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ABSTRACT 

Financing innovation presents informational and control problems for the financier, 

and different solutions are used for funding of US companies and universities.  In this 

paper we examine how funding characteristics influenced the change in innovation 

during the 2007-8 financial crisis for both.  We extend prior theories of external 

financing’s effect on company performance during crises, firstly to university 

performance, and secondly to show the influence of time variation in aggregate 

funding.  Empirical results are consistent with our theory: external dependence and 

asset intangibility had a limited effect on company innovation on entering the crisis, 

but increased university innovation.  Overall, however, company patenting was more 

robust than university patenting, despite the out-performance being masked by 

respective portfolio characteristics. 

 

Keywords: Innovation, patenting, economic crisis, financing constraint 

 

1 Introduction 

The 2007-8 financial crisis marked a period of financial decline and disruption 

unusual since 1945 (Reinhart and Reinhart (2010), figure 1).  Defaults on loans in the 

US subprime mortgage market resulted directly and indirectly in losses to lenders and 

their resulting bankruptcies (Acharya et al, 2009; Brunnermeier, 2009).  The cost of 
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lending rose across many debt instruments (Acharya et al, 2009), and the crisis spread 

to international financial markets through losses and reduced availability of external 

finance (Claessens et al, 2010). 

 

The resulting real economic disruption affected industrial innovation.  Paunov (2012) 

finds that many Latin American companies stopped innovation projects, while 

Archibugi et al (2013b) and Filippetti and Archibugi (2011) determine broad 

innovation expenditure reductions for European companies.  Laperche et al’s (2011) 

examination of French businesses finds them streamlining and prioritising R&D 

during the crisis.  Makonnen (2013) looks at European government R&D 

expenditures by innovation type, and shows that governments tended to reduce their 

budgets during the crisis. 

 

If funding sources suffered losses in the crisis, or if their means of transferring funds 

to recipients were interrupted, the cost of finance would have risen and institutions 

dependent on it would have found their operations curtailed (Campello et al, 2010; 

Dell’Ariccia et al, 2008; Kroszner et al, 2007).  Research on the 2007-8 crisis’ effect 

on innovation has examined the role of dependence on external finance in passing.  

Paunov’s (2012) investigation of Latin American companies uses indicator variables 

for corporate access to public funding (which significantly reduces the chance of 

discontinuing an innovation project) and private external funding (which has no 

significant effect).  Archibugi et al’s (2013a) European study uses an indicator 

variable for whether companies considered availability to be an innovation obstacle 

prior to the crisis.  It has a negative insignificant effect on innovation expenditure 

growth before the crisis, and positive insignificant effect during it.  Filippetti and 

Archibugi (2011) examine behaviour of an ordinal variable indicating whether 

European firms moved from decreasing innovation investment to maintaining or 

increasing it during the crisis (or other permutations of this movement).  They find 

that in countries with large national private credit markets there was a tendency to 

move from declining investment to increasing investment during the crisis, and 

interpret the result as showing that the financial system depth counteracts the effect of 

the financial crisis. 
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In this paper we address more fully questions about whether necessity and ability to 

attract funding had a major effect on innovation during the crisis.  How did US 

company innovation respond to external funding requirements during the crisis?  

What was the response of US university innovation?  How did their innovation 

respond to asset intangibility, a measure of the ability to attract external funding? 

 

To answer these questions, we examine the funding relations that financiers have with 

companies and universities, and how they are affected by the crisis.  We find that the 

change during the crisis in aggregate R&D funding to companies and universities can 

be used to predict how their innovation responds to external funding dependence.  We 

also determine the relation between asset intangibility and innovation for both types 

of innovator.  The results are used to predict that when US companies are undertaking 

innovation, the dependence of a class of project on external finance does not 

significantly change output from that class during the crisis.  By contrast, when 

universities are innovating, more externally dependent classes have increased output 

during the crisis.  A further prediction is that if a project class has a higher ratio of 

intangible to total assets, then its innovative output will increase during the crisis for 

university innovators. 

 

We test our hypotheses by examining how predicted patent counts change during the 

crisis for each innovator type.  A database is constructed by joining US patent data 

with Compustat data, in which the unit of analysis is patent counts in each patent class.  

The construction allows us to associate measures of external funding dependence, 

R&D intensity, and other financial quantities to specific innovation classes and their 

statistics.  The empirical results are broadly consistent with the theoretical predictions.  

We use our parameter estimates to investigate the effect of US company innovation 

responding to the crisis in the same way as US university innovation, but acting on the 

same portfolio of US company innovation projects, and vice versa.  US company 

responses are associated with more patenting than US university responses, acting 

both through financial and non-financial effects. 

 

Section 2 looks at aggregate innovation funding to US companies and universities, 

section 3 gives our theoretical framework, section 4 describes our data, section 5 gives 
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our empirical method, section 6 presents our results, section 7 looks at counterfactuals, 

and section 8 concludes. 

 

2 Aggregate innovation funding before and during the crisis 

2.1 Funding sources 

In 2008, total R&D expenditures in the US were $404 billion, or 2.8 percent of GDP 

(National Science Board (2012), appendix tables 4-1 and 4-44).  US business R&D 

alone accounted for 1.7 percent of GDP, with government accounting for a further 0.8 

percent of GDP.  Universities and colleges invested 0.1 percent of GDP from their 

own funds, with smaller investments from non-profit and foreign sources making up 

the balance.   

 

Industrial R&D is mainly self-funded by industry, with industrial self-funding 

accounting for around 90 percent of total expenditure throughout the 2000s (National 

Science Board (2012), appendix table 4-3).  Government funding rose slightly to 13 

percent in 2008 and 14 percent in 2009, but remained at historically low levels having 

exceeded 50 percent throughout most of the 1960s. 

 

By comparison, around two thirds of funding for university R&D came from 

government in the 2000s, and industry only provided around six percent (National 

Science Board (2012), appendix table 4-3).  Internal university and college monies 

accounted for about a fifth of the total, with non-profit funding outstripping industrial 

funding in the final years of the decade.  The funding shares were quite stable. 

 

2.2 The effect of the financial crisis 

Many US banks and financial institutions faced large declines in their capital reserves 

during the 2007-8 financial crisis.  Debt defaults were common, credit lines were 

quickly used up by borrowers, and short-term creditors to banks withdrew their 

lending (Ivashina and Scharfstein, 2010).  As a consequence, a number became 

bankrupt, and others were severely financially compromised.  Regaining sufficient 

reserves became important for maintaining an acceptable level of bankruptcy risk and 

to meet regulatory requirements.  The opportunity cost of loaning new money 

therefore increased sharply.  The increased difficulty in raising finance is manifested 

in aggregate data: bank loans to the corporate sector fell sharply from the middle of 
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2007 (Ivashina and Scharfstein, 2010), and a precipitous decline was also observed in 

venture capital funding (OECD, 2009). 

 

Government finances were also severely impacted by the financial crisis.  

Nevertheless, despite large deficits developed country governments generally 

provided substantial fiscal stimuli over the crisis period (OECD (2009), figure 5).  In 

the US, the total fiscal package between 2008 and 2010 exceeded five percent of 2008 

GDP.  Specific funds for innovative investment were made available through the 

American Recovery and Reinvestment Act (ARRA, 2009) which was passed in 

February 2009.  The occurrence of an increase in government support for industrial 

R&D at the same time as a substantial downturn in industry’s own funding was 

unique in the period since 1953 (National Science Board (2012), appendix table 4-3). 

 

Industry self-funding for industrial R&D underwent a large decline in 2009 at an 

annual rate of 5.5 percent, marking the second largest percentage decline since the 

1950s (National Science Board (2012), appendix table 4-3).  The absolute level 

remained near historically record levels.  Government expenditure in 2008 and 2009 

rose with fiscal measures including the American Recovery and Reinvestment Act, 

but was still far less than industrial funding.  The extra government spending was not 

sufficient to offset the decline in industrial expenditure in 2009.  Nevertheless, total 

R&D funding to industry in 2009 was at its second highest level ever. 

 
3 Theoretical framework 

3.1 Corporate innovation during the crisis 

Innovation can be expensive (DiMasi et al, 2003; Adams and Brantner, 2006; DiMasi 

and Grabowski, 2007), time-consuming (Griffin, 1997), and risky (Cooper and 

Kleinschmidt, 1995).  It may require substantial financing over extended periods in 

the presence of high risk.  Some companies may be able to use internal funds to 

finance their R&D, but many will not have sufficient available assets and will have to 

seek external financing for innovation.  There are a number of difficulties for a 

commercial external funding source that are liable to restrict the availability of 

external finance, or at least make it more expensive than internal finance (Hall, 2002).  

One problem is information asymmetry between investors and innovators.  Because 

innovation is usually technically demanding, and because innovators often want to 
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preserve secrecy to protect their ideas from rivals, investors generally know less about 

the projects than the innovators.  Thus, a lemons market (Akerlof, 1970) can emerge 

where investors make higher charges than the better innovators will accept, and the 

market shrinks. 

  

Financial markets connect investors with fund recipients and can mitigate these 

informational problems (Rajan and Zingales, 1998).  Expert intermediaries operate in 

financial markets, and they can monitor agent behaviour more closely and enforce 

better corporate governance.  Financial markets often require companies operating on 

them to follow accounting and disclosure rules, and adopt behavioural standards.  

These requirements may improve investor knowledge about the companies. 

 

A financial crisis can affect the ability of companies to finance themselves on a 

commercial basis.  In the 2007-8 crisis, funds available from commercial sources 

were reduced by large scale defaults experienced against their portfolios particularly 

from US sub-prime mortgages (Calomiris, 2008), which resulted in reduction of 

revenue streams either directly or through counterparty exposure.  The inability to use 

these assets as collateral reduced the sources’ borrowing ability and so the cost of 

funds available for investment (Acharya et al, 2009; Brunnermeier, 2009; Gorton, 

2009).  In addition to contraction in the available stock of funding, potential 

innovators may be less attractive as recipients of funding due to a concurrent 

recession.  The value of monitoring to information intermediaries may be reduced in a 

depressed market and the credibility of their monitoring may fall for potential 

investors (Holmström and Tirole, 1997), so increasing the uncertainty associated with 

investment.  

 

To elaborate on the consequences of these considerations, it is helpful to consider the 

problems solved by investors and managers considering investment in a project.  A 

private investor deciding on whether to invest in the project during the crisis expects 

to receive an immediate utility (net of investment cost) of  

 

εµ +Σ−  
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where μ is the net income from investment, Σ is a measure of the risk from investment 

due to the crisis interrupting normal market information provision and so leading to 

ignorance about managerial quality, and ε is an error term with distribution function 

)(εf .  The crisis risk Σ declines with a rise in T, the level of tangible assets available 

as collateral to protect against the consequences of imperfect information, so 

0/ <Σ dTd .  Investment occurs if 

 

0>+Σ− εµ  

 

or 

 

µε −Σ> . 

 

The manager who has perfect information about their own managerial quality would 

act on behalf of the investor and invest if 

 

µε −> . 

 

Thus, the excess in investment by managers over external investors during the crisis 

occurs in the region given by 

 

µεµ −>≥−Σ        (1) 

 

This is the region in which a project that had to be entirely externally financed would 

not be given approval, while the same project that was entirely internally financed 

would result in investment. 

 

Prior to the crisis, the market informational provision functions normally, and so the 

investor faces no crisis risk and 0=Σ .  They receive an immediate net utility from 

investment of 

 

εµ +b  
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where μb is the net income from investment before the crisis.  Since there is a 

recession at the same time as the financial crisis, µµ >b .  Investment occurs if 

 

bµε −> . 

 

Investment occurs before the crisis but not during it if  

 

bµεµ −>≥−Σ , 

 

which happens with probability ∫
−Σ

−

µ

µ

εε
b

df )( .  As we saw in section 2, there was a small 

change in observed company investment during the crisis relative to investment 

before it, so this probability is small. 

 

From equation (1), the probability that a manager invests but an investor does not 

invest is ∫
−Σ

−

µ

µ

εε df )( .  Since µµ >b , it follows that 

 

0)()( >> ∫∫
−Σ

−

−Σ

−

µ

µ

µ

µ

εεεε dfdf
b

 

 

and so there is a very small probability that a project would be financed if internal 

finance is available but not financed if external finance is necessary.  It follows that 

there is a very small negative change in expected investment when the project moves 

from being entirely internally dependent to entirely externally dependent.  Assuming 

innovative outputs are positively related to investment, we then have the following 

hypothesis: 

 

H1: For US companies during the financial crisis, dependence on external finance will 

not change significantly the innovative output from project classes. 
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We next investigate the effect of asset intangibility on innovation during the crisis.  

Intangible assets N are assumed to rise with the level of investment, other things being 

equal, so 0/ >dIdN .  We also assume that innovative outputs P, being a subset of 

intangible assets, increase when they do, so 0/ >dNdP . 

 

From equation (1), we have the lower and upper limits on the region over which non-

investment occurs.  Since 0/ <Σ dTd , the upper limit µ−Σ  reduces with tangible 

assets T, while the lower limit µ−  is unchanged and so the probability of investment 

rises.  Hence the expected investment rises as well and 0/ >dTdI . 

 

The intangibility ratio of a company is the value of intangible assets divided by the 

value of total assets, or )/( NTN + .  It can measure how much protection an investor 

has in the event of a company being wound up, and has been as a performance 

determinant in financial crises (Kroszner et al, 2007).  The response of innovative 

outputs to changes in the intangibility ratio is given by 
))/(( NTNd

dP

+
.  We analyse 

the properties of this quantity. When the derivative is non-zero, the inverse function 

theorem says that 

1
))/((

))/((

−








 +=
+ dP

NTNd

NTNd

dP
.  The derivative in the bracket 

can be expanded using the chain rule to give 

 

1
))/((

))/((

−








 +=
+ dI

NTNd

dN

dI

dP

dN

NTNd

dP
 

 

or, using the inverse function theorem again and the product rule, 

 

1

2

11

)(
)//(

/

))/((

−−−























+
+−

+















=
+ NT

N
dIdNdIdT

NT

dIdN

dI

dN

dN

dP

NTNd

dP
 

 

or 
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1

22 )(
)/(

)(

1
)/(

))/((

−












+
−








+
−

+
=

+ NT

N
dIdT

NT

N

NT
dIdN

dI

dN

dN

dP

NTNd

dP
 

 

or 

 

11

1)(
))/((

−−















+







−








+
−+=

+ NT

N

dT

dI

NT

N

dI

dN
NT

dI

dN

dN

dP

NTNd

dP
 

 

The terms 
dN

dP
, 

dI

dN
, NT + , 









+
−

NT

N
1 , 

dT

dI
, and 

NT

N

+
 are all positive, so 

0
))/((

>
+ NTNd

dP
 if and only  

 

01
1

>
+








−








+
−

−

NT

N

dT

dI

NT

N

dI

dN
 

 

or 

 

T

N

dT

dI

dI

dN > . 

 

Thus, innovative outputs grow as the intangibility ratio increases if and only if the 

product of growth of intangible assets as investment increases and the growth of 

investment as tangible assets increase is sufficiently large.  In other words, growth in 

intangible assets is induced by tangible asset growth through investment, and for 

innovative output growth to be associated with a rising intangibility ratio, the 

intangible asset growth has to be large enough to outpace the tangible asset growth.  

Hence, we cannot state certainly how the intangibility ratio will affect company 

innovative outputs. 

 

3.2 University innovation during the crisis 

Many US university laboratories consider basic research as their primary objective, 

with much of their time spent on publishing academic research (Bozeman, 2000).  
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Nevertheless, their work often has an applied character (Mowery et al, 2001), and 

some of that work gives rise to commercial innovations.  The funding for such 

innovations may come from, among other sources, industry or government.  The latter 

source has become more important through a series of government policy initiatives 

including the Bayh-Dole Act of 1980 allowing universities to commercialise federally 

funded innovations, the National Cooperative Research Act of 1984 and its 

amendment in 1993 facilitating research collaborations, and the Advanced 

Technology Program from 1990 and the Technology Innovation Program from 2007 

providing funding for research projects that often resulted in university-private sector 

partnerships (Bozeman, 2000; Hall et al, 2003). 

 

A source providing funding to a university faces information problems similar to 

those faced by a funder of a company.  It typically has less information than the 

university or the funded academic about their ability to implement a project, or about 

the project’s progress.  However, commercial sources funding universities usually 

extract information from the recipients directly rather than through the information 

intermediaries commonly used in financing companies, reflecting the frequent utility 

to the funding source of the university knowledge generated.  The direct information 

extraction can take the form of technical queries, consultancy, direct employment, co-

authoring papers, and hiring graduates and post-doctoral researchers (Boardman and 

Ponomariov, 2009; Bozeman and Gaughan, 2007).  The US federal and state 

governments generally limit the information gap by competitive tender of grants, with 

applications having to give detailed information on their planned technological and 

financial aspects (see for example, Department of Health and Human Services (2007) 

or National Science Foundation (2013)).  The applications are subject to monitoring 

during their progress and the possibility of non-renewal for ongoing projects.  Expert 

evaluation of applications is maintained by use of peer review. 

 

The provision of funding for US university innovation is not necessarily as badly 

disrupted by a financial crisis as provision for company innovation.  The largest 

university funding source is the US government which is less financially constrained 

than US companies during crises.  It could run deficits and make available extra funds 

to universities, which it did in 2007-8.  Available funds from commercial sources may 

be subject to acute pressure due to the financial crisis and recession, as described 



 190 

above.  Given the non-market form of the informational ties between universities and 

capital providers, the collapse of the information provision function of the market 

does not affect information passing directly between them. 

 

These observations can be given a formal mathematical form in order to theorise on 

how university innovation responded to the financial crisis.  We analyse investment 

by a government investor who values the income from a project (whether it accrues to 

the government or the university), and also other consequences from investment.  

During the crisis, a government investor in a project expects to receive an immediate 

utility (net of investment cost) of  

 

εµ ++ P  

 

where μ is the net income from investment, P is a measure of the political value of 

other consequences of investment in excess of any benefits before the crisis, and ε is 

an error term with distribution function )(εf . 

 

Investment occurs if 

 

0>++ εµ P  

 

or 

 

µε −−> P . 

 

A commercially motivated university manager will invest if 

 

µε −> . 

 

Thus, the excess in investment by investors over managers during the crisis occurs in 

the region given by 

 

µεµ −−>≥− P        (2) 
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This is the region in which a project that was did not have access to external finance 

would not be given approval, while the same project that was externally financed 

would result in investment. 

 

Prior to the crisis, the additional political benefits of investment in the crisis are not 

present, so 0=P .  They receive an immediate net utility from investment of 

 

εµ +b  

 

where μb is the net income from investment before the crisis.  Since there is a 

recession at the same time as the financial crisis, µµ >b .  Investment occurs if 

 

bµε −> . 

 

Investment occurs during the crisis but not before it if  

 

µεµ −−>≥− Pb , 

 

conditional on the political benefits being sufficiently large so that µµ −> bP .  The 

error term lies in the region with probability ∫
−

−−

b

P

df
µ

µ

εε )( .  In section 2, we saw that 

there was a reasonably large increase in observed government funding to R&D 

investment during the crisis relative to investment before it, so the probability is quite 

large. 

 

From equation (2), the probability that a investor would fund a project but a manager 

would not is ∫
−

−−

µ

µ

εε
P

df )( .  Since µµ >b , it follows that 

 

0)()( >> ∫∫
−

−−

−

−−

b

PP

dfdf
µ

µ

µ

µ

εεεε  
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and so there is a quite large probability that a project would be financed if external 

finance is necessary but not financed if internal finance is the source.  It follows that 

there is a quite large change in expected investment when the project moves from 

being entirely internally dependent to entirely externally dependent.  Assuming 

innovative outputs are positively related to investment, we then have the following 

hypothesis: 

 

H2: For US universities during the financial crisis, dependence on external finance 

will increase the innovative output of project classes. 

 

The effect of the intangibility ratio on university innovation during the crisis is 

analysed in a similar way as for company innovation.  We again assume intangible 

assets N rise with the level of investment so 0/ >dIdN , and innovative outputs P 

increase with intangible assets, so 0/ >dNdP .  The limits on the region in which 

investors invest more than managers in equation (2) are both independent of tangible 

assets T, so investment I during the crisis is independent of T, and 0/ =dIdT . 

 

The derivative of innovative outputs with respect to the intangibility ratio can be 

expanded as before to 

 

1
))/((

))/((

−








 +=
+ dI

NTNd

dN

dI

dP

dN

NTNd

dP
 

 

or 

 

1

1)(
))/((

−










+
−








+
−+=

+ NT

N

dI

dT

NT

N

dI

dN
NT

dI
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dN
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or 

 

1

1)(
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−
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
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
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
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since 0/ =dIdT .  The terms 
dN

dP
, 

dI

dN
, NT + , and 









+
−

NT

N
1  are all positive, so 

0
))/((

>
+ NTNd

dP
. 

 

So, university innovative outputs grow as the intangibility ratio rises.  We therefore 

have the following hypothesis: 

 

H3: For US universities during the financial crisis, higher intangibility ratios will 

increase the innovative output of project classes. 

 

3.3 Control variables 

The main variables for testing our hypotheses will be external financial dependence 

and the asset intangibility ratio, whose construction we will describe in section 4.  We 

also include several control variables in the analysis.  Together with lagged innovative 

outputs, they are used to capture other influences on the change in innovation during 

the crisis, including the effect of demand shifts due to the associated recession.  In this 

subsection, we present the expected effect of the control variables on innovation. 

 

The novelty of the type of innovated product 

The financial crisis may have been associated with either of two Schumpeterian 

hypotheses, namely creative accumulation or creative destruction (Archibugi et al 

2013a).  Under the creative accumulation hypothesis, innovations are incremental and 

due to established innovators.  They are the innovators who persist during the crisis, 

and we may expect them to build on their existing work with more established 

products.  Thus, the age of the product type could be positively associated with 

changes in the volume of innovation.  Under the creative destruction hypothesis, 

innovations are radical and occur in new areas.  The financial crisis created instability 

and weakened the position of existing innovators.  The crisis would be a time of new 

product type introduction, so that the age of the product type could be negatively 

associated with change in the amount of innovation.  We do not take a prior position 

on which hypothesis best describes innovation during the crisis, and leave the data to 

determine the result. 
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R&D intensity 

R&D intensity is measured as R&D divided by sales.  Between 2008 and 2009, R&D 

funding for companies reduced (National Science Board (2012), appendix table 4-3).  

As a result, they had lower funds for sustaining research in previously initiated 

projects and for bringing partially finished projects to completion.  The difficulties 

may have been most acute for expensive and risky R&D intensive projects.  Thus, 

during the financial crisis we may expect bigger declines in commercial innovation 

for companies undertaking more R&D intensive projects.  Universities had increased 

R&D funding indicating that the effect of R&D intensity would increase, but the 

impact would be moderated by their primary non-commercial objectives. 

 

Capital to labour ratio 

Large investments are made in R&D in the US (see section 2.1), and single successful 

innovative products can be very costly (see DiMasi et al (2003), Adams and Brantner 

(2006), and DiMasi and Grabowski (2007) for the costs of pharmaceuticals).  Human 

skill and ingenuity is important in the innovation process, and employee 

remunerations are a large cost in it.  For example, in 2008 the total wage bill for US 

corporate R&D workers was around $114 billion3 compared with total business R&D 

investment of $291 billion (see section 2.1).  We do not have any strong prior 

expectations of whether a high capital to labour ratio for a production process will be 

associated with higher or lower innovation rates.  During the financial crisis, capital 

was rationed and innovation projects dependent on capital may have been hindered 

more than those with greater dependence on labour.  Innovative output from such 

projects may have declined.  However, as we do not expect a strong initial relation 

between innovation and the capital to labour ratio, the decline may be weak.  

Kroszner et al (2007) finds the capital to labour ratio has an insignificant effect on 

industrial value added growth changes between financial crisis periods and the periods 

preceding them. 

 

                                                 
3 National Science Board (2012), table 3-7 puts average annual salaries for science and engineering 
workers at $80,170 in 2010.  Table 3-13 gives total company R&D workers at 1,424,000 in 2008.  We 
multiply to give a total wage bill of $114 billion. 
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4 Data 

4.1 Preparation 

In this section, we present the data used in our empirical testing4.  It comes from two 

sources, the US Patent and Trademark Office (USPTO) online patent database and 

Compustat financial data.  The cross-sectional unit of analysis is patent class, a 

USPTO classification of inventions according to technological type.  There are 473 

such classes, given directly in the USPTO data.  For the Compustat financial data, we 

aggregate the data by industry code and then use the code to map into patent class.  

The patent class thus serves as a means of identifying technological and financial 

characteristics of innovation undertaken by US companies and US universities.  By 

construction, the quantities derived from the Compustat data (external dependence, 

intangibility, R&D intensity, and the capital to labour ratio) allow for the industrial 

composition of their patent class. 

 

USPTO data 

The USPTO online patent database contains details of patent applications in the US 

unless the applicant has explicitly requested privacy prior to grant.  Patent 

applications are published eighteen months after the applicant files for a patent.  The 

database records applicant name, country of residence of the organisation or person to 

whom the application is issued, the application date, and the patent class of the 

invention.  We accessed the data in March 2014. 

 

Compustat data 

We use data from all companies on Compustat for constructing our financial measures.  

Rajan and Zingales (1998) and Kroszner et al (2007) also use the full set of 

Compustat companies in preparing measures of external dependence, which results in 

the statistics reflecting the finances of US publicly quoted and larger companies.  Our 

measures are all ratios of financial quantities, and are used for companies and 

universities operating commercially by undertaking patenting.  Conceivably the 

relevant ratios of financial quantities in commercial operations run by US universities 

may be different from those in US companies.  If true, then our hypothesis testing 

remains valid if the adjustment factor between the financial ratios of companies and 

                                                 
4 The data and STATA code used in estimation are available from the author on request. 
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university commercial operations is constant across different innovation projects.  

Moreover, we run separate estimates for companies and universities, so there are no 

interpretational ambiguities for a combined coefficient. 

 

Our statistics for Compustat data are grouped by two digit Standard Industrial 

Classification (SIC) System codes.  As our cross-sectional unit for estimation is the 

USPTO patent class, we map from SIC based statistics to patent class based statistics 

using the concordance file between the two classifications provided by USPTO 

(2008b).  The mapping to patent class is not unique as there are multiple subclasses 

which may be allocated different SIC codes, so we calculate average statistics over 

subclasses.  For every patent class, the percentage of each SIC code corresponding to 

the class is calculated.  The statistics for the patent class are derived as the sum of the 

percentage weighted statistics for the individual SIC codes.  The formulas take the 

form 

 

∑
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where SC is the statistic for patent class C, Si is the statistic for SIC code i, nC,i is the 

number of subclasses in class C corresponding to SIC code i, and the summations run 

over all SIC codes. 

 

As a means of determining the financial conditions under which an innovation was 

produced, the mapping is inevitably inexact.  The difficulty arises from the allocation 

of patents to specific industries, as noted by Jaffe and Palmer (1997) in their matching 

of patents to industrial environmental cost data.  An invention may have been 

produced by an innovator whose core operation is not in the SIC code allocated to the 

invention.  So the invention may have been produced in financial conditions that 

differ from those that apply to companies producing under the allocated SIC code.  

We assume that any mismatches occur as random noise in the data and do not distort 

our results. 
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Our statistics Si derived from Compustat data (external dependence, intangibility, 

R&D intensity, and the capital to labour ratio) all take the form of ratios and depend 

on the SIC code i.  To calculate them, we first calculate the corresponding statistics Si,j 

for each SIC code and company code j.  They are calculated as ten year averages over 

2000-9, with for example the intangibility ratio given by 
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where kji ,,ν  are the total intangible assets for company coded j in year k operating in 

industry i, and kji ,,τ  are the total tangible assets over the same period.  The statistic Si 

for the SIC code are then the median of Si,j over all companies. 

 

Variables 

Patent counts 

We use counts of patent applications as our measure of innovation within each patent 

class and split by innovator type, using USPTO data.  Patents have long been used as 

such a measure (Scherer 1965, Schmookler 1962), and their advantages and 

disadvantages extensively discussed (Archibugi and Pianta, 1996; Basberg, 1987; 

Hagedoorn and Cloodt, 2003).  The extent to which patents measure innovation may 

differ by innovator type.  Universities may have a lower proclivity to patent their 

innovation than companies because of their largely different objectives (Bozeman, 

2000).  We may nevertheless infer that a contraction due to the crisis in the number of 

innovations, and in particular in the number of innovations produced with a 

commercial orientation, will generally be associated with a reduction in the number of 

patents for any innovator type. 

 

We collect monthly data for the period from January 2006 to December 2009, giving 

348,000 patents in total.  There is an 18 month delay between filing and publication of 

applications, but as our data was collected in March 2014 the delay does not affect 

included applications.  Applications that are made with a request of privacy, and are 

due to be successfully granted, and take more than four years to process may not be 
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included in the data (with potentially greater effect on patent counts in later months).  

However, we expect the numbers to be small because the mean delay between patent 

application and issue or abandonment was 32 months in 2008 (USPTO (2008a), 

workload table 4) so that the large majority of applications would have been handled 

four years after they were made.  Moreover, any omissions will not change the 

comparative results across innovators. 

 

There is no single US country code to allow us to identify all US applicants on the 

USPTO database, but it does record the US state in which an American applicant is 

resident.  We sum the patent counts for each state to obtain a patent counts for the 

whole US.  The academic origin of applicants is not recorded on the USPTO database.  

We separate academic and non-academic applicants by searches on the applicant 

name.  A representative subset of academic applicants is identified by searching the 

name for the words “university”, “college”, “school”, or “institute of technology”.  

These search terms identify most of the primary institutional names for academic 

applicants, including the largest patenters5.  Some academic institutions may patent 

under secondary names omitting these terms, and these patents will be included in our 

non-academic counts.  As the number of company patents far exceeds university 

patents, the contamination of company patent counts will be very limited. 

 

External dependence 

External dependence is calculated as the ratio of capital expenditures not financed by 

net operating cash flow to capital expenditure.  The Compustat code for capital 

expenditures is capx, and for net operating cash flow is oancf, so the formula for 

external dependence is capxoancfcapx )( − .  The list of external dependence values 

by patent class is available at our website in .csv format6. 

 

Intangibility 

Intangibility is the ratio of intangible assets to total assets.  The Compustat code for 

intangible assets is intan, and for total assets is at. 

 

                                                 
5 http://www.uspto.gov/web/offices/ac/ido/oeip/taf/univ/total_counts/univ_ct_list_2012.htm 
6 http://ebasic.easily.co.uk/02E044/05304E/Ext_dep_by_patent_class.csv 
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The novelty of the innovated product class 

The novelty of the innovated product type is measured by the date at which the 

USPTO introduced the corresponding patent class.  The earliest establishment date is 

1899 for patent classes including wood turning products and envelopes.  The latest 

introduction date is 2007 for combinatorial chemistry technology. 

 

The USPTO class introduction date is likely to measure the novelty of a type of 

innovated product only with a delay.  It may not be immediately clear that the early 

patents in the product type represent a major departure from existing product types, 

and their citations will necessarily locate them within existing classes.  The USPTO 

may only wish to introduce a new class only when a sufficient number of relevant 

patents is reached, and the identification and decision processes will not be immediate.  

Our econometric method will absorb into the constant term the average delay between 

the date at which a product type was first innovated and the date at which the 

corresponding USPTO class was introduced7. 

 

R&D intensity 

R&D intensity is calculated as the ratio of R&D to sales.  The respective Compustat 

codes are xrd and sale. 

 

Capital to labour ratio 

The capital to labour ratio is calculated as fixed assets divided by number of 

employees.  The Compustat code for fixed assets is ppent, and for employees is emp. 

 

Time 

Time is measured in months since April 2001 (the first month of data availability), 

with April 2001 = 1. 

 

4.2 Summary statistics 

In table 1 we see summary statistics for the financial and other characteristics of the 

innovation undertaken by each innovator type.  The mean external dependence of 

company innovation is lower than university innovation.  For the classes in which 

                                                 
7 Thanks to Pia Weiss for pointing out the likely difference between innovation date and patent class 
introduction date, and suggesting reasons for it. 
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companies innovate, internally generated funds are around 164 percent of total capital 

expenditures in US commercial conditions, while for universities the amount is 124 

percent.  The mean level of asset intangibility in those classes is similar for both 

innovator types at 14 and 15 percent.  The mean establishment dates of the patent 

classes in which they operate is also similar, in the second half of the 1970s.  Both 

innovate in the oldest and newest classes.  The R&D intensity is higher in classes in 

which companies innovate compared with those in which universities innovate.  The 

capital to labour ratio is lower for the projects of companies than those of universities. 

 

Table 1 

Summary statistics for innovation portfolios of each innovator type 

 US companies US universities 

 Mean Min Max Mean Min Max 

External 
dependence 

-0.64 -5.55 0.84 -0.24 -5.49 0.84 

Intangibility 0.14 0 0.66 0.15 0 0.66 
Date 
established 

1975 1899 2007 1978 1899 2007 

R&D 
intensity 

0.0029 0 0.0866 0.0017 0 0.0865 

Capital/labour 115.3 0 2783.3 173.3 0 2783.3 
Notes: mean values are weighted by patent counts. 

 

4.3 Changes in aggregate patent counts during the crisis 

Figure 1 shows aggregate patent counts by US companies.  There are 326,000 patents 

in total over the period 2006-9, and the aggregate patenting appears to slow down 

around the end of 2007.  To demonstrate the change in broad terms, the patent counts 

from the period 2006-7 are regressed on a time trend by OLS, and then the same is 

done for the period 2008-9.  The two fitted lines are superimposed on the graph.  The 

change in level and trend between the two periods is clear.  Figure 2 shows aggregate 

patent counts for US universities; there are 22,000 patents over the whole period.  

Their patenting seems to change after the start of the financial crisis, in both level and 

trend. 
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Figure 1. Aggregate patent counts by US companies with OLS lines fitted for 2006-7 and 2008-9. 

 

 

Figure 2. Aggregate patent counts by US universities with OLS lines fitted for 2006-7 and 2008-9. 

 

To examine whether the change in aggregate patent rates for US companies is 

significant, we ran F tests for the constant and trend coefficient in the pre-break and 

post-break periods being jointly equal, allowing for possible break dates between 

January 2007 and December 2009.  The most likely break date is at the end of 2007, 
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giving us confidence to take December 2007 as a change date in the subsequent 

analysis. 

 

To demonstrate the changes for patent classes around the financial crisis, we ran 

negative binomial estimations for patent counts in each class in the periods 2006-7 

and 2008-9, with the logarithm of the expected value linearly dependent on time (this 

procedure forms part of the estimation method we describe for our full analysis in 

section 5).  Predicted patent counts in January 2008 were calculated from the 

estimation results for both periods, giving us a set of predicted patents for the 2006-7 

estimates and a set for the 2008-9 estimates.  Figure 3 plots the predicted patents from 

the US company data as kernel densities.  The solid line shows the predictions from 

the 2006-7 estimates, and the dashed line shows the predictions from the 2008-9 

estimates.  The 2008-9 density is a compression towards zero of the 2006-7 density, 

representing a general reduction in patenting. 

 

 
Figure 3. Kernel density of estimated patents in January 2008 across patent classes.  Notes: the solid 

line is for estimates from 2006-7 and the dashed line is for estimates from 2008-9.  US company data is 

used. 
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Figure 4. Kernel density of estimated patents in January 2008 across patent classes.  Notes: the solid 

line is for estimates from 2006-7 and the dashed line is for estimates from 2008-9.  US university data 

is used. 

 

In figure 4, we see the corresponding densities for US universities.  The number of 

patent classes predicted to have just a single patent increases in the 2008-9 estimates, 

and there is again a broad compression towards zero, indicating a reduction in 

patenting. 

 

5. Empirical method 

In this section we present our testing and estimation method.  We assume a 

multiplicative model for predicted patent counts conditional on the information 

available during the crisis, relating it to the predicted patent counts prior to the crisis 

and an adjustment factor influencing the relation between the two.  The adjustment 

factor is exponential and guarantees positive patent counts, as is standard in the 

empirical literature (Cameron and Trivedi, 1998).  The functional form is 

 

)'exp()|(| ,, iititi uXIpIp +Γ+= −+ γα β     (3) 

 

where Ip ti |,  are predicted patent counts in patent class i at time t and conditional on 

information set I, I + is the information available during the crisis, I - is the information 
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available before the crisis, α, β and γ are constants with α > 0, Xi is a vector of time-

invariant patent class characteristics, Γ is a vector constant with the same dimension 

as Xi, and ui is a zero mean normal error. 

 

Hypotheses H1 and H2 examine how external dependence affects the change in 

innovation during the crisis for different innovator types.  Equation (3) may be written 

as 

 

)'exp()|()|/()|( 1
,,, iitititi uXIpIpIp +Γ+= −−−+ γα β  

 

The left hand side of the equation is the ratio of patents predicted during the crisis to 

those predicted before the crisis, and so measures innovation change.  We test 

hypothesis H1 by looking at the significance of external dependence on the right hand 

side of the equation when company data is used, and hypothesis H2 by looking at the 

sign and significance of external dependence when university data is used.  

Hypothesis H3 examines how intangibility ratios affect innovation, and we test it by 

looking at the sign and significance of the intangibility ratio on the right hand side of 

the equation when university data is used. 

 

Taking logs of equation (3) we have 

 

iititi uXIpIp +Γ+++= +− ')|ln(ln)|ln( ,, γβα .   (4) 

 

This specification for examining the crisis’ effect is similar to that used in Archibugi 

et al (2013a), where the change in innovation between two years is measured.  We 

could bring our specification even closer to their model by comparing changes in 

patents in successive time periods, t and t + 1.  However, we prefer to examine an 

instant effect, rather than a delayed one.  The reason is that any crisis effect may tend 

to correct itself over time especially in patent classes where it has been severe, so that 

an estimation using successive periods may not capture the full crisis effect.  

Moreover, we prefer to use extended evidence of patenting behaviour to estimate 

mean patenting rates rather than patent rates in one period, in order to reduce 

measurement volatility.  As a prediction method for calculating +Ip ti |,  and −Ip ti |, , 
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we could use averages or sums over successive periods (for example, to give annual 

rates of innovation, as in Archibugi et al (2013a)), which would be acceptable in the 

absence of trends in the data.  However, trends in patenting in each class are likely.  

So we use an equivalent method to averaging, but one which allows for trends.  We 

calculate the predicted patents +Ip ti |,  and −Ip ti |,  in class i at time t by running two 

sets of negative binomial regressions for counts in each patent class: 

 

tP iiti ψϕ +=)log( , ,       (5) 

Pi,t ~ negative binomial, 

 

where Pi,t are patent counts in class i at time t, and φi and ψi are class specific 

constants.  Patenting in each class may be generated by distinct processes and be at 

different life stages, and so we make no assumptions about the commonality of 

parameters across classes in generating predictions. 

 

The estimation is performed first over the 24 month period from January 2006 to 

December 2007, which we call the pre-crisis period, and then over the period from 

January 2008 to December 2009, which we term the crisis period.  We exclude any 

patent classes in which the number of patents is ten or less over the whole 2006 to 

2009 period.  Once we have the regression coefficients, we take −Ip ti |,  to be the 

predicted value at time t from the early period equation, and +Ip ti |,  to be the 

predicted value from the late period equation. 

 

We estimate equation (4) using OLS across classes i with robust standard errors, with 

the predicted patents evaluated in January 2008.  The influence of extreme patent 

class values is eliminated by excluding any classes in which the predicted January 

2008 patent counts from either the 2006-7 or 2008-9 periods exceed 100 for US 

companies, and 20 for US universities.  The exclusion is of less than the top seven 

percent of values for each innovator type. 

 

We also estimate a modified version of equation (4) using cumulative patents over a 

time period T, 
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The values for cumulative predicted patents are produced by predicting two sets of 

cumulative patents over the period T, using estimates from equation (5) based on the 

data from 2006-7 to predict −

∈
∑ Ip

Tt
ti |,  and from 2008-9 to predict +

∈
∑ Ip

Tt
ti |, .  In the 

OLS estimation of equation (6), we exclude classes with early estimated or late 

estimated cumulative patents exceeding 5000 for companies, and 500 for universities.  

Less than the top five percent of values are excluded for each innovator type. 

 

6 Results 

6.1 Immediate and cumulative effects of the financial crisis 

In this section we present our results, starting with the crisis’ immediate and 

cumulative effects on innovation in table 2.  The first two columns present regression 

results where the determined variable is the logarithm of the patent count in January 

2008 as predicted using data from 2008-9.  In column one, we see the results for US 

companies.  External dependence has an insignificant effect on the count, consistent 

with hypothesis one was that there would be no significant link between the two.  

Column two gives coefficients for US universities.  External dependence is 

significantly associated with increased patenting during the crisis, consistent with 

hypothesis two, while intangibility is significantly associated with increased patenting 

during the crisis, as anticipated in hypothesis three. 

 

Columns three and four look at regressions with the logarithm of cumulative predicted 

patents as determined variable.  Column three has results for companies.  External 

dependence has a significant positive effect on the cumulative patenting over 2008-9, 

indicating that the effect in January 2008 becomes more positive over time.  Column 

four presents results for universities, with a significant positive links between 

cumulative patenting and both external dependence and intangibility.  The same links 

are observed in January 2008. 
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Table 2 

Determinants of the logs of the predicted patent count at the start of the crisis and the sum of the 

predicted patent counts during the crisis 

Dependent 
variable: 

Log late predicted patents in 
January 2008 

Log late predicted patents 
cumulated over 2008-9 

 US companies US universities US companies US universities 

 OLS regressions  

 (1) (2) (3) (4) 

External 
dependence 

0.0254 0.1990* 0.0858** 0.2439** 

 0.0306 0.1012 0.0415 0.103 

Intangibility -0.0857 1.1103** 0.305 1.0084** 

 0.2238 0.4257 0.3645 0.4088 

Log early 
predicted 
patents 

0.9497*** 0.6994*** 0.7663*** 0.4038*** 

 0.0329 0.0617 0.036 0.0505 

Establishment 
date 

-0.0008 -0.0057** 0.0011 0.0018 

 0.0009 0.0025 0.0014 0.003 

R&D intensity -2.9369 -7.8922* -5.2830* -9.7988* 

 2.1868 4.7325 2.8048 5.6922 

Capital to 
labour ratio 

-0.0002** -0.0006** -0.0002* 0.0001 

 0.0001 0.0003 0.0001 0.0002 

Constant 1.488 11.0805** -1.225 -1.6421 

 1.7817 4.9167 2.646 6.0256 

     

R2 0.87 0.62 0.77 0.46 

Observations 369 140 372 134 

Notes: Robust standard errors are shown below the coefficients. 

* Ten percent significance. 

** Five percent significance. 

*** One percent significance. 

 

6.2 Results split by age of patent class 

Table 3 presents estimations split by the age of the patent class, with new patent 

classes established after 1990 and old patent classes established before 1991.  This 

division gives a reasonable approximation for the split between high technology and 

other technology.  The results for new classes are shown in columns one and two.  

Coefficient estimates for US companies are presented in column one, where external 

dependence is insignificantly associated with patenting.  The results for US 

universities are in column two, where neither external dependence nor intangibility is 
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associated with patenting.  The small sample size will have influenced the low 

coefficient significance. 

 

Table 3 

Determinants of the logs of the predicted patent count in January 2008, by patent class age 

 Dependent variable: log late predicted patents in January 2008 

 New classes Old classes 

 US companies US universities US companies US universities 

 OLS regressions   

 (1) (2) (3) (4) 

External 
dependence 

-0.0428 0.0186 0.0224 0.2162* 

 0.118 0.3345 0.0313 0.1102 

Intangibility 0.1676 0.7474 -0.2079 1.1014** 

 0.9583 1.3296 0.2272 0.468 

Log early 
predicted 
patents 

1.1308*** 0.6025*** 0.9223*** 0.7856*** 

 0.072 0.1117 0.0364 0.0767 

Establishment 
date 

-0.0065 0.0296 -0.0002 -0.0078** 

 0.0233 0.0342 0.001 0.0036 

R&D intensity 4.0078 -17.9753 -2.8549 -6.7787 

 4.2495 10.7814 2.3566 4.7261 

Capital to 
labour ratio 

-0.0001 -0.0009*** -0.0001 -0.0003 

 0.0001 0.0002 0.0001 0.0002 

Constant 12.2738 -59.3178 0.4251 15.1319** 

 46.257 68.3041 1.9659 6.9697 

     

R2 0.92 0.6 0.86 0.67 

Observations 61 43 308 97 

Notes: Robust standard errors are shown below the coefficients. 

* Ten percent significance. 

** Five percent significance. 

*** One percent significance. 

 

Columns three and four give estimates for data based on old patent classes.  Column 

three shows that for US companies there was no significant association between 

external dependence and patenting.  A significant positive relation is shown for US 

universities in column four.  The association is also significant and positive between 

external dependence and patenting.  Hypotheses one, two, and three all hold for 

patenting in old classes. 
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6.3 Estimates based on OLS predictions of patenting 

In calculating the results in section 6.1, the predicted patent counts are derived from 

negative binomial estimation within each patent class, so they grow exponentially 

over time.  In this section, we calculate results in which the predictions are derived 

from OLS estimations in each class, with linear growth in patenting over time.  The 

extra caution comes at the cost of allowing negative patenting in classes and of a 

discrete non-symmetric random variable being approximated by a normal variable; 

however, as section 7 will show, the aggregate OLS behaviour predicts actual 

patenting after the crisis more closely than aggregate negative binomial predictions. 

 

We continue to estimate results from our main cross sectional regressions given by 

equations (4) and (6).  However for predicting patents within classes we replace the 

negative binomial equation (5) with an OLS equation 

 

tiiiti vtP ,, ++= ψϕ , 

 

where φi and ψi are class specific constants and vi,t is a zero mean normal variable.  

The estimation is performed over the period from January 2006 to December 2007, 

then over January 2008 to December 2009.  We again exclude any patent classes in 

which the number of patents is ten or less over the whole 2006 to 2009 period.  Once 

we have the regression coefficients, we use predictions from the early period and late 

period estimations as variables in our main regressions. 

 

Table 4 contains our results, with the first two columns presenting coefficient 

estimates when the dependent variable is the logarithm of predicted January 2008 

patents.  In column one, US company data is used and external dependence is found to 

have an insignificant association with patenting, as expected from hypothesis one.  

Column two shows that for US universities there is a significant positive relation 

between external dependence and patenting, consistent with hypothesis two.  The 

relation between intangibility and the patent count is significant and positive, as 

hypothesis three anticipated.  Overall, the evidence provided for hypotheses 1, 2, and 

3 is strong here as in the main table 2. 
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Table 4 

Determinants of the logs of the predicted patent count at the start of the crisis and the sum of the 

predicted patent counts during the crisis; prediction by OLS 

Dependent 
variable: 

Log late predicted patents in 
January 2008 

Log late predicted patents 
cumulated over 2008-9 

 US companies US universities US companies US universities 

 OLS regressions   

 (1) (2) (3) (4) 

External 
dependence 

0.0329 0.2534** 0.0689** 0.2781*** 

 0.0319 0.1001 0.0289 0.0667 

Intangibility -0.1108 1.1115** 0.3049 0.8959*** 

 0.2471 0.4496 0.2076 0.3237 

Log early 
predicted 
patents 

0.9447*** 0.8276*** 0.8857*** 0.6662*** 

 0.0394 0.0446 0.0393 0.0567 

Establishment 
date 

-0.0006 -0.0042* -0.0002 -0.0026 

 0.001 0.0024 0.001 0.0022 

R&D intensity -4.1775 -7.2524 -3.5887 -9.0298*** 

 2.8012 4.5322 2.188 3.2574 

Capital to 
labour ratio 

-0.0001* -0.0005*** -0.0002*** -0.0003** 

 0.0001 0.0001 0.0001 0.0002 

Constant 1.3011 8.1784* 0.8929 6.4551 

 1.9036 4.6957 1.8581 4.31 

     

R2 0.88 0.74 0.89 0.68 

Observations 386 134 373 129 

Notes: Robust standard errors are shown below the coefficients. 

* Ten percent significance. 

** Five percent significance. 

*** One percent significance. 

 

Columns three and four report estimates where the dependent variable is the logarithm 

of patents cumulated over 2008-9.  In column three we see that for companies there is 

a positive relation between external dependence and cumulative patenting.  Column 

four employs university data, and shows that there is a significant positive association 

between cumulative patenting and both external dependence and intangibility.  As a 

whole, the findings are similar to those in table 2 where negative binomial projections 

are used. 
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7. Counterfactuals 

The growth of unregulated debts among financial institutions has been presented as a 

major contributing factor to the 2007-8 crisis (Brunnermeier, 2009; Calomiris, 2008), 

and market-based solutions have been advanced to alter and constrain the behaviour 

of financial institutions (Acharya et al, 2009).  They offer the possibility of insulating 

the financial and real economies from systemic build up of risk, such as that emerging 

from the sub-prime mortgage market.  More stringent measures would reduce the role 

of the financial markets in funding companies, but the direction of international travel 

has been towards increased market based development.  A movement towards a more 

commercial approach has been seen in US universities as well, for regulatory, 

technological, administrative, and financial reasons (Mowery et al, 2001). 

 

In this section, we investigate the effect of alternative responses to portfolio 

characteristics on innovation during the crisis.  In our first counterfactual companies 

continue to work on the same projects as before, and the patenting in January 2008 

and over 2008-9 is calculated as if they were experiencing the same output response 

to those projects as universities.  Our second counterfactual examines outcomes when 

universities adopt the response of companies.  Calculations are performed based on 

the parameters estimated in table 2. 

 

The statistics we examine are expected late predictions calculated from equations (4) 

and (6), minus the early predictions, and summed across all patent classes: 
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where E denotes the expectations operator, Y  denotes the fitted value of Y, and the 

other notation is as for equations (3) and (6).  The expected predicted patents counts 

are calculated as 
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))(exp()'exp()|()|( ,, ti
Tt

ti
Tt

ti uEXIpIpE Γ+= −

∈

+

∈
∑∑ γα β  

 

where the additional notation is as below equation (3).  The exponential error term is 

calculated as 

 

)5.0exp())(exp( 2σ=tuE  

 

where σ is the root mean squared error from the estimations in table 2.  For the 

counterfactuals, we replace one or more of the coefficients and exponentiated error 

term from the estimated equation with the coefficients and error from the alternative 

equation.  In the summations, we do not sum over elements with extreme predicted 

values, using the same definitions of extreme values as in section 5. 

 

Table 5 presents our results, with the top panel showing patenting in January 2008 and 

the bottom panel showing cumulative patenting over 2008-9.  Columns one and two 

use negative binomial predictions, while columns three and four use OLS predictions.  

In column one we see the consequences of the crisis response to the characteristics of 

US company innovation becoming like that experienced by US universities.  The top 

panel shows the immediate effect.  There is a substantial impact on patenting in 

January 2008, with 2,300 fewer patent applications.  In the low panel, the cumulative 

effect of the change is shown.  The decline in US company patenting goes from 

111,000 applications to 195,000 applications, representing an additional loss of 

innovation outputs of 84,000 applications. 

 



 213 

Table 5 

Patenting change during the crisis on switching to a different institution’s response parameters while 

maintaining the original institution’s innovation portfolio 

Estimation method Negative binomial OLS  

From parameters and 
innovation portfolio of 

US 
companies 

US 
universities 

US 
companies 

US 
universities 

     

To parameters of 
US 
universities 

US 
companies 

US 
universities 

US 
companies 

In January 2008     

Expected patent crisis 
change before adjustment 

-558 -54 -262 -34 

     
Expected change after all 
adjustment 

-2890 -6 -2,359 22 

Cumulative over 2008-9     
Expected patent crisis 
change before adjustment 

-110,912 -11,455 -46,367 -2,419 

     
Expected change after all 
adjustment 

-194,716 -5,589 -95,092 -1,337 

 

In the counterfactual in column two, US universities are fully integrated in the market 

and their patenting changes as if they were US companies during the crisis.  From the 

top panel, it can be seen that adopting the alternative responses is associated with an 

increase in patenting of 48 applications.  The lower panel shows that the cumulative 

effect over 2008-9 of adopting the alternative responses is large relative to base 

patenting; the decline in innovation goes from 11,500 applications to 5,600 

applications, so there are an extra 5,900 patents.  Columns three and four show that 

OLS estimated effects of changing responses are qualitatively similar to negative 

binomial estimated effects. 

 

Our counterfactuals find that US university responses diminish patenting for US 

companies, while US company responses increase patenting for US universities.  

Company responses ensure greater innovation given the portfolio characteristics of 

companies and universities.  Their advantage occurs both in relation to the financial 

external dependence of innovation projects, and other factors including market 

demand. 
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8. Conclusion 

In this paper we have looked at how the innovator type affected innovation during the 

2007-8 financial crisis.  Our theoretical and empirical results indicate that, at the start 

of the crisis, the effect of external financial dependence on the change in patent counts 

was insignificant for projects undertaken by companies but significantly positive for 

projects undertaken by universities.  Higher proportions of intangible assets were 

associated with increased university patenting.  The effects were similar over the 

2008-9 period, although external financial dependence gained a significant positive 

association with company patenting.  Similar effects are shown for innovative projects 

in technology classes introduced before 1991; the results for newer classes are not as 

strong but may be influenced by a relatively small sample size. 

 

Counterfactuals indicate that if US company patenting responded in the same way as 

university patenting its decline would have been greater.  Conversely, US universities 

would have had smaller declines if they had the same patenting response as US 

companies.  We have not considered the possibility of innovation portfolio 

characteristics being selected in response to the funding used, which would alter 

counterfactual patent count changes.  An analysis of endogenous selection could start 

from the theoretical basis described in the managerial literature on multiple 

interactions and influences between enterprise capabilities, competitive environment, 

and strategy (Henderson and Mitchell, 1997). 

 

Our results echo those of Paunov (2012), who found that use of public funds by Latin 

American companies was associated with less discontinuation of their innovative 

projects during the crisis, whereas use of private funds was not significantly 

associated with it.  Our data inspection and theoretical model suggest that the results 

can be explained by the increase of aggregate public R&D funding and moderate 

persistence of aggregate private R&D funding, at least in the US.  The question then 

arises, why did private innovation funding not collapse during the crisis?  Campello et 

al (2010) present a possible explanation, by finding that while total international 

company investment did fall sharply during the crisis, capital investments were 

relatively robust.  Future work could establish whether innovation projects are 

accorded a protected status during crises, and whether particular types of projects are 

given more protection than others. 
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Although we did not dwell on the matter in the main text, it is interesting to note that 

persistence of innovation in each patent class was much higher for companies than for 

universities.  One possible explanation is that universities are more willing to break 

radically with their past innovation during crises, perhaps acting as agents of creative 

destruction to a greater extent than companies (see Archibugi et al (2013a) and 

Archibugi et al (2013b)).  Universities may have fewer institutional constraints 

stopping them from becoming radical innovators.  However, groundbreaking 

innovations may be put by the USPTO into the same patent class as less significant 

innovations in the short term, because of delays in introduction of new classes.  So 

short term patent classification is an imperfect way of recognising technological shifts.  

Moreover, an alternative institutional explanation for the persistence gap is possible, 

in that universities are able to retreat from the market in a way that is not possible for 

companies.  Further study could clarify the reasons for the gap. 

 

Our theoretical and empirical results suggest policy applications relating to the 

selection of solutions to informational and control problems in the principal-agent 

relations that arise in innovation.  Solutions using financial markets may be 

susceptible to collapse during financial crises, and when they occur or are threatened 

it may be preferable to adopt elements of the non-market solutions used in university 

funding by industry or government, including direct or peer monitoring rather than 

commercially intermediated monitoring, and sharing technologies and profits between 

the funding and funded parties.  However, the value of these relations during a crisis 

is dependent on the political commitment to fund innovation.  If this commitment is 

lacking – which it generally was in crises prior to 2007-8 – then university relations 

may perform worse than company relations as funding conduits.  Moreover, even 

during the crisis of 2007-8, company commercial innovative outputs were maintained 

at a higher level than university outputs.  If maintenance of such outputs is sought by 

policymakers, universities could learn from the productive process of companies 

during crises.  We leave it to future work to determine the exact nature of the lessons. 
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