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WHICH ECONOMIC STATES ARE SUSTAINABLE UNDER A
SLIGHTLY CONSTRAINED TAX-RATE ADJUSTMENT POLICY

J. B. KRAWCZYK∗ AND K.L. JUDD⋄

Abstract. Viability theory is the study of dynamical systems that asks

what set of initial conditions will generate evolutions which obey the laws

of motion of a system and some state constraints, for the length of the evo-

lution. We apply viability theory to Judd’s (JPE, 1987) dynamic tax model

to identify which economic states today are sustainable under only slightly

constrained tax-rate adjustments in the future, when the dynamic budget

constraint and consumers’ transversality condition at infinity are satisfied.

We call the set of such states the economic viability kernel. In broad terms,

knowledge of the viability kernel can tell the planner what economic ob-

jectives are achievable and assist in the choice of suitable controls to realise

them. We observe, unsurprisingly, that a very high consumption economy

lies outside such kernels, at least for annual tax-adjustment levels limited

by 20%; higher consumption levels can only be sustained when capital is

abundant. Furthermore, we notice that the sizes of the kernel slices for

a given taxation level do not diminish as the tax rate rises, hence high

taxation economies are not necessarily more prone to explode, or implode,

than their low taxation counterparts. In fact, higher tax rates are neces-

sary to keep many consumption choices viable, especially when capital

approaches the constraint-set boundaries.

.

Keywords: taxation policy, macroeconomic modeling, dynamic systems, vi-

ability theory; VIKAASA
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1. Introduction

This paper uses viability theory (Aubin (1997)) to examine basic problems

in dynamic public finance1. For specificity, we use the model studied in Judd

(1987).

∗Victoria University of Wellington, New Zealand.
⋄Stanford University, CA.
1This paper draws from Krawczyk and Judd (2012).
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2 KRAWCZYK AND JUDD

Viability theory is the study of dynamical systems that asks what set of

possible paths obey the system’s laws of motion and remain in some state-

constraint set. In one example in our paper, we compute the set of possible

consumption levels today that remains invariant under only loose restric-

tions on tax policy and given a fixed level of government expenditure in the

future. Another way of putting this is that we perform a kind of robustness

analysis to answer the question what are the sustainable consumption levels to-

day if all we know is that tax policy will satisfy the dynamic budget constraint and

that consumers’ transversality conditions at infinity will be satisfied? The usual

perfect foresight analysis specifies one future path for taxes. The viability

theory approach relaxes this assumption and puts some (loose) restrictions

on tax policy. This enables one to ask how much the perfect foresight result

depends on having perfect foresight. For example, suppose that we have

some debt today and know the future path of tax rates and government

expenditure. Then, under the classical approach there would (likely) be

only one consumption and capital combination which would be viable i.e.,

one equilibrium path could originate from this combination. In that case,

viability reduces to equilibrium. On the other hand, a viability analysis can

establish the set of all pairs of consumption and capital (c, k) which represent

initial conditions such that there is some future tax-rate path which obeys

the restrictions we put on the change in tax rate, and is consistent with equi-

librium and with initial conditions (c, k). We assert the collection of all such

initial conditions, which we call the viability kernel, generalizes the notion of

equilibrium, which is one theme of viability theory.

We find that if the only tax is a proportional income tax, then uncertainty

about future tax policy does not affect consumption much. However, in other

tax systems, such as one that taxes labor and capital differently, uncertainty

about future tax policy may lead to much greater uncertainty about current

consumption.

This paper focuses on some specific questions in a simple dynamic model

of expenditure and taxation. However, there is a much more ambitious

agenda behind this paper, which is to present viability theory as an important

tool for the solution of economic problems.2 Its main machinery consists of

2So far, viability theory has been applied to a handful of economic and financial prob-

lems. For applications to environmental economics see Martinet and Doyen (2007), De Lara,

Doyen, Guilbaud, and Rochet (2006) and Martinet, Thébaud, and Doyen (2007); finance –

Pujal and Saint-Pierre (2006); managerial economics – Krawczyk, Sissons, and Vincent (2012);

macroeconomics – Krawczyk and Kim (2009), Bonneuil and Saint-Pierre (2008), Bonneuil and
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the formulation and solution of differential inclusions. That is, in viability

theory the system’s dynamics is represented as a set of the directions of

motion of the system that depend at any moment on the state. The concept

of solution is a path of sets instead of a path of points, where the “tube”

formed by those sets is the union of all possible paths that stay in the tube

but also satisfy the usual terminal constraints and some additional state

restriction. Viability theory is therefore part of set-valued analysis.

Solving viability problems is computationally intensive. However, thanks

to some specialized software, solving simple models, of 2 – 4 state variables

and 1 – 2 controls, is possible. The software we use is VIKAASA (see

Krawczyk and Pharo (2011) and Krawczyk and Pharo (2014)).

Here is how the paper is organized. We expound viability theory in Section

2. Following Judd (1987), we introduce a simple model of expenditure and

taxation in Section 3. In Section 4, we make an assumption that the only

tax charged in this model will be a proportional income tax and calibrate

the model according to this assumption. Further, in Section 5, we compute

viability kernels and comment on their topology. We also show (in Section

6) a few possible time profiles of the debt-to-GDP ratio and observe that a

high value of the ratio does not necessarily imply non-viability. The paper

ends with concluding remarks.

2. A brief on viability theory and viable solutions

2.1. An introduction to viability theory. Viability theory is a relatively new

part of mathematics, see e.g., Aubin (1991, 1997, 2001). Viability problems

concern systems that evolve over time, where the concern is to identify viable

evolutions – trajectories that do not violate some set of viability constraints

over a given (possibly infinite) time-frame. A viability domain is the set

of initial states from which viable trajectories originate and the viability

kernel is the largest viability domain. These are the basic tools for analyzing

constrained evolutions also known as viability problems.

The basic feature of the viability kernel is that it provides us with the

information necessary to determine whether or not a given state-space po-

sition has a viable trajectory proceeding from it, i.e., whether starting at that

position, the system can be maintained within its constraints, or not. In what

Boucekkine (2008), Krawczyk and Kim (2004), Krawczyk and Sethi (2007), Clément-Pitiot

and Saint-Pierre (2006), Clément-Pitiot and Doyen (1999); microeconomics – Krawczyk and

Serea (2013). However, several of the above publications are working papers of limited

circulation.
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follows, we give a more technical explanation of viability theory, including

a formal definition of the viability kernel.

The core ingredients of a viability problem are (compare Krawczyk and

Pharo (2011)):

(1) A continuum of time3 values, Θ ≡ [0,T] ⊆ R+, where T can be finite

or infinite.

(2) A vector of n real-valued state variables, x(t) ≡ [x1(t), x2(t), . . . , xn(t)]′ ∈

R
n, t ∈ Θ that together represent the dynamic system in which we

are interested.

(3) A constraint set, K ⊂ Rn, which is a closed set representing some nor-

mative constraints to be imposed on these state variables. Violation

of these constraints means that the system has become non-viable.

Thus in seeking viable trajectories, we want to ensure that ∀t(t ∈ Θ)

x(t) ∈ K.

(4) A vector of real-valued controls, u(t) ≡ [u1(t),u2(t), . . . ,um(t)]′ ∈ Rm,

t ∈ Θ.

(5) Some normative constraints on the controls. In this paper, we assume

that u ∈ U where U is the set of control vectors available at each state.

(In general, the set U can depend on x.)

(6) A set of real-valued first-order differential inclusions,

(1) ẋ(t) =
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ẋ2(t)
...
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.

Each function ψi : Rn × Rm 7→ R, i = 1, 2 . . . n specifies the range

of velocities of the corresponding variable xi, at the state position

x(t) ∈ Rn where u ∈ U ⊂ Rm is a control choice available at this

position. Some, but not all, inclusions in (1) can be equalities.

Note that we have formulated viability problems above in terms of differ-

ential inclusions whereby the evolution of some or all of the system’s variables

is set-valued. That is, for a given x(t) we have an array of possible controls U

to choose from and hence have a set of velocities ψ(x(t),u), u ∈ U, associated

with state x(t). The symbolψ denotes a point-to-set map, or correspondence,

3A similar formulation could be made for a viability problem in discrete time.



SUSTAINABLE ECONOMIC STATES UNDER SLIGHTLY CONSTRAINED TAX-RATE ADJUSTMENTS5

from states x to velocities ψ(x,U). We will abbreviate the notation and write

Ψ(x) instead of ψ(x,U).4

Given problem formulation (1), we can attempt to find one or more viability

domains, D ⊆ K, where each viability domain is a set of initial conditions x(0),

for which there exist viable trajectories. That is, for every element x ∈ D,

D ⊆ K ⊂ Rn there must exist a trajectory that originates at x and is a solution

to (1) in D. The problem’s viability kernel,V ⊆ K is then the largest possible

viability domain (or the union of all viability domains), giving all initial

conditions in K, for which a viable evolution exists.

We will characterize a viability domain using the Viability Theorem from

Cardaliaguet, Quincampoix, and Saint-Pierre (1999) :

Proposition 1. Assume D is a closed set in RN. Suppose that ψ : RN ×U → RN

is a continuous function, Lipschitz in the first variable; furthermore, for every x

we define a set valued map ψ(x,U) = {ψ(x,u); u ∈ U}, which is supposed to be

Lipschitz continuous with convex, compact, nonempty values.

Then the two following assertions are equivalent 5:

(i)

(2) ∀x ∈ D, ∀p ∈ NPD(x), min
u
〈ψ(x,u), p〉 ≤ 0

(respectively, max
u
〈ψ(x,u), p〉 ≤ 0) ;

(ii) there exists a function u : Θ 7→ U such that

(respectively, for all such functions)

(3) the solution of

{

ẋ(s) = ψ(x(s),u(s)) for almost every s

x(t) = x

remains in D.

To be precise, Proposition 1 merges two results first proved in Veliov (1997)

(concerning ∃u) and in Krastanov (1995) (concerning ∀u).

Notice that the inequality minu〈ψ(x,u), p〉 ≤ 0 in (2) means that there

exists a control for which the system’s velocity ẋ “points inside” the set D.

4In a numerical algorithm commented on in Section 2.2 we seek controls from U for

which the trajectories are viable i.e., x(t) ∈ K for all t ∈ Θ. For existence and characterisation

of feedback controls assuring viability see Veliov (1993).
5Here NPD(x) denotes the set of proximal normals to D at x i.e., the set of p ∈ RN such

that the distance of x + p to D is equal to ||p||.
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Respectively, maxu〈ψ(x,u), p〉 ≤ 0 means that the system’s velocity ẋ “points

inside” the set D for all controls from U.

When i. (or ii.) holds we say that D is a viability domain (or, respectively,

D is an invariance domain) for the dynamicsΨ.

This introduces the classical notion of the viability (respectively, invari-

ance) domain Aubin (2001), as opposed to viability domains in problems

with targets, see Quincampoix and Veliov (1998).

Definition 2.1. Let K be a closed set in RN. We call the viability kernel in K, for

the dynamicsΨ, denoted:

VΨ(K)

the largest closed subset of K, which is a viability domain forΨ.

It was proved (see e.g., Aubin (1991) or Quincampoix and Veliov (1998))

thatVΨ(K) is the set of x such that there exists x(·), a solution of

(4) ẋ(s) ∈ Ψ(x(s))

starting from x, which is defined on [0,∞) and x(s) ∈ K for all s ≥ 0.

IfΨ is the collective vector of right hand sides like in (1) then the problem

that we want to solve is

(5) establish viability kernel VΨ(K) for the dynamics Ψ .

We will approximateVΨ(K) by looking for solutions to (4).

2.2. A method for the determination of viability kernels. In Gaitsgory and

Quincampoix (2009) we can find a base for how to approximateVΨ(K) using

the solutions to (4). In broad terms, they say that if a constrained optimal

control problem, subjected to the system’s dynamicsΨ(·) and the constraint

set K, can be solved for x ∈ K and x(t) ∈ K∀t, then x is viable.

VIKAASA6, is a computational tool which computes viability kernel ap-

proximations (actually, domains) for the class of viability problems intro-

duced in Section 2.1, using a user-selected algorithm. In this paper, we have

selected one that solves a truncated optimal stabilization problem, rather

than a general optimal control problem, for each xh ∈ Kh ⊂ K where Kh is a

suitably discretized K.

For each xh ∈ Kh, VIKAASA assesses whether a dynamic evolution origi-

nating at xh can be controlled to a (nearly) steady state without leaving the

constraint set in finite time. Those points that can be brought close enough

6See Krawczyk and Pharo (2011) and Krawczyk and Pharo (2014); also Krawczyk, Pharo,

and Simpson (2011), Krawczyk, Pharo, Serea, and Sinclair (2013).
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to such a state are included in the kernel by the algorithm, whilst those that

are not are excluded.7

In Section 5 we present some results from running the algorithm on the

taxation problem, introduced in the next section.

3. The tax model

Our goal in this paper is to use viability theory for an analysis of a tax

model based on Judd (1987). In that model capital, labor, consumption, debt,

marginal utility of consumption and tax rates are all variables of time. To

unburden the notation we will drop the time argument on each of them.

The fundamental law of motion for capital k is determined by net output

i.e., y−δk, where y is output and δ > 0 is the rate of depreciation, diminished

by consumption c > 0 and government expenditure is g ≥ 0. If so and

assuming a Cobb-Douglas type production function for output, we get, in

continuous time,

(6)
dk

dt
= Akαℓ1−α − δk − c − g .

As usual, ℓ > 0 is labor, A > 0 — total factor productivity and α, 0 < α < 1 —

output elasticity of capital. In this model, expenditure g is assumed constant

but several values of g will be checked in the computations.

Let the utility of consumption of a representative agent be

(7) u(c) =
c1−γ

1 − γ

and the disutility of labor

(8) v(ℓ) = V
ℓ1+η

1 + η

7This algorithm (called inclusion algorithm, see Krawczyk et al (2013)) employed by

VIKAASA will miss any viable points that cannot reach a steady state; e.g., because they

form (large) ’orbits’. However, experimenting with the tax model (18) - (20), (26), which

consisted of using different discretisation grids and trying various controls, did not lead to

discovery of a point like that. In particular, VIKAASA has produced results in Krawczyk

et al (2011) that coincide with with those from Krawczyk and Serea (2009), where a method

based directly on Gaitsgory and Quincampoix (2009) was applied to the same problem. In

turn, the outputs in Krawczyk and Serea (2009) coincide with those published in Krawczyk

and Kim (2009).
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where V, γ, η are positive. If λ > 0 is the private marginal value of capital at

time t, then it follows from maximization of the utility function u(c) − v(ℓ),

on an infinite horizon with some discount rate ρ > 0, that8

(9)
dλ

dt
= λ(ρ − r̄) .

Here, r̄ = (1 − τ
K
)

(

∂y

∂k
− δ

)

is the after tax marginal product of capital, where

τ
K

(0 < τ
K
< 1) is capital tax. Expanding r̄ in (9) yields

(10)
dλ

dt
= λ

(

ρ − (1 − τ
K
)

(

αA
(

ℓ

k

)1−α

− δ

))

.

To characterize the economy at hand, we will also use government debt

B, which grows in g and diminishes with tax T as follows:

(11)
dB

dt
= r̄B − T + g

where, as above, r̄ is the net-of-tax interest rate. In this economy, tax rates

on capital and labor are τ
K

and τ
L

(0 < τ
L
< 1, 0 < τ

K
< 1), respectively; if so,

the expression for total tax T in (11) at time t becomes

T = τ
K
αAkαℓ1−α + τ

L
(1 − α)Akαℓ1−α =

(

α(τ
K
− τ

L
) + τ

L

)

Akαℓ1−α .

Combining (12) and (11) results in the following debt dynamics

(12)
dB

dt
= r̄B −

(

α(τ
K
− τ

L
) + τ

L

)

Akαℓ1−α + g ,

where r̄ = (1− τ
K
)(αAk−(1−α)ℓ1−α − δ) will be included in this expression later.

In simple terms, we see that debt can diminish if output is large or if the tax

rates are high (and when output is not too small).

While the private marginal value of capital, λ, can adequately characterize

the consumer’s behavior, it lacks an easy economic interpretation. We will

8Except where stated otherwise, all settings in our model are the same as in Judd (1987),

which can also be traced down to Brock and Turnovsky (1981). In particular, the private

marginal value of capital λ (or, agent’s marginal utility of consumption, see (14)) is the

adjoint state in the perfect-foresight household utility u(c) − v(ℓ) maximisation problem.

Part of its specification is a request for the satisfaction of the consumers’ transversality

condition at infinity. To obtain optimal consumption, it is sufficient to solve the underlying

optimal control problem and use (15). Solving the viability problem will tell us which such

optimal consumption decisions are compatible with current capital, labour and a limited-

variation (hence only “near-perfect” foresight) tax policy. When we say that the viability

kernel is non-empty we imply that the consumers’ transversality condition at infinity is

fulfilled.
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replace the equation for
dλ

dt
, (9), by a differential equation for consumption,

easily interpretable.

The marginal utility of consumption (see (7)) is

(13)
du

dc
=

1

cγ
;

on the other hand, λ is the marginal utility of consumption, so

(14)
du

dc
= λ

hence,

(15) c =
1

λ1/γ
,

which, after differentiation in the time domain, yields

(16)
dc

dt
=
−1

γ
·

1

λ1+1/γ
·

dλ

dt
=
−1

γ
c1+γ dλ

dt
.

Using (10), after some simplifications, we get

(17)
dc

dt
= − c ·

ρ +
(

δ − αA kα−1 ℓ1−α
)

(1 − τK)

γ

We can see that consumption has one trivial steady state and will grow if

ρ (discount rate) and/or δ (depreciation) are “small”.

We will now write the three equations of motion (6), (17), (12) together,

for a better look at the economy we want to analyze:

dk

dt
= Akαℓ1−α − δk − c − g(18)

dc

dt
= − c ·

ρ +
(

δ − αA kα−1 ℓ1−α
)

(1 − τK)

γ
(19)

dB

dt
= r̄B −

(

α(τ
K
− τ

L
) + τ

L

)

Akαℓ1−α + g .(20)

The system of differential equations (18) - (20) is the basic representation

of the economy at hand, for which we want to establish the viability kernel

i.e., the loci of economic states, from which moderate tax adjustments can

guarantee a balanced evolution of the economy.

We recognize that this system is nonlinear with multiple steady states. We

can see that, as one would expect, the consumption growth or decline can be

moderated by adjusting the capital tax rate while debt will (mainly) depend

on the labor tax rate. If the rates were identical (τ
L
= τ

K
), then increasing

them/it will slow down the consumption rate and diminish debt. With high
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taxation rate, consumption and debt will naturally diminish and capital will

grow (because labor increases, see below). We also notice that debt will

grow very fast for large B and non-excessive capital taxation.

We now want to express labour ℓ through capital and consumption and

thus “close” the dynamic system (18) - (20).

Let w denote (time-dependent) wages; they equal to the marginal product

of labour:

(21) w =
dy

dℓ
=

(1 − α)kα A

ℓα

In equilibrium, the marginal utility of consumption weighted by the after-tax

wages must be equal to the marginal disutility from labor:

(22)
(1 − τ

L
)w

cγ
= ℓηV .

Substituting wages and solving for labor yields,

(23) ℓ =

(

(1 − τ
L
)(1 − α)Akα

cγV

)
1
α+η

,

from which we see that labor can be determined by capital and consumption.

We could now use (23) to substitute labor in (18) - (20), but the result-

ing formulae would appear more complicated than the original equations,

even if they contained one variable less. We will not show them here. We

will however use them in the computations, after we have calibrated the

equations. Here, we can observe that if γ > α then labor decreases in con-

sumption faster than it grows in capital. Allowing for this tells us that the

sign of (19) will be negative for large discount and depreciation rates hence

high consumption levels will quickly diminish. Large consumption will also

contribute to a decline of capital and a rise of debt. However, this multiple

downturn may be avoided by an “early” (preemptive) drop of taxes on cap-

ital. We will see from which states such an preventive drop can be efficient,

after we have computed the viability kernel for this economy, in Section 5 .

To fully describe the tax model dynamics, the equations (18) - (20) (with

(23)) need be completed by two differential inclusions for the two tax rates

τ
L

and τ
K
:

(24)
dτ

L

dt
= u

L
∈ [−d

L
, d

L
] = U

L

and

(25)
dτ

K

dt
= u

K
∈ [−d

K
, d

K
] = U

K
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where d
L
, d

K
are positive numbers. The inclusions represent bounds on the

speed at which tax rates can change. This corresponds to the government

policy of “smooth” tax rates adjustments determined by d
L

and d
K
.

In the current version of the model we will assume that the only tax is a

proportional income tax, so the tax rate on labour and capital are equal i.e.,

τ
L
= τ

K
= τ. Therefore, the above inclusions (24), (25) collapse to

(26)
dτ

dt
= u ∈ [−d, d] = U, d ≥ 0 .

4. Model calibration

We propose that neglecting depreciation will not greatly affect the eco-

nomic dynamics and so set δ to zero. Government expenditure g is assumed

to be constant. We will construct a couple of different calibrations for the

model, each with a different level of government expenditure. First, we set

g at 10% of no-tax steady-state output.

We will assume ρ = 0.04, α = 0.3, η = 1 and γ = 0.5 that, in broad

terms, characterize a reasonably industrialized economy composed of ratio-

nal agents interested in the near future (notably, exp(−0.04 · 10) = 0.67 and

exp(−0.04 · 50) = 0.13), drawing a fair satisfaction from consumption and

feeling, quite strongly, the burden of labor.

We will use a stylized steady state k = ℓ = 1 with no taxes and no govern-

ment expenditure to calibrate A and V. Setting the right hand sides of (6)

and (9) to zero yields

(27) A = c, and A =
ρ

α
hence A = c = 0.1333

where c is the no-tax consumption steady state. Then, we get from (23) that

(28) V = (1 − α)
(ρ

α

)1−γ

hence V = 0.2556 .

Finally, in our initial calibration, g = 0.1A = 0.0133.

As said in Section 2, we also need to set boundaries that the economy

should not cross. We propose that

(I) capital should be between 10% and 200% of no-tax steady state capital

stock i.e., k ∈ [0.1, 2];

(II) consumption should range between 1/5 of and 5 times the no-tax

steady state consumption c i.e., c ∈ [0.0267, 0.6667];

(III) debt may be allowed to grow to 150-200% of the maximum steady-

state capital stock and also drop below zero so, in this study, B ∈

[−1, 3.5];
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(IV) tax rate τ ∈ [0. 0.8];

(V) tax-rate adjustment speed i.e., the amount by which the regulator can

change the current tax-rate level within a year will be between -20 and

20 percentage points so, u ∈ [−0.2, 0.2], where u is the tax-adjustment

speed.

These constraints have been chosen somewhat arbitrarily. In a “real world”

calibration, constraints would come from a combination of positive and nor-

mative sources, as well as from the requirement to close K. For instance, the

lower bound on capital might be tied to a normative requirement concerning

the nation’s GDP, whereas the upper bound might be based simply on the

observations that capital would never realistically fluctuate that far from its

steady state. Bounds on consumption, debt and tax would be similarly de-

termined. In general, normative requirements might be determined through

some auxilliary optimisation procedure, or they might be externally given

(e.g., politically).

The calibrated system’s movements can be learned from Figure 1, which

presents vector fields in the capital-consumption state space, for no debt, for

two different tax levels. The no-tax, no government expenditure steady state

is shown as the big dot in the left panel. We observe in each panel that the

closer we are to the centre, the slower the system will be moving so, for a

large central area of consumption choices, the economy appears stabilizable.

We also notice that consumption above 0.2 appears unsustainable in the

long-run because it causes capital to quickly diminish or vanish. With this

observation, we will reduce the top consumption level to 0.225.

Finally, the constraint set K, for which we will seek the viability kernel, is

(29) K = [0.1, 2] × [0.0267, 0.225] × [−1, 3.5] × [0, 0.8] .

The viability problem is then to determine the kernelV ∈ K ⊂ IR4 for the

dynamics Ψ(·) defined through the vector differential inclusion9 (18) - (20),

(26) (with (23)). We will use VIKAASA to computeV.

5. The viability kernel

We will show several viability kernel slices for the following two situations:

• B = 3.5 and g = 0.0133, as introduced in Section 4;

• government expenditure doubles to g = 0.0266.

9Because of (26), system (18) - (20) is now a differential inclusion in IR4.
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Figure 1. k, c-vector fields for τ = 0 g = 0, left panel and

τ = 0.4, right panel.

5.1. How to interpret 3D slices of the 4D kernel? Given that V ⊂ K ⊂ IR4

where we cannot display sets, the analysis will be conducted using 3D

(sometimes 2D) cross-sections, or “slices” ofV.

Explanation Box 1.

To analyze the tax policy, we will use 3D slices of the 4D space (k, c,B, τ) where

evolutions of the economy “live”. The first such a slice is shown in Figure 2. The

three dimensions, for which the slice is cut, are labelled along the respective axes

(here: capital, consumption and tax rate); the fourth dimension is kept constant

(here: debt=1.25). The rectangular box in each figure delimits a 3D projection of

K ⊂ IR4 where K is the constraint set, within which the economy is supposed to

remain. A 3D body (“boulder”) is a snapshot of the viability kernel taken for a
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particular value of the fourth dimension, written down in the caption or as the

figure’s title. If there is a line (trajectory) shown in the figure, then each point of

this line corresponds to a different value of the fourth dimension; i.e., the 3D line is

parametrized in the fourth dimension.

Explanation Box 2.

We remind the reader that by the kernel definition:

• for each economic state represented as a point in the boulder, there exists a smooth

tax-rate policy (u ∈ [−0.2, 0.2]), which maintains the economy in the constraint set

K;

• the points outside the boulder are the economic states that cannot be controlled

by this policy to remain in K.

A smooth tax-rate policy that maintains the economy in K, keeps it also

in V. (This is because we deal with infinite-horizon viability problems.)

Henceforth, given the restrictions we put on the change in tax rate, we can

apprise where the economy will be in the future even if our knowledge about

the economy today is only of debt and capital.

5.2. Maximum allowable debt B = 3.5. Figure 2 shows two kernel slices

for a medium debt level, B = 1.25. We first observe that some low con-

sumption levels (see the far right bottom corner along capital) and a lot of

high consumption levels (c ≥ 0.14) are not viable. This is so because the for-

mer would lead to overcapitalization of the economy while the latter would

de-capitalize the economy.

This is visible from the right panel. Three exemplary evolutions show

what can happen to the economy depending on the “initial” state. If the

state is [1.6833, 0.0598, 1.2500, 0.4000] ∈ V then there are smooth10 tax-rate

strategies, for which the evolution remains contained in V ∈ K ⊂ IR4, see

the solid line. (Actually, the evolution stabilizes when B = 0, i.e., within a

different kernel slice, not shown here.)

However, if the evolution starts at [1.6833, 0.0433, 1.2500, 0.4000] < V,

then even the fastest tax-rate growth (i.e., u = 0.2) cannot prevent overcapi-

talization and the economy violates the capital upper bound k = 2.

10I.e., u ∈ [−0.2, 0.2].
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Figure 2. Kernel slices for B = 1.25.

If the evolution starts at [1.6833, 0.1454, 1.2500, 0.4000] <V then even the

fastest tax-rate decrease (i.e., u = −0.2) cannot prevent the dramatic capital

reduction to below its lower bound k = 0.2. In Section 6, page 22, we

compute the debt-to-GDP ratio for each of these evolutions.

Furthermore, this 3D slice’s (i.e., in Figure 2) projections onto the planes:

tax-consumption and tax-capital, not shown but easy to visualize, are almost

rectangular. This implies that, for this moderate debt level (i.e., B = 1.25), the

income tax-rate “initial” conditions are non-essential for the consumption

choices.

Figure 3 shows two kernel slices: for an economy with savings, B = −0.55

left panel and a high debt economy, right panel B = 2.6. Overall, we notice

that while the left slice is slanted toward higher consumption, with respect

to the position of the slice in Figure 2, the right panel slice (high debt) is

slanted toward lower consumption.
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Moreover, the kernel slice for an economy without debt (left panel) appears

largest among the so far analyzed slices. This implies that when the debt

level is low there are more viable consumption choices for a given level of

capital and tax, than when debt is high (or higher). We also notice that viable

consumption decisions are different for each level of debt. When debt is low

(left panel), there are fewer consumption decisions that would de-capitalize

the economy, than when debt is high. Also, there are more consumption

levels that could lead to overcapitalization in a low tax economy.

Figure 3. Kernel slices for B = −0.55, left panel and B = 2.6,

right panel.

The slice projections onto the planes of tax-consumption and tax-capital are

less rectangular than for B = 1.25. This implies that, for these debt levels (i.e.,
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B = −0.55 and B = 2.6), the income tax-rate “initial” conditions need be taken

into account when the consumption choices are made. This is exemplified

in Figure 4 where the slices’ cuts are shown for capital k = 1.525. The left

(darker) shape is for the high debt economy, the right one is for the economy

with savings. We can see how viable consumption choices depend on debt.

When the economy has savings, B = −0.55, the right shape, consumption

can be “lavish” and reach c = 0.175. This is not the case of an economy

with debt (B = 2.6, the left shape); here, the highest consumption can attain

c = 0.12. Evidently, with higher debt, consumption must be lower.

Figure 4. Kernel slices for c = 1.525 for B = −0.55 and B = 2.6.

One might ask why it is not “viable” to have even lower consumption than

c=0.0598, which is on the left boundary of the high debt economy slice. In

broad terms, the reason is that lower consumption now, combined with the

restrictions that must be satisfied along the future path, which include the rate

at which future taxes can change, would put the capital accumulation process
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on an explosive path, which would violate the capital upper bound and TVC-

infinity11 (i.e., transversality condition when the optimization horizon tends

to infinity). We illustrate this in Appendix A, page 26.

Here, we show the impact of tax-rate levels on viable consumption choices.

Figure 5 shows two kernel slices for low (τ = 0) and high (τ = 0.8) tax rates.

(Notice, we have chosen a different “elevation” for these slices.) As in Figure

4, we see that higher consumption decisions can be made for larger capital

values. Furthermore, for a given capital level, the consumption decisions’

ranges are wider and the consumption values are higher when the tax rate

is lower. In addition, we can observe that the boulder bases are wider than

their tops, which indicates that higher consumption levels are viable when

debt is low, for both taxation levels.

Figure 5. Kernel slices for τ = 0 and τ = 0.8.

We also show some economic evolutions in this figure. In the left panel

we start a viable evolution from [0.2583, 0.0928, −0.1, 0] ∈ V. The evolution

in the right panel begins at [0.2583, 0.0928, −0.1, 0.8] <V and the fastest tax

drop (u = −0.2) is applied. We can see that the latter, which illustrates what

11Unless crisis control was undertaken, see Cardaliaguet et al (1999).
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can happen in a highly taxed economy, crashes through the capital lower

boundary. This is because the tax could not drop sufficiently fast to prevent

de-capitalization. The former stabilizes at low capital and consumption

values and is therefore viable.

Figure 6. Kernel slice for τ = 0.

Figure 6 shows that high debt levels are incompatible with low tax.

Here again, we see the slice through τ = 0 but graph “elevation” is dif-

ferent. Notice two evolutions starting at [1.05, 0.1259, 0.35, 0] ∈ V slice)

and [1.05, 0.1259, 2.6, 0] < V. So, the evolutions start from low debt, inside

slice, and high debt, outside slice, respectively. We see that the high-debt

trajectory rises fast in debt and crashes through its upper boundary. This is

because the smooth taxation policy cannot generate enough tax to curb the
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increasing debt. On the other hand, the initially low-debt economy remains

almost stationary.

5.3. A higher government expenditure. Here we have computed the kernel

when the government expenditure is doubled, so g = 0.0266. The other

parameters are as in Section 5.2.

Figure 7. Kernel slices for B = −0.55. The left panel is as

in Figure 3, the right-panel kernel slice is computed for the

doubled g.

In Figure 7, we observe that the kernel slice in the right panel (slightly

fatter) appears “turned” clockwise, with respect to that in the left panel,

computed in Section 5.2 for the lower g. This means that (even) if the

economy is in credit i.e., B = −0.55, increasing the government expenditure

reduces maximum achievable consumption. This is visible from the top
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consumption in the right panel reaching only 0.174; the top consumption in

the left panel attains 0.19 .

The same phenomenon is visible in Figure 8, which shows the kernel slices

for a high-debt economy, B=2.6, where the right panel is for the doubled gov-

ernment expenditure The right-panel’s empty space between the maximum

consumption “wall” is larger, even if the slice may be fatter (for higher taxes)

than the one in the left panel. So, again, a higher government expenditure re-

sults in that only lower consumption choices are feasible, given the adopted

tax policy.

Figure 8. Kernel slices for B = 2.6. The left panel is as in Figure

3, the right-panel kernel slice is computed for the doubled g.

However, there is a feature of the kernel slice in the right panel i.e., when

the government-expenditure is higher, which is absent from the left panel.
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Here, the kernel-slice is clearly not rectangular. This means that, for low

capital (k < 0.6) , consumption choices can be viable only if high tax rates

are applied.

6. Debt-to-GDP ratio

An economic evolution could also be characterized by the debt-to-GDP

ratio (see e.g., Baker, Kotlikoff, and Leibfritz (1999)). We have computed

such ratio time-profiles for the three evolutions pictured in Figure 2, right

panel (see page 15). As explained in the description of this figure, the

evolution from c0 = 0.0598 is viable while the two others: from c0 = 0.1454

and c0 = 0.0433 are not. We show the corresponding debt-to-GDP ratios in

Figure 9.
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Figure 9. Debt-to-GDP ratio time profiles.

The solid line represents an interesting case, which corresponds to the viable

trajectory starting at c0 = 0.0598. We see that the debt-to-GDP ratio eventually
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diminishes; however, before diminishing its values rise. (The values are

numerically high because of a low value of the stylized output steady-state,

which is equal to A = 0.1333.) Under an increasing tax, debt diminishes and,

eventually, the steady state is such that capital is large enough to assure a

growing output and a medium-level consumption.

The similar looking dash-dotted line originating from a lower consump-

tion level c0 = 0.0433 is non-viable because of overcapitalization of the econ-

omy, see Figure 2. Here, the debt-to-GDP radio (also eventually) diminishes

because capital grows fast and so does the output but, as said, the economy

becomes over-capitalized.

The third (dash) line displays the (eventually) growing debt-to-GDP ra-

tio and corresponds to an evolution from c0 = 0.1454 (highest between the

three). This evolution is clearly non-viable. As seen in Figure 2 right panel,

this is so because even the fastest tax-drop cannot prevent the capital reduc-

tion below its lower bound.

We conjecture that debt-to-GDP ratio cannot be used as a proxy for viability;

on the other hand, a viable evolution can imply a diminishing debt-to-GDP

ratio.

7. Concluding remarks

We have presented a computational method based on viability theory

for a discovery of consumption choices that are compatible with the state

variables of the economy at hand. The compatibility means that viable

consumption and capital choices will generate a nearly steady-state path for

a smooth tax-rate adjustment policy.

Among other findings we report that increasing government expenditure

implies that higher tax rates will be needed to preserve the viability of

many consumptions choices, when capital levels approach the constraint set

boundaries.
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Appendix A. Why some choices can be non-viable

To help understand why some economic states can be non-viable we will

consider evolutions from three capital-consumption-tax combinations for two

different levels of debt B = −0.55 and B = 2.6. The evolution starting points

are represented by the dots shown in Figure 4.

We need to remark that viable evolutions, represented by the solid lines

in the following figures, are constructive in that we have found tax-rate

adjustments that generate them and lead to a (numerically) steady state.

On the other hand, the dash and dash-dotted lines cross a boundary of K

in finite time, hence represent nonviable evolutions; they are computed by

VIKAASA as “best” in that the sum of their velocities is minimal, but too

big to be deemed steady.

Consider the following points (from left to right in Figure 4):
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(1) [1.525, 0.0267, 2.6, 0.6] <VΨ(K)

(2) [1.525, 0.0267, −0.55, 0.6] <VΨ(K)

(3) [1.525, 0.0928, 2.6, 0.6] ∈ VΨ(K)

(4) [1.525, 0.0928, −0.55, 0.6] ∈ VΨ(K)

(5) [1.525, 0.1424, 2.6, 0.6] <VΨ(K)

(6) [1.525, 0.1424, −0.55, 0.6] ∈ VΨ(K)

From Figure 4, we know that the point, numbered “1” (high-debt economy)

is nonviable. Here we analyze the evolution from this point.

(1) We can see in the left panels in Figure 10 that even with the application

of the maximum tax rate, the evolution crashes through the capital

upper bound, albeit consumption increases.

(2) Very similarly to what we have seen in the left panels, we notice in the

right panels in Figure 10 that with the application of the maximum

tax rate, the evolution also crashes through the capital upper bound

(consumption increases too).

The evolution that starts at the (low-debt) point number “2” is also nonviable.

However, the evolution that starts at the (high-debt) point numbered “3” is

viable.

(3) Here, we notice (see the left panels in Figure 10) that with the appli-

cation of the maximum tax rate, capital decreases and consumption

increases faster than from point “1.”, especially, after the intermediate

tax-rate drop. After the tax-rate hike to 40%, the economy stabilizes.

The evolution that starts at the (low-debt) point number “4” is also viable.

(4) Here, we notice (see the right panels in Figure 10) that with a medium

size tax-rate hike, capital decreases and consumption increases albeit

both processes are slower than under “3”. The economy stabilizes

with the tax rate below 10%.
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Figure 10. Viable trajectories (solid lines) and non-viable tra-

jectories (dash and dash-dotted lines).
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The evolution that starts at the (high-debt) point numbered “5” is non-viable.

(5) Here, we see in the left panels in Figure 10 that with a medium size

tax-rate drop, capital decreases and consumption increases however

both processes are faster than from point “3”. After increasing the

tax-rate and then decreasing it, capital still diminishes very fast and

almost crashes through the lower boundary. However, in this case,

debt also grows rapidly and violates the upper limit before capital

reaches its border. This is visible from Figure 11.

The evolution that starts at the (low-debt) point number “6” is viable.

(6) Here, we notice (see the right panels in Figure 10) that with a big

tax-rate drop, capital decreases and consumption increases however

both processes are rather slow and the economy stabilizes with zero

tax rate.

Figure 11. Kernel slice for c = 0.1424 .
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