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Abstract

Since the seminal work of Henderson (1981), a number of studies ex-

amined the effect of staggered work hours by analyzing models of work

start time choice that consider the trade-off between negative congestion

externalities and positive production externalities. However, these studies

described traffic congestion using flow congestion models. This study de-

velops a model of work start time choice with bottleneck congestion and

discloses the intrinsic properties of the model. To this end, this study ex-

tends Henderson’s model to incorporate bottleneck congestion. By utilizing

the properties of a potential game, we characterize equilibrium and optimal

distributions of work start times. We also show that Pigouvian tax/subsidy

policies generally yield multiple equilibria and that the first-best optimum

must be a stable equilibrium under Pigouvian policies, whereas the second-

best optimum in which policymakers cannot eliminate queuing congestion

can be unstable.
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1 Introduction

Urban traffic congestion is caused by concentrated demand for travel around the

start of the workday, because firms in central business districts (CBDs) generally

have fixed work schedules and workers start work at the same time. Intro-

ducing staggered work hours (SWH) is a transportation demand management

(TDM) measure for alleviating peak congestion. It is widely recognized but rarely

implemented, because it may reduce intra-firm communication and productivity

(Wilson, 1988). That is, SWH reduces positive production externalities (agglomer-

ation economies) alongside the negative congestion externalities (agglomeration

diseconomies). Therefore, considering the trade-off between congestion and pro-

ductivity is essential when we examine the effect of TDM measures for reducing

peak congestion.

Since the seminal work of Henderson (1981), a number of studies have de-

veloped models of work start time choice that consider traffic congestion and

productivity effects; these studies will be discussed in Section 1.1. By examin-

ing the equilibrium and optimal distributions of work start times and optimal

congestion tolls, these studies provide insights into TDM measures. However,

analytical difficulties inevitably arising in models with agglomeration economies

and diseconomies (i.e., nonconvexities) limit these studies. Foremost among their

limitations is that they describe traffic congestion using flow congestion models,

which are inappropriate for dealing with peak congestion. Second, although their

models have multiple equilibria, these studies address only a subset—e.g., cases

where work starting times are continuously distributed or completely clustered—

and do not examine their stability. Therefore, the equilibrium distribution of work

start times may be unstable and may never emerge in their models. Third, Aka-

matsu et al. (2014b) shows that if we consider models with positive and negative

externalities, social optima can be unstable equilibria under Pigouvian policies,

and a non-optimal stable equilibrium will exist. Therefore, although previous

studies (e.g., Arnott, 2007) investigate the properties of optimum congestion tolls,

social optimum may not be achieved under their congestion tolls.

This study shows that the potential function approach, which utilizes properties

of a potential game, overcomes these limitations and clarifies the intrinsic prop-

erties of a model of work start time choice with bottleneck congestion. This paper

first develops a model with production effects and bottleneck congestion by com-

bining Henderson (1981)’s model and the standard bottleneck model (Vickrey,

1969; Hendrickson and Kocur, 1981; Arnott et al., 1990). Similar to models in Peer
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and Verhoef (2013) and Gubins and Verhoef (2014), ours assumes that workers

make long-run decisions about work start times and short-run decisions about

day-specific work arrival times. In the short-run, workers choose arrival times

and take work start times as a given; in the long-run, they choose work start

times indirectly through their choice of employer. We then show that the short-

run equilibrium is uniquely determined, whereas the long-run equilibrium is not

unique.

This study examines the local stability of long-run equilibrium by viewing it as

a Nash equilibrium of a potential game (Sandholm, 2001). In this case, the model

of the long-run choice of work start time admits a potential function, and the

set of long-run equilibria coincides exactly with the set of Karush–Kuhn–Tucker

points for the maximization problem of the potential function. Further, all local

maximizers of the potential function are locally stable long-run equilibria. We

can therefore characterize long-run equilibria and their stability by the shape of

the potential function.

After characterizing the long-run equilibria and their stability, this study in-

vestigates the properties of the first-best and second-best optimal distributions of

work start times and their stability under Pigouvian policies. The first-best opti-

mum is defined as the global maximizer of the social welfare function (workers’

total utility), and the second-best optimum is that under the condition whereby

policymakers cannot control workers’ short-run decisions; that is, the queue at

the bottleneck cannot be eliminated. Thus, differences between optimum and sta-

ble equilibria are clarified by comparing the shapes of the social welfare function

and the potential function. Furthermore, stability of the first-best and second-best

optima under Pigouvian policies is analyzed by the potential function approach.

This analysis discloses that the first-best optimum must be a stable equilibrium

under Pigouvian policies, whereas the second-best optimum can be unstable.

1.1 Related Literature

Theoretical studies of SWH and its variants have appeared since the benchmark

study by Henderson (1981). Henderson (1981) assumed that all workers in a

city commute from a common residential area to a common CBD along a single

congestible road and that the productivity of a worker at a point in time depends

on the number of workers at work at that time. These two assumptions yield

both traffic congestion and productivity effects in his model. He then analyzed

the equilibrium and optimal distributions of work start times. Wilson (1992) and
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Arnott et al. (2005) extended Henderson (1981) by introducing workers’ choices

of residential location and firm heterogeneity, respectively. Arnott (2007) gen-

eralized Henderson’s model and analyzed optimal congestion tolls. Henderson

(1981) and these subsequent studies, however, described traffic congestion using

a flow congestion model.

Mun and Yonekawa (2006) and Fosgerau and Small (2014) were the most

successful in considering both production effects and peak-period traffic conges-

tion.1 Mun and Yonekawa (2006) formulated a peak-period congestion based

on the standard bottleneck model and developed a model that describes firms’

and workers’ choices to adopt fixed or flextime schedules. They showed that

a situation in which all firms adopt flextime never emerges as equilibrium and

that multiple equilibria could exist. However, due to analytical difficulties, they

examined the stability of equilibria only by numerical examples.

Fosgerau and Small (2014) presented a model that introduces bottleneck con-

gestion and productivity effects of work and leisure. They systematically inves-

tigated the properties of equilibrium and optimal tolls. However, their model

presupposed that all workers determine their own work start time, which im-

plies that all firms adopt flextime. This leads to the result that workers’ work start

times are the same as their arrival times at the CBD. Thus, their model describes

only a situation wherein work start times are continuously distributed.

It is noteworthy that the framework of Henderson (1981) is the same as that

of social interaction models (e.g., Beckmann, 1976; Tabuchi, 1986), which study

spatial agglomeration of economic activities. Beckmann (1976) led to numerous

extensions and modifications (Fujita and Ogawa, 1982; Fujita, 1988; Berliant et al.,

2002; Mossay and Picard, 2011; Akamatsu et al., 2014a) that provide approaches

for characterizing equilibrium and social optimum.2 This study modifies one of

these approaches—the potential function approach3 in Akamatsu et al. (2014a)—

and applies it to the model featuring bottleneck congestion. This approach sig-

nificantly simplifies characterizing equilibrium, its stability, and optimum of our

model. By applying the potential function approach, this study then analytically

clarifies the intrinsic properties of the model featuring production effects and

1Sato and Akamatsu (2006) also extended the standard bottleneck model to incorporate the
productivity effect. Although they provided a rigorous framework, their analysis is limited to
a particular set of equilibria, such as cases where work start times are completely clustered and
staggered.

2For comprehensive reviews of these literature, see Fujita and Thisse (2013).
3Methods that utilize the potential function are found in a diverse range of applications (for

reviews, see, e.g., Sandholm, 2010), which includes transportation science (e.g., Beckmann et al.,
1956; Rosenthal, 1973; Sandholm, 2002).
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Figure 1: The monocentric city

bottleneck congestion.

This study proceeds as follows. Section 2 formulates a model of work start

time choice featuring bottleneck congestion and production effects. Section 3

describes the long-run choice of work start time as a potential game and inves-

tigates the uniqueness and stability of the short-run and long-run equilibria by

the potential function approach. Section 4 examines the properties of first-best

and second-best optima and their stability under Pigouvian policies. Section 5

concludes. Proofs omitted in the text are in the Appendix.

2 The Model

2.1 Basic assumptions

Consider a city that consists of a CBD and a residential area connected by a

single road (Figure 1). This road has a single bottleneck with capacity µ. All

workers reside in the residential area and commute to the CBD, where all firms

are located. If arrival rates of workers at the bottleneck exceed its capacity, a queue

develops. To model queuing congestion, we employ first-in-first-out (FIFO) and a

point queue in which vehicles have no physical length as in standard bottleneck

models (e.g., Vickrey, 1969; Hendrickson and Kocur, 1981; Arnott et al., 1990,

1993).

Each firm chooses its work start time from the feasible set T ≡ {t1, t2, · · · , tT},

where ti = ti−1 + τ for all i ∈ {2, 3, · · · ,T} and τ is a positive constant. Since the

length of a workday is assumed to be identical and fixed at H for all firms, each

firm is characterized by its work start time. For convenience, we call the firm

that starts work at time ti “firm i.” We further assume there is an interval in the

workday when all firms begin work, i.e., tT < t1 +H.
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2.1.1 Behavior of workers

The N workers are ex ante identical. Each chooses his or her work start time ti

indirectly by choosing an employer (i.e., a firm i ∈ I ≡ {1, 2, · · · ,T} to work for)

and the departure time t at the bottleneck to maximize utility ui(t). The utility of

a worker who starts work at ti, whom we call “worker i,” is given by

ui(t) = wi − ci(t), (1)

where wi denotes the wage from firm i and ci(t) denotes commuting cost. The

commuting cost ci(t) of worker i who departs the bottleneck at time t is expressed

as the sum of queuing time cost at the bottleneck, q(t), schedule delay cost, s(ti−t),

and fixed travel time cost, c f :

ci(t) = q(t) + s(ti − t) + c f . (2)

We assume that s(x) is differentiable, strictly convex, and strictly minimized at

x = 0, and that s′(x) ≡ ds(x)/dx < 1 as in Daganzo (1985), Kuwahara (1990),

and Lindsey (2004). Following Arnott et al. (1990, 1993), we set c f = 0 without

affecting the results of interest.

We consider utility maximization as a sequence of short-run and long-run

optimizations. Specifically, workers in the short-run minimize commuting cost

ci(t) = q(t)+ s(ti − t) by selecting their departure time t taking work start time ti as

given:

min
t

ci(t) = q(t) + s(ti − t). (3)

In the long-run, each worker chooses an employer so as to maximize his/her

utility:

max
i

ui = wi − c∗i , (4)

where c∗
i

is the short-run equilibrium commuting cost of worker i, determined by

his/her short-run decisions.

2.1.2 Behavior of Firms

All firms produce homogeneous goods under constant returns to scale technology

and perfect competition, which requires one unit of labor to produce one unit

of output and is chosen as numéraire. For introduction of the production effect,

this model assumes that the productivity per worker of a firm at time t is linearly

increasing with the total number of workers then on duty. This production effect
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Figure 2: Total number of workers on duty

is represented by the following instantaneous production function:

f (t) = αN(t), (5)

where coefficient α represents technology of a firm and N(t) is the total number

of workers on duty at time t. The daily output Fi per worker of a firm i is simply

the sum over the workday of the instantaneous output f (t):

Fi =

∫ ti+H

ti

f (t)dt =

∫ ti+H

ti

αN(t)dt. (6)

Note that because ti = ti−1 + τ, N(t) is represented as follows (Figure 2):

N(t) =































∑ j

k=1
Nk if t ∈ [t j, t j+1) ∀ j ∈ {1, 2, · · · ,T − 1},

N if t ∈ [tT, t1 +H],
∑T

k= j+1 Nk if t ∈ (t j +H, t j+1 +H] ∀ j ∈ {1, 2, · · · ,T − 1},

(7)

where Ni denotes total number of workers employed by firm i. Under the pro-

duction function defined in (6), each firm chooses its work start time to maximize

profit per worker:

max
i
πi = Fi − wi. (8)

Since a firm cannot change its work start time frequently, its choice of work start

time is assumed to be a long-run decision.
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2.2 Short-run and long-run equilibrium conditions

2.2.1 Short-run equilibrium conditions

In the short-run, workers decide only the day-specific departure time t at the

bottleneck, which implies that the number of workers N = (Ni)i∈I employed by

firm i ∈ I—which we call the distributions of work start times—is assumed to be

given. Therefore, short-run equilibrium conditions coincide with those of the

standard bottleneck model, given by these three conditions:



















c∗
i
−

{

q(t) + s(ti − t)
}

= 0 if ni(t) > 0

c∗
i
−

{

q(t) + s(ti − t)
}

≥ 0 if ni(t) = 0
∀t, ∀i ∈ I, (9a)



















µ −
∑

k nk(t) = 0 if q(t) > 0

µ −
∑

k nk(t) ≥ 0 if q(t) = 0
∀t, (9b)

∫

ni(t)dt = Ni ∀i ∈ I, (9c)

where ni(t) is the number of workers i who arrive at the CBD at time t (i.e., the

arrival rate of workers i at the CBD).

Condition (9a) represents the no-arbitrage condition for the choice of depar-

ture time. This condition means that at the short-run equilibrium, no worker

can reduce commuting cost by changing arrival time at the CBD unilaterally.

Condition (9b) is the capacity constraint of the bottleneck, which requires that

the total departure rate
∑

k nk(t) at the bottleneck is equal to the capacity µ if there

is a queue; otherwise, the total departure rate is (weakly) lower than µ. The last

condition (9c) is flow conservation for commuting demand. These conditions

give ni(t), q(t), and c∗
i

at short-run equilibrium as functions of the distribution of

work start times, N .

2.2.2 Long-run equilibrium conditions

In the long-run, each worker chooses an employer, and each firm chooses its

work start time. Thus, the long-run equilibrium conditions are represented as



















u∗ −
{

wi − c∗
i

}

= 0 if Ni > 0

u∗ −
{

wi − c∗
i

}

≥ 0 if Ni = 0
∀i ∈ I, (10a)
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π∗ −
{

Fi − wi

}

= 0 if Ni > 0

π∗ −
{

Fi − wi

}

≥ 0 if Ni = 0
∀i ∈ I, (10b)

∑

k

Nk = N, (10c)

where u∗ denotes the equilibrium utility, and π∗ is the equilibrium profit which

equals zero because firms in the city are perfectly competitive.

Conditions (10a) and (10b) are the equilibrium conditions for workers’ choice

of firm and firms’ choice of work start time, respectively. Condition (10a) implies

that at long-run equilibrium, each worker has no incentive to change employer

unilaterally. Condition (10b) means that if workers are employed by firm i, the

firm i earns the equilibrium profit π∗ = 0; otherwise, the profit must be less than

zero. Condition (10b) is the conservation law of the population of workers.

We easily show that conditions (10a) and (10b) are rewritten as the following

condition because π∗ = 0.



















u∗ −
{

Fi(N ) − c∗
i
(N )

}

= 0 if Ni > 0

u∗ −
{

Fi(N ) − c∗
i
(N )

}

≥ 0 if Ni = 0
∀i ∈ I, (11)

where Fi(N ) and c∗
i
(N ) are determined by (6) and (9) as functions of the distribu-

tion N of work start times. Therefore, the long-run equilibrium distribution N ∗

of work start times and utility u∗ are obtained from conditions (10c) and (11).

3 Short-run and Long-run Equilibrium

3.1 Short-run equilibrium

We first characterize short-run equilibrium. Because short-run equilibrium con-

ditions (9) coincide with those of the standard bottleneck model and because the

schedule delay cost function s(x) is strictly convex, the following proposition is

obtained.

Proposition 1. The short-run equilibrium is uniquely determined. Furthermore, work-

ers arrive at and leave a bottleneck in the same order as their work start times. That is,

the first-in-first-work discipline is valid.

Proof. See Smith (1984), Daganzo (1985), Kuwahara (1990), and Lindsey (2004).

□
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In addition, short-run equilibrium commuting cost c∗
i
(N ) has the following

desirable properties, which are useful for investigating the properties of long-run

equilibrium.

Lemma 1. The Jacobian matrix ∇c(N ) of the short-run equilibrium commuting cost

c(N ) = (c∗
i
(N ))i∈I is symmetric and positive semidefinite.

Proof. See Appendix. □

3.2 Long-run equilibrium

3.2.1 Potential game

We next characterize long-run equilibrium. For the analysis, we invoke the

properties of a potential game introduced by Monderer and Shapley (1996) and

Sandholm (2001). Because the long-run equilibrium conditions are represented

by (10c) and (11), the model of workers’ long-run choice of work start time can

be viewed as a population game in which the set of players is S ≡ [0,N], the

common action set is I, and the payoff vector is u(N ) = (Fi(N )− c∗
i
(N ))i∈I. As is

evident from the definition, a long-run equilibrium is a Nash equilibrium of the

game. Thus, let us denote this game by G = {S,I,u}.

A potential game is defined as a game G that holds the following condition:

there exists a continuously differentiable function P such that

∂P(N )

∂Ni
= ui(N ) ∀N ∈ ∆ ≡















N ∈ RT
+

∣

∣

∣

∣

∣

∣

∣

∑

k

Nk = N















, ∀i ∈ I, (12)

where P is defined on an open set containing ∆ so that its partial derivative

is well-defined on ∆. The function P is the potential function of the game G.

This condition requires the existence of a function in which gradient ∇P(N )

equals the payoff vector u. As Sandholm (2001) proves, if payoffs u(N ) are

continuously differentiable, this condition is equivalent to the following condition

called externality symmetry:

∂ui(N )

∂N j
=
∂u j(N )

∂Ni
∀N ∈ ∆, ∀i, j ∈ I. (13)

We now show that our game G is a potential game. It follows from (6) that

the payoff vector u(N ) is represented as

u(N ) = F (N ) − c(N ) = α {HE − τD}N − c(N ), (14)
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where E is T × T matrix with all elements equal to 1, and D is the symmetric

Toeplitz matrix whose (i, j) element is given by |i− j|. From this and Lemma 1, the

Jacobian matrix ∇u(N ) of the payoff vector u(N ) is symmetric, which implies

that externality symmetry holds in our game. Therefore, we have the following

proposition.

Proposition 2. The game G is a potential game with the potential function

P(N ) = P1(N ) − P2(N ), (15a)

where P1(N ) and P2(N ) are convex functions such that

∇P1(N ) = F (N ), (15b)

∇P2(N ) = c(N ). (15c)

Proof. See Appendix. □

The equilibrium of a potential game is characterized with the maximization

problem of the potential function. Let us consider the following problem:

max
N

P(N ) s.t.
∑

k

Nk = N, Ni ≥ 0 ∀i ∈ I. (16)

Let u∗ be a Lagrange multiplier for the constraint
∑

k Nk = N. We then can

readily verify that the Karush–Kuhn–Tucker (KKT) conditions of this problem

are equivalent to long-run equilibrium conditions (10c) and (11). Therefore, the

equilibrium set of the game G exactly coincides with the set of KKT points for

problem (16).

From problem (16), we recognize the trade-off between positive production

externalities (agglomeration economies) and negative congestion externalities

(agglomeration diseconomies) as the trade-off between the convexity of P1(N )

and concavity of −P2(N ). If the concavity of −P2(N ) dominates such that P(N )

is strictly concave, a staggered work hours equilibrium is attained as a unique

equilibrium. On the other hand, if the convexity of P1(N ) dominates, the equi-

librium distributions of work start times would be more clustered. Therefore,

P1(N ) represents positive production externalities, whereas −P2(N ) represents

negative congestion externalities.

This fact suggests that the capacity expansion of the bottleneck may worsen

traffic congestion in our model. The mechanism is as follows. The capacity ex-

pansion decreases commuting costs, and thus−P2(N ) will be less dominant. This
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may lead to more clustered distribution of work start times, thereby exacerbating

the bottleneck congestion. Although this paradoxical result does not always arise

in our model, we can show that such a situation actually exists, as discussed in

Section 3.2.4.

3.2.2 Uniqueness

To characterize the long-run equilibrium, we first examine its uniqueness. Since

the KKT points of problem (16) are long-run equilibrium, the uniqueness can be

investigated by checking the shape of the potential function P(N ). Specifically, if

P(N ) is unimodal, the long-run equilibrium is unique; otherwise, it is non-unique.

It follows from Proposition 1 that P(N ) is not generally unimodal because of the

convexity of P1(N ). Thus, we have

Lemma 2. The long-run equilibrium is generally not unique.

It is noteworthy that Lemma 2 does not suggest essential multiplicity of equi-

libria because even if all of the equilibrium distributions of work start times

are essentially the same (e.g., completely clustered distributions: (N, 0, · · · , 0)⊤,

(0,N, · · · , 0)⊤, (0, 0, · · · ,N)⊤), the number of equilibria is not one. Hence, we next

investigate the essential uniqueness of the long-run equilibrium. For the inves-

tigation, we show a property of the support suppN ∗ ≡ {i ∈ I | Ni > 0} of the

long-run equilibrium.

Lemma 3. Suppose N ∗ ∈ ∆ is a long-run equilibrium. Then, suppN ∗ ∈ SC where

SC =
{

{i1, i2, · · · , ia} ⊆ I | a ∈ I, i j+1 = i j + 1 ∀ j ∈ [1, a − 1],
}

. (17)

Proof. See Appendix. □

Lemma 3 means that the set of work start times such that Ni > 0 is a convex set.

In other words, if we suppose τ = 30 (min) and some employees start work at

8:00 and 9:00, there must be workers who start at 8:30.

Because of the symmetry of our model, Lemma 3 implies that if the long-run

equilibrium N ∗ is not full support (i.e., suppN ∗ , I) and N1 = 0, there is a

long-run equilibrium N̂ ∗ that is essentially the same with N ∗ such that

N̂ ∗ = PN ∗, (18)
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where P = (Pi j)i, j∈I is the T × T permutation matrix given by

Pi j =



















1 if j − i = 1 or j − i = 1 − T,

0 otherwise,
(19)

that is, N̂∗
i
= N∗

i+1
for all i ∈ I\{T} and N̂∗T = 0. Furthermore, if we define

the schedule delay cost function s(x) such that s(x) = s(−x), there also exists

essentially the same long-run equilibrium Ñ ∗ with N ∗ such that

Ñ ∗ = RN ∗, (20)

where R = (Ri j)i, j∈I is the T × T permutation which acts as the upside-down

reflection given by

Ri j =



















1 if i + j = T + 1,

0 otherwise.
(21)

The essentially identical long-run equilibria N ∗, N̂ ∗, Ñ ∗ satisfy

P(N ∗) = P(N̂ ∗) = P(Ñ ∗), (22a)

det(∇2P(N ∗)) = det(∇2P(N̂ ∗)) = det(∇2P(Ñ ∗)), (22b)

where ∇2P(N ∗) is the Hessian matrix of P at N ∗ and det(A) is the determinant of

A. Moreover, from the index theorem of Simsek et al. (2007), the set KKT(P,∆) of

the KKT points of problem (16) (i.e., the set of the long-run equilibria) satisfies

∑

N∈KKT(P,∆)

indP(N ) = 1, (23a)

indP(N ) ≡































−1 if det(∇2P(N )) < 0,

0 if det(∇2P(N )) = 0,

1 if det(∇2P(N )) > 0.

(23b)

However, the total value of indices of essentially the same long-run equilibria

cannot be one because of (22b). Therefore, we can obtain the following proposi-

tion.

Proposition 3. The long-run equilibrium is essentially non-unique.
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3.2.3 Stability

We next consider the local asymptotic stability of long-run equilibria because our

model generally includes multiple equilibria as shown above. To investigate the

stability of the long-run equilibrium, we need to assume adjustment dynamics

Ṅ = V (N ) that maps a distribution of work start times N 0 ∈ ∆ to a set of

Lipschitz paths in ∆ that starts from N 0. Although we usually consider a specific

evolutionary dynamic for stability analysis, we see that a more general analysis

is possible due to the existence of a potential function. That is, the stability of

equilibria can be characterized under a broad class of dynamics. In particular, we

consider the class of admissible dynamics that satisfies the following conditions:

V (N ) · u(N ) > 0 whenever V , 0, (24)

V (N ) = 0 implies that N is a Nash equilibrium of the game G. (25)

The former condition (24), called positive correlation, requires that out of rest points,

there is a positive correlation between the adjustment dynamics V (N ) and the

payoffs u(N ). This implies that, under this condition, all Nash equilibria of the

game G are rest points of the adjustment dynamics V (N ).4 The latter condition

(25), called Nash stationarity, asks that every rest points of the adjustment dynam-

ics V (N ) be a Nash equilibrium of the game G. Therefore, under the conditions

(24) and (25), Ṅ = V (N ) = 0 if and only if N is a Nash equilibrium of the game

G. Specific examples of admissible dynamics include the best response dynamic

(Gilboa and Matsui, 1991), the Brown–von Neumann–Nash dynamic (Brown and

von Neumann, 1950), and projection dynamic (Dupuis and Nagurney, 1993).5

Under the admissible dynamics, we can easily characterize the local asymp-

totic stability of Nash equilibria of a potential game because Sandholm (2001)

proves that a Nash equilibrium of a potential game is asymptotically stable under any

admissible dynamics if and only if it locally maximizes an associated potential function.

This implies that we can examine the stability of long-run equilibria only by

checking the shape of the potential function. The following section compares

the stable long-run equilibrium and optimal distributions of work start times by

utilizing this property.

4See Proposition 4.3 of Sandholm (2001).
5See Sandholm (2005a) for more examples.
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(a) Pattern 1
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(b) Pattern 2.1
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(c) Pattern 2.2

Figure 3: Distributions of work start times

3.2.4 A simple example

To demonstrate the usefulness of the potential function approach and to show the

properties of the long-run equilibrium of our model, we analyze the model under

the simple setting such that T = 2, s(x) = βx2 where β is a positive constant. In

this setting, the FIFO principle is satisfied at the short-run equilibrium if βN ≤ µ.

Thus, we suppose that parameters µ,N, β satisfy this condition in this example.

In the case that T = 2, the distribution of work start times can be classified

into three patterns (Figure 3):

Pattern 1: work start times are completely clustered.

Pattern 2.1: work start times are staggered, and the rush hour in which queuing

congestion occurs is a single interval.

Pattern 2.2: work start times are staggered, and the rush hour is divided into

two intervals.

Because of s(x) = s(−x) in this example, Pattern 2.1 arises only if τ ≤ N/(2µ), and

Pattern 2.2 arises only if τ > N/(2µ).

The short-run equilibrium commuting costs c∗
1
(N1) and c∗2(N1) are obtained as
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functions of N1:

c∗1(N1) =































β

(

N

2µ
− τ

N −N1

N

)2

if τ ≤
N

2µ
,

β

4µ2
N2

1
if τ >

N

2µ
,

(26a)

c∗2(N1) =































β

(

N

2µ
− τ

N1

N

)2

if τ ≤
N

2µ
,

β

4µ2
(N −N1)2 if τ >

N

2µ
.

(26b)

Therefore, the potential function is represented as

P(N1) = P1(N1) − P2(N1), (27a)

P1(N1) = α

{

HN2

2
− τN1(N −N1)

}

, (27b)

P2(N1) =































βN3

12µ2
+ βτ

(

τ

N
−

1

µ

)

N1(N −N1) if τ ≤
N

2µ
,

βN

12µ2

{

N2 − 3N1(N −N1)
}

if τ >
N

2µ
.

(27c)

Because the potential function is quadratic and the second derivative of the

potential function is given by

∂2P(N1)

∂N2
1

=































2τ

{

α + β

(

τ

N
−

1

µ

)}

if τ ≤
N

2µ
,

2

(

ατ −
βN

4µ2

)

if τ >
N

2µ
,

(28)

the stable and unstable long-run equilibria Ns
1
,Nu

1
are obtained as follows:



















Ns
1
= 0,N, Nu

1
= N

2
if

{

τ >
βN

4αµ2 and τ > N
2µ

}

or
{

τ > N
(

1
µ −

α
β

)

and τ ≤ N
2µ

}

,

Ns
1
= N

2
if

{

τ ≤
βN

4αµ2 and τ > N
2µ

}

or
{

τ ≤ N
(

1
µ −

α
β

)

and τ ≤ N
2µ

}

.

(29)

Figure 4 illustrates the relation between the stable equilibrium and parameters τ

and µwhen α = 0.2, β = 1.0, and N = 1.0.

We next show there is a situation in which capacity expansion exacerbates

traffic congestion. We consider the case that capacity µ is expanded to 1.5µ
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Figure 4: Parameters and the stable equilibrium (N = 1.0, α = 0.2, β = 1.0)

and the stable equilibrium changes from Pattern 2.2 to Pattern 1 as illustrated in

Figure 4. In this case, the total queuing time costs before and after the capacity

expansion Qb,Qa are given by

Qb =

∫ tl
1

t
f

1

n1(t) q(t)dt +

∫ tl
2

t
f

2

n2(t) q(t)dt = µ

∫ tl
1

t
f

1

c∗1 − s(t1 − t)dt + µ

∫ tl
2

t
f

2

c∗2 − s(t2 − t)dt

=
{

N1c∗1 +N2c∗2
}

−
2µβ

3















(

N1

2µ

)3

+

(

N −N1

2µ

)3














=
8µβ

3

(

N

4µ

)3

, (30a)

Qa =

∫ tl
i

t
f

i

ni(t) q(t)dt = 1.5µ

∫ tl
i

t
f

i

c∗i − s(ti − t)dt = Nc∗i − µβ

(

N

3µ

)3

= 3µβ

(

N

3µ

)3

,

(30b)

where t
f

i
and tl

i
are the fastest and latest arrival time at the CBD of worker i. This

result clearly indicates that Qb < Qa. That is, the capacity expansion exacerbates

traffic congestion.

4 Social Optimum

Because of the positive and negative externalities, the long-run equilibrium is

not generally efficient. Therefore, this section discusses TDM policies such as

SWH and taxation for achieving the optimal distribution of work start times. To

address this issue, we first characterize the social (i.e., first-best) optimum and

the second-best optimum in which policymakers cannot control workers’ short-

run decisions. That is, the queue at the bottleneck cannot be eliminated. We

then analyze the effectiveness of Pigouvian policies for achieving first-best and

17



second-best optima.

4.1 First-best optimum

We define the first-best optimum as a state wherein total utility is maximized.

This means that the first-best optimum coincides with a solution of the following

maximization problem:

max
{ni(t)},N

W =W1(N ) −W2({ni(t)}) (31a)

s.t. µ −
∑

k∈I

nk(t) ≥ 0 ∀t,

∫

ni(t)dt = Ni ∀i ∈ I, ni(t) ≥ 0 ∀t, ∀i ∈ I, (31b)

N ∈ ∆, (31c)

where W1(N ) and W2({ni(t)}) are given by

W1(N ) =
∑

k∈I

Fk(N )Nk = 2P1(N ), (32a)

W2({ni(t)}) =
∑

k∈I

∫

nk(t)
{

q(t) + s(tk − t)
}

dt. (32b)

As is the case with P1 and P2, W1 and W2 represent the strength of positive

production externalities and negative congestion externalities, respectively. W1

denotes workers’ total wages in the city and W2 is total commuting cost.

The queue at the bottleneck is completely eliminated at the first-best optimum

as proved in studies involving standard bottleneck models (e.g., Vickrey, 1969;

Hendrickson and Kocur, 1981; Arnott et al., 1990, 1993, 1994). It follows from this

that W2({ni(t)}) can be rewritten as

W̃2({ni(t)}) =
∑

k∈I

∫

nk(t) s(tk − t)dt, (33)

which denotes the total schedule delay costs in the city. It is noteworthy that

W̃2({ni(t)}) coincides with the objective function of the optimization problem that

is equivalent to the equilibrium conditions of the standard bottleneck model (Iryo

and Yoshii, 2007). Specifically, we obtain {ni(t)} at the short-run equilibrium by

solving the following minimization problem:

min
{ni(t)}

W̃2({ni(t)}) s.t. (31b) (34)
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Furthermore, this problem has the following useful property:

Lemma 4. Z(N ) = min{ni(t)} W̃2({ni(t)}) s.t. (31b) satisfies

∇Z(N ) = c(N ). (35)

Proof. See Appendix. □

Lemma 4 indicates that P2(N ) is given by Z(N ). Therefore the distribution N o

of work start times at the first-best optimum is the solution of the following

problem.

Lemma 5. The distribution N o of work start times at the first-best optimum is obtained

by solving the following maximization problem.

max
N

P(N ) + P1(N ) s.t. N ∈ ∆. (36)

Lemma 5 implies that the positive production externalities should be strength-

ened to achieve the first-best optimum because the objective function of problem

(36) is the sum of the potential function P(N ) and the convex function P1(N ),

which represents the production externalities. Therefore, we have the following

propositon.

Proposition 4. The first-best optimal distribution N o of work start times is more clus-

tered than the stable equilibrium N s.

4.2 Second-best optimum

Although there are numerous effective schemes for managing traffic conges-

tion, including dynamic congestion pricing (e.g., Yang and Huang, 2005; Tsekeris

and Voß, 2008; de Palma and Lindsey, 2011) and tradable permits schemes (e.g.,

Verhoef et al., 1997; Yang and Wang, 2011; Wada and Akamatsu, 2013), eliminat-

ing queuing congestion has been difficult thus far. Thus, we next consider the

second-best optimum wherein policymakers cannot control workers’ short-run

behaviors. That is, the queue at the bottleneck cannot be eliminated. The dis-

tribution N̂ o of work start times at the second-best optimum is defined as the

solution of the following problem:

max
N

Ŵ(N ) = Ŵ1(N ) − Ŵ2(N ) s.t. N ∈ ∆, (37)
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where Ŵ1(N ) and Ŵ2(N ) are total wage and commuting cost, respectively, which

are expressed as

Ŵ1(N ) =W1(N ) =
∑

k∈I

Fk(N )Nk, (38a)

Ŵ2(N ) =
∑

k∈I

c∗k(N )Nk. (38b)

To compare the second-best optimum and the stable equilibrium, we examine

the shape of Ŵ(N ) from its Hessian matrix. Because the Hessian matrix of Ŵ(N )

is given by

∇2Ŵ(N ) = 2∇2P(N ) −
∑

k∈I

Nk∇
2c∗k(N ), (39)

we see that only −
∑

k∈INk∇
2c∗

k
(N ) makes a difference in the shape of Ŵ(N ) and

P(N ). This yields the following proposition.

Proposition 5. The second-best optimal distribution of work start times is more clustered

than the stable equilibrium if the matrix −
∑

k∈INk∇
2c∗

k
(N ) is positive definite, and it is

more staggered than the stable equilibrium if −
∑

k∈INk∇
2c∗

k
(N ) is negative definite.

Note here that in many cases −
∑

k∈INk∇
2c∗

k
(N ) is expected to be negative definite

because the schedule delay cost function s(x) is assumed to be convex. In fact,

if the number of intervals of rush hour at the second-best optimum equals the

cardinality of supp N̂ o (i.e., rush hour is completely separated), c∗
i
(N ) must be

convex due to the convexity of s(x). Therefore, N̂ o is generally expected to be

more staggered than N s, which implies that the TDM policies for staggering

work hours are generally effective in the case where queuing congestion cannot

be eliminated.

4.3 Pigouvian policies

We next discuss tax/subsidy policies that attain the first-best and second-best

optima as a stable long-run equilibria. To achieve the optimum, we generally

consider Pigouvian policies, such as congestion tolls. We do so because the

optimal state is supported as an equilibrium by imposing such policies that

workers are responsible for their externalities at the optimum. However, as

mentioned in the introduction, Akamatsu et al. (2014b) shows that if we consider a

model with positive and negative externalities, social optimum can be an unstable
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equilibrium under Pigouvian policies and a non-optimal stable equilibrium will

exist. This implies the possibility that the social optimum cannot be achieved

only by Pigouvian policies in our model. Therefore, this section analyzes the

stability of the first-best and second-best optima under Pigouvian policies.

4.3.1 First-best optimum

Since the model of workers’ short-run decisions involves no positive externalities,

we assume the queue is completely eliminated by some schemes and examine

whether the first-best optimal distribution of work start times is a stable long-run

equilibrium under Pigouvian policies. We consider a Pigouvian policy that intro-

duces tax/subsidy p = (pi)i∈I to workers in order to attain the first-best optimum,

which we call the Pigouvian first-best policy. It follows from Proposition 2 and

Lemma 5 that p is given by

p = F (N o) = {HE − τD}N o. (40)

Under the Pigouvian first-best policy, our model is viewed as a potential game

GP = {S,I,uP}, where uP(N ) = u(N ) + p, because there exists the following

potential function:

PP(N ) = P(N ) + p ·N . (41)

The KKT conditions of the maximization problem of the potential function

PP(N ) subject to N ∈ ∆ is given by



















u∗ −
{

Fi(N
o) + Fi(N ) − c∗

i
(N )} = 0 if Ni > 0

u∗ −
{

Fi(N
o) + Fi(N ) − c∗

i
(N )} ≥ 0 if Ni = 0

∀i ∈ I, (42a)

∑

k∈I

Nk = N. (42b)

This implies that the first-best optimum N o must be a Nash equilibrium of the

game GP because the first-order conditions (i.e., optimality conditions) of problem

(36) is represented as



















w∗ −
{

2Fi(N ) − c∗
i
(N )} = 0 if Ni > 0

w∗ −
{

2Fi(N ) − c∗
i
(N )} ≥ 0 if Ni = 0

∀i ∈ I, (43a)
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∑

k∈I

Nk = N. (43b)

However, this policy does not work for stabilizing the first-best optimum because

introduction of the Pigouvian first-best policy cannot change the Hessian matrix

of the potential function. That is, ∇2P(N ) equals ∇2PP(N ). Note that because

∇2P(N ) = ∇2PP(N ), N o is stable under the Pigouvian first-best policy when

N o =N s, and N o is unstable if N o =N u.

Since P is not generally unimodal, the equilibrium of the game GP is generally

non-unique. Thus, we examine the stability of the first-best optimum N o by

looking at the shape of PP at the neighborhood of N o. For this examination, letΛo

be the set of the neighborhood of N o in ∆. Then, N o is locally and asymptotically

stable (i.e., a local maximizer of PP) if and only if

(N −N o)⊤
{

∇2PP(N o)
}

(N −N o) < 0 ∀N ∈ Λo; (44)

otherwise, N o is unstable. Because N o is the global maximizer of W and∇2P1(N )

is positive definite, we have

0 > (N −N o)⊤∇2W(N o)(N −N o) = (N −N o)⊤
{

∇2P(N o) + ∇2P1(N o)
}

(N −N o)

> (N −N o)⊤∇2P(N o)(N −N o) = (N −N o)⊤∇2PP(N o)(N −N o) ∀N ∈ Λo.

(45)

This yields the following proposition.

Proposition 6. The first-best optimal distribution of work start times is stable under the

Pigouvian first-best policy.

4.3.2 Second-best optimum

We next consider Pigouvian policy to attain the second-best optimum, which we

call the Pigouvian second-best policy.

The Pigouvian second-best policy is to introduce tax/subsidy p̂ so that N̂ o is

a Nash equilibrium of the game ĜP = {S,I, ûP = u + p̂}, where

p̂ = ∇2P(N̂ o)N̂ o. (46)

As stated above, this policy makes N̂ o a long-run equilibrium but cannot stabilize

it. Thus, we check its stability.
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For this, we consider a potential game ĜP with the potential function

P̂P(N ) = P(N ) + p̂ ·N . (47)

Because the model of workers’ long-run decisions is viewed as the game ĜP, the

second-best optimum N̂ o is stable if and only if

(

N̂ − N̂ o
)⊤ {

∇2P̂P(N̂ o)
} (

N̂ − N̂ o
)

=
1

2

(

N̂ − N̂ o
)⊤















∇2Ŵ(N̂ o) +
∑

k∈I

N̂o
k∇

2c∗k(N̂
o)















(

N̂ − N̂ o
)

< 0 ∀N̂ ∈ Λ̂o, (48)

where Λ̂o is the set of the neighborhood of N̂ o in ∆. Therefore, we have the

following proposition.

Proposition 7. The second-best optimum N̂ o is a stable equilibrium under the Pigouvian

second-best policy if and only if

(

N̂ − N̂ o
)⊤ {

∇2Ŵ(N̂ o)
} (

N̂ − N̂ o
)

<
(

N̂ − N̂ o
)⊤















−
∑

k∈I

N̂o
k∇

2c∗k(N̂
o)















(

N̂ − N̂ o
)

∀N̂ ∈ Λ̂o; (49)

otherwise, the second-best optimum N̂ o is unstable.

Note that the condition (49) can be violated as shown in Section 4.3.3, and thus

the Pigouvian second-best policy can be ineffective. This means that policymak-

ers need to implement other policies for stabilizing optimal distribution of work

start times. One of the effective policy is evolutionary implementation of Pigouvian

policies introduced by Sandholm (2002, 2005b). This policy is to impose the values

of externalities evaluated at the current state, rather than the optimal state. We

briefly show the effectiveness of this policy. If the current state is N ∈ ∆, the

tax/subsidy p̃(N ) to workers is

p̃(N ) = ∇2P(N )N . (50)

Let G̃P = {S,I, ũ = u + p̃} be a population game under this policy. We then

can show that the game G̃P is a potential game for which Ŵ(N ) is the potential

function. This implies that the second-best optimal distribution of work start

times N̂ o must be a stable equilibrium under the policy (50) because N̂ o globally

maximizes Ŵ(N ).
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4.3.3 A simple example revisited

To show concretely the properties of the first-best optimum, second-best opti-

mum, and Pigouvian policies, we revisit the simple example presented in Section

3.2.4. In this simple case, W and Ŵ are represented as functions of N1.

W(N1) = 2P1(N1) − P2(N1), (51)

Ŵ(N1) = 2P1(N1) − P̂2(N1) (52)

P̂2(N1) =































βN

4µ2

{

N2 − 3N1(N −N1)
}

if τ >
N

2µ
,

βN3

4µ2
−

2βτ

N

(

N

µ
−
τ

2

)

N1(N −N1) if τ ≤
N

2µ
.

(53)

Because W and Ŵ are quadratic, the first-best and second-best optima No
1
, N̂o

1
are

easily obtained.



















No
1
= 0,N, if

{

τ >
βN

8αµ2 and τ > N
2µ

}

or
{

τ > N
(

1
µ −

2α
β

)

and τ ≤ N
2µ

}

,

No
1
= N

2
if

{

τ ≤
βN

8αµ2 and τ > N
2µ

}

or
{

τ ≤ N
(

1
µ −

2α
β

)

and τ ≤ N
2µ

}

,

(54a)



















N̂o
1
= 0,N, if

{

τ >
3βN

8αµ2 and τ > N
2µ

}

or
{

τ > 2N
(

1
µ −

α
β

)

and τ ≤ N
2µ

}

,

N̂o
1
= N

2
if

{

τ ≤
3βN

8αµ2 and τ > N
2µ

}

or
{

τ ≤ 2N
(

1
µ −

α
β

)

and τ ≤ N
2µ

}

.

(54b)

It follows from (29) and (54) that the first-best optimal distribution of work start

times is more clustered than the stable equilibrium, and that the second-best

optimum is more staggered, which is illustrated by the red areas in Figure 5.

Both are consistent with Propositions 4 and 5.

These results also indicate that N̂o
1

can be equal to Nu
1
. That is, the second-best

optimum can be unstable under the Pigouvian second-best policy. Therefore,

we have to carefully implement Pigouvian policies for alleviating traffic conges-

tion, such as a congestion toll, if policymakers cannot control workers’ short-run

decisions.
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(a) Pigouvian first-best optimum policy
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(b) Pigouvian second-best optimum policy

Figure 5: Differences between the stable equilibrium and the optimum (N =
1.0, α = 0.2, β = 1.0)

5 Conclusions

This study presented a model of work start time choice with bottleneck con-

gestion and an analytical approach utilizing the properties of a potential game.

By using this approach, we showed that equilibrium distribution of work start

times is essentially non-unique and that stability of equilibria can be examined

by checking the shape of the potential function. Furthermore, by comparing the

social welfare function and the potential function, we clarified that if policymak-

ers can eliminate the queue at the bottleneck, distribution of work start times

should be more clustered than the stable equilibrium; otherwise, it should be

more staggered. After characterizing the equilibrium and optimal distribution

of work start times, we investigated the effectiveness of tax/subsidy policies and

pointed out that if the queue cannot eliminated, Pigouvian tax/subsidy policies

can be ineffective for achieving a optimum.

The analytical approach presented herein can be used not only for a model of

work start time choice but also for a wide class of models considering bottleneck

congestion. For instance, this approach is applicable to models of location choice

with bottleneck congestion, such as Arnott (1998). Therefore, it would be valuable

for future research to investigate the intrinsic properties of other models by

applying the approach.
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A Proofs

A.1 Proof of Lemma 1

Let t
f

i
and tl

i
be the fastest and latest arrival time at CBD of worker i. It follows

from Proposition 1 (i.e., uniqueness of the short-run equilibrium and the first-in-

first-work discipline) that t
f

i
and tl

i
satisfy

tl
i−1 ≤ t

f

i
∀i ∈ I\{1}. (55)

Let Ii ≡ { j | q(t) > 0 ∀t ∈ [ti, t j] or [t j, ti]}. Then, we can say that the short-run

equilibrium commuting cost of worker i is affected by behavior of worker j ∈ Ii.

That is,

∂c∗
i
(N )

∂N j
, 0 ∀ j ∈ Ii. (56)

Note that if there exists t ∈ [ti, t j] or [t j, ti] such that q(t) = 0, Lindsey (2004) proves

that

∂c∗
i
(N )

∂N j
=
∂c∗

j
(N )

∂Ni
= 0 ∀ j < Ii. (57)

Thus, for the proof of the symmetry of ∇c(N ), we will show here that

∂c∗
i
(N )

∂N j
=
∂c∗

j
(N )

∂Ni
∀ j ∈ Ii. (58)

The short-run equilibrium commuting cost c∗
i
(N ) of worker i is expressed as

c∗i (N ) =































s(∆t
f

i
) = q(tl

i
) + s(∆tl

i
) if i = ai ≡ minIi,

q(t
f

i
) + s(∆t

f

i
) = s(∆tl

i
) if i = bi ≡ maxIi,

q(t
f

i
) + s(∆t

f

i
) = q(tl

i
) + s(∆tl

i
) otherwise,

(59)

where ∆t
f

i
≡ ti − t

f

i
and ∆tl

i
≡ ti − tl

i
, because q(t

f
ai

) = q(tl
bi

) = 0. This is rewritten as

c∗i (N ) = q(t
f

i
) + s(∆t

f

i
) =

{

q(t
f

i−1
) + s(∆t

f

i−1
) − s(∆tl

i−1)
}

+ s(∆t
f

i
) = · · ·

=

i−1
∑

k=ai

{

s(∆t
f

k
) − s(∆tl

k)
}

+ s(∆t
f

i
). (60)
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Furthermore, t
f

i
and tl

i
are represented as functions of t

f
ai

and N :

t
f

i
= t

f
ai
+

∑ j−1

k=ai
Nk

µ
, tl

i = t
f
ai
+

∑ j

k=ai
Nk

µ
. (61)

Therefore, differentiating c∗
i
(N ) with respect to Ni, we have

∂c∗
i
(N )

∂N j
=







































−
∂t

f
ai

∂N j















i−1
∑

k=ai

{

s′(∆t
f

k
) − s′(∆tl

k)
}

+ s′(∆t
f

i
)















−
1

µ

















−s′(∆tl
j) +

i−1
∑

k= j+1

{

s′(∆t
f

k
) − s′(∆tl

k)
}

+ s′(∆t
f

i
)

















−
∂t

f
ai

∂N j















i−1
∑

k=ai

{

s′(∆t
f

k
) − s′(∆tl

k)
}

+ s′(∆t
f

i
)















(62)

where the prime denotes differentiation. In addition, it follows from q(tbi
) = 0

that

∑

i∈Ii

{

s(∆t
f

k
) − s(∆tl

k)
}

= 0. (63)

Differentiating both side of (63) with respect to N j, we obtain

−
∂t

f
ai

∂N j















∑

k∈Ii

{

s′(∆t
f

k
) − s′(∆tl

k)
}















−
1

µ

















−s′(∆tl
j) +

bi
∑

k= j+1

{

s′(∆t
f

k
) − s′(∆tl

k)
}

















= 0. (64)

Substituting this into (62) yields

∂c∗
i
(N )

∂N j
=







































−
∂t

f
ai

∂Ni















j−1
∑

k=ai

{

s′(∆t
f

k
) − s′(∆tl

k)
}

+ s′(∆t
f

j
)















if i > j,

−
∂t

f
ai

∂N j















i−1
∑

k=ai

{

s′(∆t
f

k
) − s′(∆tl

k)
}

+ s′(∆t
f

i
)















if i ≤ j,

(65)

which shows the symmetry of ∇c(N ).

We next prove positive definiteness of ∇c(N ). Substituting (64) into (65), we

obtain

∂c∗
i
(N )

∂N j
=
∂c∗

j
(N )

∂Ni
=

S
f

i j
Sl

ji

µSi
, (66a)
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S
f

i j
≡ s′(∆t

f

j
) +

j−1
∑

k=ai

{

s′(∆t
f

k
) − s′(∆tl

k)
}

> 0, (66b)

Sl
i j ≡ −s′(∆tl

j) +

bi
∑

k= j+1

{

s′(∆t
f

k
) − s′(∆tl

k)
}

> 0, (66c)

Si ≡
∑

k∈Si

{

s′(∆t
f

k
) − s′(∆tl

k)
}

> 0. (66d)

Note that since−s′(∆tl
i
)+s′(∆t

f

i+1
) > 0 for all i, i+1 ∈ Ii, s′(∆t

f
ai

) > 0, and s′(∆tl
bi

) < 0,

Si, S
f

i j
, Sl

i j
are all positive. Thus, (66a) can be rewritten as follows:

∇c(N ) = LL⊤, (67)

where L = (Li j)i, j∈I is a lower triangular matrix, the (i, j) entries of which are given

by

Li j =































Sl
ii

√

√

√

√

1

Si



















S
f

i j

Sl
i j

−
S

f

i( j−1)

Sl
i( j−1)



















> 0 if i ≥ j, j ∈ Ii,

0 otherwise,

(68)

where S
f

i0
= 0,Sl

i0
, 0. This implies that ∇c(N ) has a Cholesky decomposition,

and thus ∇c(N ) is positive semidefinite6.

A.2 Proof of Proposition 2

Since it is apparent that P(N ) is the potential function of the game G, we prove

here that the convexity of P1(N ) and P2(N ).

We first show that P1(N ) is convex. The Hessian matrix of P1(N ) is given by

∇2P1(N ) = α {HE − τD} . (69)

6For the proof, see, e.g., Corollary 7.2.9 of Horn and Johnson (2013).
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Its inverse can be directly computed as

{

∇2P1(N )
}−1
=

1

τ

























































γ −0.5 ϵ

−0.5 1 −0.5 O

−0.5 1 −0.5
. . . . . . . . .

O −0.5 1 −0.5

ϵ −0.5 γ

























































, (70)

γ ≡ ϵ + 0.5, (71)

ϵ ≡
τ

2{2H − (T − 1)τ}
. (72)

Then, by Gershgorin circle theorem,7 every eigenvalue λ{∇2P1(N )}−1 of {∇2P1(N )}−1

lies in

0 ≤ λ{∇2P1(N )}−1 ≤ max{1 + 2ϵ, 2}. (73)

It follows from this that every eigenvalue of ∇2P1(N ) is also nonnegative. This

shows the convexity of P1(N ).

P2(N ) is also convex, because ∇2P2(N ) = ∇c(N ) is positive semidefinite as

shown in Lemma 1.

A.3 Proof of Lemma 3

Suppose to the contrary that there exists an equilibrium N ∗ in which, for some

i, j ∈ suppN ∗ with j − i ≥ 2, N∗
k
= 0 (i.e., k < suppN ∗) for all i < k < j, and let

di j ≡ |i − j|, Ñ−
k
≡

∑k
m=1 Nm, and Ñ+

k
≡

∑T
m=k Nm. Then, for k ∈ (i, j),

ui = u j ≥ uk, (74a)

ui − u j = τdi j

{

Ñ−k − Ñ+k

}

− c∗i (N ) + c∗j(N ) = 0, (74b)

ui − uk = τdik

{

Ñ−k − Ñ+k

}

− c∗i (N ) + c∗k(N ) ≥ 0, (74c)

u j − uk = τdkj

{

Ñ+k − Ñ−k

}

− c∗j(N ) + c∗k(N ) ≥ 0. (74d)

If Ñ−
k
≥ Ñ+

k
, we have c∗

i
(N ) ≥ c∗

j
(N ) > 0 and c∗

k
(N ) ≥ c∗

j
(N ) > 0 from (74b) and

(74d). This implies that q(tk) > 0, i.e., tl
i
> tk. Furthermore, substituting (74b) into

7For the details of this theorem, see, e.g., Strang (2006) and Horn and Johnson (2013).
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(74d) yields

u j − uk = −
dik

di j
c∗j(N ) −

dkj

di j
c∗i (N ) + c∗k(N ) = −

dik

di j
s(∆t

f

j
) −

dkj

di j
s(∆tl

i) + s(tk − tl
i). (75)

Since s(x) is convex, (75) is rewritten as

u j − uk ≤































dik

di j

{

−s(∆t
f

j
) + s(tk − tl

i) + τdkjs
′(tk − tl

i)
}

< 0 if tl
i
< t j,

dik

di j

{

s(tk − tl
i) − s(∆t

f

j
)
}

+
dkj

di j

{

s(tk − tl
i) − s(∆tl

i)
}

< 0 if tl
i
≥ t j.

(76)

If Ñ−
k
< Ñ+

k
, we can easily show that ui − uk < 0 by the same procedure. But this

contradicts i, j ∈ suppN ∗ (i.e., ui = u j ≥ uk).

A.4 Proof of Lemma 4

It follows from Proposition 1 (uniqueness of the short-run equilibrium and the

first-in-first-work discipline) that Z(N ) is represented as

Z(N ) =
∑

k∈I

∫ tl
k

t
f

k

µs(tk − t)dt. (77)

Since t
f

i
and tl

i
is given by (61), differentiation of Z(N ) with respect to Ni yields

∂Z(N )

∂Ni
= s(∆tl

i) +

bi
∑

k=i+1

{

−s(∆t
f

k
) + s(∆tl

k)
}

+ µ
∂t

f
ai

∂Ni

∑

k∈Ii

{

−s(∆t
f

k
) + s(∆tl

k)
}

. (78)

Substituting (62), we have

∂Z(N )

∂Ni
=

i−1
∑

k=ai

{

s(∆t
f

k
) − s(∆tl

k)
}

+ s(∆t
f

i
) = c∗i (N ). (79)
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orem for compact nonsmooth regions. Mathematics of Operations Research

32 (1), 193–214.

Smith, M. J., 1984. The existence of a time-dependent equilibrium distribution of

arrivals at a single bottleneck. Transportation Science 18 (4), 385–394.

33



Strang, G., 2006. Linear Algebra and Its Applications, 4th Edition. Thomson

Brooks/Cole.

Tabuchi, T., 1986. Urban agglomeration economies in a linear city. Regional Sci-

ence and Urban Economics 16 (3), 421–436.

Tsekeris, T., Voß, S., 2008. Design and evaluation of road pricing: state-of-the-art

and methodological advances. NETNOMICS: Economic Research and Elec-

tronic Networking 10 (1), 5–52.

Verhoef, E. T., Nijkamp, P., Rietveld, P., 1997. Tradeable permits: Their potential

in the regulation of road transport externalities. Environment and Planning B

24 (4), 527–548.

Vickrey, W. S., 1969. Congestion theory and transport investment. The American

Economic Review 59 (2), 251–260.

Wada, K., Akamatsu, T., 2013. A hybrid implementation mechanism of trad-

able network permits system which obviates path enumeration: An auction

mechanism with day-to-day capacity control. Transportation Research Part E:

Logistics and Transportation Review 60, 94–112.

Wilson, P. W., 1988. Wage variation resulting from work hours. Journal of Urban

Economics 24 (1), 9–26.

Wilson, P. W., 1992. Residential location and scheduling of work hours. Journal

of Urban Economics 31 (3), 325–336.

Yang, H., Huang, H.-J., 2005. Mathematical and Economic Theory of Road Pricing.

Elsevier.

Yang, H., Wang, X., 2011. Managing network mobility with tradable credits.

Transportation Research Part B: Methodological 45 (3), 580–594.

34


