INFLATION 2000-2012

2000-20				in in a la
	coeffic.	se	t	prob
OPAK				
CON	7,2108	0,3800	18,7000	0,0000
IPAK	-0,1450	0,0400	-3,6400	0,0040
IPAK				
CON	30,8070	6,2500	4,9200	0,0000
ΟΡΑΚ	-3,7500	1,0290	-3,6400	0,0040
INEP				
CON	15,0000	6,6500	2,2500	0,0460
ONEP	-4,3300	3,1700	-1,3600	0,2000
ONEP				
CON	2,2700	0,1640	13,8400	0,0000
INEP	-0,0330	0,2440	-1,3600	0,2000
IIND				
CON	14,0700	5,2300	2,6800	0,0210
OIND	-2,3090	1,4900	-1,5400	0,1510
OIND				
CON	3,9200	0,3300	11,8100	0,0000

IIND	-0,0760	0,0490	-1,5400	0,1510
IICHI				
CON	10,7500	7,6300	1,4080	0,1870
ОСНІ	-2,2500	1,9400	-1,1500	0,2700
ОСНІ				
CON	4,0160	0,1100	36,3600	0,0000
ICHI	-0,0480	0,0417	-1,1500	0,2700
IBHU				
CON	-6,7400	4,8900	-0,1370	0,8900
OBHU	1,7540	1,9490	0,9020	0,3800
OBHU				
CON	2,1700	0,3230	6,7200	0,0000
IBHU	0,0390	0,0430	0,9020	0,3860
IBAN				
CON	-4,4160	4,3400	-1,0150	0,3300
OBAN	2,7080	1,1190	2,4180	0,0340
OBAN				
CON	3,0769	0,3430	8,9500	0,0000
IBAN	0,1280	0,0530	2,4100	0,0340

Different results are obtained if intercept is not put in measurement.

UNEMPLYMENT INFLATION

	coeffic.	se	t	prob
IBAN				
OBAN	1,5816	0,1540	10,2700	
OBAN				
IBAN	0,5670	0,0550	10,2700	
OBAN				
JBAN	0,6790	0,0680	9,9290	
JBAN				
OBAN	1,3112	0,1332	9,9290	

IBHU				
OBHU	1,5122	0,7370	2,0518	0,0630
OBHU				
IBHU	0,1718	0,0830	2,0518	
OBHU				
JBHU	0,4119	0,0660	6,2250	
JBHU				
OBHU	1,8530	0,2970	6,2500	
ICHI				
OCHI	0,4776	0,1360	3,4900	
OCHI				
ICHI	1,0550	0,3000	3,4900	
IIND				
OIND	1,6730	0,2630	6,3600	
OIND				
IIND	0,4610	0,0724	6,3600	
INEP				
ONEP	2,7720	0,4680	5,9180	
ONEP				
INEP	0,2680	0,0450	5,9180	
IPAK				
OPAK	1,2560	0,2790	4,5000	
OPAK				
IPAK	0,5000	0,1111	4,5000	

Further findings are directed toward additional macroeconomic variables that are explained in table that follows:

Mark	Meaning
А	GDP growth (annual %)
В	GDP (current US\$)
С	GDP per capita (current US \$)
D	GNI per capita Atlas (current US\$)
E	Export of goods and services (% GDP)
F	Foreign direct investment net (current US \$)
G	GNI per capita PPP (current international \$)
н	GINI index
I	Inflation, consumer prices (annual %)
J	Inflation GDP deflator (annual %)
К	Internet users (per 100 people)
L	Imports of goods and services (% GDP)
М	Life expectancy at birth ,total years
Ν	Literacy rate adult total (% of people ag 15 above)
0	Unemployment total (% total labor force)
Р	Poverty headcount rat at net poverty line (%population)
R	Agriculture, Value Added (% GDP)
S	CO ₂ emissions (metric ton per capita)
Т	central government debt ,total (% GDP)
V	Population (Total)

Findings are presented in absolute, logarithmic and index forms:

APSOLUT	coeffic.	se	t(se)	prob
711 30201	coeffic.	50	(30)	prob
BNEP				
CON	8,38+0,9	4,1+09	2,0195	0,0687
ANEP	5,44+0,8	9,4+0,8	0,5750	0,5770
		-,,-	-,	-,
CNEP				
CON	329,0000	142,0000	2,3100	0,0410
ANEP	19,0000	32,0000	0,5900	0,5600
DNEP				
CON	20,8200	16,9600	1,2270	0,2450
CNEP	0,9100	0,0380	23,4900	0,0000
ANEP				
CON	3,6600	1,4800	2,4600	0,0320
ENEP	0,3300	0,1010	0,3300	0,7500
CNEP				
CON	842,0000	89 <i>,</i> 0000	9,4000	0,0000
ENEP	-30,8200	6,0000	-5,0700	0,0000
ANEP				
CON	-7,1200	4,9000	-1,4400	0,1760
LNEP	0,3500	0,1500	2,2900	0,0430
DNEP				
CON	-801,0000	479,0000	-1,6700	0,1230
LNEP	37,9100	15,0000	2,4900	0,0300
ANEP	7 4000	7 4000	0.0700	0.2500
	7,1900	7,4000	0,9700	0,3500
RNEP	-0,0850	0,2100	-0,4100	0,6800
DNEP				
CON	1 002 0000	716 8200	1 5200	0 1500
RNEP	1.093,0000 -19,5000	716,8300 19,8700	1,5200 -0,9800	0,1500 0,3400
	-19,000	19,0700	-0,000	0,3400
INEP				
CON	9,0800	6,1190	1,4800	0,1600
ONEP	-0,9400	2,2600	-0,4200	0,6800
UNE	0,0100	_,2000	0,1200	0,0000
ONEP				
CON	2,7700	0,2800	9,7700	0,0000

INEP	-0,0160	0,0390	-0,4200	0,6810
SNEP				
CON	0,0050	0,0720	0,0720	0,9400
RNEP	0,0030	0,0020	1,6600	0,1250

LOG	coeffic.	se	t	prob
BNEP				
CON	22,8400	0,1900	116,7800	0,0000
ANEP	0,1200	0,1200	0,9900	0,3400
CNEP				
CON	5,8000	0,1700	33,5500	0,0000
ANEP	0,1100	0,1100	1,0000	0,3390
DNEP				
CON	0,2400	0,1800	1,3300	0,2100
CNEP	0,9500	0,0300	31,1000	0,0700
ANEP				
CON	2,4300	2,5200	0,9600	0,3500
ENEP	-0,4700	0,9600	-0,4900	0,6300
CNEP				
CON	8,9500	0,3700	23,8300	0,0000
ENEP	-1,1600	0,1400	-8,0700	0,0000
ANEP				
	-			
CON	21,8600	11,7200	-1,8600	0,0890
LNEP	6,6900	3,4000	1,9600	0,0750
DNEP				
CON	-4,3100	4,0150	-1,0700	0,3060
LNEP	2,9600	1,1600	2,5400	0,0207
ANEP				
CON	14,8900	17,0600	0,8700	0,4000

RNEP	-3,8200	4,7000	-0,8030	0,4390
DNEP				
CON	14,3000	6 <i>,</i> 0050	2,3800	0,0360
RNEP	-2,3400	1,6700	-1,3900	0,1890
INEP				
CON	2,2300	1,1300	1,9700	0,0740
ONEP	-0,4900	1,1500	-0,4300	0,6700
ONEP				
CON	1,0300	0,1400	7,2600	0,0000
INEP	-0,0330	0,0770	-0,4300	0,6700
SNEP				
CON	-5,5900	2,0900	-2,6600	0,0200
RNEP	0,9700	0,5800	1,6700	0,1200

INDEX	coeffic.	se	t	prob
BNEP				
CON	103,0000	4,0400	25,5500	0,0000
ANEP	0,0800	0,0400	2,0200	0,0700
CNEP				
CON	101,5000	4,0700	24,9200	0,0000
ANEP	0,0880	0,0400	2,1500	0,0570
DNEP				
CON	83,7300	16,1500	5,1800	0,0000
CNEP	0,2300	0,1400	1,5800	0,1400
ANEP				
	-			
CON	186,9200	114,8000	-1,6200	0,1300
ENEP	2,9300	1,2200	2,3900	0,0370
CNEP				
CON	118,3400	22,4300	5,2700	0,0000
ENEP	-0,0980	0,2300	-0,4110	0,6900

ANEP				
CON	-	202 1 000	1 0 1 0 0	0.0000
CON	394,0000	202,1600	-1,9400	0,0800
LNEP	4,8000	2,0140	2,3800	0,0380
DNEP				
CON	75,6800	17,8200	4,2400	0,0020
LNEP	0,3350	0,1700	1,8900	0,0880
ANEP				
CON	292,9000	348,8500	0,8300	0,4200
RNEP	-2,0800	3,5300	-0,5900	0,5600
DNEP				
CON	104,1200	29,0700	3,5800	0,0050
RNEP	0,0500	0,2900	0,1700	0,8600
INEP				
CON	108,9800	98,5600	1,1050	0,2900
ONEP	0,1150	0,9600	0,1200	0,9070
ONEP				
CON	99,6600	13,5900	7,3300	0,0000
INEP	0,0120	0,1030	0,1200	0,9070
				-
SNEP				
CON	98,8000	85,3800	1,1570	0,2700
RNEP	0,0155	0,8600	0,0170	0,9800

5.CONCLUSION

Nepal is observing GDP slow down after 2008 crises as many other areas of the world. What is specific for the country is lower than average performance in GDP structure compared to neighbors, slower policy of adaptation to economic cycles in the world and declining growth in manufacturing industry sector. Potentials in infrastructure, tourist projects and quality based agriculture, medical production and service are not tackled as should and present a strong possibility to future economic development.

Statistical data points toward reasoning that more adaptive, closer to country standards economic measures need to be implemented and develop to further boost optimism, growth, social structure that is oriented toward equal rights of each individual. Spirit of help, social adaptability, awareness of limited human, nature potentials are incorporated in the model. With this line of thinking Community Groups can be additionally helped to develop structure oriented toward relationships: human to human, human to nature, and act in further preservation of nature and society by building strong infrastructure/nature/manufacturing people owned funds, stronger relationships between community- government and industries/manufacturers, help educational opportunities and have solid social base that allow minimum fee to each member of society.

Building a new model or growing from existing one is not a matter of copy/ paste data from country to country, but necessity and recognition that numerous possibilities to improve exist by cooperation with region ,world but at the same time being aware of its own standards, limitations and strengths. This process is area of constant development, error recognition and correction what is also to be recognized and to further develop in a process of finding economic and social path to go.

Literature:

- www Wikipedia org
- www world bank .org
- www imf .org
- www fao.org
- www.un.org
- wwwagroclub.com;agroburza.com
- (2008, March) Ben Crow and Nivikar Singh
 The management of inter state rivers as demand grow and supplies tighten:
 India, China, Nepal, Pakistan, Bangladesh
- (2008,December) Sridhar Thapa
 Gender differentials in agricultural productivity evidence from Nepalese household data
- (2008,) Issa Sanogo
 Spatial integration of the rice market ,empirical evidence from mid market and fat west
 Nepal and the Nepalese Indian border
- (2009, August) Keshav Lall Maharjan, Nniraj Prakash Joshi

Relationship between income poverty and food insecurity in rural far western mid hills of Nepal

-(2011,March)Niraj Prakash Joshi,Keshav Lall Maharjan,Luni Piya Effect of climate variables on yield of major food crops in Nepal –A time series analysis

-(2007) Niraj Prakash Joshi, Keshav Lall Maharjay

Assessment of Food SelfSufficiency and Food Security Situation in Nepal

-(2010) Niraj Prakash Joshi, Keshav Lall Maharjan, Luni Piya Poverty and Food Insecurity in Nepal a Review

-(2011,November) Ronald R. Kumar Rope of Financial and Technology Inclusion,Remittances and Export vis-à-vis growth –A study of Nepal

-(2012,November) Prabin Khazal Trends and Scenario of Poverty in Nepal

-(2012,December) Birendra Budha A multivariate analysis of savings ,investment and growth in Nepal

-(2009) Sanjib Pohit Overview of Indian Nepal Trade :Trends,Trade Logistics and Impediments

-(2009,May) Bishnu Prasad Gautam Financial Practices of Banks and Financial Institutions in Nepal

-(2012) Shambhu Dev baral Gravity Rope in Nepal

-(2013, January) Guna Ray Bhatta Remittance and Trade Deficit Nexus in Nepal : A VECM Approach

-(2013) JN A Hotel Cost Estimate

APPENDIX I

Marks :

Mark	Meaning
А	GDP growth (annual %)
В	GDP (current US\$)
С	GDP per capita (current US \$)
D	GNI per capita Atlas (curent US\$)
E	Export of goods and services (% GDP)
F	Foreign direct investment net (current US \$)
G	GNI per capita PPP (current international \$)
Н	GINI index
I	Inflation, consumer prices (annual %)
J	Inflation GDP deflator (annual %)
К	Internet users (per 100 people)
L	Imports of goods and services (% GDP)
М	Life expectancy at birth ,total years
Ν	Literacy rate adult total (% of people ag 15 above)
0	Unemployment total(% total labor force)
Р	Poverty headcount rat at net poverty line (%population)
R	Agriculture, Value Added (% GDP)
S	CO ₂ emissions (metric ton per capita)
Т	central government debt ,total (% GDP)
V	Population (Total)

Ordinary Least Squares Estimation					

Dependent variable is BNEP					
13 observations used for estimation from 2000 to 2012					

Regressor Coefficient Standard Error T-Ratio[Prob]					
CON 8.38E+09 4.15E+09 2.0195[.068]					
ANEP 5.44E+08 9.46E+08 .57503[.577]					

R-Squared .029182 R-Bar-Squared059074					
S.E. of Regression 5.02E+09 F-stat. F(1, 11) .33065[.577]					
Mean of Dependent Variable 1.06E+10 S.D. of Dependent Variable 4.88E+09					
Residual Sum of Squares 2.78E+20 Equation Log-likelihood -307.7491					
Akaike Info. Criterion -309.7491 Schwarz Bayesian Criterion -310.3141					
DW-statistic .14623					

Diagnostic Tests

**	***************************************					
*	Test Statistics *	LM Version	* F Ve	ersion	*	
**	*****	******	* * * * * * * * * * * *	*****	******	
*	*	*	*			
/	A:Serial Correlation	CHSQ(1)= 10	.4978[.001]*	F(1, 10):	= 41.9541[.000]*	
*	*	*	*			
* [3:Functional Form *	*CHSQ(1)= .9	96972[.325]*	F(1, 10)=	80606[.390]*	
*	*	*	*			

Ordinary Least Squares Estimation Dependent variable is CNEP 13 observations used for estimation from 2000 to 2012 ******* Coefficient Standard Error T-Ratio[Prob] Regressor CON 329.0054 142.3833 2.3107[.041] ANEP 19.2094 .59188[.566] 32.4548 ******* R-Squared .030865 R-Bar-Squared -.057239 S.E. of Regression 172.4142 F-stat. F(1, 11) .35032[.566] Mean of Dependent Variable 408.3846 S.D. of Dependent Variable 167.6820 Residual Sum of Squares 326993.1 Equation Log-likelihood -84.3090 Akaike Info. Criterion -86.3090 Schwarz Bayesian Criterion -86.8740

DW-statistic .15238

Diagnostic Tests

* Test Statistics * LM Version F Version ****** * * * * * A:Serial Correlation*CHSQ(1)= 10.4202[.001]*F(1, 10)= 40.3921[.000]* * * * * B:Functional Form *CHSQ(1)= .92318[.337]*F(1, 10)= .76443[.402]* * * * * C:Normality *CHSQ(2)= 1.1880[.552]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .43891[.508]*F(1, 11)= .38436[.548]* ************* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ****************** Dependent variable is DNEP 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] CON 20.8261 16.9621 1.2278[.245] CNEP .90775 .038637 23.4945[.000] R-Squared .98046 R-Bar-Squared .97869 S.E. of Regression 22.4429 F-stat. F(1, 11) 551.9900[.000] Mean of Dependent Variable 391.5385 S.D. of Dependent Variable 153.7230 Residual Sum of Squares 5540.5 Equation Log-likelihood -57.8030

Akaike Info. Criterion -59.8030 Schwarz Bayesian Criterion -60.3680

DW-statistic 2.2592

Diagnostic Tests * Test Statistics * LM Version * F Version * ************************ * * * * * A:Serial Correlation*CHSQ(1)= 2.3298[.127]*F(1, 10)= 2.1835[.170]* * * * * * B:Functional Form *CHSQ(1)= .12599[.723]*F(1, 10)= .097866[.761]* * * * * * C:Normality *CHSQ(2)= .21959[.896]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 10.6920[.001]*F(1, 11)= 50.9593[.000]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ****** Dependent variable is ANEP 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON 3.6642 1.4893 2.4604[.032] ENEP .033254 .10103 .32916[.748] ************************ R-Squared .0097536 R-Bar-Squared -.080269 S.E. of Regression 1.5939 F-stat. F(1, 11) .10835[.748] Mean of Dependent Variable 4.1323 S.D. of Dependent Variable 1.5336 Residual Sum of Squares 27.9468 Equation Log-likelihood -23.4210 Akaike Info. Criterion -25.4210 Schwarz Bayesian Criterion -25.9859 DW-statistic 1.8889 ******

Diagnostic Tests

********************** * Test Statistics * LM Version * F Version ****** * * * * * A:Serial Correlation*CHSQ(1)= .0024822[.960]*F(1, 10)= .0019097[.966]* * * B:Functional Form *CHSQ(1)= 2.1117[.146]*F(1, 10)= 1.9394[.194]* * * * C:Normality *CHSQ(2)= 6.5905[.037]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= .72156[.396]*F(1, 11)= .64643[.438]*

A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is CNEP

13 observations used for estimation from 2000 to 2012

Regressor	Coefficient	Standard Error	T-Ratio[Prob]			
CON	842.2679	89.4975	9.4111[.000]			
ENEP	-30.8223	6.0712 -	5.0768[.000]			
******	**********	******	*******			
R-Squared	.70088	R-Bar-Squared	.67368			
S.E. of Regression 95.7869 F-stat. F(1, 11) 25.7741[.000]						
Mean of Dependent Variable 408.3846 S.D. of Dependent Variable 167.6820						
Residual Sum of Squares 100926.4 Equation Log-likelihood -76.6680						
Akaike Info. Cri	terion -78.66	80 Schwarz Bay	esian Criterion -79.2329			
DW-statistic	.48238					

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 6.0979[.014]*F(1, 10)= 8.8349[.014]*

* * * * * B:Functional Form *CHSQ(1)= 9.1100[.003]*F(1, 10)= 23.4187[.001]* * * * * C:Normality *CHSQ(2)= 1.0176[.601]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .033951[.854]*F(1, 11)= .028803[.868]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ******* Dependent variable is ANEP

13 observations used for estimation from 2000 to 2012

Coefficient Standard Error T-Ratio[Prob] Regressor 4.9261 -1.4463[.176] CON -7.1245 LNEP .35780 .15614 2.2915[.043] ******* R-Squared .32311 R-Bar-Squared .26158 S.E. of Regression 1.3178 F-stat. F(1, 11) 5.2508[.043] Mean of Dependent Variable 4.1323 S.D. of Dependent Variable 1.5336 Residual Sum of Squares 19.1032 Equation Log-likelihood -20.9481 Akaike Info. Criterion -22.9481 Schwarz Bayesian Criterion -23.5130 DW-statistic 1.9548

Diagnostic Tests

****** * Test Statistics * LM Version * F Version * ***** ****** * * * * * A:Serial Correlation*CHSQ(1)= .065098[.799]*F(1, 10)= .050327[.827]* * * * * B:Functional Form *CHSQ(1)= 1.2702[.260]*F(1, 10)= 1.0829[.323]* * * * * C:Normality *CHSQ(2)= .39611[.820]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.9006[.168]*F(1, 11)= 1.8836[.197]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ****** Dependent variable is DNEP 13 observations used for estimation from 2000 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] CON -801.3499 479.7209 -1.6705[.123] LNEP 37.9158 15.2058 2.4935[.030] ***** R-Squared .36112 R-Bar-Squared .30304 S.E. of Regression 128.3346 F-stat. F(1, 11) 6.2176[.030] Mean of Dependent Variable 391.5385 S.D. of Dependent Variable 153.7230

 Residual Sum of Squares
 181167.5
 Equation Log-likelihood
 -80.4707

 Akaike Info. Criterion
 -82.4707
 Schwarz Bayesian Criterion
 -83.0356

 DW-statistic
 .51882

Diagnostic Tests					

* Test Statistics * LM Version * F Version *					

* * * *					
* A:Serial Correlation*CHSQ(1)= 5.1310[.024]*F(1, 10)= 6.5206[.029]*					
* * * *					
* B:Functional Form *CHSQ(1)= .050436[.822]*F(1, 10)= .038948[.848]*					
* * * *					
* C:Normality *CHSQ(2)= .38378[.825]* Not applicable *					
* * * *					
* D:Heteroscedasticity*CHSQ(1)= .84929[.357]*F(1, 11)= .76886[.399]*					

A:Lagrange multiplier test of residual serial correlation					
B:Ramsey's RESET test using the square of the fitted values					
C:Based on a test of skewness and kurtosis of residuals					

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ****** Dependent variable is ANEP 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON 7.1923 7.4001 .97193[.352] RNEP -.085000 .20519 -.41425[.687] ************************ R-Squared .015360 R-Bar-Squared -.074152 S.E. of Regression 1.5894 F-stat. F(1, 11) .17160[.687] Mean of Dependent Variable 4.1323 S.D. of Dependent Variable 1.5336 Residual Sum of Squares 27.7885 Equation Log-likelihood -23.3841 Akaike Info. Criterion -25.3841 Schwarz Bayesian Criterion -25.9490 DW-statistic 1.8787 ******

Diagnostic Tests

***************** * Test Statistics * LM Version * F Version ****** * * * * * A:Serial Correlation*CHSQ(1)= .038011[.845]*F(1, 10)= .029325[.867]* * * * B:Functional Form *CHSQ(1)= 1.6836[.194]*F(1, 10)= 1.4877[.251]* * * * C:Normality *CHSQ(2)= 3.0908[.213]* Not applicable * * * * D:Heteroscedasticity*CHSQ(1)= 1.5431[.214]*F(1, 11)= 1.4815[.249]*

A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

****************** Dependent variable is DNEP 13 observations used for estimation from 2000 to 2012 ************ Regressor Coefficient Standard Error T-Ratio[Prob] CON 1093.5 716.8333 1.5255[.155] RNEP -19.5000 19.8767 -.98105[.348] ****** R-Squared .080457 R-Bar-Squared -.0031383 S.E. of Regression 153.9641 F-stat. F(1, 11) .96246[.348] Mean of Dependent Variable 391.5385 S.D. of Dependent Variable 153.7230 Residual Sum of Squares 260754.2 Equation Log-likelihood -82.8377 Akaike Info. Criterion -84.8377 Schwarz Bayesian Criterion -85.4026 .13767 DW-statistic

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 11.8305[.001]*F(1, 10)= 101.1590[.000]* * * * * * B:Functional Form *CHSQ(1)= .68805[.407]*F(1, 10)= .55884[.472]* * * * * C:Normality *CHSQ(2)= 2.8696[.238]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= .89095[.345]*F(1, 11)= .80935[.388]* ************* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is INEP

13 observations used for estimation from 2000 to 2012

Regressor	Coefficient	Standard Error	T-Ratio[Prob]

CON 9.0826 6.1193 1.4843[.166]

ONEP -.94563 2.2683 -.41689[.685]

R-Squared .015554 R-Bar-Squared

-.073941

S.E. of Regression 3.1980 F-stat. F(1, 11) .17379[.685]

Mean of Dependent Variable 6.5585 S.D. of Dependent Variable 3.0859

Residual Sum of Squares 112.4984 Equation Log-likelihood -32.4731

Akaike Info. Criterion -34.4731 Schwarz Bayesian Criterion -35.0381

DW-statistic .50869

Diagnostic Tests ****** * Test Statistics * LM Version * F Version * *********** * * * * * A:Serial Correlation*CHSQ(1)= 5.7419[.017]*F(1, 10)= 7.9110[.018]* * * * * * B:Functional Form *CHSQ(1)= 3.5727[.059]*F(1, 10)= 3.7897[.080]* * * * * * C:Normality *CHSQ(2)= 1.0879[.580]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .016599[.897]*F(1, 11)= .014063[.908]* *********** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is ONEP

13 observations used for estimation from 2000 to 2012

Regressor	Coefficient	Standard Er	ror	T-Ratio[Prob]
CON	2.7771	.28397	9.77	94[.000]
INEP	016448	.039455	41	689[.685]
*****	*****	*****	*****	******
R-Squared	.015554	R-Bar-Square	d	073941
S.E. of Regression	on .4217	7 F-stat. F(1, 11)	.17379[.685]

 Mean of Dependent Variable
 2.6692
 S.D. of Dependent Variable
 .40699

 Residual Sum of Squares
 1.9568
 Equation Log-likelihood
 -6.1375

 Akaike Info. Criterion
 -8.1375
 Schwarz Bayesian Criterion
 -8.7024

 DW-statistic
 1.4800

Diagnostic Tests ****************** * Test Statistics * LM Version * F Version * ****** * * * * * A:Serial Correlation*CHSQ(1)= .87205[.350]*F(1, 10)= .71904[.416]* * * * * * B:Functional Form *CHSQ(1)= 1.6970[.193]*F(1, 10)= 1.5014[.249]* * * * * * C:Normality *CHSQ(2)= 5.1526[.076]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 3.2962[.069]*F(1, 11)= 3.7365[.079]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ***** Dependent variable is SNEP 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON .0053846 .072352 .074423[.942] RNEP .0033333 .0020062 1.6615[.125] ************************* R-Squared .20062 R-Bar-Squared .12795 S.E. of Regression .015540 F-stat. F(1, 11) 2.7606[.125] Mean of Dependent Variable .12538 S.D. of Dependent Variable .016641 Residual Sum of Squares .0026564 Equation Log-likelihood 36.7760 Akaike Info. Criterion 34.7760 Schwarz Bayesian Criterion 34.2111 DW-statistic 1.6229 *****

Diagnostic Tests

**	*************	*****	***************
*	Test Statistics * L	M Version *	F Version *
**	******	*****	**********
*	*	*	*
* 4	Serial Correlation*CH	ISQ(1)= .35641	[.551]*F(1, 10)= .28189[.607]*
*	*	*	*
* E	:Functional Form *CI	HSQ(1)= .090437	7[.764]*F(1, 10)= .070054[.797]*
*	*	*	*
* (Normality *CHSC	Q(2)= 1.2140[.54	45]* Not applicable *
*	*	*	*
* [Heteroscedasticity*C	HSQ(1)= .9942E	-4[.992]*F(1, 11)= .8412E-4[.993]*
**	*****	* * * * * * * * * * * * * * * *	********

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR

Dependent variable is ANEP

11 observations used for estimation from 2002 to 2012

Regressor	Coefficient	Standard Erro	r T-Ratio[Prob]	
ANEP(-1)	28208	.29748	94824[.387]	
ANEP(-2)	65519	.26511	-2.4714[.056]	
BNEP(-1)	4268E-8	.1420E-8	-3.0051[.030]	
BNEP(-2)	.9804E-9	.8170E-9	1.2000[.284]	
CNEP	.010700	.011805	.90638[.406]	
CNEP(-1)	.095789	.042390	2.2597[.073]	
******	*******	*****	******	*****
R-Squared	.66510	R-Bar-Squared	.33020	
S.E. of Regressio	n 1.2363	3 F-stat. F(5,	5) 1.9860[.235]	
Mean of Depend	lent Variable	3.8836 S.D. of	Dependent Variable	1.5107

Residual Sum of Squares 7.6427 Equation Log-likelihood -13.6055

Akaike Info. Criterion -19.6055 Schwarz Bayesian Criterion -20.7992

DW-statistic 1.9736 System Log-likelihood -209.7235

Diagnostic Tests

* Test Statistics * LM Version * F Version *

***** * * * * * A:Serial Correlation*CHSQ(1)= .10717[.743]*F(1, 4)= .039353[.852]* * * * * * B:Functional Form *CHSQ(1)= 4.1551[.042]*F(1, 4)= 2.4282[.194]* * * * * C:Normality *CHSQ(2)= .85284[.653]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .22956[.632]*F(1, 9)= .19183[.672]* ************** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR ******* Dependent variable is BNEP 11 observations used for estimation from 2002 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] .59680 BNEP(-1) .49800 1.1984[.270] .58087 BNEP(-2) .62483 .92964[.383] VNEP 122.0978 216.2473 .56462[.590]

-.62192[.554]

R-Squared .96431 R-Bar-Squared .94902

-8.67E+07

RNEP

S.E. of Regression 1.08E+09 F-stat. F(3, 7) 63.0494[.000]

Mean of Dependent Variable 1.15E+10 S.D. of Dependent Variable 4.79E+09

1.39E+08

Residual Sum of Squares8.20E+18Equation Log-likelihood-241.9471Akaike Info. Criterion-245.9471Schwarz Bayesian Criterion-246.7429DW-statistic2.3119System Log-likelihood-241.9471

Diagnostic Tests ******* * Test Statistics * LM Version * F Version * ************************ * * * * * A:Serial Correlation*CHSQ(1)= 8.5539[.003]*F(1, 6)= 20.9816[.004]* * * * * * B:Functional Form *CHSQ(1)= 5.5056[.019]*F(1, 6)= 6.0123[.050]* * * * * * C:Normality *CHSQ(2)= .16244[.922]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 8.1708[.004]*F(1, 9)= 25.9927[.001]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR

Dependent variable is ANEP 11 observations used for estimation from 2002 to 2012 ******* Coefficient Standard Error T-Ratio[Prob] Regressor ANEP(-1) -.33695 .18840 -1.7885[.134] ANEP(-2) -.41003 .24175 -1.6961[.151] ENEP -.065852 .25725 -.25598[.808] ENEP(-1) -.046606 .20633 -.22588[.830] LNEP .46408 .11101 4.1804[.009] LNEP(-1) -.19716 .12171 -1.6199[.166] ************ R-Squared .89508 R-Bar-Squared .79016 S.E. of Regression .69201 F-stat. F(5, 5) 8.5310[.017] Mean of Dependent Variable 3.8836 S.D. of Dependent Variable 1.5107 Residual Sum of Squares 2.3944 Equation Log-likelihood -7.2221 Akaike Info. Criterion -13.2221 Schwarz Bayesian Criterion -14.4157 DW-statistic 2.4704 System Log-likelihood -7.2221

Diagnostic Tests

* B:Functional Form *CHSQ(1)= .12805[.720]*F(1, 4)= .047112[.839]* * * * * C:Normality *CHSQ(2)= .26707[.875]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .39129[.532]*F(1, 9)= .33195[.579]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values OLS estimation of a single equation in the Unrestricted VAR ******* Dependent variable is JNEP 11 observations used for estimation from 2002 to 2012 ****** Coefficient Standard Error T-Ratio[Prob] Regressor .45443 JNEP(-1) .34355 1.3227[.227] JNEP(-2) -.081255 .30481 -.26657[.797] ONEP 6.3728 3.4062 1.8709[.104] -4.3556 3.1932 -1.3640[.215] ONEP(-1) ****************** R-Squared .41631 R-Bar-Squared .16615

S.E. of Regression 3.9667 F-stat. F(3, 7) 1.6642[.260] Mean of Dependent Variable 7.8455 S.D. of Dependent Variable 4.3440

Residual Sum of Squares 110.1454 Equation Log-likelihood -28.2798

Akaike Info. Criterion -32.2798 Schwarz Bayesian Criterion -33.0756

DW-statistic 1.8762 System Log-likelihood -28.2798

Diagnostic Tests

**	***************************************	
*	Test Statistics * LM Version * F Version *	
**	***************************************	
*	* * *	
*	Serial Correlation*CHSQ(1)= .0089320[.925]*F(1, 6)= .0048760[.947]*	
*	* * *	
*	Functional Form *CHSQ(1)= 1.6114[.204]*F(1, 6)= 1.0298[.349]*	
*	* * *	
*	Normality *CHSQ(2)= 6.9965[.030]* Not applicable *	
*	* * *	
*	Heteroscedasticity*CHSQ(1)= .024457[.876]*F(1, 9)= .020055[.891]*	
**	***************************************	
	Lagrange multiplier test of residual serial correlation	
	Ramsey's RESET test using the square of the fitted values	
	Based on a test of skewness and kurtosis of residuals	
	Based on the regression of squared residuals on squared fitted values	

OLS estimation of a single equation in the Unrestricted VAR

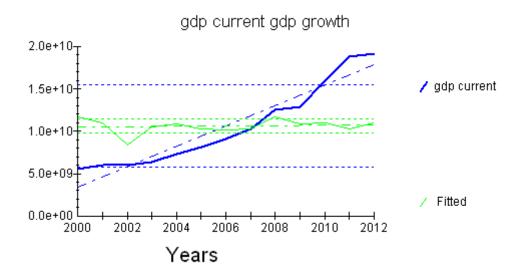
****** Dependent variable is GNEP 11 observations used for estimation from 2002 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] 1.1246 GNEP(-1) .36616 3.0714[.018] GNEP(-2) -.095056 .37897 -.25082[.809] CNEP .22935 .27943 .82077[.439] CNEP(-1) -.19696 .30658 -.64243[.541] ****** R-Squared .99143 R-Bar-Squared .98776 S.E. of Regression 32.2128 F-stat. F(3, 7) 269.8975[.000] Mean of Dependent Variable 1713.6 S.D. of Dependent Variable 291.1107 Residual Sum of Squares 7263.7 Equation Log-likelihood -51.3184 Akaike Info. Criterion -55.3184 Schwarz Bayesian Criterion -56.1142 DW-statistic 1.2724 System Log-likelihood -51.3184 *******

Diagnostic Tests

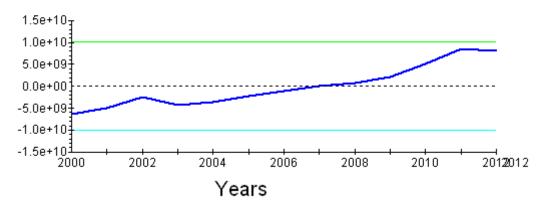
* Test Statistics * LM Version * F Version *

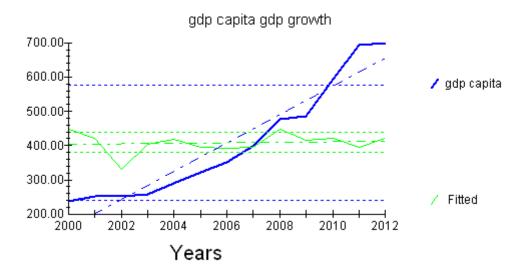
* * * *
* A:Serial Correlation*CHSQ(1)= 3.0431[.081]*F(1, 6)= 2.2946[.181]*
* * * *
* B:Functional Form *CHSQ(1)= .9946E-4[.992]*F(1, 6)= .5425E-4[.994]*
* * * *
* C:Normality *CHSQ(2)= 2.5137[.285]* Not applicable *

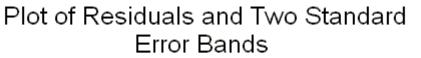
* D:Heteroscedasticity*CHSQ(1)= .88489[.347]*F(1, 9)= .78734[.398]*

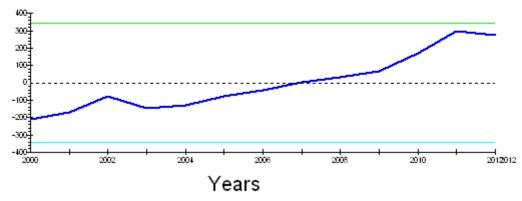

A:Lagrange multiplier test of residual serial correlation

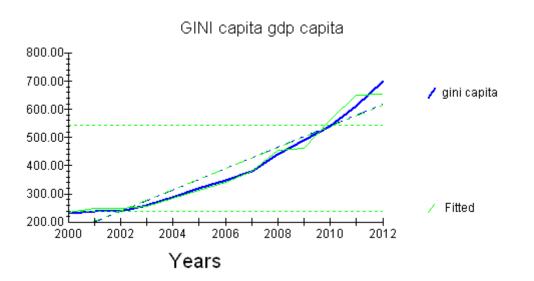
B:Ramsey's RESET test using the square of the fitted values

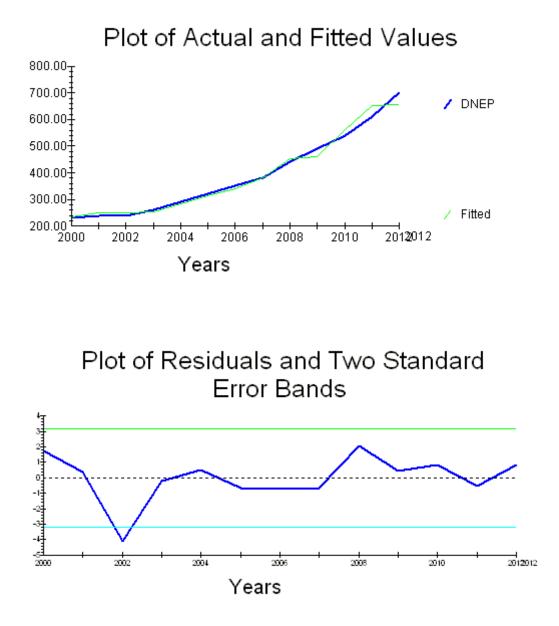

C:Based on a test of skewness and kurtosis of residuals

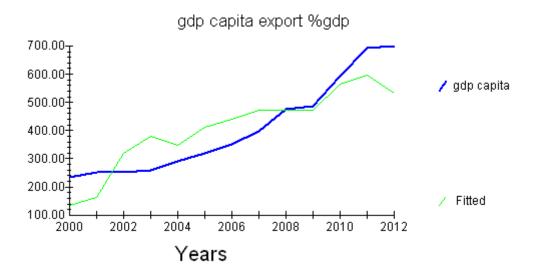

D:Based on the regression of squared residuals on squared fitted values

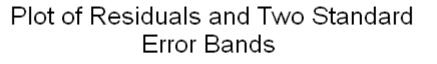


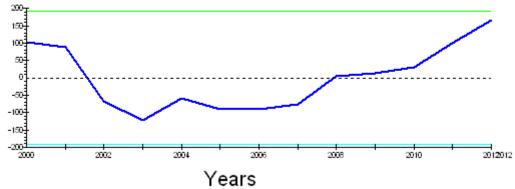


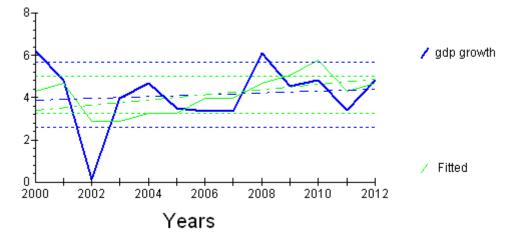

Plot of Residuals and Two Standard Error Bands

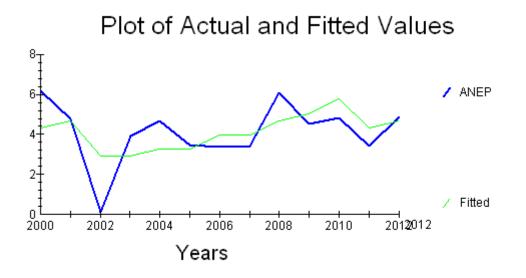


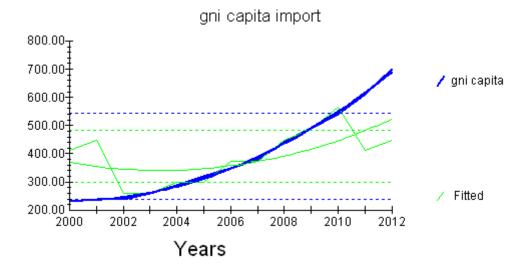


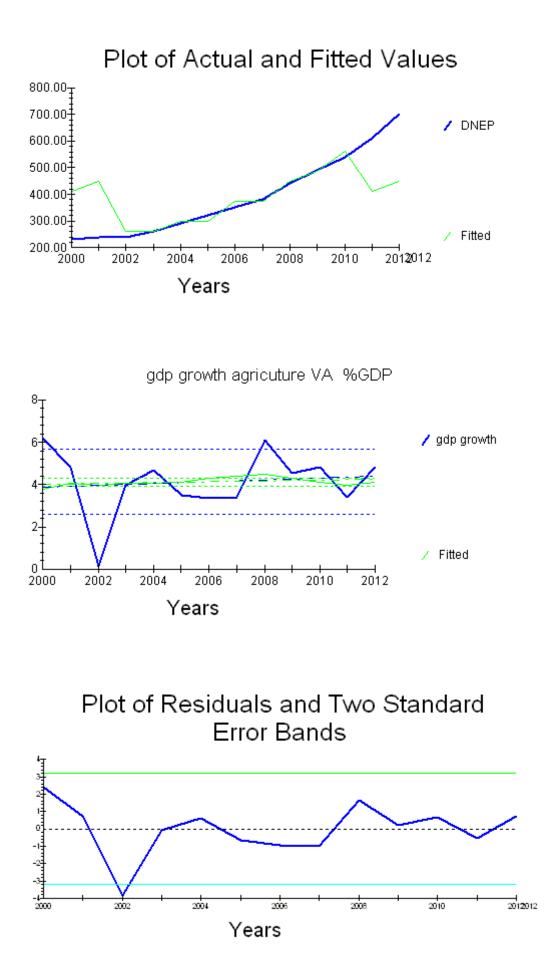


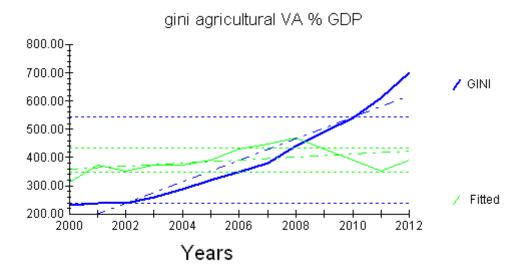


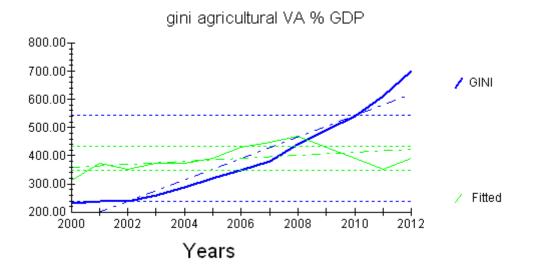


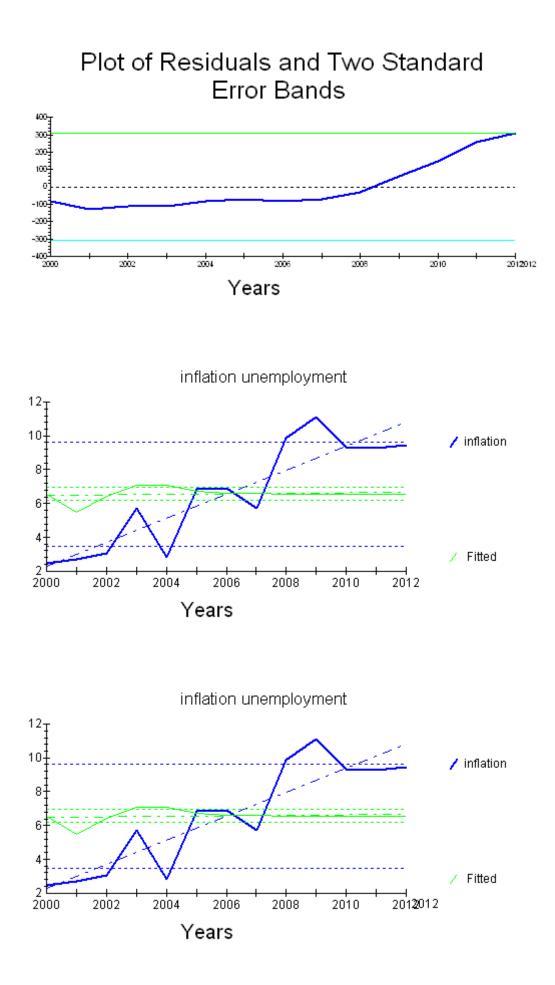


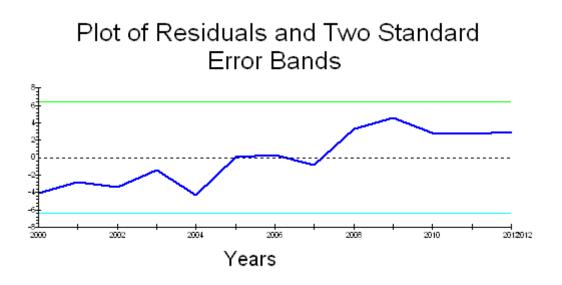


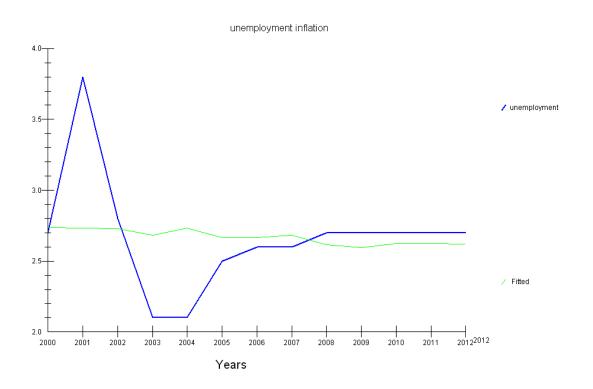


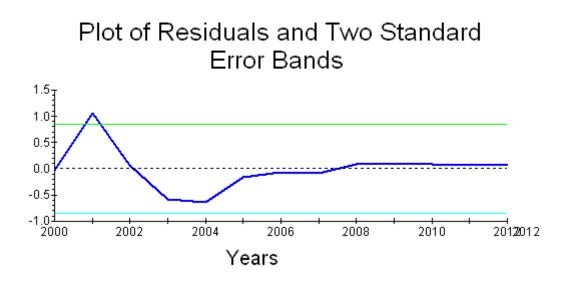


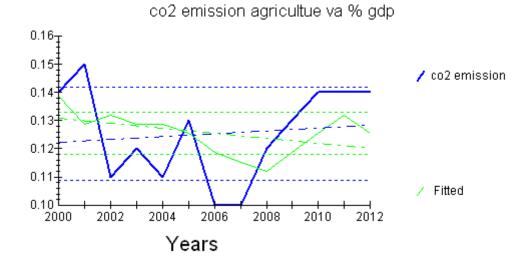


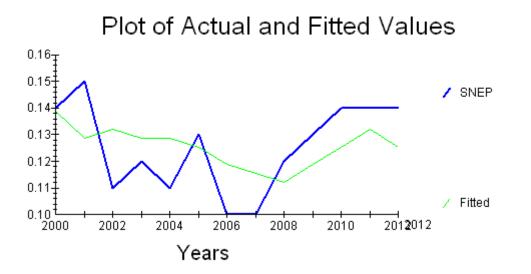


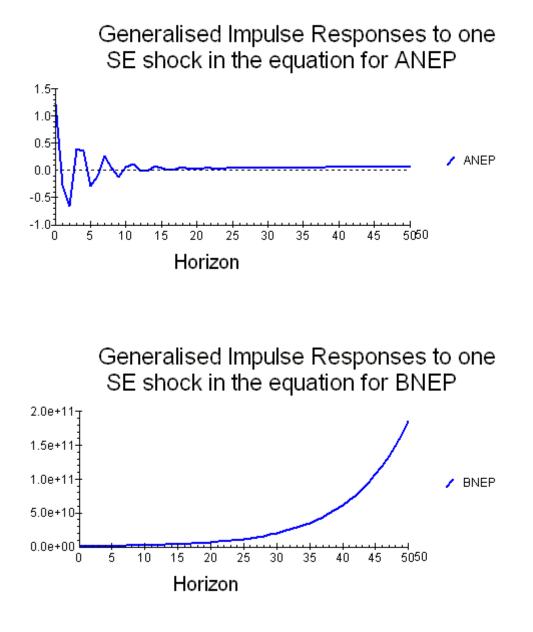


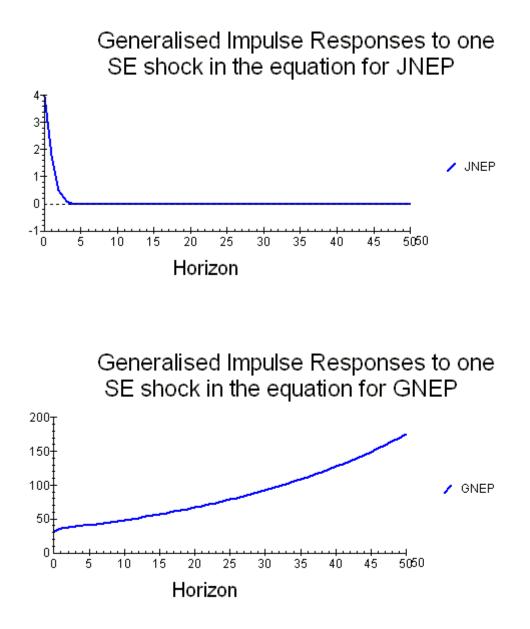












APPENDIX II

NEPAL LOG STATISTICS

Ordinary Least Squares Estimation

Dependent variable is LNB					
13 observations	used for estim	ation from 20	00 to 2	2012	
******	******	******	****	******	
Regressor	Coefficient	Standard Error		T-Ratio[Prob]	
CON	22.8426	.19559	116.7	7864[.000]	
LNA	.12568	.12643	.9940	06[.342]	

R-Squared .082428 R-Bar-Squared9874E-3					
S.E. of Regression .44612 F-stat. F(1, 11) .98816[.342]					
Mean of Dependent Variable 22.9932 S.D. of Dependent Variable .44590					
Residual Sum of Squares 2.1893 Equation Log-likelihood -6.8673					
Akaike Info. Criterion -8.8673 Schwarz Bayesian Criterion -9.4322					
DW-statistic .25698					

Diagnostic Tests

*	Test Statistics *	LM Version	* FVe	ersion	*		

*	*	*	*				
* A:Serial Correlation*CHSQ(1)= 8.8664[.003]*F(1, 10)= 21.4493[.001]*							
*	*	*	*				
* B:Functional Form *CHSQ(1)= .45343[.501]*F(1, 10)= .36140[.561]*							
*	*	*	*				
* (C:Normality *CHS	Q(2)= .6766	64[.713]*	Not applic	able *		
*	*	*	*				

Ordinary Least Squares Estimation

****************** Dependent variable is LNC 13 observations used for estimation from 2000 to 2012 ************ Regressor Coefficient Standard Error T-Ratio[Prob] CON 5.8044 .17298 33.5553[.000] LNA .11188 .11181 1.0006[.339] ****** R-Squared .083422 R-Bar-Squared .9623E-4 S.E. of Regression .39455 F-stat. F(1, 11) 1.0012[.339] Mean of Dependent Variable 5.9385 S.D. of Dependent Variable .39457 Residual Sum of Squares 1.7124 Equation Log-likelihood -5.2702 Akaike Info. Criterion -7.2702 Schwarz Bayesian Criterion -7.8351 DW-statistic .26273

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 8.9107[.003]*F(1, 10)= 21.7900[.001]* * * * * * B:Functional Form *CHSQ(1)= .36567[.545]*F(1, 10)= .28943[.602]* * * * * C:Normality *CHSQ(2)= .74880[.688]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= 1.5208[.217]*F(1, 11)= 1.4574[.253]* ************* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is LND

13 observations used for estimation from 2000 to 2012

Regressor Coefficient Star	idard Error T-Ratio[Prob]
----------------------------	---------------------------

CON .24281 .18233 1.3317[.210]

LNC .95307 .030640 31.1049[.000]

R-Squared .98876 R-Bar-Squared .98774

S.E. of Regression .041880 F-stat. F(1, 11) 967.5129[.000]

Mean of Dependent Variable 5.9026 S.D. of Dependent Variable .37818

Residual Sum of Squares .019293 Equation Log-likelihood 23.8879

Akaike Info. Criterion 21.8879 Schwarz Bayesian Criterion 21.3230

DW-statistic 2.1307

Diagnostic Tests ****** * Test Statistics * LM Version * F Version * ***** ****** * * * * A:Serial Correlation*CHSQ(1)= .58604[.444]*F(1, 10)= .47208[.508]* * * * * * B:Functional Form *CHSQ(1)= .71120[.399]*F(1, 10)= .57873[.464]* * * * * * C:Normality *CHSQ(2)= .65004[.723]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 8.2396[.004]*F(1, 11)= 19.0395[.001]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

 Ordinary Least Squares Estimation

 Dependent variable is LND

 13 observations used for estimation from 2000 to 2012

 Regressor
 Coefficient

 Standard Error
 T-Ratio[Prob]

 CON
 .24281
 .18233
 1.3317[.210]

 LNC
 .95307
 .030640
 31.1049[.000]

 Respured
 .98876
 R-Bar-Squared
 .98774

S.E. of Regression.041880F-stat.F(1, 11)967.5129[.000]Mean of Dependent Variable5.9026S.D. of Dependent Variable.37818Residual Sum of Squares.019293Equation Log-likelihood23.8879Akaike Info. Criterion21.8879Schwarz Bayesian Criterion21.3230DW-statistic2.1307

Diagnostic Tests ****************** * Test Statistics * LM Version * F Version * * * * * * A:Serial Correlation*CHSQ(1)= .58604[.444]*F(1, 10)= .47208[.508]* * * * * * B:Functional Form *CHSQ(1)= .71120[.399]*F(1, 10)= .57873[.464]* * * * * * C:Normality *CHSQ(2)= .65004[.723]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 8.2396[.004]*F(1, 11)= 19.0395[.001]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ****** Dependent variable is LNA 13 observations used for estimation from 2000 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] CON 2.4376 2.5257 .96513[.355] LNE -.47701 -.49404[.631] .96552 ************************ R-Squared .021707 R-Bar-Squared -.067228 S.E. of Regression 1.0523 F-stat. F(1, 11) .24408[.631] Mean of Dependent Variable 1.1982 S.D. of Dependent Variable 1.0186 Residual Sum of Squares 12.1809 Equation Log-likelihood -18.0232 Akaike Info. Criterion -20.0232 Schwarz Bayesian Criterion -20.5881 DW-statistic 2.2475 ******

Diagnostic Tests

********************* * Test Statistics * LM Version * F Version ****** * * * * * A:Serial Correlation*CHSQ(1)= .32666[.568]*F(1, 10)= .25775[.623]* * * * B:Functional Form *CHSQ(1)= .44629[.504]*F(1, 10)= .35551[.564]* * * * * C:Normality *CHSQ(2)= 37.4855[.000]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= 1.0466[.306]*F(1, 11)= .96307[.348]*

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is LNC

13 observations used for estimation from 2000 to 2012

Regressor	Coefficient	Standard Er	ror T-Ratio[Pro	bb]		
CON	8.9529	.37566	23.8327[.000]			
LNE	-1.1601	.14361	-8.0785[.000]			

R-Squared .85576 R-Bar-Squared .84265						
S.E. of Regression .15652 F-stat. F(1, 11) 65.2626[.000]						
Mean of Dependent Variable 5.9385 S.D. of Dependent Variable .39457						
Residual Sum of Squares .26947 Equation Log-likelihood 6.7495						
Akaike Info. Criterion 4.7495 Schwarz Bayesian Criterion 4.1845						
DW-statistic 1.0108						

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 1.8771[.171]*F(1, 10)= 1.6876[.223]*

* * * * * B:Functional Form *CHSQ(1)= 2.9733[.085]*F(1, 10)= 2.9654[.116]* * * * * C:Normality *CHSQ(2)= .44304[.801]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= .33184[.565]*F(1, 11)= .28814[.602]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ***** Dependent variable is LNA 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON -21.8698 11.7219 -1.8657[.089] LNL 6.6941 3.4008 1.9684[.075] ******* R-Squared .26048 R-Bar-Squared .19326 S.E. of Regression .91492 F-stat. F(1, 11) 3.8746[.075] Mean of Dependent Variable 1.1982 S.D. of Dependent Variable 1.0186 Residual Sum of Squares 9.2078 Equation Log-likelihood -16.2044 Akaike Info. Criterion -18.2044 Schwarz Bayesian Criterion -18.7693 DW-statistic 2.1768 ******

Diagnostic Tests ****** * Test Statistics * LM Version * F Version * **** ****** * * * * * A:Serial Correlation*CHSQ(1)= .13893[.709]*F(1, 10)= .10802[.749]* * * * * * B:Functional Form *CHSQ(1)= 1.7102[.191]*F(1, 10)= 1.5148[.247]* * * * * * C:Normality *CHSQ(2)= 16.0128[.000]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 2.3881[.122]*F(1, 11)= 2.4755[.144]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is LND

13 observations used for estimation from 2000 to 2012

Regressor	Coefficient	Standard E	rror	T-Ratio[Prob]	
CON	-4.3097	4.0156	-1.07	33[.306]	
LNL	2.9635	1.1650	2.543	8[.027]	

R-Squared	.37038	R-Bar-Square	ed	.31314	
S.E. of Regressi	on .3134	3 F-stat. F((1, 11)	6.4707[.027]	

Mean of Dependent Variable 5.9026 S.D. of Dependent Variable .37818 Residual Sum of Squares 1.0806 Equation Log-likelihood -2.2779 Akaike Info. Criterion -4.2779 Schwarz Bayesian Criterion -4.8428 DW-statistic .46737

Diagnostic Tests ****************** * Test Statistics * LM Version * F Version * ****** * * * * * A:Serial Correlation*CHSQ(1)= 5.4034[.020]*F(1, 10)= 7.1128[.024]* * * * * * B:Functional Form *CHSQ(1)= .012444[.911]*F(1, 10)= .0095814[.924]* * * * * * C:Normality *CHSQ(2)= .29903[.861]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.2023[.273]*F(1, 11)= 1.1210[.312]* *******

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation **** Dependent variable is LNA 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON 14.8990 17.0614 .87326[.401] LNR -3.8252 4.7628 -.80315[.439] ************************ R-Squared .055392 R-Bar-Squared -.030481 1.0340 F-stat. F(1, 11) .64505[.439] S.E. of Regression Mean of Dependent Variable 1.1982 S.D. of Dependent Variable 1.0186 Residual Sum of Squares 11.7615 Equation Log-likelihood -17.7954 Akaike Info. Criterion -19.7954 Schwarz Bayesian Criterion -20.3604 DW-statistic 2.1493 *****

Diagnostic Tests

*	Test Statistics * LM	Version *	F Version *			
**	******	*******	***********			
*	*	*	*			
* A:Serial Correlation*CHSQ(1)= .21215[.645]*F(1, 10)= .16590[.692]*						
*	*	*	*			
* B:Functional Form *CHSQ(1)= .073027[.787]*F(1, 10)= .056492[.817]*						
*	*	*	*			
* (:Normality *CHSQ(2)= 32.6159[.00	0]* Not applicable *			
*	*	*	*			
* D:Heteroscedasticity*CHSQ(1)= 1.3287[.249]*F(1, 11)= 1.2523[.287]*						

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

******* Dependent variable is LND 13 observations used for estimation from 2000 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] CON 14.3015 6.0051 2.3815[.036] LNR -2.3449 1.6764 -1.3988[.189] R-Squared .15102 R-Bar-Squared .073838 S.E. of Regression .36395 F-stat. F(1, 11) 1.9567[.189] Mean of Dependent Variable 5.9026 S.D. of Dependent Variable .37818 Residual Sum of Squares 1.4571 Equation Log-likelihood -4.2208 Akaike Info. Criterion -6.2208 Schwarz Bayesian Criterion -6.7858 DW-statistic .15267

Diagnostic Tests

* B:Functional Form *CHSQ(1)= .79559[.372]*F(1, 10)= .65189[.438]* * * * * C:Normality *CHSQ(2)= 2.3352[.311]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.3299[.249]*F(1, 11)= 1.2536[.287]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ******* Dependent variable is LNI 13 observations used for estimation from 2000 to 2012 ****** Coefficient Standard Error T-Ratio[Prob] Regressor CON 2.2370 1.1335 1.9736[.074] -.49719 1.1546 LNO -.43060[.675] ******* R-Squared .016576 R-Bar-Squared -.072826 S.E. of Regression .57420 F-stat. F(1, 11) .18541[.675] Mean of Dependent Variable 1.7538 S.D. of Dependent Variable .55437 Residual Sum of Squares 3.6268 Equation Log-likelihood -10.1483 Akaike Info. Criterion -12.1483 Schwarz Bayesian Criterion -12.7132 DW-statistic .58388

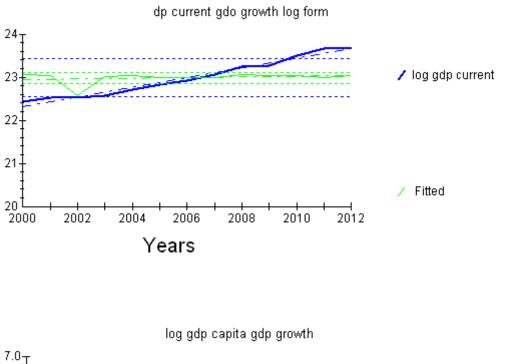
Diagnostic Tests

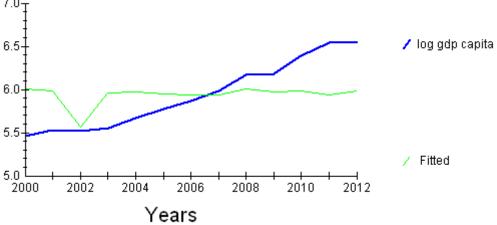
****** * Test Statistics * LM Version * F Version * ***** * * * * A:Serial Correlation*CHSQ(1)= 4.7165[.030]*F(1, 10)= 5.6938[.038]* * * * * B:Functional Form *CHSQ(1)= 3.6585[.056]*F(1, 10)= 3.9164[.076]* * * * * C:Normality *CHSQ(2)= 1.3299[.514]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .064432[.800]*F(1, 11)= .054791[.819]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values Ordinary Least Squares Estimation ************************* Dependent variable is LNO 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] 1.0304 .14192 7.2607[.000] CON LNI -.033340 .077428 -.43060[.675] R-Squared .016576 R-Bar-Squared -.072826 S.E. of Regression .14869 F-stat. F(1, 11) .18541[.675] Mean of Dependent Variable .97195 S.D. of Dependent Variable .14356 Residual Sum of Squares .24321 Equation Log-likelihood 7.4160

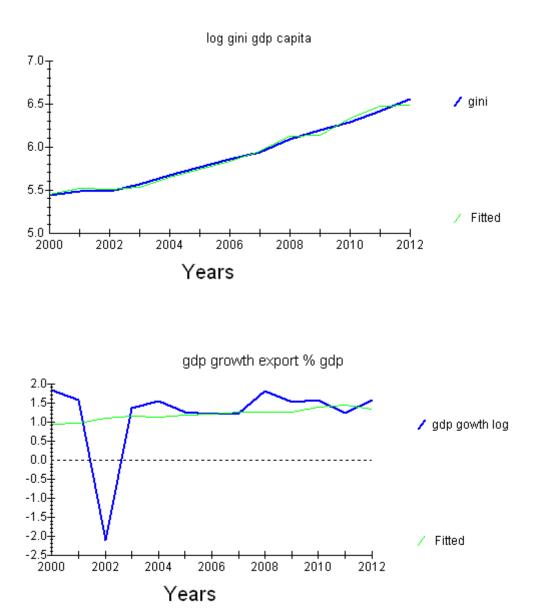
Akaike Info. Criterion 5.4160 Schwarz Bayesian Criterion 4.8510 DW-statistic 1.3459 ******* **Diagnostic Tests** * Test Statistics * LM Version * F Version * ************************ * * * * * A:Serial Correlation*CHSQ(1)= 1.3746[.241]*F(1, 10)= 1.1824[.302]* * * * * * B:Functional Form *CHSQ(1)= 2.1567[.142]*F(1, 10)= 1.9890[.189]* * * * * * C:Normality *CHSQ(2)= 1.2442[.537]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 3.8535[.050]*F(1, 11)= 4.6345[.054]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

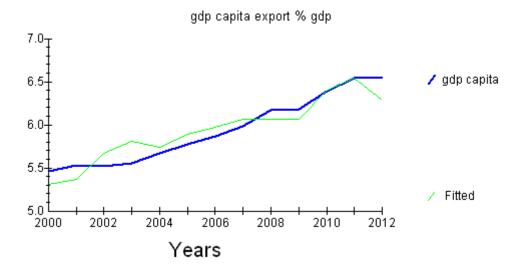
Ordinary Least Squares Estimation ****** Dependent variable is LNS 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON -5.5910 2.0974 -2.6657[.022] LNR .97893 .58551 1.6719[.123] ************************ R-Squared .20263 R-Bar-Squared .13014 S.E. of Regression .12712 F-stat. F(1, 11) 2.7953[.123] Mean of Dependent Variable -2.0848 S.D. of Dependent Variable .13630 Residual Sum of Squares .17775 Equation Log-likelihood 9.4539 Akaike Info. Criterion 7.4539 Schwarz Bayesian Criterion 6.8889 DW-statistic 1.6151 *******

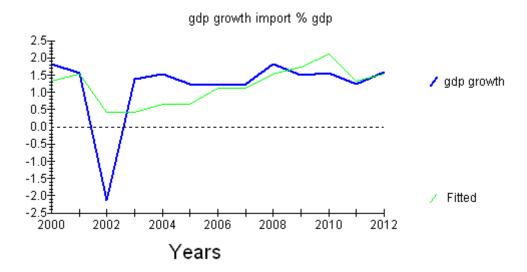
Diagnostic Tests

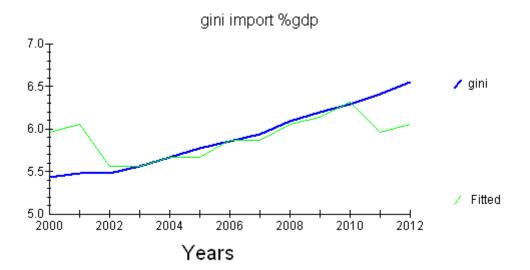

********************* * Test Statistics * LM Version * F Version ****** * * * * * A:Serial Correlation*CHSQ(1)= .38369[.536]*F(1, 10)= .30412[.593]* * * * * B:Functional Form *CHSQ(1)= .044776[.832]*F(1, 10)= .034562[.856]* * * * * C:Normality *CHSQ(2)= 1.4125[.493]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= .088306[.766]*F(1, 11)= .075231[.789]*

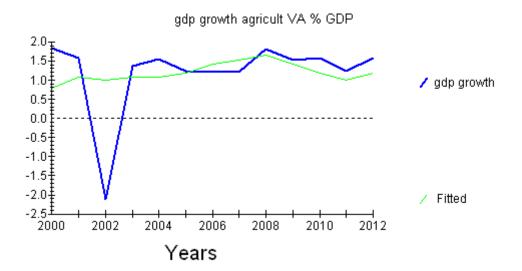

A:Lagrange multiplier test of residual serial correlation

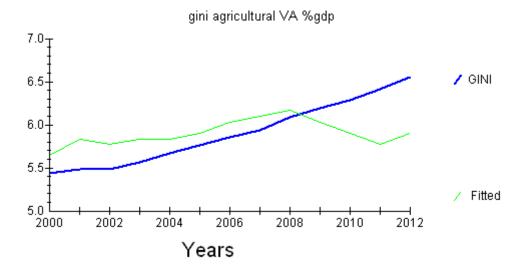

B:Ramsey's RESET test using the square of the fitted values

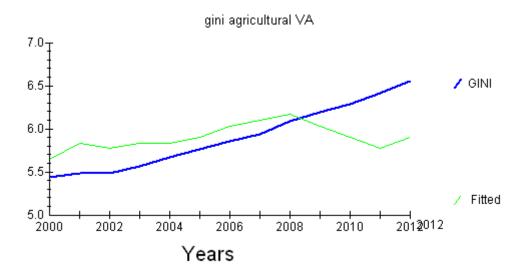

C:Based on a test of skewness and kurtosis of residuals

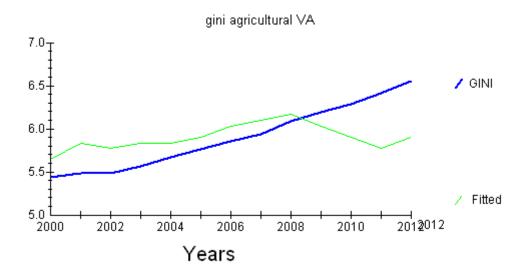

D:Based on the regression of squared residuals on squared fitted values

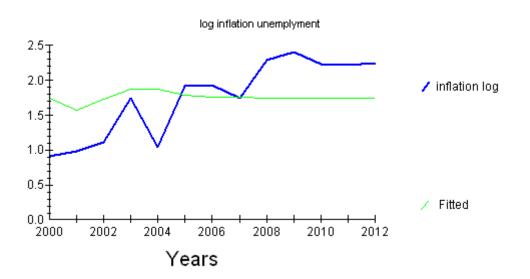


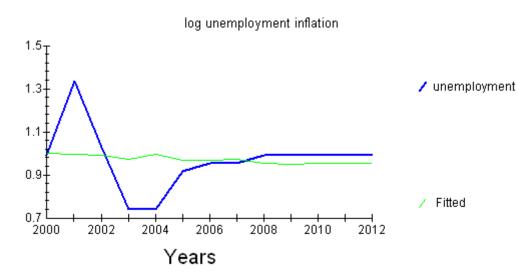


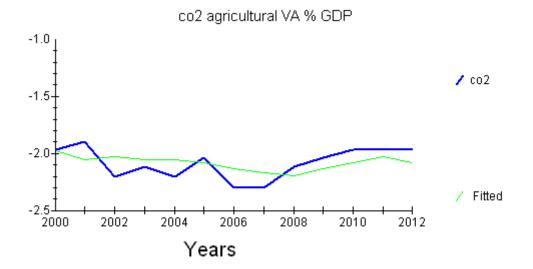












APPENDIX III

NEPALI INDEX- STATISTICS

Ordinary Least Squares Estimation Dependent variable is BNEP 12 observations used for estimation from 2001 to 2012 **** Regressor Coefficient Standard Error T-Ratio[Prob] CON 103.4035 4.0455 25.5599[.000] .082743 ANEP .040783 2.0288[.070] ******* .22075 R-Squared .29159 R-Bar-Squared S.E. of Regression 6.7905 F-stat. F(1, 10) 4.1162[.070] Mean of Dependent Variable 110.5833 S.D. of Dependent Variable 7.6925 Residual Sum of Squares 461.1130 Equation Log-likelihood -38.9197 Akaike Info. Criterion -40.9197 Schwarz Bayesian Criterion -41.4046 DW-statistic 2.0893

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 1.6139[.204]*F(1, 9)= 1.3985[.267]*

* * * * * B:Functional Form *CHSQ(1)= .27802[.598]*F(1, 9)= .21346[.655]* * * * * C:Normality *CHSQ(2)= .61699[.735]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= 1.2367[.266]*F(1, 10)= 1.1490[.309]* ****** ***** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is CNEP 12 observations used for estimation from 2001 to 2012 ****** Coefficient Standard Error T-Ratio[Prob] Regressor CON 101.5030 4.0731 24.9203[.000] ANEP .088319 .041061 2.1509[.057] ******* R-Squared .31631 R-Bar-Squared .24794 S.E. of Regression 6.8368 F-stat. F(1, 10) 4.6264[.057] Mean of Dependent Variable 109.1667 S.D. of Dependent Variable 7.8836 Residual Sum of Squares 467.4192 Equation Log-likelihood -39.0012 Akaike Info. Criterion -41.0012 Schwarz Bayesian Criterion -41.4861 DW-statistic 2.0668

****** * Test Statistics * LM Version * F Version * ************************* * * * * * A:Serial Correlation*CHSQ(1)= 1.3819[.240]*F(1, 9)= 1.1713[.307]* * * * * B:Functional Form *CHSQ(1)= .30088[.583]*F(1, 9)= .23147[.642]* * * * * * C:Normality *CHSQ(2)= .36402[.834]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.1765[.278]*F(1, 10)= 1.0870[.322]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is DNEP

12 observations used for estimation from 2001 to 2012

Regressor	Coefficient	Standard Erro	r T-Ratio[Prob]		
CON	83.7316	16.1582	5.1820[.000]		
CNEP	.23452	.14766	1.5882[.143]		

R-Squared	.20144	R-Bar-Squared	.12158		
S.E. of Regressio	on 3.8609	9 F-stat. F(1,	10) 2.5225[.143]		

Mean of Dependent Variable 109.3333 S.D. of Dependent Variable 4.1194 Residual Sum of Squares 149.0653 Equation Log-likelihood -32.1441 Akaike Info. Criterion -34.1441 Schwarz Bayesian Criterion -34.6290 DW-statistic 1.0965

Diagnostic Tests ************************* * Test Statistics * LM Version * F Version * ****** * * * * * A:Serial Correlation*CHSQ(1)= .93995[.332]*F(1, 9)= .76488[.405]* * * * * * B:Functional Form *CHSQ(1)= .4180E-4[.995]*F(1, 9)= .3135E-4[.996]* * * * * * C:Normality *CHSQ(2)= .050595[.975]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 4.2829[.038]*F(1, 10)= 5.5498[.040]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is ANEP					
12 observations used for estimation from 2001 to 2012					

Regressor Coefficient Standard Error T-Ratio[Prob]					
CON -186.9212 114.8045 -1.6282[.135]					
ENEP 2.9324 1.2232 2.3974[.037]					

R-Squared .36498 R-Bar-Squared .30147					
S.E. of Regression 41.9583 F-stat. F(1, 10) 5.7475[.037]					
Mean of Dependent Variable 86.7733 S.D. of Dependent Variable 50.2027					
Residual Sum of Squares 17605.0 Equation Log-likelihood -60.7735					
Akaike Info. Criterion -62.7735 Schwarz Bayesian Criterion -63.2584					
DW-statistic 1.9165					

Diagnostic Tests

**	***************************************						
*	Test Statistics *	LM Version	* F Ve	rsion *	k		
**	*****	*****	* * * * * * * * * * *	*******	*****	*****	
*	*	*	*				
* /	* A:Serial Correlation*CHSQ(1)= .012797[.910]*F(1, 9)= .0096082[.924]*						
*	*	*	*				
* B:Functional Form *CHSQ(1)= .15547[.693]*F(1, 9)= .11813[.739]*							
*	*	*	*				
* (:Normality '	*CHSQ(2)= .4680	8[.791]*	Not applica	able *		

Ordinary Least Squares Estimation

Dependent variable is CNEP

12 observations used for estimation from 2001 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] CON 118.3414 22.4347 5.2749[.000] ENEP -.098300 .23903 -.41125[.690] ****** R-Squared .016631 R-Bar-Squared -.081706 S.E. of Regression 8.1994 F-stat. F(1, 10) .16912[.690] Mean of Dependent Variable 109.1667 S.D. of Dependent Variable 7.8836 Residual Sum of Squares 672.2966 Equation Log-likelihood -41.1820 Akaike Info. Criterion -43.1820 Schwarz Bayesian Criterion -43.6669 DW-statistic 2.0149

* * * * * A:Serial Correlation*CHSQ(1)= .035058[.851]*F(1, 9)= .026371[.875]* * * * * B:Functional Form *CHSQ(1)= .34637[.556]*F(1, 9)= .26750[.617]* * * * * C:Normality *CHSQ(2)= .61413[.736]* Not applicable * * * * D:Heteroscedasticity*CHSQ(1)= 2.0160[.156]*F(1, 10)= 2.0193[.186]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ****** Dependent variable is ANEP 12 observations used for estimation from 2001 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] -394.0849 202.1674 -1.9493[.080] CON 4.8006 LNEP 2.0147 2.3828[.038]

R-Squared .36216 R-Bar-Squared .29837 S.E. of Regression 42.0514 F-stat. F(1, 10) 5.6778[.038] Mean of Dependent Variable 86.7733 S.D. of Dependent Variable 50.2027 Residual Sum of Squares 17683.2 Equation Log-likelihood -60.8001 Akaike Info. Criterion -62.8001 Schwarz Bayesian Criterion -63.2850 DW-statistic 1.9154

* Test Statistics	* LM Vers	ion *	F Ver	sion	*				
*****	*****	*****	*****	******	******	*****	* * * * * * * *	******	***
* *	*		*						
* A:Serial Correla	tion*CHSQ(1)= .0092293[[.923]*	F(1, 9)=	= .00692	73[.935]	*		
* *	*		*						
* B:Functional Fo	orm *CHSQ(1	.)= .034870[.852]*	F(1, 9)=	02622	28[.875]'	*		
* *	*		*						
* C:Normality	*CHSQ(2)=	.043971[.97	78]*	Not appli	icable	*			
* *	*		*						
* D:Heteroscedas	sticity*CHSQ(1)= .037961	[.846]*	[*] F(1, 10)= .031	734[.862	.]*		
*****	******	******	*****	******	*****	*****	* * * * * * *	******	***
A:Lagrange mul	tiplier test of re	esidual serial	l correl	ation					
B:Ramsey's RES	ET test using th	ne square of	the fitt	ed values	;				
C:Based on a te	st of skewness	and kurtosis	s of resi	iduals					
D:Based on the	regression of s	quared resid	duals or	n squared	fitted v	alues			
Ordi	nary Least Squ	ares Estimati	ion						
******	*****	******	*****	******	*****	*****	* * * * * * *	******	***
Dependent variable is DNEP									
12 observations used for estimation from 2001 to 2012									
*****	******	******	*****	******	*****	*****	* * * * * * *	******	***
Regressor	Coefficient	Standard Er	rror	T-Ratio[[Prob]				
CON	75.6890	17.8282	4.2	455[.002]]				
LNEP	.33588	.17766	1.89	06[.088]					
*****	****	******	*****	******	*****	*****	******	******	***

R-Squared	.26331 R-Bar-Squared	.18964			
S.E. of Regression	3.7083 F-stat. F(1, 10) 3	3.5742[.088]			
Mean of Dependent Variable 109.3333 S.D. of Dependent Variable 4.1194					
Residual Sum of Squa	res 137.5157 Equation Log-lil	kelihood -31.6603			
Akaike Info. Criterion	-33.6603 Schwarz Bayesian (Criterion -34.1452			
DW-statistic	.96405				

*;	***************************************	*****						
*	* Test Statistics * LM Version * F Version *							
*;	***************************************	*****						
*	* * * *							
*	* A:Serial Correlation*CHSQ(1)= 2.1065[.147]*F(1, 9)= 1.9162[.200]*							
*	* * * *							
*	* B:Functional Form *CHSQ(1)= 1.0612[.303]*F(1, 9)= .87314[.374]*							
*	* * * *							
*	* C:Normality *CHSQ(2)= .29305[.864]* Not applicable *							
*	* * * *							
*	* D:Heteroscedasticity*CHSQ(1)= 2.6334[.105]*F(1, 10)= 2.8114[.125]*							
*:	***************************************							
	A:Lagrange multiplier test of residual serial correlation							
	B:Ramsey's RESET test using the square of the fitted values							
	C:Based on a test of skewness and kurtosis of residuals							

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ****** Dependent variable is ANEP 12 observations used for estimation from 2001 to 2012 Coefficient Standard Error T-Ratio[Prob] Regressor CON 292.9009 348.8550 .83961[.421] RNEP -.59141[.567] -2.0891 3.5324 ************************ R-Squared .033795 R-Bar-Squared -.062826 S.E. of Regression 51.7557 F-stat. F(1, 10) .34977[.567] Mean of Dependent Variable 86.7733 S.D. of Dependent Variable 50.2027 Residual Sum of Squares 26786.5 Equation Log-likelihood -63.2917 Akaike Info. Criterion -65.2917 Schwarz Bayesian Criterion -65.7767 DW-statistic 1.5086 ******

Diagnostic Tests

***************** * Test Statistics * LM Version * F Version ****** * * * * * A:Serial Correlation*CHSQ(1)= .53176[.466]*F(1, 9)= .41731[.534]* * * * * B:Functional Form *CHSQ(1)= .13916[.709]*F(1, 9)= .10559[.753]* * * * * C:Normality *CHSQ(2)= .15027[.928]* Not applicable * * * * D:Heteroscedasticity*CHSQ(1)= .0061255[.938]*F(1, 10)= .0051072[.944]*

A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is DNEP

12 observations used for estimation from 2001 to 2012

Regressor	Coefficient	Standard Error	T-Ratio[Prob]			
CON	104.1242	29.0752	3.5812[.005]			
RNEP	.052795	.29441	.17932[.861]			
******	********	******	************			
R-Squared	.0032054	R-Bar-Squared	096474			
S.E. of Regression 4.3136 F-stat. F(1, 10) .032157[.861]						
Mean of Dependent Variable 109.3333 S.D. of Dependent Variable 4.1194						
Residual Sum of Squares 186.0683 Equation Log-likelihood -33.4745						
Akaike Info. Criterion -35.4745 Schwarz Bayesian Criterion -35.9594						
DW-statistic	.96218					

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 2.1418[.143]*F(1, 9)= 1.9553[.196]*

* * * *							
* B:Functional Form *CHSQ(1)= .36231[.547]*F(1, 9)= .28020[.609]*							
* * * *							
* C:Normality *CHSQ(2)= 1.8279[.401]* Not applicable *							
* * * *							
* D:Heteroscedasticity*CHSQ(1)= .0054616[.941]*F(1, 10)= .0045534[.948]*							

A:Lagrange multiplier test of residual serial correlation							
B:Ramsey's RESET test using the square of the fitted values							
C:Based on a test of skewness and kurtosis of residuals							
D:Based on the regression of squared residuals on squared fitted values							
Ordinary Least Squares Estimation							

Dependent variable is INEP							

12 observations used for estimation from 2001 to 2012

Regressor	Coefficient	Standard Erro	r T-Ratio[Prob]
CON	108.9885	98.5626	1.1058[.295]
ONEP	.11543	.96134	.12008[.907]
******	********	*****	**********
R-Squared	.0014398	R-Bar-Squared	098416

S.E. of Regression 55.4224 F-stat. F(1, 10) .014419[.907]

Mean of Dependent Variable 120.6667 S.D. of Dependent Variable 52.8812

Residual Sum of Squares 30716.4 Equation Log-likelihood -64.1131

Akaike Info. Criterion -66.1131 Schwarz Bayesian Criterion -66.5980

DW-statistic 3.0259

****** * Test Statistics * LM Version * F Version * ***** ****** * * * * A:Serial Correlation*CHSQ(1)= 3.3453[.067]*F(1, 9)= 3.4787[.095]* * * * * B:Functional Form *CHSQ(1)= .49751[.481]*F(1, 9)= .38927[.548]* * * * * * C:Normality *CHSQ(2)= 2.1062[.349]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .30900[.578]*F(1, 10)= .26431[.618]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

Dependent variable is ONEP 12 observations used for estimation from 2001 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] CON 99.6616 13.5925 7.3321[.000] INEP .012473 .10387 .12008[.907] R-Squared .0014398 R-Bar-Squared -.098416 S.E. of Regression 18.2178 F-stat. F(1, 10) .014419[.907] Mean of Dependent Variable 101.1667 S.D. of Dependent Variable 17.3825

Residual Sum of Squares3318.9Equation Log-likelihood-50.7621Akaike Info. Criterion-52.7621Schwarz Bayesian Criterion-53.2470DW-statistic1.7135

Diagnostic Tests							

* Test Statistics * LM Version * F Version *							

* * * *							
* A:Serial Correlation*CHSQ(1)= .089046[.765]*F(1, 9)= .067284[.801]*							
* * * *							
* B:Functional Form *CHSQ(1)= .49897[.480]*F(1, 9)= .39046[.548]*							
* * * *							
* C:Normality *CHSQ(2)= .67632[.713]* Not applicable *							
* * * *							
* D:Heteroscedasticity*CHSQ(1)= .44225[.506]*F(1, 10)= .38265[.550]*							

A:Lagrange multiplier test of residual serial correlation							
B:Ramsey's RESET test using the square of the fitted values							
C:Based on a test of skewness and kurtosis of residuals							
D:Based on the regression of squared residuals on squared fitted values							

Ordinary Least Squares Estimation

Dependent varia	able is SNEP				
12 observations	used for estim	ation from 2001 to	0 2012		
******	******	*****	**********		
Regressor	Coefficient	Standard Error	T-Ratio[Prob]		
CON	98.8012	85.3832 1	.1572[.274]		
RNEP	.015528	.86458 .02	17960[.986]		
******	******	*****	*********		
R-Squared	.3226E-4	R-Bar-Squared	099965		
S.E. of Regressio	on 12.667	3 F-stat. F(1, 1	.0) .3226E-3[.986]		
Mean of Depend	dent Variable	100.3333 S.D. of [Dependent Variable 12.0780		
Residual Sum of Squares 1604.6 Equation Log-likelihood -46.4017					
Akaike Info. Criterion -48.4017 Schwarz Bayesian Criterion -48.8866					
DW-statistic 2.6443					

Diagnostic Tests

* Test Statis	tics * LM Ve	rsion * F	/ersion *				
******	* * * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * * *	********			
* *	* *	*					
* A:Serial Cor	* A:Serial Correlation*CHSQ(1)= 1.5486[.213]*F(1, 9)= 1.3335[.278]*						
* *	: *	*					
* B:Functional Form *CHSQ(1)= .17393[.677]*F(1, 9)= .13237[.724]*							
* *	*	*					
* C:Normality	*CHSQ(2)	= 1.4167[.492]*	Not applicab	le *			

* * * * * *
D:Heteroscedasticity*CHSQ(1)=.092527[.761]*F(1, 10)=.077705[.786]*
A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR

Dependent variable is ANEP

10 observations used for estimation from 2003 to 2012

Regressor	Coefficient	Standard Er	ror T-Ratio[Prob]		
ANEP(-1)	.23534	.65075	.36164[.736]		
ANEP(-2)	.057731	.72231	.079926[.940]		
BNEP(-1)	10.3690	53.8722	.19247[.857]		
BNEP(-2)	.20519	3.5805	.057308[.957]		
CNEP	1.0030	2.4136	.41554[.699]		
CNEP(-1)	-11.0526	53.1335	20802[.845]		
******	***********************				
R-Squared	.14319	R-Bar-Squared	d92781		
S.E. of Regression 64.7078 F-stat. F(5, 4) .13370[.976]					
Mean of Depen	Mean of Dependent Variable 96.2280 S.D. of Dependent Variable 46.6041				
Residual Sum of Squares 16748.4 Equation Log-likelihood -51.3067					
Akaike Info. Criterion -57.3067 Schwarz Bayesian Criterion -58.2145					
DW-statistic 2.1376 System Log-likelihood -54.4308					

****** * Test Statistics * LM Version * F Version * ******* * * * * * A:Serial Correlation*CHSQ(1)= 7.3452[.007]*F(1, 3)= 8.3002[.063]* * * * * * B:Functional Form *CHSQ(1)= 7.3100[.007]*F(1, 3)= 8.1524[.065]* * * * * * C:Normality *CHSQ(2)= .084957[.958]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .90691[.341]*F(1, 8)= .79789[.398]* *********** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR

Dependent variable is CNEP

10 observations used for estimation from 2003 to 2012

Regressor	Coefficient	Standard Erro	or T-Ratio[Prob]		
CNEP(-1)	.44815	.41198	1.0878[.338]		
CNEP(-2)	020333	.018768	-1.0834[.340]		
ANEP	.0054559	.0040578	1.3446[.250]		
ANEP(-1)	4098E-5	.0049813	8226E-3[1.00]		
BNEP	1.0040	.019825	50.6428[.000]		
BNEP(-1)	44299	.40930	-1.0823[.340]		
******	***************************************				
R-Squared	.99792	R-Bar-Squared	.99533		
S.E. of Regression .52773 F-stat. F(5, 4) 384.4840[.000]					
Mean of Dependent Variable 110.5000 S.D. of Dependent Variable 7.7208					
Residual Sum of Squares 1.1140 Equation Log-likelihood -3.2162					
Akaike Info. Criterion -9.2162 Schwarz Bayesian Criterion -10.1239					
DW-statistic 1.2160 System Log-likelihood -3.2162					

Diagnostic Tests

* Test Statistics * LM Version * F Version * * * * * * * * A:Serial Correlation*CHSQ(1)= 6.0620[.014]*F(1, 3)= 4.6181[.121]* * * * * * * B:Functional Form *CHSQ(1)= .053686[.817]*F(1, 3)= .016193[.907]*

OLS estimation of a single equation in the Unrestricted VAR

Dependent variable is BNEP

10 observations used for estimation from 2003 to 2012

Regressor	Coefficient	Standard Er	ror T-Ratio[Prob]		
BNEP(-1)	22005	.34674	63461[.549]		
BNEP(-2)	20657	.35540	58123[.582]		
VNEP	.83815	.82142	1.0204[.347]		
RNEP	.75388	.64321	1.1721[.286]		
*****	*****	******	*********		
R-Squared	.25005	R-Bar-Squared	d12493		
S.E. of Regression 8.0744 F-stat. F(3, 6) .66684[.602]					
Mean of Dependent Variable 111.8000 S.D. of Dependent Variable 7.6129					
Residual Sum of Squares 391.1746 Equation Log-likelihood -32.5222					
Akaike Info. Criterion -36.5222 Schwarz Bayesian Criterion -37.1274					
DW-statistic	2.1838	System Log-lil	kelihood -32.5222		

***** * Test Statistics * LM Version * F Version * ***** ****** * * * * * A:Serial Correlation*CHSQ(1)= 1.4103[.235]*F(1, 5)= .82092[.406]* * * * * B:Functional Form *CHSQ(1)= .12719[.721]*F(1, 5)= .064415[.810]* * * * * * C:Normality *CHSQ(2)= .22031[.896]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .040585[.840]*F(1, 8)= .032600[.861]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR

****** Dependent variable is JNEP 10 observations used for estimation from 2003 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] JNEP(-1) -.34922 .41086 -.84998[.428] JNEP(-2) -.31781 .32850 -.96746[.371] ONEP .65749 2.1044 .31243[.765] 2.4333 ONEP(-1) 1.3498 .55472[.599] R-Squared .20729 R-Bar-Squared -.18906

S.E. of Regression	71.0679 F-s	tat. F(3,6)	.52300[.682	2]		
Mean of Dependent V	ariable 116.40	000 S.D. of De	pendent Vari	able 65	.1736	
Residual Sum of Squar	es 30303.9	Equation Log	-likelihood	-54.2716	5	
Akaike Info. Criterion	-58.2716 S	chwarz Bayesia	an Criterion	-58.8768		
DW-statistic	1.9919 Syste	m Log-likelihoo	od -54.27	16		
*****	*******	*****	*******	******	*****	******

******* * Test Statistics * LM Version * F Version * ***** * * * * * A:Serial Correlation*CHSQ(1)= 1.9237[.165]*F(1, 5)= 1.1909[.325]* * * * * * B:Functional Form *CHSQ(1)= .076887[.782]*F(1, 5)= .038741[.852]* * * * * * C:Normality *CHSQ(2)= 2.6032[.272]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 2.5777[.108]*F(1, 8)= 2.7783[.134]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

OLS estimation of a single equation in the Unrestricted VAR ******* Dependent variable is GNEP 10 observations used for estimation from 2003 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] GNEP(-1) .76191 .35013 2.1761[.072] .24469 GNEP(-2) .28979 .84438[.431] CNEP .052386 .099797 .52492[.618] CNEP(-1) -.053456 .11699 -.45693[.664] R-Squared -1.3308 R-Bar-Squared -2.4963 S.E. of Regression 2.1681 F-stat. F(3, 6) *NONE* Mean of Dependent Variable 104.7000 S.D. of Dependent Variable 1.1595 Residual Sum of Squares 28.2032 Equation Log-likelihood -19.3736 Akaike Info. Criterion -23.3736 Schwarz Bayesian Criterion -23.9788 DW-statistic 1.4582 System Log-likelihood -19.3736 ************************

Diagnostic Tests

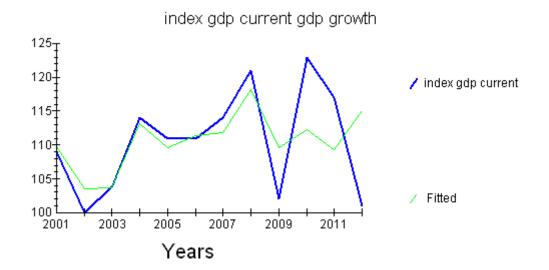
* Test Stat	istics * LN	1 Version *	F Version	*		
******	*****	*****	******	*****		
*	*	*	*			
* A:Serial Co	orrelation*CHS	Q(1)= 2.2822[.	131]*F(1, 5)=	= 1.4785[.278]*		
*	*	*	*			
* B:Functional Form *CHSQ(1)= 7.0854[.008]*F(1, 5)= 12.1552[.018]*						
*	*	*	*			
* C:Normalit	y *CHSQ(2)= 1.2282[.54	1]* Not appli	icable *		

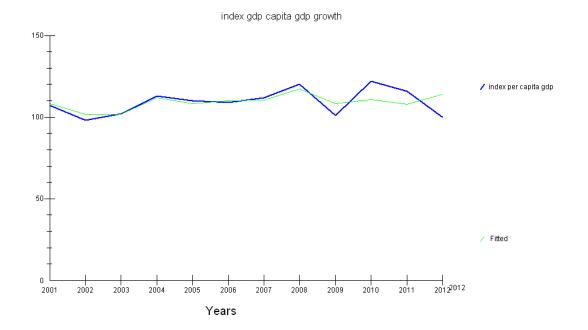
* * * * * *
D:Heteroscedasticity*CHSQ(1)=.075902[.783]*F(1,8)=.061186[.811]*
A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values

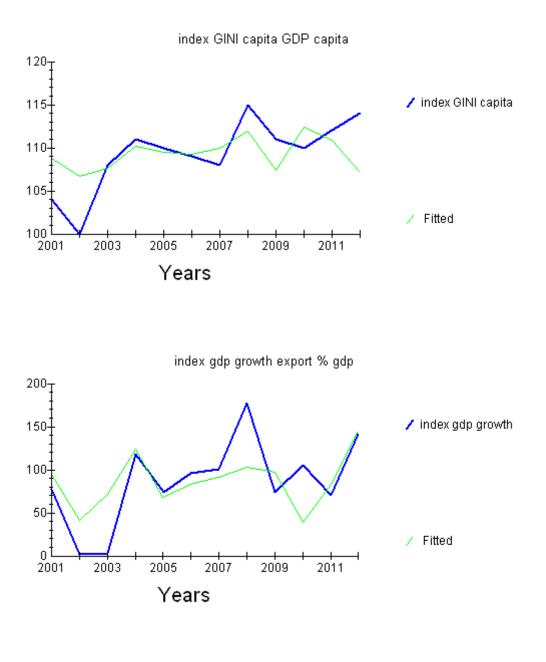
OLS estimation of a single equation in the Unrestricted VAR

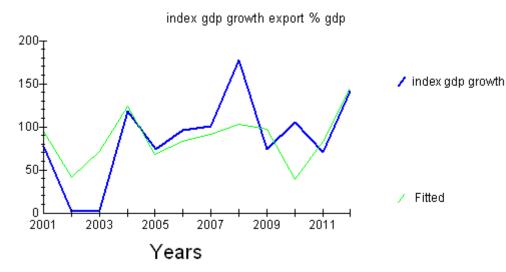
Dependent variable is CNEP

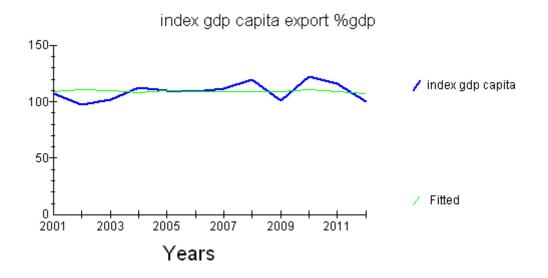
10 observations used for estimation from 2003 to 2012

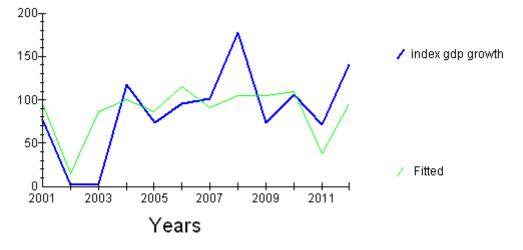

Regressor	Coefficient	Standard Err	ror T-Ratio[Prob]		
CNEP(-1)	61125	.47965	-1.2744[.250]		
CNEP(-2)	35723	.39408	90649[.400]		
DNEP	1.1336	.72717	1.5589[.170]		
DNEP(-1)	.83548	.95333	.87638[.415]		
******	*******	*****	***********		
R-Squared	.23852	R-Bar-Squared	14222		
S.E. of Regression 8.2516 F-stat. F(3, 6) .62646[.624]					
Mean of Dependent Variable 110.5000 S.D. of Dependent Variable 7.7208					
Residual Sum of Squares 408.5341 Equation Log-likelihood -32.7393					
Akaike Info. Criterion -36.7393 Schwarz Bayesian Criterion -37.3445					
DW-statistic	1.9262	System Log-lik	xelihood -32.7393		

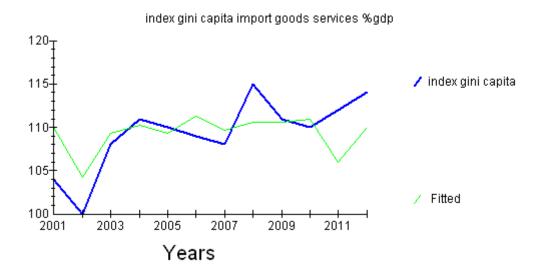

Diagnostic Tests

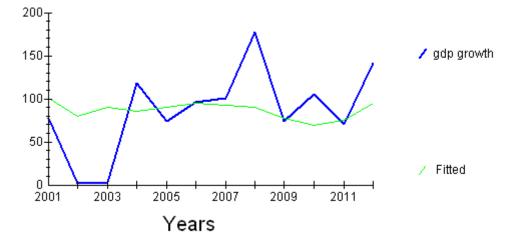


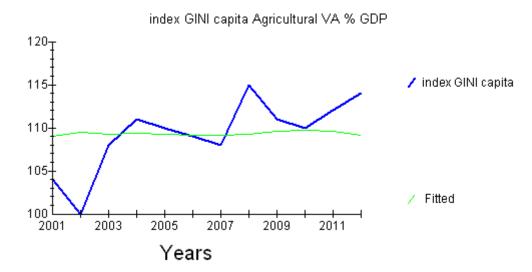

* Test Statistics * LM Version * F Version * ****** * * * * * A:Serial Correlation*CHSQ(1)= .64730[.421]*F(1, 5)= .34605[.582]* * * * * * B:Functional Form *CHSQ(1)= .0024677[.960]*F(1, 5)= .0012342[.973]* * * * * * C:Normality *CHSQ(2)= 1.0673[.586]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .016524[.898]*F(1, 8)= .013241[.911]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

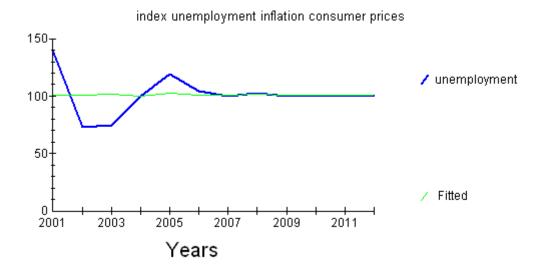

NEPAL INDEKS

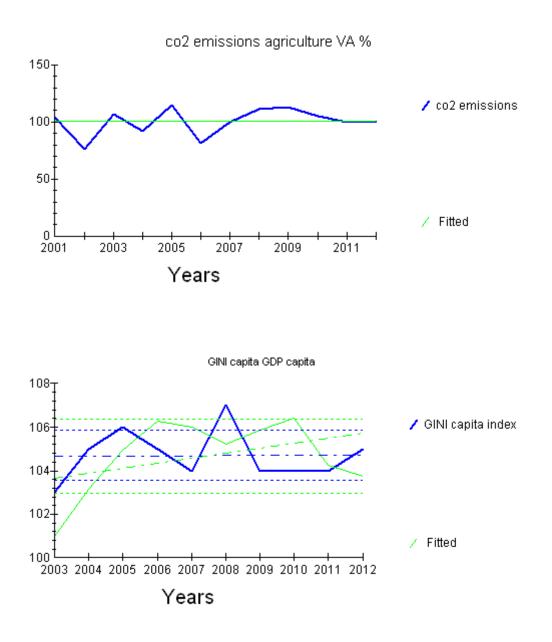







index gdp growth index imports goods serv % gdp




index gdp growth agriculture VA %GDP

APPENDIX IV

Ordi	nary Least Squ	ares Estimatio	n	
******	* * * * * * * * * * * * *	*******	* * * * * * * * * * * * * * * * * * *	******
Dependent varial	ble is IBAN			
13 observations	used for estim	ation from 200	0 to 2012	
******	* * * * * * * * * * * * *	*********	******	*******
Regressor	Coefficient	Standard Erro	or T-Ratio[Pro	b]
OBAN	1.5816	.15388	10.2783[.000]	
******	* * * * * * * * * * * * *	********	******	******
R-Squared	.28598	R-Bar-Squared	.28598	
S.E. of Regression	n 2.1543	F-stat.	*NONE*	
Mean of Dependent Variable 6.0000 S.D. of Dependent Variable 2.5495				
Residual Sum of Squares 55.6939 Equation Log-likelihood -27.9032				
Akaike Info. Crite	erion -28.90	32 Schwarz Ba	ayesian Criterion	-29.1857
DW-statistic	1.4033			
		الم الم الم علم علم علم علم علم علم علم علم علم ع	والارجاد والرجاد علو	de ale ale ale ale ale ale ale ale ale al

Diagnostic Tests ************* * Test Statistics * LM Version * F Version * ************ * * * * * A:Serial Correlation*CHSQ(1)= .68848[.407]*F(1, 11)= .61513[.449]* * * * * * B:Functional Form *CHSQ(1)= .23042[.631]*F(1, 11)= .19849[.665]* * * * * * C:Normality *CHSQ(2)= .74701[.688]* Not applicable *

Ordinary Least Squares Estimation

Dependent variable is OBAN 13 observations used for estimation from 2000 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] IBAN .56777 .055239 10.2783[.000] ****** R-Squared -4.4147 R-Bar-Squared -4.4147 *NONE* S.E. of Regression 1.2908 F-stat. Mean of Dependent Variable 3.8462 S.D. of Dependent Variable .55470 Residual Sum of Squares 19.9927 Equation Log-likelihood -21.2439 Akaike Info. Criterion -22.2439 Schwarz Bayesian Criterion -22.5264 DW-statistic 1.3124

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= .84513[.358]*F(1, 11)= .76483[.401]* * * * * * B:Functional Form *CHSQ(1)= 10.9911[.001]*F(1, 11)= 60.1837[.000]* * * * * C:Normality *CHSQ(2)= .68625[.710]* Not applicable * * * * * D:Heteroscedasticity*CHSQ(1)= 1.6861[.194]*F(1, 11)= 1.6394[.227]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** Dependent variable is OBAN 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] JBAN .67989 .068473 9.9294[.000] ************************ R-Squared -4.7599 R-Bar-Squared -4.7599 *NONE* S.E. of Regression 1.3313 F-stat. Mean of Dependent Variable 3.8462 S.D. of Dependent Variable .55470 Residual Sum of Squares 21.2672 Equation Log-likelihood -21.6456 Akaike Info. Criterion -22.6456 Schwarz Bayesian Criterion -22.9281 DW-statistic .57451

Diagnostic Tests

****** * Test Statistics * LM Version * F Version * ***** ***** * * * * * A:Serial Correlation*CHSQ(1)= 4.4269[.035]*F(1, 11)= 5.6800[.036]* * * * * B:Functional Form *CHSQ(1)= 9.1130[.003]*F(1, 11)= 25.7896[.000]* * * * * C:Normality *CHSQ(2)= .55292[.758]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 2.5947[.107]*F(1, 11)= 2.7430[.126]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** Dependent variable is JBAN 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] OBAN 1.3112 .13205 9.9294[.000] R-Squared .34817 R-Bar-Squared .34817 S.E. of Regression 1.8488 F-stat. *NONE* Mean of Dependent Variable 4.9231 S.D. of Dependent Variable 2.2899 Residual Sum of Squares 41.0153 Equation Log-likelihood -25.9147

Akaike Info. Criterion -26.9147 Schwarz Bayesian Criterion -27.1971

DW-statistic .60417

Diagnostic 1	ests	
*****	*****	*********
* Test Statistics * LM V	ersion * F	Version *
*****	******	**********
* *	* *	
* A:Serial Correlation*CHSQ(1)= 4.0415[.044]*F(1, 11)= 4.9625[.048]*
* *	* *	
* B:Functional Form *CHSQ	(1)= 1.8936[.169)*F(1, 11)= 1.8755[.198]*
* *	* *	
* C:Normality *CHSQ(2)= .40750[.816]*	Not applicable *
* * :	* *	
* D:Heteroscedasticity*CHSC	0(1)= 2.9558[.08	6]*F(1, 11)= 3.2370[.099]*
*****	******	*******
A:Lagrange multiplier test o	of residual serial co	rrelation
B:Ramsey's RESET test using	g the square of the	fitted values
C:Based on a test of skewne	ess and kurtosis of	residuals
D:Based on the regression of	of squared residual	s on squared fitted values
Ordinary Least S	quares Estimation	
*****	*******	***********
Dependent variable is IBHU		
13 observations used for est	imation from 2000	to 2012
*****	******	***********
Regressor Coefficient	Standard Error	T-Ratio[Prob]
OBHU 1.5122	.73701	2.0518[.063]
******	*****	********

R-Squared	.067337 R	-Bar-Squared	.067337	
S.E. of Regression	6.6739	F-stat.	*NONE*	
Mean of Dependent	Variable 3	.3846 S.D. of De	pendent Varia	ble 6.9106
Residual Sum of Squa	ires 534.4	878 Equation Lo	g-likelihood	-42.6025
Akaike Info. Criterion	-43.602	5 Schwarz Bayes	an Criterion	-43.8850
DW-statistic	1.7934			
*****	******	*****	* * * * * * * * * * * * *	*****

******	*****	*******	********
* Test Statis	ics * LM Version	* F Version *	
******	*****	* * * * * * * * * * * * * * * * * * * *	******
* *	*	*	
* A:Serial Corr	elation*CHSQ(1)= .03	9768[.842]*F(1, 11)=	.033753[.858]*
* *	*	*	
* B:Functional	Form *CHSQ(1)= .08	37560[.767]*F(1, 11)=	.074592[.790]*
* *	*	*	
* C:Normality	*CHSQ(2)= 33.49	62[.000]* Not applica	able *
* *	*	*	
* D:Heterosce	dasticity*CHSQ(1)= .3	81572[.574]*F(1, 11)=	.27380[.611]*
******	*****	* * * * * * * * * * * * * * * * * * * *	******
A:Lagrange r	nultiplier test of residua	l serial correlation	
B:Ramsey's I	RESET test using the squa	are of the fitted values	
C:Based on a	test of skewness and ku	urtosis of residuals	

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation *********** Dependent variable is OBHU 13 observations used for estimation from 2000 to 2012 ******** Regressor Coefficient Standard Error T-Ratio[Prob] IBHU .17175 .083704 2.0518[.063] R-Squared -3.7539 R-Bar-Squared -3.7539 S.E. of Regression 2.2491 F-stat. *NONE* Mean of Dependent Variable 2.3077 S.D. of Dependent Variable 1.0316 Residual Sum of Squares 60.7036 Equation Log-likelihood -28.4630 Akaike Info. Criterion -29.4630 Schwarz Bayesian Criterion -29.7455 DW-statistic .56353 *****

Diagnostic Tests ************** * Test Statistics * LM Version * F Version ****** * * * A:Serial Correlation*CHSQ(1)= 9.3739[.002]*F(1, 11)= 28.4359[.000]* * * * * * B:Functional Form *CHSQ(1)= 8.9246[.003]*F(1, 11)= 24.0890[.000]* * * * C:Normality *CHSQ(2)= 1.2950[.523]* Not applicable * * * * D:Heteroscedasticity*CHSQ(1)= 9.0822[.003]*F(1, 11)= 25.4999[.000]* *******

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation ******* Dependent variable is OBHU 13 observations used for estimation from 2000 to 2012 **************** Regressor Coefficient Standard Error T-Ratio[Prob] JBHU .41192 .066169 6.2253[.000] ************************ -.51830 R-Bar-Squared R-Squared -.51830 S.E. of Regression 1.2711 F-stat. *NONE* Mean of Dependent Variable 2.3077 S.D. of Dependent Variable 1.0316 Residual Sum of Squares 19.3875 Equation Log-likelihood -21.0441 Akaike Info. Criterion -22.0441 Schwarz Bayesian Criterion -22.3266 .66798 DW-statistic *****

Diagnostic Tests

* Test Statistics * LM Version * F Version *
* * * * * *
* A:Serial Correlation*CHSQ(1)= 6.1946[.013]*F(1, 11)= 10.0127[.009]*
* * * *
* B:Functional Form *CHSQ(1)= 6.1756[.013]*F(1, 11)= 9.9541[.009]*

* * * *
* C:Normality *CHSQ(2)= .48759[.784]* Not applicable *
* * * *
* D:Heteroscedasticity*CHSQ(1)= 1.2133[.271]*F(1, 11)= 1.1323[.310]*

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values
Ordinary Least Squares Estimation

Dependent variable is JBHU
13 observations used for estimation from 2000 to 2012

Regressor Coefficient Standard Error T-Ratio[Prob]
OBHU 1.8537 .29776 6.2253[.000]

R-Squared36977 R-Bar-Squared36977
S.E. of Regression 2.6964 F-stat. *NONE*
Mean of Dependent Variable 4.8462 S.D. of Dependent Variable 2.3038
Residual Sum of Squares 87.2439 Equation Log-likelihood -30.8206
Akaike Info. Criterion -31.8206 Schwarz Bayesian Criterion -32.1031
DW-statistic .72082

Diagnostic Tests

* Test Statistics * LM Version * F Version *

217

* * * * * A:Serial Correlation*CHSQ(1)= 4.2263[.040]*F(1, 11)= 5.2987[.042]* * * * * B:Functional Form *CHSQ(1)= 5.3792[.020]*F(1, 11)= 7.7644[.018]* * * * * C:Normality *CHSQ(2)= .77298[.679]* Not applicable * * * * D:Heteroscedasticity*CHSQ(1)= .0040257[.949]*F(1, 11)= .0034074[.954]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ******* Dependent variable is ICHI 13 observations used for estimation from 2000 to 2012 ******************* Regressor Coefficient Standard Error T-Ratio[Prob] OCHI .47761 .13682 3.4909[.004] ****** R-Squared -.051864 R-Bar-Squared -.051864 *NONE* S.E. of Regression 1.9397 F-stat. Mean of Dependent Variable 1.9231 S.D. of Dependent Variable 1.8913 Residual Sum of Squares 45.1493 Equation Log-likelihood -26.5389 Akaike Info. Criterion -27.5389 Schwarz Bayesian Criterion -27.8213 DW-statistic 1.5142

****** * Test Statistics * LM Version * F Version ****** * * * * A:Serial Correlation*CHSQ(1)= .53308[.465]*F(1, 11)= .47036[.507]* * * * * B:Functional Form *CHSQ(1)= 1.9865[.159]*F(1, 11)= 1.9841[.187]* * * * * C:Normality *CHSQ(2)= 1.2978[.523]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.0774[.299]*F(1, 11)= .99408[.340]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ******* Dependent variable is OCHI 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] 1.0549 ICHI .30220 3.4909[.004] R-Squared -107.0357 R-Bar-Squared -107.0357 S.E. of Regression 2.8828 F-stat. *NONE* Mean of Dependent Variable 3.9231 S.D. of Dependent Variable .27735 Residual Sum of Squares 99.7253 Equation Log-likelihood -31.6898 Akaike Info. Criterion -32.6898 Schwarz Bayesian Criterion -32.9722

DW-statistic .79891

Diagnostic Tests * Test Statistics * LM Version * F Version * ***** ****** * * * * * A:Serial Correlation*CHSQ(1)= 3.9921[.046]*F(1, 11)= 4.8750[.049]* * * * * * B:Functional Form *CHSQ(1)= 3.2260[.072]*F(1, 11)= 3.6306[.083]* * * * * * C:Normality *CHSQ(2)= 2.5013[.286]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 7.1406[.008]*F(1, 11)= 13.4051[.004]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation Dependent variable is IIND 13 observations used for estimation from 2000 to 2012 ******* Coefficient Standard Error T-Ratio[Prob] Regressor OIND 1.6730 .26302 6.3606[.000] ************************ R-Squared -.36184 R-Bar-Squared -.36184 *NONE* S.E. of Regression 3.3165 F-stat. Mean of Dependent Variable 6.0769 S.D. of Dependent Variable 2.8420 Residual Sum of Squares 131.9937 Equation Log-likelihood -33.5119 Akaike Info. Criterion -34.5119 Schwarz Bayesian Criterion -34.7944 .27694 DW-statistic ***********

Diagnostic Tests

***	******	*****	***************************************	
* •	Test Statistics *	LM Version	* F Version *	
***	* * * * * * * * * * * * * * * * * * * *	*****	****************	
*	*	*	*	
* A:	Serial Correlation	*CHSQ(1)= 8.8	8929[.003]*F(1, 11)= 23.8174[.000]*	
*	*	*	*	
* B:	Functional Form	*CHSQ(1)= 5.	.1513[.023]*F(1, 11)= 7.2196[.021]*	
*	*	*	*	
* C:	Normality *Cl	HSQ(2)= 1.052	25[.591]* Not applicable *	
*	*	*	*	
* D:	Heteroscedasticit	y*CHSQ(1)= 1	1.7349[.188]*F(1, 11)= 1.6940[.220]*	
***	******	*****	***************************************	

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

****** Dependent variable is OIND 13 observations used for estimation from 2000 to 2012 ************************ Regressor Coefficient Standard Error T-Ratio[Prob] IIND .46101 .072478 6.3606[.000] R-Squared -10.2582 R-Bar-Squared -10.2582 S.E. of Regression 1.7410 F-stat. *NONE* Mean of Dependent Variable 3.4615 S.D. of Dependent Variable .51887 Residual Sum of Squares 36.3726 Equation Log-likelihood -25.1338 Akaike Info. Criterion -26.1338 Schwarz Bayesian Criterion -26.4163 DW-statistic .27417 *******

**	*******	* * * * * * * * * * * * * * * * * * * *	******	******	*****
*	Test Statistics	* LM Version	* F Ve	ersion *	
**	*****	* * * * * * * * * * * * * * * * * * * *	******	*****	*****
*	*	*	*		
* /	A:Serial Correlat	tion*CHSQ(1)= 8	.3683[.004]*I	-(1, 11)= 19.874	41[.001]*
*	*	*	*		
* E	3:Functional For	rm *CHSQ(1)= 1	1.2469[.001]'	*F(1, 11)= 70.57	705[.000]*
*	*	*	*		
* (C:Normality	*CHSQ(2)= 1.66	519[.436]*	Not applicable	*

* * * * * D:Heteroscedasticity*CHSQ(1)= 1.3033[.254]*F(1, 11)= 1.2257[.292]* ******* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** ****************** Dependent variable is INEP 13 observations used for estimation from 2000 to 2012 ************ Regressor Coefficient Standard Error T-Ratio[Prob] ONEP 2.7719 .46835 5.9185[.000] ****** R-Squared -.25029 R-Bar-Squared -.25029 S.E. of Regression 3.5359 F-stat. *NONE*

Mean of Dependent Variable 6.0000 S.D. of Dependent Variable 3.1623

Residual Sum of Squares 150.0351 Equation Log-likelihood -34.3447

Akaike Info. Criterion -35.3447 Schwarz Bayesian Criterion -35.6272

DW-statistic .50596

Diagnostic Tests

* A:Serial Correlation*CHSQ(1)= 6.2667[.012]*F(1, 11)= 10.2376[.008]*

* * * *	
* B:Functional Form *CHSQ(1)= 4.1043[.043]*F(1, 11)= 5.0752[.046]*	
* * * *	
* C:Normality *CHSQ(2)= .74009[.691]* Not applicable *	
* * * *	
* D:Heteroscedasticity*CHSQ(1)= 6.7603[.009]*F(1, 11)= 11.9179[.005]*	
***************************************	**
A:Lagrange multiplier test of residual serial correlation	
B:Ramsey's RESET test using the square of the fitted values	
C:Based on a test of skewness and kurtosis of residuals	
D:Based on the regression of squared residuals on squared fitted values	
Ordinary Least Squares Estimation	
***************************************	**
Dependent variable is ONEP	
13 observations used for estimation from 2000 to 2012	
***************************************	**
Regressor Coefficient Standard Error T-Ratio[Prob]	
INEP .26871 .045401 5.9185[.000]	
***************************************	**
R-Squared -14.7562 R-Bar-Squared -14.7562	
S.E. of Regression 1.1009 F-stat. *NONE*	
Mean of Dependent Variable 2.0769 S.D. of Dependent Variable .27735	
Residual Sum of Squares 14.5442 Equation Log-likelihood -19.1758	
Akaike Info. Criterion -20.1758 Schwarz Bayesian Criterion -20.4583	
DW-statistic .44751	
***************************************	**

* Test Statistics * LM Version * F Version * ****** * * * * * A:Serial Correlation*CHSQ(1)= 6.5815[.010]*F(1, 11)= 11.2792[.006]* * * * * B:Functional Form *CHSQ(1)= 8.3480[.004]*F(1, 11)= 19.7393[.001]* * * * * C:Normality *CHSQ(2)= .042249[.979]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 3.5151[.061]*F(1, 11)= 4.0766[.069]* *********** A:Lagrange multiplier test of residual serial correlation **Ordinary Least Squares Estimation** ******* Dependent variable is IPAK 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] OPAK 1.2563 .27904 4.5021[.001] ************************ R-Squared -.45248 R-Bar-Squared -.45248 *NONE* S.E. of Regression 6.1134 F-stat. Mean of Dependent Variable 8.3077 S.D. of Dependent Variable 5.0726 Residual Sum of Squares 448.4813 Equation Log-likelihood -41.4622 Akaike Info. Criterion -42.4622 Schwarz Bayesian Criterion -42.7446 DW-statistic .57780

****** * Test Statistics * LM Version * F Version * ***** ****** * * * * * A:Serial Correlation*CHSQ(1)= 6.0675[.014]*F(1, 11)= 9.6274[.010]* * * * * B:Functional Form *CHSQ(1)= 8.8544[.003]*F(1, 11)= 23.4944[.001]* * * * * C:Normality *CHSQ(2)= .66959[.715]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.0149[.314]*F(1, 11)= .93150[.355]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** Dependent variable is OPAK 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] .50000 IPAK .11106 4.5021[.001] R-Squared -13.8750 R-Bar-Squared -13.8750 S.E. of Regression 3.8568 F-stat. *NONE* Mean of Dependent Variable 6.0000 S.D. of Dependent Variable 1.0000 Residual Sum of Squares 178.5000 Equation Log-likelihood -35.4739 Akaike Info. Criterion -36.4739 Schwarz Bayesian Criterion -36.7563 DW-statistic .36555

Diagnostic Tests ************** * Test Statistics * LM Version * F Version * * * * * * A:Serial Correlation*CHSQ(1)= 7.4521[.006]*F(1, 11)= 14.7757[.003]* * * * * * B:Functional Form *CHSQ(1)= 7.1844[.007]*F(1, 11)= 13.5892[.004]* * * * * * C:Normality *CHSQ(2)= 1.3484[.510]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .41938[.517]*F(1, 11)= .36669[.557]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation **** Dependent variable is OPAK 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] 7.2108 CON .38553 18.7036[.000] IPAK -.14574 .040027 -3.6410[.004] ************************ R-Squared .54652 R-Bar-Squared .50530 S.E. of Regression .70335 F-stat. F(1, 11) 13.2571[.004] Mean of Dependent Variable 6.0000 S.D. of Dependent Variable 1.0000 Residual Sum of Squares 5.4417 Equation Log-likelihood -12.7856 Akaike Info. Criterion -14.7856 Schwarz Bayesian Criterion -15.3506 DW-statistic 1.4934 *****

******	***************************************
* Test Statistics * LM Version	* F Version *
*******	************
* * *	*
* A:Serial Correlation*CHSQ(1)=	.56920[.451]*F(1, 10)= .45790[.514]*
* * *	*
* B:Functional Form *CHSQ(1)=	2.1058[.147]*F(1, 10)= 1.9330[.195]*
* * *	*
* C:Normality *CHSQ(2)= .38	8617[.824]* Not applicable *
* * *	*
* D:Heteroscedasticity*CHSQ(1)=	.55628[.456]*F(1, 11)= .49174[.498]*
*****	***********

A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** Dependent variable is IPAK 13 observations used for estimation from 2000 to 2012 ***************** Regressor Coefficient Standard Error T-Ratio[Prob] CON 30.8077 6.2583 4.9227[.000] OPAK -3.7500 1.0299 -3.6410[.004] .54652 R-Bar-Squared R-Squared .50530 S.E. of Regression 3.5678 F-stat. F(1, 11) 13.2571[.004] Mean of Dependent Variable 8.3077 S.D. of Dependent Variable 5.0726 Residual Sum of Squares 140.0192 Equation Log-likelihood -33.8956 Akaike Info. Criterion -35.8956 Schwarz Bayesian Criterion -36.4605 DW-statistic 2.1720

Diagnostic Tests

* Test Statistics * LM Version * F Version *
* * * * * *
* A:Serial Correlation*CHSQ(1)= .20855[.648]*F(1, 10)= .16304[.695]*
* * * *
* B:Functional Form *CHSQ(1)= .17200[.678]*F(1, 10)= .13408[.722]*

* *	*	*		
* C:Normality	*CHSQ(2)=	1.9126[.384]*	Not applicable	*
* *	*	*		
* D:Heterosceda	asticity*CHSQ(1)= 1.2536[.263]]*F(1, 11)= 1.17	39[.302]*
*****	*****	*****	*****	*****
A:Lagrange mu	ultiplier test of r	esidual serial corr	relation	
B:Ramsey's RE	SET test using t	he square of the f	itted values	
C:Based on a t	est of skewness	and kurtosis of re	esiduals	
D:Based on the	e regression of s	squared residuals	on squared fitted v	values
Orc	linary Least Squ	ares Estimation		
*****	*******	******	*****	******
Dependent vari	able is INEP			
13 observations	s used for estim	ation from 2000 t	o 2012	
*****	*****	*****	*****	******
Regressor	Coefficient	Standard Error	T-Ratio[Prob]	
CON	15.0000	6.6583 2	.2528[.046]	
ONEP	-4.3333	3.1798 -1	.3628[.200]	
*****	*******	******	*****	******
R-Squared	.14444	R-Bar-Squared	.066667	
S.E. of Regression	on 3.0551	F-stat. F(1, 1	1) 1.8571[.200]	
Mean of Depen	dent Variable	6.0000 S.D. of D	ependent Variable	3.1623
Residual Sum of	f Squares 102	.6667 Equation I	og-likelihood -	31.8787
Akaike Info. Crit	erion -33.87	87 Schwarz Baye	esian Criterion -34	1.4436
DW-statistic	.81710			
*****	*****	*****	*****	*****

* Test Statistics * LM Version * F Version * ****** * * * * * A:Serial Correlation*CHSQ(1)= 3.7761[.052]*F(1, 10)= 4.0938[.071]* * * * * * B:Functional Form *CHSQ(1)= .0000[1.00]*F(1, 10)= .0000[1.00]* * * * * * C:Normality *CHSQ(2)= .71782[.698]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 1.2535[.263]*F(1, 11)= 1.1738[.302]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation **** Dependent variable is ONEP 13 observations used for estimation from 2000 to 2012 ******* Regressor Coefficient Standard Error T-Ratio[Prob] 2.2769 CON .16450 13.8412[.000] INEP -.033333 .024460 -1.3628[.200] ************************ R-Squared .14444 R-Bar-Squared .066667 S.E. of Regression .26795 F-stat. F(1, 11) 1.8571[.200] Mean of Dependent Variable 2.0769 S.D. of Dependent Variable .27735 Residual Sum of Squares .78974 Equation Log-likelihood -.23972 Akaike Info. Criterion -2.2397 Schwarz Bayesian Criterion -2.8047 DW-statistic 2.5254 *****

***	******	******	**************
*	Test Statistics * LN	A Version *	F Version *
:	****	*****	************
*	*	*	*
* A	Serial Correlation*CHS	6Q(1)= 1.1068[.	.293]*F(1, 10)= .93059[.357]*
*	*	*	*
* B	:Functional Form *CH	SQ(1)= 1.2242[[.269]*F(1, 10)= 1.0396[.332]*
*	*	*	*
* C	:Normality *CHSQ	(2)= 27.1507[.00	00]* Not applicable *
*	*	*	*
* C	:Heteroscedasticity*CF	ISQ(1)= 2.7387	7[.098]*F(1, 11)= 2.9359[.115]*
;	***	*****	*******

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation

******* Dependent variable is IIND 13 observations used for estimation from 2000 to 2012 Regressor Coefficient Standard Error T-Ratio[Prob] CON 14.0714 5.2370 2.6869[.021] OIND -2.3095 1.4975 -1.5423[.151] R-Squared .17780 R-Bar-Squared .10305 S.E. of Regression 2.6916 F-stat. F(1, 11) 2.3787[.151] Mean of Dependent Variable 6.0769 S.D. of Dependent Variable 2.8420 Residual Sum of Squares 79.6905 Equation Log-likelihood -30.2320 Akaike Info. Criterion -32.2320 Schwarz Bayesian Criterion -32.7970 DW-statistic .98123

Diagnostic Tests

* B:Functional Form *CHSQ(1)= *NONE* *F(1, 10)= *NONE* *
* * * *
* C:Normality *CHSQ(2)= .53022[.767]* Not applicable *
* * * *
* D:Heteroscedasticity*CHSQ(1)= 3.0912[.079]*F(1, 11)= 3.4316[.091]*

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values
Ordinary Least Squares Estimation

Dependent variable is OIND
13 observations used for estimation from 2000 to 2012

Regressor Coefficient Standard Error T-Ratio[Prob]
CON 3.9294 .33254 11.8161[.000]
IIND076984 .049915 -1.5423[.151]

R-Squared .17780 R-Bar-Squared .10305
S.E. of Regression .49141 F-stat. F(1, 11) 2.3787[.151]
Mean of Dependent Variable 3.4615 S.D. of Dependent Variable .51887
Residual Sum of Squares 2.6563 Equation Log-likelihood -8.1242
Akaike Info. Criterion -10.1242 Schwarz Bayesian Criterion -10.6892
DW-statistic 2.8693

****** * Test Statistics * LM Version * F Version * ***** * * * * A:Serial Correlation*CHSQ(1)= 2.9683[.085]*F(1, 10)= 2.9590[.116]* * * * * B:Functional Form *CHSQ(1)= 1.3205[.250]*F(1, 10)= 1.1306[.313]* * * * * C:Normality *CHSQ(2)= .99210[.609]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= 2.8703[.090]*F(1, 11)= 3.1169[.105]* ***** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** Dependent variable is ICHI 13 observations used for estimation from 2000 to 2012 ****** Regressor Coefficient Standard Error T-Ratio[Prob] CON 10.7500 7.6318 1.4086[.187] OCHI -2.2500 1.9409 -1.1593[.271] R-Squared .10887 R-Bar-Squared .027859 S.E. of Regression 1.8647 F-stat. F(1, 11) 1.3439[.271] Mean of Dependent Variable 1.9231 S.D. of Dependent Variable 1.8913 Residual Sum of Squares 38.2500 Equation Log-likelihood -25.4610 Akaike Info. Criterion -27.4610 Schwarz Bayesian Criterion -28.0259

DW-statistic 1.7549

Diagnostic Tests

* Test Statistics * LM Version * F Version *

* * * *
* A:Serial Correlation*CHSQ(1)= .088262[.766]*F(1, 10)= .068358[.799]*
* * * *
* B:Functional Form *CHSQ(1)= *NONE* *F(1, 10)= *NONE* *
* * * *
* C:Normality *CHSQ(2)= 1.4685[.480]* Not applicable *
* * * *
* D:Heteroscedasticity*CHSQ(1)= .79200[.373]*F(1, 11)= .71363[.416]*

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values

Ordinary Least Squares Estimation **** Dependent variable is OCHI 13 observations used for estimation from 2000 to 2012 ************************ Regressor Coefficient Standard Error T-Ratio[Prob] 4.0161 CON .11043 36.3673[.000] -.048387 .041740 ICHI -1.1593[.271] ******* R-Squared .10887 R-Bar-Squared .027859 S.E. of Regression .27346 F-stat. F(1, 11) 1.3439[.271] Mean of Dependent Variable 3.9231 S.D. of Dependent Variable .27735 Residual Sum of Squares .82258 Equation Log-likelihood -.50452 Akaike Info. Criterion -2.5045 Schwarz Bayesian Criterion -3.0695 DW-statistic 2.3839 *****

**	******	******	******	*****	* * * * * * * * * *	*****	****
*	Test Statistics * LM	Version *	F Versior	*			
**	*******	***********	******	*****	******	*****	****
*	*	*	*				
* /	Serial Correlation*CHS	Q(1)= .61782[.4	132]*F(1,	10)= .	49896[.496]	*	
*	*	*	*				
* E	:Functional Form *CHS	Q(1)= .14902[.0	699]*F(1	, 10)=	.11596[.741]*	
*	*	*	*				
* (:Normality *CHSQ(2)= 33.0482[.00	0]* Not	: applica	ble *		
*	*	*	*				
*[:Heteroscedasticity*CH	SQ(1)= 2.2608[.133]*F(2	l, 11)=	2.3157[.156	6]*	
**	*****	****	******	*****	******	****	****

A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values **Ordinary Least Squares Estimation** **************** Dependent variable is IBHU 13 observations used for estimation from 2000 to 2012 ****************** Regressor Coefficient Standard Error T-Ratio[Prob] CON -.67470 4.8950 -.13783[.893] OBHU 1.7590 1.9490 .90253[.386] R-Squared .068945 R-Bar-Squared -.015697 S.E. of Regression 6.9646 F-stat. F(1, 11) .81455[.386] Mean of Dependent Variable 3.3846 S.D. of Dependent Variable 6.9106 Residual Sum of Squares 533.5663 Equation Log-likelihood -42.5913 Akaike Info. Criterion -44.5913 Schwarz Bayesian Criterion -45.1563 1.8087 DW-statistic *****

Diagnostic Tests

* Test Statistics * LM Version * F Version *
* * * * * *
* A:Serial Correlation*CHSQ(1)= .023885[.877]*F(1, 10)= .018407[.895]*
* * * *
* B:Functional Form *CHSQ(1)= .12666[.722]*F(1, 10)= .098387[.760]*

* *	*	*		
* C:Normality	*CHSQ(2)=	31.5961[.000]*	Not applicable	*
* *	*	*		
* D:Heteroscedas	sticity*CHSQ(1)= .38277[.536]*	F(1, 11)= .33	371[.575]*
*****	* * * * * * * * * * * * *	*****	******	******
A:Lagrange mul	tiplier test of r	esidual serial corre	lation	
B:Ramsey's RES	ET test using t	ne square of the fit	ted values	
C:Based on a te	st of skewness	and kurtosis of res	iduals	
D:Based on the	regression of s	equared residuals o	n squared fitted	values
Ordir	nary Least Squa	ares Estimation		
*****	* * * * * * * * * * * * *	*****	******	*****
Dependent varia	ble is OBHU			
13 observations	used for estimation	ation from 2000 to	2012	
*****	* * * * * * * * * * * * *	*****	******	******
Regressor	Coefficient	Standard Error	T-Ratio[Prob]	
CON	2.1750	.32364 6.72	205[.000]	
IBHU	.039195	.043428 .90	0253[.386]	
*****	* * * * * * * * * * * * *	*****	******	******
R-Squared	.068945	R-Bar-Squared	015697	
S.E. of Regression	n 1.0396	F-stat. F(1, 11) .81455[.386]	
Mean of Depend	ent Variable	2.3077 S.D. of De	pendent Variable	e 1.0316
Residual Sum of	Squares 11.	8889 Equation Log	g-likelihood -	17.8654
Akaike Info. Crite	erion -19.86	54 Schwarz Bayes	ian Criterion -2	0.4304
DW-statistic	.57396			
*****	* * * * * * * * * * * * *	*****	******	******

* Test Statistics * LM Version * F Version *

****** * * * * * A:Serial Correlation*CHSQ(1)= 8.2698[.004]*F(1, 10)= 17.4828[.002]* * * * * B:Functional Form *CHSQ(1)= 1.7056[.192]*F(1, 10)= 1.5101[.247]* * * * * C:Normality *CHSQ(2)= .92839[.629]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .089497[.765]*F(1, 11)= .076253[.788]* ************** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values Ordinary Least Squares Estimation *********** Dependent variable is IBAN 13 observations used for estimation from 2000 to 2012 **************** Regressor Coefficient Standard Error T-Ratio[Prob] -4.4167 CON 4.3475 -1.0159[.331] 2.7083 OBAN 1.1197 2.4189[.034] R-Squared .34722 R-Bar-Squared .28788 S.E. of Regression 2.1515 F-stat. F(1, 11) 5.8511[.034]

Mean of Dependent Variable 6.0000 S.D. of Dependent Variable 2.5495

Residual Sum of Squares 50.9167 Equation Log-likelihood -27.3203

Akaike Info. Criterion -29.3203 Schwarz Bayesian Criterion -29.8852

DW-statistic 1.9968

* Test Statistics * LM Version * F Version *

* * * *
* A:Serial Correlation*CHSQ(1)= .012520[.911]*F(1, 10)= .0096401[.924]*
* * * *
* B:Functional Form *CHSQ(1)= 7.7234[.005]*F(1, 10)= 14.6371[.003]*
* * * *
* C:Normality *CHSQ(2)= .088122[.957]* Not applicable *
* * * *
* D:Heteroscedasticity*CHSQ(1)= 4.8869[.027]*F(1, 11)= 6.6259[.026]*

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
Ordinary Least Squares Estimation

Dependent variable is OBAN
13 observations used for estimation from 2000 to 2012

Regressor Coefficient Standard Error T-Ratio[Prob]
CON 3.0769 .34349 8.9579[.000]
IBAN .12821 .053001 2.4189[.034]

R-Squared .34722 R-Bar-Squared .28788
S.E. of Regression .46810 F-stat. F(1, 11) 5.8511[.034]
Mean of Dependent Variable 3.8462 S.D. of Dependent Variable .55470
Residual Sum of Squares 2.4103 Equation Log-likelihood -7.4923

Akaike Info. Criterion -9.4923 Schwarz Bayesian Criterion -10.0572 DW-statistic 2.0657 ******* **Diagnostic Tests** ******* * Test Statistics * LM Version * F Version * ******* * * * * * A:Serial Correlation*CHSQ(1)= .057493[.811]*F(1, 10)= .044422[.837]* * * * * * B:Functional Form *CHSQ(1)= 5.4949[.019]*F(1, 10)= 7.3214[.022]* * * * * * C:Normality *CHSQ(2)= 13.0593[.001]* Not applicable * * * * * * D:Heteroscedasticity*CHSQ(1)= .49190[.483]*F(1, 11)= .43259[.524]* ****** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values