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                                                            BILL HUAJIAN YANG                                                                        
                                                                 Abstract  
Systematic risk has been a focus for stress testing and risk capital assessment.  Under the Vasicek 
asymptotic single risk factor model framework, entity default risk for a risk homogeneous portfolio divides 
into two parts: systematic and entity specific. While entity specific risk can be modelled by a probit or 
logistic model using a relatively short period of portfolio historical data, modeling of systematic risk is 
more challenging. In practice, most default risk models do not fully or dynamically capture systematic risk. 
In this paper, we propose an approach to modeling systematic and entity specific risks by parts and then 
aggregating together analytically. Systematic risk is quantified and modelled by a multifactor Vasicek 
model with a latent residual, a factor accounting for default contagion and feedback effects. The asymptotic 
maximum likelihood approach for parameter estimation for this model is equivalent to least squares linear 
regression. Conditional entity PDs for scenario tests and through-the-cycle entity PD all have analytical 
solutions. For validation, we model the point-in-time entity PD for a commercial portfolio, and stress the 
portfolio default risk by shocking the systematic risk factors. Rating migration and portfolio loss are 
assessed.  
 

Keywords: point-in-time PD, through-the-cycle PD, Vasicek model, systematic risk, entity specific risk, 
stress testing, rating migration, scenario loss 
 

1. Introduction  
 

Let n denote the size of a portfolio, and k the number of defaults in one-year horizon. Portfolio 
default rate in horizon is given by nkr / . Assume that the default count k follows a binomial 

distribution, given the event probability )(sp dictated by a latent factor s in horizon. We call )(sp  

the portfolio level probability of default (PD) given systematic risk s in horizon. The quantity 

)(sp contains all information for systematic risk. We can think of )(sp as the asymptotic 

portfolio default rate, when portfolio size is sufficiently large ([12]).  
 

A risk profile x for an entity consists of a vector of current values for a given list of entity specific 

risk drivers. Let ),( xsp denote the entity PD in one-year horizon, given systematic risk s and 

entity risk profile x; and )|),(( xxspE the expected value of ),( xsp given x. We call ),( xsp the 

point-in-time (PIT) entity PD, and )|),(( xxspE  the through-time-cycle (TTC) entity PD ([8]).   
 

Let  denote the cumulative distribution for a standard normal variable. A random variable y, 

,10  y  is said to follow a Vasicek distribution if )(1 y is normal ([18, p52]). Under the 

Vasicek asymptotic single risk factor (ASRF) model framework ([14], [4, p.4-5], [16], [17], [19], 
[25]), the PIT entity PD for a risk homogenous portfolio (see section 2.1 for definition), as shown 
in the next section, splits into two parts:  
 

         ),0(~),,(~,)),((
221

zww
NzNwzwxsp             (1.1)       

where w and z are mutual independent,  w  represents the systematic risk depending on s, and z 
represents the entity specific risk depending on entity risk profile x.  
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It can be shown (see Proposition 2.3) that, under model (1.1), the systematic risk w and the TTC 
entity PD are respectively given by: 

            
21 1))](([ zspw                                                       (1.2) 

           )]1/)[()|),((
2

ww zxxspE                                     (1.3) 

 

Thus by (1.1) the PIT entity PD is given by: 

          
21 1))](([),(),( zspwzwxsp                            (1.4) 

 

To model the PIT and TTC entity PDs, it suffices to model the systematic risk )(sp and the entity 

specific risk z. Each of these risk components can be modelled separately.  
 

The entity specific risk z in model (1.1) can be modelled by a probit or logistic model targeting a 
default indicator over a relatively short period of portfolio historical data. In practice, such a 
model uses a list of entity specific risk drivers x, and is calibrated over the current portfolio to a 

specific level of systematic risk .0s We can thus assume that )(xpm  is a model for ),( 0 xsp with 

systematic risk .0s  Then entity specific risk is given by: 

            )))((())(( 11 xpExpz
mm

                                             (1.5) 

where )))((( 1 xpE
m

  denotes the expected value of ))((1 xp
m

 , estimated by the average of 

))((1 xp
m

  over the current portfolio.   
 

In contrast, modeling of systematic risk is more challenging due to the data limitation of portfolio 
historical default rate time series, and the lack of efficient methodologies in parameter estimation. 
In practice, most PD models do not fully or dynamically capture systematic risk. Default 
contagion and feedback effects ([3], [9], [11], [13]) are thus not captured. We will propose in 
section 2.2 a multifactor Vasicek model with residual for the systematic risk, using the parameter 
estimation methodology proposed in [27].  
 

As shown in later sections, advantages of the proposed models include: 
 
 

(a) Systematic and entity specific risk components each is modelled separately, then 
aggregated together analytically by (1.4). 

(b) Conditional entity PDs for scenario tests and entity TTC PDs all have analytical solutions 
(Propositions 2.3-2.5). 

(c) Feedback and default contagion effects are captured and quantified (Propositions 2.4-2.5). 
(d) Portfolio scenario loss can be assessed (Section 4). 

 

The proposed approaches extend to a general portfolio where it contains multiple segments with 
each homogeneous but heterogeneous between segments: train for the portfolio a probit model for 
entity specific risk and a multifactor Vasicek model (2.3) for systematic risk, calibrate each model 
over each segment, and follow (1.4) to combine systematic and entity specific risks by segment.  
 

The paper is organized as follows: In section 2, we introduce model (1.1) under the Vasicek 
ASRF model framework, review the parameter estimation methodologies proposed in [27] for the 
multifactor Vasicek model (2.3), and show formulations (1.2) - (1.4). Analytical formulas for 
conditional PDs for stress testing are also shown in this section. We propose in section 3 the steps 
for scenario tests. An empirical example is given in section 4, where we model dynamically the 
entity PD for a commercial portfolio. Portfolio scenario loss and rating migration are assessed.  
 

The author thanks his colleague Clovis Sukam, and two unanimous referees, for many valuable 
comments and insights, in particular one referee for the final definition for a portfolio to be risk 
homogeneous, as described in section 2.1.  
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2. Dynamic Entity PD Models under the Vasicek ASRF Model Framework 

2.1. Point-in-Time and Through-the-Cycle Entity PDs 

 
Under the Vasicek ASRF model framework ([14], [4, p.4-5], [16], [17], [19], [25]), default risk in 

one-year horizon for i-th entity in a portfolio is driven by a normalized latent variable ir  at time t 

( 120  t ): a default occurs in horizon if ir falls below a threshold value called default point id , 

and the latent variable ir  splits as: 
 

 

 

where s, i , and j  are the independent variables at time t, with s the systematic risk, and i the 

entity specific (idiosyncratic) risk. The quantity i  is called the asset correlation. When a risk 

profile ix for the i-th entity is observed at current time )0( t , we assume iii   , where 

i depends only on ix , and ),,0(~
2

 N
i

 with  being the same for all entities. Given s 

and ix , the probability of default in horizon for i-th entity is given by  

 
     
   

 

 

      

             )1/()(/)),((1
iiiii sdxsp    

 
 

Let     /)1/( iiii dz , and ,)1/( iii sw     where  

denotes the average of   /)1/( iiid  over the portfolio. We call iw  the 

systematic risk and iz  the entity specific risk for i-th entity. The portfolio is said to be risk 

homogeneous if iw  is the same for all entities (i.e., asset correlation is the same for all 

entities), and iz  can be regarded as being sampled independently from the same 

distribution ).,0(
2

z
N   Then we have:  

            ),(~,)),((
21

wwii
Nwzwxsp                                (2.1) 

Suppressing subscript i, we have: 

            ),0(~),,(~,)),((
221

zww
NzNwzwxsp           (2.2) 

 

The following lemma is important for subsequent discussions, where statement (b) is implied by 
statement (a). Statement (c) (see Appendix for a proof) implies that the volatility of default risk 

,)(),( zwxsp  given the systematic risk w, is an increasing function of w when 0w , a 

generally desirable property for model (2.2).  
 

Lemma 2.1.  Let ),(~
2

ss
Ns  , ),0(~

2

e
N  . Assume that s and  are independent. Then   

(a) ([22, p47]) )1/()|)((
2

esssE             

(b) 2/1))((  E  

10),1,0(~,,1  iiiiii Nssr 

)]1/()(/[

],|)1/()(//[

),|)(1(),(

iiii

iiiiii

iiiiiii

sd

xssdP

xsdsPxsp
















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(c) Given s, the variance of )(  s is an increasing function of s for .0s  
 

Corollary 2.2. Under model (2.2), the portfolio level PD, given systematic risk s, is:  

             )1/()|)(()(
2

zsszwEsp            
 

 

By model (2.2), we have the following proposition (see Appendix for a proof).  
 

Proposition 2.3.  Under model (2.2), we have:  

   (a) 
21 1))](([ zspw   , )(),( zwxsp   

   (b) )]1/)[()|),((
2

ww zxxspE    

 

2.2. Multifactor Vasicek Models for Systematic Risk  
 

In this section we propose approaches to modeling ),(sp  i.e., the portfolio level PD in one-year 

horizon, given systematic risk s. Restriction to risk homogeneity is not required, and the 

discussion extends to a general portfolio. Recall that )(sp contains all information for systematic 

risk. 
 

We propose the following multifactor Vasicek model for )(sp : 

         ),0(~',)'()( 2

11

Nsssbuaasp
m

j

jjjj

k

j

 


    (2.3) 

where kuuu ...,,, 21 measure current portfolio credit quality, such as current portfolio default rate, 

region, and industry sector; while msss ...,,, 21 are external market or macroeconomic variables in 

horizon, i.e., )(tss ii   for a time in future with 120  t  in month. Variables kuuu ...,,, 21  and 

msss ...,,, 21 are subjected to a transformation by
1 when necessary. The specification for 

model (2.3) is for stress testing purpose. When the model is used for forecasting, current values 

for msss ...,,, 21 are then used. The latent factor 's  denotes the model residual, a dynamic 

accounting for default contagion and feedback effects, capturing all the remaining effects in 

horizon not explained by kuuu ...,,, 21  and msss ...,,, 21 , including the effects after time t and 

before the end of the horizon. 
 

Let ,1)},,...,,,,...,,,{( 2121 NirsssuuuS imiiikiii   be a given multivariate time series 

sample with N observations, where ir  is the portfolio default rate at time i. Let ip be the 

unobservable portfolio PD at time i. Parameter estimation for model (2.3) will follow the 
asymptotic maximum likelihood approach proposed in [27]. With this approach, portfolio default 
rate is equated to portfolio level PD, which in general exaggerates the variance of portfolio level 
PD, causing a bias to parameter estimates. For this reason, we propose a variance correlation as 
follows. 
 

Variance correction to portfolio default rates: 
 

(a) Assume a constant size n for the portfolio over time. Let 0p be the expected value of 

portfolio level PD over time. Estimate 0p by the simple average of sample default rates. 

Estimate as )(rv the sample variance of all ir . Then the variance 0v of portfolio level PD 

can be estimated as ([27], Proposition 2.3 (c)):        
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                  )1/()]()1([)( 000  nrvpprvv  

(b) Let r denote the sample average of all ir , and )(/00 rvvw  . Replace ir by irr : 

            0)( wrrrrr ii   
 

Note that 0/)...(/)...()()1(
22

2

2

12100  NrrrNrrrrvpp
NN

unless 

0ir or 1 for all i.  We thus have 1)(/00  rvvw  and 10  irr  unless 0ir or 1 for all 

i. This correction has the advantage of transforming extreme values of 0 and 1 to other regular 
values between 0 and 1, which would have been an issue for the asymptotic approach with no 

variance correction. More importantly, the sample variance of irr is now adjusted to the sample 

variance 0v of portfolio level PD.  

 

Next, to estimate the parameters for model (2.3), we equate ip , the portfolio PD at time i, to irr , 

and set )(1
ii

pz  . It was shown ([27], Theorem 4.2) that the maximum likelihood approach 

is equivalent to the least squares linear regression, which minimizes the sum-square of errors: 

          2

111

)]([ 



m

j

jijjij

k

j

i

N

i

sbuaaz                                                      

where , the standard deviation of  s’ in model (2.3), is estimated as the standard deviation of the 

model errors. 
 

To address the serial correlation issue for the time series, we will use the bootstrap technique 

assuming that the time series of residual 's  in (2.3) is stationary. Below are the steps for 

parameter estimation for model (2.3) proposed in [27]. 
 

Steps for parameter estimation for model (2.3): 
 

(i) Do a variance correction to portfolio default rate as proposed, equate ip , the portfolio PD, 

to the adjusted default rate irr , and set )(1
ii

pz  . 

    (ii) Generate B (e.g. B= 200) bootstrap samples each is of the same size as the input sample. 
          For each bootstrap sample, train a model of the form (2.3) using least squares linear 
          regression, and estimate the standard deviation  of the model residual.             

  (iii) For each parameter, calculate the average of all its bootstrap estimates. Select 
         from all bootstrap models the one with parameters the closest to their parameter 
         averages. 
 

 

2.3. Conditional PDs 
 

Plugging the multifactor Vasicek model (2.3) into model (1.4), we have: 

          ])'(1[),(
11

2
zssbuaaxsp

m

j

jjii

k

i

z  


                             (2.4) 

where 's and z are independent, ).,0(~),,0(~'
22

z
NzNs  Note that by (1.4) the scalar 

2
1 z must be multiplied to )'(

11

ssbuaa
m

j

jjii

k

i

 


before adding to the entity specific 

risk z.  
 

 

We consider the following conditional PDs: 
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    (a) )...,,( 1 mssp - Portfolio level PD given a scenario of systematic risk factors msss ...,,, 21 in  

          horizon and current portfolio conditions kuuu ...,,, 21 . 

    (b) ))0(...,),0(( 1 mssp -Portfolio level PD given current systematic risk factors )0(...,),0(1 mss   

         and  current portfolio conditions kuuu ...,,, 21 .  

    (c) ),...,,( 1 xssp m - Entity scenario PD given a scenario of the systematic risk factors 

         msss ...,,, 21 in horizon, current portfolio conditions kuuu ...,,, 21 , and entity current risk  

          profile x.  
 
 

Using the notations of model (2.3), we define u and v as: 

            



m

j

jjjj

k

j

sbvuaau
11

,  

We assume that u and v are normal, and the latent factor 's  in (2.3) is independent of u and v. Let 

)0(v  be the current value of v. Regress the horizon value v  on its current value )0(v  over a time 

series sample by a linear regression to get a model: vvdv v  )0( , where d is the 

intercept, v the parameter for )0(v , and v  the residual of the regression model. Let 

v denote the standard deviation of .v  
 

The proposition below calculates the portfolio level conditional PDs (See Appendix for a proof).  
  

Proposition 2.4.  Under model (2.3), where ),0(~' 2Ns , we have 

(a) )1/)(()...,,,...,,|)'(()...,,( 2
111  vuuusssvuEssp kmm  

(b) )...,,),0(...,),0(|)'(())0(...,),0(( 111 kmm uusssvuEssp   

)1/))0((( 22   vvvdu  
 

Since )()1/)(( 2 vuvu    whenever 0)(  vu , Proposition 2.4 (a) implies that 

the latent residual effect 's  in model (2.3) contributes to an increase to the portfolio level PD 

whenever 2/1)(  vu . 
 

The proposition below calculates the scenario entity PD (See Appendix for a proof). 
 

Proposition 2.5. Under model (2.4), where ),0(~),,0(~'
22

z
NzNs  , we have 

   ),...,,,...,,|))'(1((),...,,( 11

2

1 xuusszsvuExssp kmzm     

                             ))1(1/])(1([
222

zz zvu                           (2.5) 
 

 

3. Stress Testing for Portfolio Default Risk 
 

Stress testing is widely used by financial institutions to assess the vulnerability to exceptional but 
plausible events. It is a tool complementing the existing internal models for capital allocation ([2], 
[5], [8], [10], [13], [15], [23]). In practice, stress testing focuses on systematic risk, with shocks 
from the external market or macroeconomic factors ([7], [13], [24]). With the dynamic model (1.4) 
and model (2.3), stress testing can be conducted through shocking the systematic risk factors in 
the model (2.3), then propagate to entity default risk by model (1.4). We focus on scenario tests. 
 

3.1. Scenario Generation  
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Scenarios for stress testing can either be historical or hypothetical.  Hypothetical scenarios are 
assumed to capture the interdependence of different risk factors between each other and across 
time ([13, p.67].  
 

For historical scenario tests, market factors are extracted from historical scenarios; while for 

hypothetical scenario tests, market factors msss ...,,, 21 are to be generated appropriately. We 

propose the following steps for generating hypothetical scenarios:  
 

(a) Assume that msss ...,,, 21 are multivariate normal. Estimate the covariance matrix and 

denote it by R. Decompose R by the Cholesky algorithm ([20, pp.51-54]) as: GGR T , 

where TG is the transpose of the matrix G  

     (c) Generate )1,0(~ Nwi independently, and deliver a scenario as:  

                    T

m

T

m
wwwGsss )...,,,()...,,,( 2121   

 
 

3.2. Scenario Tests and Loss Assessments  
 

We propose the following steps for a scenario test:    
 

(a) Model systematic risk by a multifactor Vasicek model (2.3), following the steps proposed 
in section 2.2. This includes estimating the model parameters, and the standard deviation 
 for the latent effect 's .  

(b) Model entity specific risk by a probit or a logistic model ),(xpm using a list of entity 

specific risk sensitive drivers x, calibrate the model )(xpm  over the current portfolio, and 

set )))((())(( 11 xpExpz
mm

  by (1.5). 

(c) Given a scenario for the systematic risk factors, calculate entity scenario PD by expression 
(2.5), and portfolio scenario loss (SL) by: 

 

   
i j

ijiji LGDEADPLoss                                                     (3.1) 

          where iP denotes the scenario PD for entity i, ijEAD the exposure at default for facility j  

          of entity i, and ijLGD the loss given default for facility j.  
 
 

4. An Empirical Example – A Dynamic PD Model for a Commercial Portfolio                                                           
                                                                                                                                                                     

4.1. Modeling Systematic Default Risk   
 

In this section, we model the portfolio level PD, i.e., )(sp , for a US commercial portfolio, where 

historical 1-year default rates are available for each quarter between 2006 and 2012.  
 

The delinquency rate for commercial and industry loans (no seasonal adjustment), posted by US 
Federal Reserve, is available since 1987. This is the macro variable we use for systematic risk 
modeling. Based on portfolio historical default data, internal portfolio default rate responds to US 
delinquency rate by a lag of two quarters.  
 

We follow the steps proposed in section 2.2, do a variance correction to the default rates, and 
bootstrap 200 times. Each time we train a model of the form (4.1) below over the bootstrap 
sample: 
 

             )1,0(~"),"()( 1211 Nscssbubasp                                            (4.1) 

where )( 1
1

1 ru  and 1r is the current portfolio default rate (original default rate, not the 

adjusted one by the variance correction), while         
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             )(1
1 months6inratedelinquentUSs    

We then calculate for each of the parameters a, ,, 21 bb and c, the average its bootstrap estimates, 

and select from the bootstrap models the one with parameters the closest to their bootstrap 

averages. This is the final model we will use for systematic risk )(sp . 
  

 

4.2. Modeling Entity Specific Default Risk  
 

For entity specific risk, we train a logistic model over a sample of portfolio historical data, 
targeting entity default indicator. The sample contains 1161 entities, including all defaults for 
years 2006-2011, but non-defaults are sampled randomly and proportionally by year for each year 
in 2006-2012. The model includes six entity specific risk drivers: 
 

1. Debt Service Coverage Ratio 
2. Annual Revenue 
3. Ratio of Debt to Tangible Net Worth 
4. Ratio of Debt to EBITDA 
5. Ratio of Cash and Security to Current Liability 
6. Years in Business   

 

For assessment of regulatory capital (RC) ([1, pp.59-60]) and expected loss (EL), the model is 
calibrated at a long-run portfolio PD of 3.1% over the current portfolio (as of September 2012). 

Denote this model by ),(xpm given entity specific risk profile x. Note that model )(xpm is not a 

PIT model yet at the moment. 
 

4.3. Scenario Tests  
 

The portfolio is assumed to be risk homogeneous, e.g., entities have the same systematic risk (i.e. 
the same asset correlation), and each entity specific risk z can be regarded as being sampled 

independently from the same distribution ),0(
2

z
N  . Then the idiosyncratic risk component z in 

(1.4) can be derived by (1.5) using the entity specific risk model )(xpm  developed in section 4.2:  

              )))((())(( 11 xpExpz
mm

                                              

where )))((( 1 xpE
m

 is estimated by the average of ))((1 xp
m

  over current portfolio (as of 

September 2012). Estimate the standard deviation z of z over the portfolio. Then the systematic 

risk component w in (1.4) is given by  

                )"(1 1211

2
cssbubaw z    

where ),1,0(~"),"()( 1211 Nscssbubasp  is the model developed in section 4.1 for the 

systematic risk )(sp . 
 

Combine w and z together by (1.4). Scenario tests follow the steps (a)-(c) proposed in section 3.2, 
using the existing portfolio EAD and LGD models for the portfolio. We assume that each of these 
two models dynamically captures the exposure at default or the loss rate for a facility in the 
portfolio. 
 

Results are shown in Table 1 below. Entities in the portfolio are grouped into investment (Inv), 
sub investment (Sub), and problematic (Prblm) grades, based on entity scenario PD given by 
expression (2.5).  
 
The columns 2-6 in the table are respectively the current US delinquent rate, US delinquent 
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rate in six months, current portfolio default rate, realized portfolio default rate in one year, predicted 
portfolio-level PD in one year given by Proposition 2.4(b), and scenario portfolio-level PD given by 
Proposition 2.4(a).  Portfolio scenario loss (SL) is calculated as proposed in Section 3.2 (c), as a 

percentage of total portfolio exposure (the sum of all facility ijEAD  in the portfolio). 
 

Recall that the US delinquency rate in six months is the only macro variable used in the model 
(4.1) for the systematic risk. We are interested in two scenarios as highlighted in Table 1: both 

assume the current time )0( t as of 2nd quarter of 2009.The historical scenario uses the macro 

variable value of fourth quarter of 2009 (in 6t  months), which is 4.4%, and the hypothetical 
scenario uses the macro variable value of 3rd quarter of 1987, which is 6.6%.  
 

The results show: 
 

(a) With the hypothetical scenario, most (58.43%) entities migrate to problematic grade  
       (including defaults). 

   (b)  Among all the historical scenarios, portfolio scenario loss (SL) peaks in 2nd quarter of 2010 
          (the end of one-year horizon), with a loss of 2.9% of the total portfolio exposure; while for 
           the hypothetical scenario, the scenario portfolio loss reaches 5.3% of total portfolio  
           exposure. 
 

Table 1. Scenario assessments for a commercial portfolio 

US Delinq Rate Portfolio Level Default Risk Scenario Rating Distribution

Year 

/Quarter

Curre

nt

In Six 

Mths

Curre

nt

Realize

d

Pred 

PD

Scena

rio PD
Inv Sub Prblm SL

2006Q2 1.3% 1.2% 0.6% 2.4% 1.3% 1.4% 55.8% 37.2% 7.0% 0.5%

2006Q4 1.2% 1.1% 1.5% 1.9% 1.6% 1.9% 55.8% 37.2% 7.0% 0.7%

2007Q2 1.1% 1.3% 2.4% 1.3% 1.8% 2.6% 41.6% 51.4% 7.0% 0.9%

2007Q4 1.3% 1.7% 1.9% 1.3% 1.9% 3.1% 25.7% 58.9% 15.4% 1.1%

2008Q2 1.7% 2.6% 1.3% 2.7% 2.1% 4.3% 25.7% 58.9% 15.4% 1.4%

2008Q4 2.6% 3.7% 1.3% 4.9% 3.1% 6.2% 11.1% 62.0% 26.9% 2.1%

2009Q2 3.7% 4.4% 2.7% 5.3% 5.0% 9.0% 5.2% 50.5% 44.2% 2.9%

2009Q4 4.4% 3.5% 4.9% 4.6% 6.8% 8.7% 7.0% 48.8% 44.2% 2.8%

2010Q2 3.5% 3.0% 5.3% 4.7% 5.9% 7.6% 7.0% 66.1% 26.9% 2.5%

2010Q4 3.0% 2.1% 4.6% 4.5% 4.9% 5.1% 11.1% 73.5% 15.4% 1.7%

2011Q2 2.1% 1.7% 4.7% 3.7% 3.7% 4.1% 25.7% 58.9% 15.4% 1.4%

2011Q4 1.7% 1.4% 4.5% 2.9% 3.0% 3.3% 25.7% 58.9% 15.4% 1.1%

1987Q3 6.6% 6.6% 5.7% 5.7% 9.9% 16.1% 0.8% 40.8% 58.4% 5.3%
 

 
Conclusion. In practice, most entity PD models do not fully or dynamically capture systematic 
risk. The approaches proposed in this paper allow systematic and entity specific risks to be 
modelled separately and then aggregated together analytically. Systematic risk is quantified and 
modelled by a multifactor Vasicek model with a latent residual, a factor accounting for default 
contagion and feedback effects. The asymptotic maximum likelihood approach for parameter 
estimation for this model is equivalent to least squares linear regression. Conditional entity PDs 
for scenario tests and TTC entity PD all have analytical solutions. Stress testing can be conducted 
by shocking the risk factors in the system risk component model.  
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APPENDIX A 
 

Proof of Lemma 2.1 (c). Given constants a and )0(b , it can be shown ([22], Lemma 6, p.48) 

that 
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c c

)]22/()2(exp[
12
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]))([( 222

2

2 
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where 21/ bac  , ,1/ 22 bb   and ).1,0(~ Nz  By Lemma 2.1 (a),  we have 

)1/()]([ 2babzaE  . Let 1 denote the derivative of ]))([( 2bzaE  with respect to 

c, and 2 the derivative of 2)])([( bzaE  with respect to c. It suffices to show 1 > 2  

when 0c and .0  Let )( be the standard normal distribution. Then 

,)()(22 cc    and we have  
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 This is because 0c and  0 )1/()1(   cc  □ 
 

Proof of Proposition 2.3. Statement (b) is a corollary of Lemma 2.1 (a).  For statement (a), we  
have by Corollary 2.2   

           
2112

1))(())((1/ zz spwspw     □ 
 

Proof of Proposition 2.4. We have: 
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Statement (a) is a corollary of Lemma 2.1 (a). For statement (b), we have  
 

)...,,),0(...,),0(|))'()0((())0(...,),0(( 111 kmvm uusssvvduEssp    

)1/))0((())0(...,),0(( 22

1   vvm vdussp □ 
 

Proof of Proposition 2.5. By (1.4), we have: 

   ),...,,,,...,,,|))'(1((),...,,,( 2121

2

21 xuuussszsvuExsssp kmzm    

As the variance for the term '1
2

sz  is )1(
22

z
  , the proposition follows from Lemma 

2.1 (a). □ 
 


