Environmental Management in Agriculture – Case of Bulgaria

Hrabrin Bachev

Institute of Agricultural Economics, Sofia

September 2014

Online at http://mpra.ub.uni-muenchen.de/59054/
MPRA Paper No. 59054, posted 3. October 2014 09:01 UTC
Environmental Management in Agriculture – Case of Bulgaria

Hrabrin Bachev, Institute of Agricultural Economics, Sofia

Abstract: This paper presents a holistic framework for analyzing, assessment and improvement of environmental management in agriculture, and assesses the forms, factors and efficiency of agro-eco-management in Bulgaria during post-communist transition and EU integration. It incorporates an interdisciplinary approach, and suggests a modern framework for analyzing and evaluating the system of environmental management in agriculture. After that is analysed evolution of diverse formal and informal management forms for environmental management in Bulgarian agriculture, and identifies and assesses the forms, factors, efficiency and perspectives of environmental management in “eco-active” farms of different type and location.

1 E-mail: hbachev@yahoo.com
INTRODUCTION

Modern agriculture significantly affects the state and the sustainable exploitation of natural resources being a major factor for environmental degradation (pollution, destruction, extortion) as well an important contributor for the conservation and improvement of natural environment. Consequently, the issues associated with the effective governance for sustainable exploitation and conservation of natural environment in agriculture are among the most topical in public, political, business and academic debates around the globe (Baba et al.; Bachev; COST; Dobbs and Pretty; Dugos and Dupaz; Defrancesco et al; EC; Farmer; Hagedorn; Hart and Latacz; McCanna et al.; Mitchell; Peerlingsa and Polman; Reed; Scozzari and Mansouri; UN).

Despite its importance, the research on governance mechanisms and strategies for environmental management in agriculture is at the beginning stage due to the “newness” of the problem, and the emerging new challenges and risks in recent years, and the fundamental development of the economic theory in the last three decades, and the “lack” of long-term experiences and relevant data for the process and efficiency, etc.

This paper suggests a new holistic framework for assessment and improvement of environmental management in agriculture, and analyzes the evolution of the system of agro-eco-management during post communist transition and European Union integration in Bulgaria.

First, it incorporates an interdisciplinary New Institutional Economics approach (combining Economics, Organization, Sociology, Law, Behavioral and Political Sciences), and presents a modern framework for analyzing and assessing the environmental management in agriculture. Second, it presents evolution and assesses the efficiency of diverse management forms and strategies for environmental management in Bulgarian agriculture during the post-communist transformation and the European Union (EU) integration, and evaluates the impacts of the EU Common Agricultural Policy (CAP) on environmental sustainability of farms of different juridical type, size, specialization and location. Third, it identifies and assesses the forms, factors, efficiency and perspectives of environmental management in the “eco-active” farms of different type and location in Bulgaria. Finally, it suggests recommendations for improvement of public policies, strategies and modes of intervention for effective environmental protection.
Framework for analyzing agro-eco-management system

Definition and scope

Unlike the literal meaning of these words the *environmental management* means the management of the activities and the behavior of individual agents for preservation and improvement of natural environment and its individual components (soils, waters, landscape, atmosphere, biodiversity, climate, eco-system services). *The environmental management in agriculture* (or agro-eco-management) comprises the environmental management associated with the agricultural (food, fiber, bio-fuel, raw material, diverse eco-system and related services, etc.) production. It (is to) involves management of the activities, relations, and impacts of diverse *agrarian* (farm managers, resource owners, agricultural labor, etc.) and *non-agrarian* (upstream and down-stream businesses, consumers, residents, interest group, etc.) agents.

A significant part of the agricultural production is managed and carried out by different type of farms\(^2\) – individual, family, cooperative, corporative, public, hybrid, etc. Therefore, the agro-eco-management is to be studied as an integral part of the system of farm management (along with the management of production, labor, finance, innovation, inputs supply, marketing) and the system of eco-management in the society (Figure 1).

Figure 1. Scope of Agro-eco-management

In some instances, the eco-activities constitute a relatively independent and/or a specialized part of the farming activity as in the case of environmentally friendly collection, storage and disposal of garbage, organic production, etc. However, very often the eco-management is an integral part of the farm and/or its individual functional areas (investment, labor, land management, crop production and protection, etc.). That necessitates to evaluate the comparative and absolute potential (internal incentives, capability, costs, intentions) of different type of agricultural farms (subsistent, family, commissioned, cooperatives, corporation, public, etc.) for eco-friendly production and innovation, conservation and restoration of natural resources, long-

\(^2\) In modern agriculture there are more and more instances where agricultural production is entirely integrated by outside agent (a processor, retailer, restaurant chain, exporter, etc.) and carried as a part of a larger (industrial, internal input supply, etc.) activity and/or strategy. Here the “farmers” are turned into hired labor and take part in the “internal” division of labor of a major non-agricultural activity.
term eco-investment, minimization of direct and indirect negative eco-effects, dealing with major eco-challenges, minimizing eco-costs and risks, effective adaptation, etc.

Such an analysis is more complex for the farms with complex internal structure (multimember partnerships, agricultural cooperatives, agrarian corporations, public farms), which are characterized with the division of the ownership from the management, and the multiple owners and hired labor with diverse interests and eco-culture. For the upper(farm) levels of management the eco-management is either integrated in the main mechanisms of influence (e.g. requirement for “eco-compliance”, “good agricultural practices”, etc.) or it is a specialized structure (programs for agro-ecology, mandatory eco-standards, etc.).

The entire “system” of agro-eco-management is to be analyzed including: various agents participating in the agro-eco-management; and diverse mechanisms and forms governing the behaviors and relationships of these agents.

Agents, strategies, and needs of agro-eco-management

The environmental protection, restoration and improvement requires an effective private, collective and public order, which is to govern individual (agrarian) agents behavior and their relations with other agrarian agents (farm managers, resource owners, hired labor) and non-agrarian agents (agrarian and related business, residents of rural areas, consumers of farm products and services, interest groups, state and local authorities, international organizations, etc.).

Therefore, a critical moment of the analysis of the agro-eco-management is to identify the personality of agents of agro-eco-management and the specific character of their relations, interests, objectives, power positions, dependence, effects, and conflicts. For instance, Figure 2 presents agents and relations in the agro-eco-management at the ecosystem level (Figure 2).

Figure 2. Agents of Agro-eco-management at Ecosystem Level
Individual agrarian agents (farmland owners, farm entrepreneurs, farm labor, etc.) may have quite diverse interests and strategies in terms of environmental protection (Figure 3). All these interests and strategies are to be carefully analyzed and identified.

Figure 3. Environmental management strategies in agriculture

According to their ideologies and environmental ethics, the awareness of environmental risks, the managerial and technical ability, the financial capability, some individual agents may have direct natural resources conservation goals. Accordingly these “green” individuals will pursue natural resources conservation strategy in their everyday life and activity.

For instance, for the natural resource owners the sustainable exploitation (conservation) of owned assets is often a primary concern and often it determines the type of farms they set up, and other ventures they participate (e.g. group or cooperative farms), or lease out contracts they sign. Similarly, a pro-environment farm entrepreneur establishes green (individual, cooperative, firm) farming structure following own or collective voluntary eco-code of behavior. Finally, farm labor may seek employment in a green cooperative or companies with eco-social responsibility.

Furthermore, in recent years there have been developed a great number of farms and farming enterprises with a primary or a major mission the environmental conservation and improvement. For instance, in many EU countries the environmental cooperatives have been very popular, there are numerous green agri-firms, etc.

Nevertheless, most farm structures in the modern world have other goals and pursue other (than natural environment conservation) strategies – e.g. the agri-firms are “profit-oriented” and
their primary strategy is to maximize profits for shareholders; the cooperatives are “member-oriented” and carry out strategy to increase benefits for members, etc.

However, there have been increasing consumer demands for the environmental conservation, and for the related organic, eco- and specific products from agriculture. Consequently, many market-oriented farms change their behavior in order to meet this growing market demand while keeping traditional (profit-making) strategy.

Finally, in modern societies there are a great number of formal and informal norms and restrictions related to the exploitation of natural resources. For instance, in the EU there is a huge body of environmental legislation and various environmental conservation programs. These institutional rules impose individual agents and farming structures mandatory norms and/or offer incentive to join voluntary schemes aiming at limiting environmental pressure, securing sustainable exploitation of natural resources, preservation of biodiversity, reducing pollution and emission of harmful substances, etc. This new public order modifies the individual strategies and behavior, and eventually leads toward conservation of natural environment.

Thus achieving the effective natural environment conservation in agriculture will always be result of implementing of *multiple* voluntary or induced by market, community, public policies etc. individuals, farms, businesses, consumers, and public strategies.

The next step in the analysis is to define the “needs” for eco-management. They are associated with the necessity for building mechanisms for reviling the eco-problems and risks, stimulation of appropriate eco-behavior and cooperation, exchange of information, conflict resolution, payback and minimizing eco-costs, etc. of participating agents.

According to (awareness, symmetry, strength, harmonization costs of) the interests of agents associated with the natural environment there are different needs for management of actions.

Figure 4 illustrates diverse managerial needs with an example with the agro-ecosystem services (Figure 4). Here the Farm 1 has to manage its *efforts* and *relations* with the Farm 2 since both receive services from the Ecosystem 1 and affect (positively or negatively) the service supply of that ecosystem. Besides, both farms are to manage their relations with the consumers of services from the Ecosystem 1 (agents in Social system 1) to meet the *total demand* and *compensate costs* for the maintaining ecosystem services to that direction. In addition, the Farms 1 and 2 have to coordinate efforts with the agents in the Social system 1 to *mitigate conflicts* with the agents in the Social system 2 (affecting negatively services of the Ecosystem 1). Furthermore, the Farm 1 is to manage its relations with the Farm 3 for the effective service supply from the Ecosystem 3, and manage its interaction with the Ecosystem 2. Moreover, the Farms 1 and 3 have to manage their relations with the Farms 4 and the agents from the Social system 1 (consumers of the services of the Ecosystem 3) and the Social system 2 (consumers and destructors of the Ecosystem 3 services). Finally, the Farm 1 affecting adversely the Ecosystem 4 services is to manage relations with the agents in the Social system 2 (consumers of the Ecosystem 4 services) to reconcile conflicts and secure effective flow of the ecosystem services.

Therefore, the Farm 1 is to be involved in *seven* systems of governance in order to assure an effective supply of the services from the ecosystems of which it belongs or affects.
Next, it is to be analyzed the extent in which the management needs for the environmental management in agriculture is “satisfied” from the existing governance forms and mechanisms. In certain cases, the eco-management in agriculture is entirely archived through the individual actions of autonomous agents (farms) within the Sector “Agriculture”. For instance, a good care and sustainable use of privately owned agricultural lands and water sources are typical in a family farm since they are integral part of the strategy for sustainable development of that family enterprise. Similarly, many group farms have a primary goal for sustainable development or are set up as green farms. Even when the individual strategies of farm’s components (e.g. a hired labor, a family or a group member) do not coincide with the overall farm strategy, the effective management (the “internal order”) is able to achieve the goals for farm’s sustainable growth.

However, the effective management of agro-eco-activity often requires complex and polyvalent forms, which have to be identified and analyzed. For instance, the inclusion of a farmer in the “organic products” chain coordinates well relations between the producers and the final consumers. Nevertheless, the positive eco-effect could be minor, if simultaneously a form for the coordination of relations (collective action) with other farmers in a particular region or eco-system is not established to achieve the minimum (optimal) required scale for positive eco-impact. The effective environmental management often necessitates concerted (collective) actions and eco-strategies of a number of farms as it is in the case of sustainable use of a common pasture and limited water supply, protection of local biodiversity, effective provision of agro-ecosystem services, etc.

Furthermore, modern farming activity is often profit-oriented and frequently associated with significant positive and/or negative externalities. Implementation of individual strategies of different farmers not always leads to overall conservation of natural resources. That requires a “common” strategy and managing relations (cooperation, reconciling conflicts, recovery of costs) between different farms, and increasingly between the farmers and non-farmers. For example, the adverse effects of agricultural activities on water and air quality are often felt by the residents
and businesses in neighborhood and/or more remote regions. Similarly, the agricultural contribution to the ecosystem services benefits a large number of residents, visitors, consumers, businesses, and interest groups requiring certain collective actions for a sustainable supply. In all these instances, the environmental management goes beyond the simple (technical, agronomic, ecological) “relations with the nature” and embraces the governance of relations and collective actions of agents with diverse interests, power positions, awareness, capabilities etc. in large geographical, sectoral, and temporal scales [Bachev 2011a].

What is more, modern environmental management is associated with growing needs for the “additional” actions (monitoring, coordination, investments, etc.) and integral management of natural resources and eco-risks at national and progressively at transnational scale. The later include the water and garbage management, biodiversity conservation, climate change, etc. issues demanding effective regional, nationwide, international, and global governance. For instance, the effective management of the biodiversity “component” of the natural environment includes multilevel (individual, sectoral, national, EU, worldwide) and multilateral initiatives of numerous farmers, businesses, consumers, residents, interests groups, etc. The same is true for the waters, lands, air, ecosystem services, etc. management.

Thus the effective conservation of natural environment will be achieved by coordinated collective actions and implementation of multisectoral and multilevel strategies of individual, family, partnership, private juridical, public juridical, state, etc. agents with diverse immediate goals, positions, capability and interests.

Forms and mechanisms of agro-eco-management

The individuals behavior (actions, restriction of actions) are affected and governed by a number of distinct modes and mechanisms of management which include (Figure 5):

Figure 5. Modes of environmental management in agriculture
First, the institutional environment (or the “rules of the game”) - that is the distribution of rights between individuals, groups, and generations, and the system(s) of enforcement of these rights and rules [Furuboth and Richter; North]. The entire spectrum of rights is to be analyzed embracing material assets, natural resources, intangibles, certain activities, clean environment, food security, intra- and inter-generational justice, etc. A part of the rights and rules is constituted by the formal laws, regulations, standards, court decisions, etc. In addition, there are important informal rules and rights determined by the tradition, culture, religion, ideology, ethical and moral norms, which is to be clarified. For instance, the “satoyama” ideology is deeply routed in the Japanese agriculture for many centuries now.

Furthermore, an analysis is to be made on the system of enforcement of the rights and rules done by the state, community pressure, trust, reputation, private modes, and self-enforcement by agents. After that, an assessment is to be made on which extent the institutional environment creates incentives, restrictions and costs for maintaining and improving the natural environment, intensifying eco-exchange and cooperation, increasing eco-productivity, inducing private and collective eco-initiatives, developing new eco- and related rights, decreasing eco-divergence between social groups and regions, responding to ecological and other challenges, etc.

Furthermore, the driving forces and the prospects of institutional “development” are to be specified. The modernization of the institutional environment is initiated by the public (state, community) authority, international actions (agreements, assistance, pressure, etc.), and the private and collective actions of individuals. It is associated with the modernization and/or redistribution of the existing rights; and the evolution of new rights and the emergence of novel (private, public, hybrid) institutions for their enforcement. In modern society a great deal of the individuals’ activities and relations are regulated and sanctioned by some (general, specific) formal and informal institutions. However, there is no perfect system of preset “outside rules” that can manage effectively the entire eco-activity of individuals in all possible (and quite specific) circumstances of their life and relations associated with the natural environment.

Second, the market modes (the “invisible hand of market”) – those are various decentralized initiatives governed by the free market price movements and the market competition – e.g. spotlight exchanges, classical contracts, production and trade of organic products and origins, etc. It is to be analyzed the extent in which the “free” market contributes to coordination (direction, correction) and stimulation of the eco-activities and eco-exchanges, and the effective allocation of environmental resources. The individual agents use (adapt to) markets profiting from the specialization and the mutually beneficial exchange (trade) while their voluntary decentralized actions govern the overall distribution of efforts and resources between activities, sectors, regions, eco-systems, countries, etc.

Nevertheless, there are many instances of lack of individual incentives, choices and/or unwanted exchanges related to natural environment conservation - e.g. “missing” markets, monopoly and power relations, positive or negative externalities, etc. Consequently, the free market “fails” to manage effectively the entire eco-activity, eco-exchanges, and eco-investments.

3 Literaly meaning “to live in harmony with the natural ecosystems”.
of individuals. Therefore, the cases of “failure” of market are to be determined, which lead to lack or insufficient individual incentives and choice and/or unwanted exchange associated with the environmental protection.

Third, the private and collective modes (the “private or collective order”) – those are diverse private initiatives, and special contractual and organizational arrangements – e.g. voluntary eco-actions, codes of eco-behavior, eco-contracts, eco-cooperatives, etc. It is to be determined the extent in which the individual agents can take advantage of the economic, market, institutional etc. opportunities and deal with the institutional and market deficiency by selecting or designing mutually beneficial private modes (rules) for governing their eco-behavior, relations and exchanges.

The private mode negotiates “own rules” or accepts (imposed) existing private or collective order, transfers existing rights or gives new rights to counterpart(s), and safeguards absolute and/or contracted rights of agents. In modern society a great part of the agrarian activity is managed by the voluntary initiatives, private negotiations, the “visible hand of the manager”, or collective decision-making. Nevertheless, there are many examples of private sector deficiency (“failures”) in governing of socially desirable activity such as environmental preservation, eco-system services, etc. The later cases have to be identified and analyzed.

Forth, the public modes (the “public order”) – these are various forms of public (community, government, international) intervention in the market and private sectors - e.g. public guidance, public regulation, public taxation, public assistance, public funding, public provision, property right modernization, etc. Analyses is to be made on existing forms for public “involvement” in the agro-eco-management through provision of eco-information and eco-training for private agents, stimulation and (co)funding of their voluntary actions, enforcement of the obligatory eco-order and sanctioning for non-compliance, direct organization of eco- and related activities (state eco-enterprise, scientific research, monitoring, etc.).

The role of public (local, national, transnational, etc.) governance has been increasing along with the intensification of activity and exchange, and the growing interdependence of socio-economic and environmental activities. In many cases, the effective management of individual behavior and/or the organization of certain activity through a market mechanism and/or a private negotiation would take a long period of time, be very costly, could not reach a socially desirable scale, or be impossible at all. Thus a centralized public intervention could achieve the willing state faster, cheaper or more efficiently. Nonetheless, there are a great number of “bad” public involvements (inaction, wrong intervention, over-regulation, mismanagement, corruption, etc.) leading to significant problems of sustainable development around the globe [Bachev, 2010]. All these cases of public “failure” are to be identified and analyzed.

Fifth, the hybrid forms – some combination of the above three modes like public-private partnership, public licensing and inspection of private organic farms, etc.

All existing and other practically feasible (potential) forms for agro-eco-management is to be identified, analyzed and assessed as well as their complementarities (mutual or multiplication effect) and contradictions between individual forms and mechanisms of agro-eco-management
specified. For instance, often the private (eco)initiatives of individual agents are in “conflict” with each other and/or the interests of third parties; usually, public, collective and private forms are mutually complementary, etc.

The efficiency of the individual management modes is quite different since they have unlike potential to: provide adequate eco-information, induce eco-friendly behavior, reconcile eco-conflicts and coordinate the eco-actions of different parties, impact environmental sustainability and mitigate eco-risks, and minimize the overall environment management (conservation, third-party, transaction) costs, for agents with different preferences and capability, and in the specific (socio-economic, natural, etc.) conditions of each eco-system, community, industry, region, and country. For instance, providing appropriate eco-information (by a state agency, NGO, etc.) would be enough to induce voluntary actions by a “green” farmer, while the most commercial enterprises would need outside incentives (such as price premium, cash compensation, punishment, etc.); market prices would usually coordinate well relations between the water suppliers and the users, while the regulation of relations of water polluters and users would require a special private or public order; independent strategies and actions of farms would improve the state of local eco-systems, while dealing with most of the (regional, national, global) eco-challenges requires collective actions in large geographical and temporal scales, etc.

“Governance matters” and depending on the (efficiency of) system of management “put in place” the individual communities and societies achieve quite dissimilar results in the eco-conservation and improvement. Consequently, the extend of conservation of natural environment in agriculture (the type of exploitation of natural resources by agriculture and the agricultural impact on environment) would differ quite substantially in the different stages of development and among the diverse farming structures, eco-systems, regions, and countries.

Elements and levels of analysis

The analysis of the system and the forms of agro-eco-management is to be done for the system as a whole and/or for the individual components of the natural environment – soils, waters, atmosphere, biodiversity, landscape, climate, eco-system services, etc. (Figure 6). In the later cases, the analysis of relatively independent (sub)systems of management is concerned - agricultural lands, agricultural waters, agricultural emissions, agrarian and related biodiversity, rural landscape, agricultural impact on climate, and agro-ecosystem services.

For each of the elements of the nature the analysis further deepens for sub-components as well. The later are characterized with significant specificity in terms of management forms, factors, and efficiency. For instance, as elements of the component “soils” could be included cultivated farmland, lands with permanent crops, permanent grasslands and pastures, etc.; for the component “waters” – surface waters, ground waters, waters for irrigation, drinking waters, etc.; for the component “biodiversity” – agro-biodiversity, natural biodiversity, etc.; for the component “atmosphere” and “climate” – greenhouse gas emissions, dust, odors, other pollutants, etc.
It is to bare in mind that a great part of the employed modes of agro-eco-management are integral, and affect two or more relatively independent elements or sub-components of the natural environment. Besides, the improvement of one aspect of the management through a particular form often is associated with the negative effects for other aspect, component or element. Therefore, in addition to the “private” efficiency always it is to be taken into account the overall efficiency (direct and indirect effects and costs) of a particular forms or the system of management as a whole.

Figure 6. Components and levels of analysis of agro-eco-management

According to the specific objective the analysis of the system of agro-eco-management is made at different management levels (Figure 6):

- **farm level** – individual farm, farms of a particular type (family, cooperative, crop, livestock, organic, semi-market, etc.);
- **eco-system** – individual eco-system (e.g. Danube river basin; Northern Rockies; Dobrudja plain) or type of agro-eco-system (plain, mountainous, semi-mountainous, riverside, coastal, etc.);
- **regional** – major administrative, economic or geographical regions of the country;
- **Industry (sector)** – major sectors and subsectors of agriculture – crop production, livestock production, grain production, horticulture, poultry, dairy cattle, etc.;
- **national** – Bulgaria, Missouri, Australia;
- **trans-national** – Western Balkans, European Union, global.

Specification of the individual elements of the system of agro-eco-management in each level is to be done carefully. For instance, at the individual farm level most of the forms of public intervention (mandatory norms and standards, sanction mechanisms, etc.) play a role of “external” environment, while at the national and/or industry level they are internal mechanisms of management.
Similarly, some of the dominant forms and mechanisms of management at a national or sectoral level may not be relevant for the individual farm or farms of a particular type. For instance, most of the (eco)instruments of the EU CAP do not impact at all the majority of Bulgarian farms due to the impossibility for participation in public programs (formal restrictions, high costs), low interests, enormous difficulties and costs for detection of non-compliances and for sanction by the authority, etc. [Bachev, 2010].

At certain level of analysis (e.g. eco-system, region) there may be no specific (formal) structure of management at all, and the agro-eco-management to be “carried out” by other (main) organizations (e.g. farms and farm organizations) and/or the general system of eco-management in the country. As a rule, the eco-effects and the eco-costs at a particular level and upper management level are not simple sums of those of the composite elements or those at lower levels of management. Therefore, it is to be taken into consideration the necessity for “collective actions” for achieving a minimal ecological and technological size for a positive effect, mutual and multiplication effects and spillovers, contradictory effects and costs, and externalities in different subjects and management levels, in space and time horizon.

Needs and factors of agro-eco-management

The evolution of the system of agro-eco-management and the choice of one or another form of eco-management by agents depend on diverse natural, economic, political, institutional, behavioral, technological, international, etc. factors (Figure 7). For instance, the type of the development of agro-eco-management strongly depends on the (eco)preferences and the experiences of farmers and other participants in the process, the extent of degradation and pollution of the natural environment, the social demands and the pressure for sustainable exploitation of natural resources, the economic development and capabilities for eco-investments, the public policies and the implementation/enforcement of international (eco)conventions, the natural evolution of environment, etc.

Figure 7. Factors for managerial and strategy choices for agro-eco-management
Therefore, the specific factors for agro-eco-management is to be identified and their importance and compatibility at each stage of agricultural development analyzed. The experience demonstrates that the natural environment is “valued” less and the good eco-management is not a priority, when there is no institutional stability (unspecified and/or not enforced agrarian, contractual and eco-rights, restructuring, unsustainable policies, etc.) and when the financial and economic situations of household, farms and the state deteriorate.

Likewise, the monitoring, enforcement and disputing of many of the terms of eco-contracts is extremely difficult (costly) or practically impossible, and therefore supporting voluntary eco-initiatives of farmers is often more effective than the mandatory norms and “contracts”. Similarly, due to technological, ecological or socio-economic reasons some of the widely used forms could be impossible for the conditions of a particular subsector, region, eco-system or (type) farm.

Most environmental activity and exchange in agriculture could be managed through a great variety of alternative forms. For instance, a “supply of environmental preservation service” could be governed as: voluntary activity of a farmer; though private contracts of the farmer with interested or affected agents; though interlinked contract between the farmer and a supplier or processor; though cooperation (collective action) with other farmers and stakeholders; though (free) market or assisted by a third-party (certifying and controlling agent) trade with special (eco, protected origins, fair-trade, etc.) products; though a public contract specifying farmer’s obligations and compensation; though a public order (regulation, taxation, quota for use of resources/emissions, etc.); within a hierarchical public agency or by a hybrid form.

Commonly the natural and the institutional environment evolve very slowly over a long-term periods. Therefore, in the specific natural, socio-economic and institutional environment, the choice of the management mode would depend on a number of key factors including:

- the personal characteristics of individual agents – preferences, believes, ideology, knowledge, capability, training, managerial experience, risk-aversion, bounded rationality, tendency for opportunism, reputation, trust, power, etc. For instance, benefits for farmers from the eco-management could range from the monetary or non-monetary income; profit; indirect revenue; to pleasure of involvement in environment and biodiversity preservation activity.

- the formal and informal institutions - often the choice of management mode is (pre)determined by the institutional restrictions as some forms for carrying out farming, environmental, etc. activities could be socially unacceptable or illegal. For instance, market trade of farmland, natural resources, and (some) eco-system services are not allowed in many countries.

Furthermore, the institutional environment considerably affects the level of management costs and thus the choice of one or another form of organization. For instance, in conditions of well-working public system of regulations (quality standards, guarantees) and laws and contract enforcement, a preference is given to spotlight and classical (standard) contracts. On the other hand, when rights on major agrarian and natural resources are not defined or not well defined, and the absolute and contracted right effectively enforced, then the high transaction costs could create difficulties (or block) effective eco-management - costly unsolvable disputes between
polluting and affected agents, disregards of interests of certain groups or generations, etc. Consequently, the institutional structures for carrying out the agrarian and environmental activities become an important factor, which eventually determines the outcome of the system (the efficiency) and the type of development (the sustainability).

- the *natural and technological factors* - eco-management strongly depends on the type of the environmental challenge (spatial and temporal scale, risks, etc.) and the natural recourses endowment as well as on the development of farming, environmental, monitoring, information, etc. technologies. For instance, management of water resources depends on the advancement of water conservation, use, recycling and monitoring technologies, etc.

In a long-term the state of the natural environment and its individual components, and the associated risks, conflicts and costs, depends on the efficiency of the “established” system of eco-management in a particular society, community, sector, region, economic organization, etc. (Figure 8).

Figure 8. Factors and Efficiency of Agro-eco-management

![Diagram showing factors and efficiency of agro-eco-management]

However, in each specific moment or a shorter-period of analysis not always could be found adequate data and/or determine direct links between the system of agro-eco-management (and its individual forms) and the state of the natural environment. The later is caused by:

- the time period (delay) between the management actions (“improvement” of the system of management), and the changes in the eco-behavior of agents, and the positive, negative or neutral effects on the state of natural environment and its individual elements;
- the “impossibility” for adequate assessment of the natural environment and the associated risks and costs, due to the lack of “full” knowledge on the state and the processes of environmental change, the type of correlation with agrarian activities and the new (nano, genetically-modified, etc.) products and technologies, on future costs associated with the deterioration, restoration and conservation of natural environment, etc.;
- insufficient factual data for the extent of eco-degradation and pollution in agriculture due to lack of monitoring, precise measurements, and/or research studies in that area;
- “undervaluation” of the natural resources by individual agents, social groups and/or society as a whole and/or the “lack” of any system of agro-eco-management.

Also, it is to be taken into consideration that the state and the changes in the natural environment are consequences not only of the system of agro-eco-management in a particular farms, region, subsector, or country, but other factors as well such as: the impacts of other industries in the country and at international scale, the natural evolution of environment, etc. Consequently, the real improvement or deterioration of the eco-management in a particular farm, group of farms in a region, subsector, or in the country could result in a lack or controversial change in the quality of waters, soils, air, biodiversity and climate.

In many cases, it is impossible to “influence” the natural environment through (agro)eco-management at all, and the effective adaptation is the only possible strategy for overcoming the socio-economic consequences for the agriculture and other sectors of human activity [Bachev, 2013a]. Therefore, at all levels of analysis the diverse “external” and “internal” factors are to be identified and their importance estimated in order to assess adequately the efficiency of the system of agro-eco-management and the farm adaptation.

Understanding the efficiency of agro-eco-management and strategies

The proper understanding the efficiency of agro-eco-management greatly depends on the understanding the role of transaction costs and the governance [Bachev, 2004, 2010, 2013b].

The problem of “social costs” does not exist in the conditions of zero transaction costs and well-defined private property rights [Coase]. Then the state of maximum efficiency is always achieved independent of initial distribution of rights between individuals and the mode of governance. All information for the effective potential of activity and exchange (optimization of resources, meeting various demands, respecting assigned and transferred rights) would be costlessly available to everybody. Individuals would costlessly coordinate their activities; define, adapt and implement their strategies, define new rights, and protect their (absolute and contracted) rights, and trade owned resources (and rights over them) in mutual benefit with the same (equal) efficiency over the free market (adapting to price movements), and the private modes of different types (contracts, firms), and the collective decision making (cooperative, association), and in a nationwide hierarchy (a single private or state company). Then the

4 The costs for governing relations between individuals – for protection and exchange of individual rights.

5 When transaction costs are zero then definition (redistribution) of new rights of individuals, interests groups, and society as well as effective enforcement of the new rights would be easily achieved.
ecological requirements for sustainability and the technological opportunities for economies of scale and scope (the maximum environmental conservation/enhancement and productivity of resources, “internalization of externalities”) and the maximum welfare (consumption, conservation of natural resources) would be easily/costlessly achieved⁶.

However, when transaction costs are significant, then costless contracting, exchange and protection of individual right is impossible. Therefore, the initial distribution of property rights between individuals and groups, and their good definition and enforcement are critical for the overall efficiency and sustainability. For instance, if the “right on clean and conserved natural environment” is not well-defined, that creates big difficulties for efficient eco-management – costly disputes between polluting and affected agents; not respecting interests of certain groups or generations, etc.

What is more, in the conditions of well-defined rights the eco-management is usually associated with significant transaction costs as well. For example, the agents have costs for identification and protection of various rights (unwanted take overs from others); studying out and complying with diverse institutional restrictions (norms, standards, rules, etc.); collecting needed technological, environmental, etc. information; finding best partners and prices; negotiating conditions of exchange; contract writing and registration; enforcing negotiated terms through monitoring, controlling, measuring and safeguarding; disputing through a court system or another way; adjusting or termination along with the evolving conditions of production and exchange, etc.

Therefore, in the “real world” with not completely defined and/or enforced rights, and the positive transaction costs, the mode of agro-eco-governance is crucial and eventually (pre)determines the extent of degradation, conservation and improvement of natural environment [Bachev 2010]. That is because the different modes have unequal efficiency (benefits, costs) for governing the same eco-activity in the specific socio-economic and natural environment.

Moreover, often the high transaction costs deteriorate and even block organization of otherwise efficient (mutually-beneficial) for all participants’ eco-activity and exchange. It has to be distinguished the transaction from the proper conservation or “production” (agronomic, opportunity, etc.) environmental costs. In modern conditions the later are significant economic costs, which are to be recovered like other technological costs from the beneficiaries of conserved or improved natural environment. Often that is the farmer, who invests for maintaining productivity of the natural resources (soil fertility, water purity, ecosystem services, etc.), and recover these costs similarly to other investments thought flow of future benefits (productivity, profitability, market position, etc.). More frequently, these are other agents, who

⁶Presently there is a principle agreement (“social contract”) for global sustainable development. Nevertheless, depending on the specific social preferences that “social consensus” not always is expressed in maximum environmental conservation and improvement. At certain stages of development the social priority could be given to the economic growth at the “price” of certain degradation of natural resources - „over” pollution and emissions, unsustainable exploitation, partial or complete exhaustion (termination).
pay for used eco-services directly (buying eco-products and services) or indirectly (though collective organizations, taxes and fees, etc.).

The effective modes for agro-eco-management optimize the total (transaction and conservation costs) for agrarian activity – minimizing the transaction costs and allowing (otherwise mutual beneficial) eco-exchange to be carried out in a socially desirable scale, and allowing achievement of minimum/optimum environmental requirement, and/or exploration of pure technological economies of scale and scope of farm, environmental conservation, etc. activities.

In very rare cases, there is only one practically possible form for governing of natural resources, eco-activity and eco-exchange. However, usually there are a number of alternative modes for governing of eco-conservation activity.

Different management modes are alternative but not equally efficient modes for the organization of eco-activities. Each form has distinct advantages and disadvantages to protect eco-rights and investment, coordinate and stimulate socially desirable eco-behavior and activities, explore economies of scale and scope, save production and transaction costs, etc. For instance, the free market has a big coordination and incentive advantages (“invisible hand”, “power of competition”), and provides “unlimited” opportunities to benefit from the specialization and exchange. However, market management could be associated with a high uncertainty, risk, and costs due to the lack of (asymmetry) of information, low “appropriability” of some rights (“public or collective goods” character), price instability, a great possibility for facing an opportunistic behavior, “missing market” situation, etc.

The special contract form (“private ordering”) permits a better coordination and intensification of eco-activity, and safeguards agent’s eco-rights and eco-investments. However, it may require large costs for specification (and writing) contract provisions, adjustments with constant changes in conditions, enforcement and disputing of negotiated terms, etc.

The internal organization allows a greater flexibility and control on activity (direct coordination, adaptation, enforcement, and dispute resolution by a “fiat”). However, the extension of internal mode beyond family and small-partnership boundaries (allowing achievement of “minimum” technological or ecological requirements; exploration of technological economies of scale and scope, etc.) may command significant costs for development (initiation, design, formal registration, restructuring) and for current management (collective decision making, control on coalition members opportunism, supervision and motivation of hired labor).

The separation of the ownership from the management (cooperative, corporation, public farm/firm) gives enormous opportunities for growth in productivity, and environmental and

7 For instance, in Japanese agriculture with small-scale paddy fields organization of water supply could not be carried out by individual farms (high mutual assets dependency, non separability of water use). Therefore, since ancient time organization of water supply is governed as a public projects [Mori].
management efficiency – “internal” division and specialization of labor; achieving ecosystem’s requirements; exploration of economies of scale and scope; introduction of innovation; diversification; risk sharing; investing in product promotion, brand names, relations with customers, counterparts and authorities, etc. However, it could be connected with huge transaction costs for decreasing information asymmetry between management and shareholders, decision-making, controlling opportunism, adaptation, etc.

The cooperative and non-for profit form also suffers from a low capability for internal long-term investment due to the non-for-profit goals and the non-tradable character of shares (so called “horizon problem”). What is more, the evolution and maintenance of large collective organizations is usual associated with significant costs – for initiating, informing, “collective] decision-making and internal conflict resolution, controlling opportunism of (current and potential) members, modernization, restructuring, liquidation, etc.

Finally, the public forms also command high internal (internal administration and coordination) and outside (for other private and public agents) costs – for establishment, functioning, coordination, controlling, mismanagement, misuse by private and other agents, reorganization, and liquidation. What is more, unlike market and private modes, for public organizations there is no “automatic” mechanism (such as competition) for the selection of (in)effective forms. Here public “decision making” is necessary which is associated with huge costs and time, and often affected by the strong private interests (the power of lobbying groups, politicians and their associates, bureaucrats, employees in the public forms) rather than the efficiency.

Principally the „rational” agents tend to use and/or design such modes for governing their diverse activity and relations which are the most efficient in the specific institutional, economic and natural environment – forms maximizing their overall (production, ecological, financial, transaction, etc.) benefits and minimizing their overall (production, environmental, transaction, etc.) costs [Bachev 2010]. However, a result of such private strategies and optimization of management/activity is not always the most socially effective distribution of resources and the socially desirable (maximum possible) conservation of natural environment. It is well known that the agricultural activity is often associated with significant undesirable negative environmental effects such as soils degradation, waters pollution, biodiversity termination, air pollution, considerable green-house gases emissions, etc.

Therefore, the system of agro-eco-management is to be improved, and that frequently necessitates a public (state) involvement in the agrarian and environmental management. Nevertheless, the public intervention in (eco)management is not always more effective, since public failure is practically possible. Around the globe there are many examples for inappropriate, over, under, delay, or too expensive public intervention at all levels. Often the public intervention either does not correct the market and private sector failures, or “correct” them with higher overall costs.

Thus the criterion for assessing the efficiency of agro-eco-management and strategies is to be whether socially desirable and practically possible environmental goals are realized with the minimum possible overall costs (direct, indirect, private, public, production, environmental,
transaction, etc.). Accordingly, inefficiency is expressed either in failure to achieve the feasible (technically, politically, economically, etc.) environmental goals (conservation of natural resources, overcoming certain eco-problems, diminishing existing eco-risks, decreasing eco-losses, recovery and improvement of natural environment, etc.) or achieving of set up goals with more costs comparing to another feasible form of management.

Contemporary socio-economic, institutional and (more often) natural environment are changing very fast and often unpredictably\(^8\). Consequently, any strategy for the effective environmental management is to be an adaptive strategy. Accordingly, dominating and other feasible (market, private, public, hybrid, etc.) forms are to be assessed in terms of their absolute and comparative (adaptation) potential to protect eco-rights and investments of agents, assure socially desirable level of environmental conservation (enhancement), minimize overall costs, coordinate and stimulate eco-activities, reconcile conflicts, and recover long-term costs for organizational development in the specific economic, institutional and natural environment.

(The most) effective forms for agro-eco-management

Usually “evolution” of the natural and the institutional environment is quite slow and in long periods of time. Therefore, to a great extent the efficiency of the system of agro-eco-management depends on the level of transaction costs.

The transaction costs have behavioral origin: namely individual’s bounded rationality and tendency for opportunism [Williamson]. The agrarian agents do not possess full information about the system (eco-benefits and costs, effects on others, formal requirements, development trends, etc.) since collection and processing of such information would be either very expensive or impossible (multiple spillover effects and costs in a large geographical and temporal scale, future events, partners intention for cheating, etc.). In order to optimize the decision-making and the activity the agents have to spent costs for “increasing their imperfect rationality” – for monitoring, data collection, analysis, forecasting, training, consulting, etc.

Besides, the economic agents are given to (pre-contractual, post-contractual, and non-contractual) opportunism. Accordingly, if there is opportunity for some of the transacting sides to get non-punishably an extra benefit/rent from voluntary or unwanted exchange, he will likely take advantage of that. Usually it is very costly or impossible to distinguish the opportunistic from non-opportunistic behavior because of the bounded rationality of agents. What is more, in the real life there is widespread non-contractual opportunism\(^9\), namely unwanted “exchange” or stealing of rights from a private and/or public agents without any contracting process (because of the lack or asymmetry of information, capability for detection and protection, weak negotiating positions, etc.).

Therefore, individual agents have to protect their rights, investments and transactions from the hazard of opportunism through: ex ante efforts to find a reliable counterpart and to design efficient mode for partners credible commitments; ex post investments for overcoming (through

\(^8\) There have been many financial, economic, food, environmental crisis in recent years inducing fundamental changes in economic structure and institutional rules at local, national, transnational and global scales.

\(^9\) Most economic analysis focused on pre-contractual ("adverse selection") and post-contractual ("moral hazard") opportunism. Widely distributed non-contractual opportunism is usually ignored.
monitoring, controlling, stimulating cooperation) of possible opportunism during the contract execution stage; and permanent efforts/costs for protection from unwanted non-contractual exchange though safeguarding, diversification, cooperation, court suits, etc.

The eco-opportunism is also widespread in agriculture. For instance, the farmer knows or eventually recognizes that his activity is harmful for the environment, but in order to save additional costs continues to execute risk operations when the negative effects are for other agents (the owners of natural resources, other farms, non-agrarian agents, society as a whole). Similarly, farmer sells conventional products as “organic” and profit price premium from the unaware buyers; or he joins the public agro-eco-programs to get subsidies, but does not comply with the “contracted” eco-obligations.\(^\text{10}\)

Part of the transaction costs for the eco-management could be determined relatively easily - e.g. costs for licensing, certifications, tests, purchase of information, hiring consultants, payments for guards and lawyers, bribes, etc. However, the assessment of another (a significant) part of the transaction costs in eco-activity is often impossible or very expensive [Bachev, 2011a].

That is why the Comparative Structural Analysis is to be employed [Williamson]. This analysis would align eco-activities/transactions (which differ in their attributes) with the governance structures (which differ in their costs and competence) in discriminating (mainly transaction cost economizing) way. Frequency, uncertainty, assets specificity, and appropriability are identified as critical dimensions of the eco-activity and transaction\(^\text{11}\) - the factors responsible to the variation of transacting costs between alternative modes of management. In the specific socio-economic and natural environment, depending to the combination of the critical factors of eco-activities and eco-transactions, there will be different the most-effective forms of their management (Figure 9).

\textbf{Figure 9. Principle modes for environmental management in agriculture}

<table>
<thead>
<tr>
<th>Generic modes</th>
<th>Critical dimensions of transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Appropriability</td>
</tr>
<tr>
<td></td>
<td>Assets Specificity</td>
</tr>
<tr>
<td></td>
<td>Uncertainty</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>Free market</td>
<td>🦅 High</td>
</tr>
<tr>
<td>Special contract form</td>
<td>🦅 Low</td>
</tr>
<tr>
<td>Internal organization</td>
<td>🦅 High</td>
</tr>
<tr>
<td>Third-party involvement</td>
<td>🦃 Low</td>
</tr>
<tr>
<td>Public intervention</td>
<td>🦄 Low</td>
</tr>
</tbody>
</table>

\(\text{T} -\) the most effective mode; 🦄 - necessity for a third party involvement

\(\text{10}\) Not compliance with the terms of public eco-contracts by farmers is widespread even in some of the old member states of European Union.

\(\text{11}\) Frequency, uncertainty", and asset specificity are identified as critical factors of transaction costs by Williamson [Williamson] while appropriability added by Bachev and Labonne [Bachev and Labonne].
The eco-activity and transactions with good appropriability of rights, high certainty, and universal character of investments could be effectively managed by the free market through spotlight or classical contracts. For instance, there are widespread market modes for selling diverse ecosystem services and eco-products - eco-visits, organic, fair-trade, origins, self-production or self-pick up of yields from customer12, eco-education, eco-tourism, eco-restaurants, etc.

The frequent transactions with high appropriability could be effectively managed through a special contract. For example, eco-contracts and cooperative agreements between farmers and interested businesses or communities are widely used including a payment for ecosystem services, and leading to production methods (enhanced pasture management, reduced use of agrochemicals, wetland preservation, etc.) protecting water from pollution, mitigating floods and wild fires, etc.

When the uncertainty is high and the assets dependency (specificity) is symmetrical the relational (“neoclassical”) contract could be used. Since detailed terms of transacting and results are not known at outset (a high uncertainty), a framework (mutual expectations) rather than the specification of obligations of partners is practiced (opportunism is (self)restricted due to the symmetrical dependency of investments of the partners). A special contract forms is also efficient for the rare transactions with a low uncertainty, high specificity and appropriability. The dependent investment could be successfully safeguarded through contract provisions since it is easy to define and enforce the relevant obligations of partners in all possible contingencies (no uncertainty exist).

The transactions and activity with a high frequency, big uncertainty, and great assets specificity have to be managed within internal organization. For instance, a good portion of the eco-investments are strongly specific to (certain land plots, eco-systems, etc.) a farm and they can be effectively implemented and “paid-back” within the borders of the particular farm. The high interdependency (specificity) of the eco-investments with other farm’s assets and activity is the reason that a great part of the agro-eco-management to be executed by the different type of farms – family, cooperative, agri-firms, public, hybrid, etc.

There are also cases when the farms and other agents are specialized in eco-management and entirely engaged in (aimed at) “keeping natural environment in a good condition” or “recovery or amelioration of natural environment”. Here the agricultural activity either “does not exist” (e.g. prolonged follow up) or it is practiced as far as it is required by the purely agronomic, ecological and other (e.g. educational, rehabilitation, etc.) needs. According to the extent of appropriability of the results and the “universal” character of the investments, these type of farms could be market-oriented (selling eco-services to landlords or other buyers), community13 (funded by communities, interests groups) or public (e.g. for conservation of important eco-systems like national parks, natural phenomenon, etc.).

Very often the effective scale of the specific investment in agro-ecosystem services exceeds the borders of the traditional agrarian organizations (family farm, small partnership, etc.). For instance, much of the eco-investments, which are done in one farm (protection of waters and air, biodiversity, etc.) benefit other farms or non-agrarian agents. Often, the dependency of eco-investments of a farm is unilateral from the agent benefiting from the positive result.

12 These type of services are very popular for residents of big Japanese cities.

13 In response to the unprecedented decrease in number of farms in Japan a “third sector” has developed - in many places community farms are established aiming at conservation of natural environment rather than farming.
Besides, the positive impact of the eco-investment often depends on the minimum scale of activity and frequently requires collective action (co-investment). Consequently, the eco-activity/assets of many farms happen to be in a high mutual-dependency with the eco-activity/assets of other farms and/or non-agrarian agents in a large spacial and often temporal scale. Thus, if the specific capital (knowledge, technology, equipment, funding, etc.) cannot be effectively organized within a single organization14, then effective external form(s) is to be used – e.g. joint ownership, interlinks, cooperative, joint investment in labels and origins, lobbying for public intervention, etc. For instance, the environmental cooperatives are very successful in some European countries (like, Finland, Germany, Holland, etc.) where there are strong incentives for cooperation due to the mutual-dependency of farms eco-activity, evolving “market” for eco-services, and widespread application of long-term public eco-contracts for eco-coalition. There is also rapid development of diverse associations of producers around the specific capital invested in eco-products and services, trademarks, advertisement, marketing channels, etc.

Nevertheless, the costs for initiation and maintaining of the collective organization for overcoming the unilateral dependency are usually great (a big number of coalition, different interests of members, opportunism of “free-riding” type) and it is unsustainable or does not evolve at all. That strongly necessitates a third-party involvement (non-governmental or state organization) to make such organization possible or more efficient.

The transaction costs analysis let us identify the situations of market and private sector failures. For instance, serious problems usually arise when the condition of assets specificity is combined with the high uncertainty and the low frequency, and when the appropriability is low. In all these cases, a third part (private agent, NGO, public authority, etc.) involvement in the transactions is necessary (through assistance, arbitration, regulation, funding, etc.) in order to make them more efficient or possible at all. The emergence and the unprecedented development of special origins, organic farming and system of fair-trade, are all good examples in that respect. There is increasing consumer’s demand (price premium) for these products but their supply could not be met unless an effective trilateral management (including independent certification and control) is put in place.

The respect of others rights or granting out additional rights could be managed by “good will” or charity actions. For instance, a great number of voluntary environmental initiatives (“codes of behavior”, etc.) have emerged driven by farmers’ preferences for eco-production, competition in industries, and responds to the public pressure for a sound environmental management. However, the voluntary and charity initiatives could hardly satisfy the entire social demand especially if they require considerable costs. Besides, the environmental standards are usually “process-based”, and the “environmental audit” is not conducted by independent party, which does not guarantee a “performance outcome”15.

Most environmental management requires large organizations with diversified interests of agents (providers, consumers, destructors, interest groups, etc.). The emergence of special large-members organizations for dealing with the low appropriability is slow and expensive, and they are not sustainable in a long run (“free riding” problem). Therefore, there is a strong need for a third-party public (Government, local authority, international assistance) intervention to make such eco-activity possible or more effective [Bachev 2010].

For example, the supply of “environmental goods” by farmers could hardly be governed through private contracts with the individual consumers because of the low appropriability, high

14 coalition made, minimum scale of operations reached, economy of scale and scope explored.

15 The huge food safety and environmental pollution scandals in recent years proves that private schemes often fail (high information asymmetry and possibility for opportunism).
uncertainty, and rare character of transacting (high costs for negotiating, contracting, charging all potential consumers, disputing, etc.). At the same time, the supply of additional environmental protection service is very costly (in terms of production and organization costs) and would unlikely be carried out on a voluntary basis. Besides, the financial compensation of farmers by willing consumers through a pure market mode (eco-fee, eco-premium to price, etc.) is also ineffective due to the high information asymmetry, and the massive costs for enforcement, disputing and excluding of “dishonest” users, etc. A third-party mode with a direct public involvement would make that type of transaction effective: on behalf of the consumers the State agency negotiates with the individual farmers a public contract for the “environment conservation service”, coordinates activities of various agents, provides public payments for compensation of farmers, and controls the implementation of negotiated terms16.

Assessing and designing public modes for agro-environmental management

In modern agriculture there are a great variety in forms and efficiency of public intervention in agri-eco-management17. In assessment of the public modes for agro-eco-management it has to be taken into account the overall (public and private) costs for the implementation and transaction for achievement of the social eco-goals in comparison with another practically possible form of intervention.

The Discrete Structural Analysis is to be applied which would assist the assessment of the efficiency and the design of forms of public intervention. Depending on the uncertainty, frequency, and necessity for specific investment of public involvement different form of public intervention will be the most efficient (Figure 10).

Figure 10. Principle modes for public intervention in environmental management

<table>
<thead>
<tr>
<th>Level of Uncertainty, Frequency, and Assets specificity</th>
<th>Low</th>
<th>(\Rightarrow)</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>New property rights and enforcements</td>
<td>Public regulations</td>
<td>Public taxation</td>
<td>Public assistance</td>
</tr>
</tbody>
</table>

Interventions with a low uncertainty and assets specificity would normally require a smaller public organization - more regulatory modes, improvement of the general laws and contract enforcement, etc. When the uncertainty and assets specificity of transactions increases a special contract mode would be necessary – e.g. employment of public contracts for provision of private services, public funding (subsidies) of private activities, temporary labor contract for carrying out special public programs, leasing out public assets for private management, etc. And when the transactions are characterized with the high assets specificity, uncertainty and frequency, then an internal mode and a bigger public organization would be necessary – e.g. permanent public employment contracts, in-house integration of crucial assets in a specialized state agency or public company, etc.

16 Public eco-contracts are the most widely used instrument for improving agro-eco-activity in European Union. What is more, further “greening” of the Common Agricultural Policies and augmentation of “eco-subsidies” is planed from 2014 on.

17 For instance, review of diverse modes of governance of agro-ecosystem services is made by Bachev [2011a].
Initially, it is necessary to specify the ways to correct existing and emerging eco-problems in market and private sector (difficulties, costs, risks, failures, etc.). The appropriate public involvement would be to create an environment for: decreasing uncertainty surrounding market and private transactions, increasing intensity of exchange and cooperation, protecting private rights and investments, and making private investments less dependent. For instance, the State establishes and enforces quality, safety and eco-standards for the farm inputs and produces, certifies producers and users of natural resources, transfers water management rights to farms associations, sets up minimum farm-gate prices, etc. (Table 1). All these facilitate and intensify private eco-initiatives and (market and private) eco-transactions, and increase efficiency of the economic organizations.

<table>
<thead>
<tr>
<th>New property rights and enforcement</th>
<th>Public regulations</th>
<th>Public taxation</th>
<th>Public assistance and support</th>
<th>Public provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rights for clean, beautiful environment, biodiversity; Private rights on natural, biological, and environmental resources; Private rights for (non) profit management of natural Tradable quotas (permits) for polluting; Private rights on intellectual property, origins, (protecting) ecosystem services; Rights to issue eco-bonds, shares; Private liability for polluting</td>
<td>Regulations for organic farming; Regulations for trading of protection of ecosystem services; Quotas for emissions and use of products, resources; Regulations for introduction of foreign species, GM crops; Bans for certain activity, use of inputs, technologies; Norms for nutrition and pest management; Regulations for water protection against nitrates pollution; Regulations for biodiversity, landscape management; Licensing for water or agro-system use; Quality, food safely standards; Standards for good farming practices; Mandatory eco-training; Certifications, licensing; Compulsory eco-labeling; Designating environmental vulnerable, reserve zones; Set-aside measures; Inspections, fines, ceasing activities</td>
<td>Tax rebates, exception, breaks; Eco-taxation on emissions , products; Levies on manure surplus; Levies on farming or export for innovatio n funding; Waste tax</td>
<td>Recommendation, information, demonstration; Direct payments, grants for eco-actions of farms, businesses, communities; Preferential credit; Public eco-contracts; Government purchases (water, other limited resources); Price, farm support for organic production, special origins; Funding eco-training; Assistance in farm, eco-associations; Collecting fees for paying ecosystem service contributors</td>
<td>Research, extension; Market information; Agro-meteorologic al forecasts; Sanitary and veterinary control, vaccination, prevention measures; Public agency (company) for important ecosystems; Pertaining “precaution principle”; Eco-monitoring; Eco-foresight; Risk assessment</td>
</tr>
</tbody>
</table>
Next, practically possible modes for increasing appropriability of rights, results of activity, and investment have to be considered. The low appropriability is often caused by the unspecified or badly specified private rights [Bachev, 2004]. In that case, the most effective government intervention would be to introduce and enforce new private property rights – e.g. rights on natural, biological, and environmental resources; rights on issuing and trading eco-bonds and shares; tradable quotas for polluting; private rights on intellectual agrarian property and origins, etc. That would be efficient when the privatization of resources or the introduction and enforcement of new rights is not associated with significant costs (the uncertainty, recurrence, and level of specific investment are low).

Such public intervention effectively transfers the organization of transactions into the market and private management, liberalizes market competition and induces private incentives (and investments) in certain eco-activities. For instance, the tradable permits (quotas) are used to control the overall use of certain resources or level of a particular type of pollution. They give flexibility allowing farmers to trade permits and meet their own requirements according to their adjustment costs, specific conditions of production, etc. That form is efficient when a particular target must be met, and the progressive reduction is dictated through permits while trading allows the compliance to be achieved at least costs (through a private management). What is more, the tradable rights could be used a market for environmental quality to develop. The later let private agents to realize new eco-strategy purchasing permits from the market and taking them out of market turnover and utilization. In that way the environmental quality could be practically raised above the initially “planned” (by the Government) level, and would not have been achieved without these additional private eco-initiatives.

In other instances, it would be more efficient to put in place regulations for trade and utilization of resources, products and services – e.g. standards for labor safety, product quality, environmental performance, animal welfare; norms for using natural resources, introduction of foreign species and GM crops, and (water, soil, air, comfort) contamination; a ban on application of certain chemicals or technologies; regulations for trading ecosystem service protection; foreign trade regimes; mandatory eco-training and licensing of farm operators, etc. The large body of environmental regulations in the European Union and other developed countries aim changing farmer’s behavior, and directing toward new strategies, which restrict the negative impact on environment. It makes producers responsible for the “environmental effects” (externalities) of their products or the management of products uses (e.g. waste).

This mode is effective when a general improvement of the performance is desired but it is not possible to dictate what changes (in activities, technologies) is appropriate for a wide range of operators and environmental conditions (a high uncertainty and information asymmetry). When the level of hazard is very high, the outcome is certain and the control is easy, and no flexibility exists (for timing or the nature of socially required result), then the bans or strict limits are the best solution. However, the regulations impose uniform standards for all regardless of the costs for compliance (adjustment) and give no incentives to over-perform beyond a certain (regulated) level.

In other instances, using the incentives and the restrictions of tax system would be the most effective form for public intervention. Different sorts of tax preferences (exception, breaks, credits) are widely used to create favorable conditions for certain (sub)sectors and regions, forms of agrarian organization, or specific types of activities. The environmental taxation on emissions or products (inputs or outputs of production) is also applied to reduce the use of harmful substances. Eco-taxes impose the same conditions for all farmers using a particular input and give signals to take into account the “environmental costs” inflicted on the society as a whole (or big communities of affected individuals). Taxing is effective when there is a close link between the activity and the environmental impact, and when there is no immediate need to control the
pollution or to meet the targets for reduction. However, an “appropriate” level of the charge is required to stimulate a desirable change in farmers’ behavior. Furthermore, some emissions (e.g. nitrogen) vary according to the conditions of application (fertilization with N) and attempting to reflect this in the tax system often results in complexity and high administrating costs.

In some cases, a public assistance and support to private organizations is the best mode for intervention. The public financial support for environmental actions is the most commonly used instrument for improving the environment performance of farmers. It is easy to find an economic justification for the public payments as a compensation for the provision of an “environmental service” by farmers. However, the share of farms participating in various agri-environmental support schemes (in EU, Japan, USA etc.) has not been significant. That is a result of voluntary (self-selection) character of this mode, which does not attract farmers with the highest environment enhancement costs (the most intensive and damaging environment producers). In some countries the low-rate of farmers’ compliance with the environmental contracts is a serious problem. The later cannot be solved by augmented administrative control (enormous enforcement costs) or introducing a bigger penalty (politically and juridical intolerable measure). Principally, it is estimated that the agri-environmental payments are efficient in maintaining the current level of environmental capital but less successful in enhancing the environmental quality.

Another disadvantage of “payment system” is that once introduced it is practically difficult (“politically unacceptable”) to be stopped when goals are achieved or there are funding difficulties. Moreover, withdraw of subsidies may lead to further environmental harm since it would induce the adverse actions (intensification, return to conventional farming strategies). Other critics of subsidies are associated with their “distortion effect”, negative impact on “entry-exit decisions” from polluting industry, unfair advantages to certain sectors in the country or industries in other countries, not considering the total costs (such as transportation and environmental costs, “displacement effect” in other countries).

Often providing public information, recommendations, training and education to farmers, rural agents, and consumers are the most efficient form since they improve their capability and strategies. In some cases, a pure public organization (in-house production, public provision, etc.) will be the most effective one as it is in the case of important agro-ecosystems and national parks; agrarian research, education and extension; agro-meteorological forecasts; border sanitary and veterinary control, interventions by international organizations, etc.

Usually, the effective implementation of a long-term environmental conservation strategy requites combined public intervention (a governance mix). The necessity of multiple public intervention is caused by the fact that: different natural resources and diverse challenges associated with them need different instruments and form of public intervention; individual modes are effective if they are applied alone with other modes; frequently the combined effect is higher that sum of individual effects; the complementarities (joint effect) of individual forms; restricted potential of some less expensive forms to achieve a certain (but not the entire) level of socially preferred outcome; possibility to get an extra benefits (e.g. “cross-compliance” requirement for participation in public programs); particularity of problems to be tackled; specific critical dimensions of managed activity; uncertainty (little knowledge, experience) associated with the likely impact of new forms; needs for “precaution”; practical capability of the State to organize (administrative potential to control, implement) and fund (direct budget resources and/or international assistance) different modes; and dominating (right, left) policy doctrine.

18 40% of French farmers experience problems implementing public eco-contracts [Dupraz et al.].
Besides, the level of an effective public intervention (management) depends on the scale of ecosystem and the type of eco-problem. There are public involvements, which are to be executed at local (farm, agro-ecosystem, community, regional) level, while others require nationwide management. There are also activities, which are to be initiated and coordinated at international (regional, European, worldwide) level due to the strong necessity for trans-border actions (needs for a cooperation in natural resources and environment management, for exploration of economies of scale/scale, for prevention of ecosystem disturbances, for governing of spill-overs, etc.) or consistent (national, local) government failures.

Often the effective governance of many challenges and risks of agro-ecosystems require multilevel management with combined actions of different levels, and involving various agents, and different geographical and temporal scale.

The public (regulatory, inspecting, provision etc.) modes must have built special mechanisms for increasing competency (decrease bounded rationality and powerlessness) of the bureaucrats, beneficiaries, interests groups and public at large as well as restricting the possible opportunism (opportunity for cheating, interlinking, abuse of power, corruption) of public officers and other stakeholders. That could be made by training, introducing new monitoring, assessment and communication technologies, increasing transparency (e.g. independent assessment and audit), and involving experts, beneficiaries, and interests groups in management of public modes at all levels. Furthermore, applying “market like” mechanisms (competition, auctions) in public projects design, selection and implementation would significantly increase the incentives and decrease the overall costs.

Principally, a “pure” public organization should be used as a last resort when all other modes do not work effectively [Williamson]. “In-house” public organization has higher (direct and indirect) costs for setting up, running, controlling, reorganization, and liquidation. What is more, unlike market and private forms there is not automatic mechanism (competition) for sorting out the less effective modes. Here a public “decision making” is required which is associated with high costs and time, and it is often influenced by strong private interests (power of lobbying groups, policy makers and their associates, employed bureaucrats) rather than the efficiency.

What is more, widespread “inefficiency by design” of public modes is practiced to secure (rent-taking) positions of certain interest groups, stakeholders, bureaucrats, etc. Along with the development of general institutional environment (“The Rule of Law”, transparency) and the monitoring, measurement, communication, etc. technologies, the efficiency of pro-market modes (regulation, information, recommendation, etc.) and contract forms would get bigger advantages over the internal less flexible public arrangements.

Usually hybrid modes (public-private partnership) are much more efficient than the pure public forms given coordination, incentives, and control advantages. In majority of cases, involvement of farmers, farmers organizations and other beneficiaries increases efficiency - decreases asymmetry of information, restricts opportunisms, increases incentives for private costs-sharing, and reduces management costs [Bachev, 2004]. For instance, a hybrid mode would be appropriate for carrying out the supply of preservation of environment, biodiversity, landscape, historical and cultural heritages, etc. That is determined by the farmers information superiority, the strong interlinks of activity with the traditional food production (economy of scope), the high assets specificity to the farm (farmers competence, high cite-specificity of investments to the farm and land), and the spatial interdependency (needs for cooperation of farmers at a regional or wider scale), and not less important – the farm’s origin of negative

19 It is not rare to see highly inefficient but still “sustainable“ public organizations around the world.
externalities. Furthermore, enforcement of most labor, animal welfare, biodiversity, etc. standards is often very difficult or impossible at all. In all these cases, stimulating and supporting (assisting, training, funding) private voluntary actions are much more effective then the mandatory public modes in terms of incentive, coordination, enforcement, and disputing costs.

If there is a strong need for a third-party public involvement but an effective (government, local authority, international assistance) intervention is not introduced in a due time, then the agrarian “development” is substantially deformed. Consequently, all class of socially needed eco-activities and investment are blocked, natural resources are degradated or pollutes in large scales, sustainability of farms structures in reduces, etc.

Defining and assessing efficiency of agro-eco-management

The “efficiency of agro-eco-management” represents the specific effectiveness of the analyzed form of management and/or the system as a whole in relations to the extent of realization of practically (technologically, socially, economically, etc.) possible eco-effects and the minimization of overall costs for eco-management.

When the effects, costs and efficiency of individual components of eco-management is evaluated it is to be taken into account their different temporal scale, jointness, complementarity, special and temporal apartness, and the potential for development in the conditions of constantly changing socio-economic and natural environment. In some cases, it is possible to determine the relation between the eco-action (costs) and the eco-effect in the space and time through measurement, statistical (factors) analysis or simulation models. For example, it is possible to determine with a high precision the correlation between the optimization of nitrogen fertilization in farms of a particular region and the decreasing the ground waters nitrogen pollution in the region; the relationship between farms involvement in the public agro-ecological measures and the restoration of biodiversity in participating farms; or the link between improved eco-behavior of farms and the preservation of the natural landscape in rural areas.

However, often it is extremely difficult (too expensive) or practically impossible to monitor, measure, and separate the specific effect (costs) of the individual elements of the management or the entire system. For instance, it is impossible to determine (quantitatively) precisely the positive or the negative impact of the (Bulgarian, Thai, etc.) agriculture on the climate preservation and/or change. In these instances it is to be used a system of qualitative and quantitative indicators for characterization of:

- **the state and the dynamics of eco-behavior and/or eco-intention of agents.** For example, the following indicators could be used: extent of application of effective crop-rotation; introduction of good practices for chemical storing, fertilization, crop protection, irrigation and agro-technics; application of good agricultural and ecological practices; introduction of professional eco-codes and standards; transition to eco- or organic production; introduced and registered eco-products and services; amount of costs for environmental protection and restoration; amount and character of eco-investment (e.g. building of modern manure storage site, drop irrigation system, etc.); number and scope of signed private and/or public eco-contracts; membership in eco-cooperatives or associations; number of participants and the scope of public eco-contracts and agro-ecological payments; plans for sustainable land and water exploitation, landscape and biodiversity conservation, system for waste management, etc.

- **the extent and the dynamics of the eco-pressure of agriculture.** Following indicators are appropriate: type of farmland utilization, number and kind of livestock per ha, intensity of water
use, quantity and balance of chemical fertilization and crop protection, total and per ha yields for
agricultural products, nitrogen and pesticides emissions in waters, emissions of dust, harmful
particles, odors, noise and greenhouses gasses, the system of utilization of farmland and farming
(intensive, extensive, ecological), intensity of application of heavy machineries, type of
utilization of livestock manure and biomass, amount and type of agricultural waste, number and
scope of protected zones, etc.

The impact on and/or state of the natural environment and its individual components. The
following indicators can be employed: scale and scope of farmlands erosion, scale and scope of
degradation (acidification, saltification, pollution, desertification, stuffing) of soils, extent of
conservation of the natural landscape, scale and scope of air and waters pollution, number of
endangered species, diversity of populations of wild animals and plants, number and size of
zones with environmental problems, frequency and type of extreme climate phenomena (storms,
rainfalls, flooding, droughts, hail, frosts, extreme hot and cold days, etc.).

According to the type and the goals of analysis some of (or similar) indicators could be
used simultaneously for characterization of the eco-behavior, eco-pressure, eco-state and eco-
impact of agriculture. For instance, the increased number of livestock on underutilized pasture or
fertilization of exhausted farmlands could express decreased eco-pressure. Similarly, the
implementation of good agricultural practices, transition to organic farming, or protected zones,
all they could indicate both improved eco-behavior as well as diminished pressure on natural
environment. The amount of emissions of chemicals, greenhouse gasses, bad odors and noise in
agriculture could be used as indicators for pressure, state, emissions, etc.

In many cases, there is not enough information for some (or all) elements of the effects
and/or costs, or it is impossible to determine the effective potential of certain forms and
mechanisms. Then it is appropriate to apply quantitative analysis as well, which would reveal the
specific incentives, costs, effects, obstacles, and capability for improvement of eco-behavior of
the diverse participants in the process.

The specific indicators selected will depend on the level of analysis (farm, national, etc.),
the type of analysis (particular form or instrument for eco-management, individual component of
the natural environment, specific eco-challenges, integral, etc.), and the available (statistical,
monitoring, experts, etc.) information in agricultural farms, in other agents of agro-eco-
management (farmers and business organizations, Ministry of Agriculture, Ministry of
Environment, etc.), and independent sources (Environment monitoring agency, research
institutes, etc.). As a rule, for the current and short-term analysis (a year, planed period), at the
lower levels of management (farm), and for a smaller number of participating agents (individual
farm or group of farms) mostly indicators for the eco-behavior and eco-pressure would be
appropriate (Figure 11). For longer periods of analysis (programs, life-cycle of investment or
products), at upper levels of management (sector, eco-system, national), and for a larger number
of agents who are necessary for achieving a positive eco-effect, the indicators for eco-state and
eo-impacts would be more suitable.

Uncompleted list of commonly used and other appropriate indicators for assessing the eco-
behavior, eco-pressure, eco-state and eco-impact in agriculture is presented in Table 2.

The assessment of the comparative and the absolute efficiency of agro-eco-management is
to be made. The first one assess the efficiency of a particular mode or the system as a whole in
comparison to another feasible alternative form (system) or with the state before the introduction
of the specific form/system of agro-eco-management. For instance, the assessment is made on
the comparative efficiency (additional costs, additional farm and ecological effect) of organic
farming in relation to the farms with the traditional technology or the state of farming before
introduction of that eco-innovation; on private eco-contract in comparison with the participation in eco-cooperative; on public agro-eco-subsidies comparative to the introduction eco-taxes, etc.

Figure 11. Type of Indicators for Assessing Agro-eco-management Efficiency depending on Level and Time-span of Analysis and Number of Participants

At the management decision stage, the analysis of comparative efficiency is a mean for selecting the most-efficient option of eco-management (behavior, investment, cooperation, benefits) between institutionally, financially, and technologically possible alternative forms. Therefore, they are tools for increasing the absolute efficiency of the agro-eco-management. At the project implementation stage, these estimates express the comparative advantages (or disadvantages) of the chosen form for agro-eco-management in relation to the feasible alternatives.

The absolute efficiency assesses the overall effectiveness of a particular form or the entire system in relation to the achievements of standards for environmentally friendly and sustainable agriculture. Here as criterion for assessing the effect is used:

- the contemporary scientifically recommended ecological norms and standards for behavior, pressure, emission, acceptable pollution, balance of fertilization, state of soils, waters, biodiversity, landscape, etc. For instance, achieving the norms for ecologically efficient fertilization and restoration of soil fertility, efficient number of livestock per ha pasture land, limits for minimum pollution of waters for drinking and irrigation; standards for balance of wild species in agro-eco-systems, for storage of manure and other agrarian waste, etc.
- or the planned socio-economic (farm, ecological, etc.) objectives or standards in the program for agro-eco-management. For instance, transition and certification for the organic and eco-production, number of farms and amount of farmland included in the public measures for agro-ecology; extent of realization of the plan for restoration of polluted waters and soils, for recycling of wastes, etc.
Table 2. Indicators for Assessing Eco-behavior, Eco-pressure, Eco-state, Eco-impact

<table>
<thead>
<tr>
<th>Eco-behavior</th>
<th>Eco-pressure</th>
<th>Eco-state</th>
<th>Eco-impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of effective crop rotation;</td>
<td>Size and share of arable land;</td>
<td>Scale and size of water erosion of farmlands;</td>
<td>Agricultural impacts on:</td>
</tr>
<tr>
<td>Good practices for chemical storage;</td>
<td>Size and share of permanent crops;</td>
<td>Scale and size of wind erosion of farmlands;</td>
<td>- soil quality;</td>
</tr>
<tr>
<td>Good practices for fertilization;</td>
<td>Size and share of grasslands and pastures;</td>
<td>Scale and size of farmland acidification;</td>
<td>- water quality;</td>
</tr>
<tr>
<td>Good practices for crop protection;</td>
<td>Size and share of abandoned land;</td>
<td>Scale and size of salinized farmland;</td>
<td>- air quality;</td>
</tr>
<tr>
<td>Good practices for irrigation;</td>
<td>Number and kind of livestock per farmland;</td>
<td>Scale and size of farmlands polluted with heavy metals etc.;</td>
<td>- conservation of landscape;</td>
</tr>
<tr>
<td>Good agri-technic practices;</td>
<td>Intensity of water use;</td>
<td>Number of endangered wild habitats;</td>
<td>- conservation and recovery of biodiversity;</td>
</tr>
<tr>
<td>Good agricultural and ecological practices;</td>
<td>Total and per farmland amount of N, K, and P fertilizers;</td>
<td>Number of endangered wild habitats;</td>
<td>- climate changes;</td>
</tr>
<tr>
<td>Professional eco-codes and standards;</td>
<td>Balance of chemical fertilization;</td>
<td>Number of endangered wild habitats;</td>
<td>- quality of ecosystem services;</td>
</tr>
<tr>
<td>Transition to eco or organic production;</td>
<td>Total and per farmland amount of chemical crop protection;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Introduction of eco-products and services;</td>
<td>Crop output and yields;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Registered eco-products and services;</td>
<td>Water emission of N and petroized;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Expenditures for eco-protection;</td>
<td>Emissions of dust and pollutants;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Expenditure for eco-restoration;</td>
<td>Emissions of odor;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Eco-investment;</td>
<td>Green-house gas emissions;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Modern manure storage;</td>
<td>Share of intensive land use and farming;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Drop irrigation;</td>
<td>Share of extensive land use and farming;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Number and scale of private eco-contracts;</td>
<td>Share of ecological land use and farming;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Number and scale of public eco-contracts;</td>
<td>Intensity of heavy machineries;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Eco-cooperation;</td>
<td>Amount and share of manure use;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Number of participants and scale of public eco-contracts;</td>
<td>Amount and share of biomass use;</td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Number of participants and scale of agri-environmental payments;</td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Plans for sustainable land management;</td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Plans for sustainable water management;</td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Plans for sustainable landscape management;</td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Plans for biodiversity protection;</td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td>Systems for waste management;</td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of endangered wild habitats;</td>
<td></td>
</tr>
</tbody>
</table>

The criterion for assessment of the costs is weather it is possible to achieve the same goals with less overall costs or it is possible to achieve a higher (ecological, other positive) effect with the same costs.

The evaluation of the sustainability of eco-management for a farm is also made through analysis of the absolute efficiency. For example, the absolute efficiency of public, private or market eco-contract for a particular farm is to be estimated through the additional income from the agro-ecological subsidy, contract cash flow, and/or increased prices of eco-product/service, in relation with the costs for management and implementation of eco-contract terms (including missed benefits from the decreased yields and productivity as a result of transition to the eco-production). The existence of a net benefit (profit) means that the eco-activity is economically...
efficient for the farm20. The benefits for a particular farm are to be searched in other directions as well. For instance, the improved system of eco-management leads to conservation of natural resources employed in the farm, preserved or improved farm productivity in a longer-term, avoided future costs for compensation of decreased productivity and/or for the restoration of quality of natural resources, preserved or increase value of natural assets of the farm, etc.

At lower levels of analysis (farm, industry) the direct (internal farm, program) and indirect (external and social) eco-costs and effects are to be distinguished. At higher levels of analysis (most) costs and effects are “internal”. In any case, all (positive, negative, interlinked) effects and the overall social costs associated with individual forms of eco-management are to be taken into account.

The assessment of costs for eco-management is to include:

- purely “production” costs and investment for eco-friendly agriculture, which are associated with the technology of conservation, improvement and restoration of natural environment; and

- the transaction costs, which are associated with the management of relations with other agents – costs of labor, and payments for acquiring information, negotiation, organizational development, registration and protection of eco-rights and products, controlling opportunism, conflicts resolution, adaptation to market and institutional environment, etc.

For instance, in assessment of the public form the overall costs is to be included which usually comprise: direct (tax payer, assistance agency) expenses, and transacting costs of bureaucracy (for coordination, stimulation, control of opportunisms and mismanagement), and costs for individuals’ participation and usage of public modes (adaptation, information, paper works, payments of fees, bribes), and costs for community control over and for reorganization of bureaucracy (modernization, liquidation), and (opportunity) costs of public inaction.

A part of the transaction costs could be determined directly, since they are object of a separate (including accountancy) reporting or could be easily specified from the traditional (production, program) costs. Examples for these type are costs for licensing, certifications, tests, purchase of information, registration, hiring consultants, payments for guards and lawyers, lawsuits, bribes, etc. However, another (significant) part of the transaction costs is impossible or very expensive to be separated or determined. Here already presented Comparative structural (qualitative) analysis is to be employed which will determine whether the eco-activities and transactions with specific dimensions (frequency, uncertainty, assets specificity, and appropriability) are governed/organized with the most effective mode(s). The effective are structures, which minimize the transaction costs and maximize the transaction costs of the participants in the specific socio-economic, institutional, technological and natural environment [Bache, 2004].

When the aggregation and/or the comparison of data for effects and costs are made it is necessary to correct differences, which are associated with the application of unequal methods of calculation and/or dissimilar precisions in different farms, public agencies and periods of time. The adequate assessment of efficiency often requires collection of first hand microeconomic, ecological, etc. data from different levels and participants in agro-eco-management as well. For this purpose, it is to be organized interviews with managers and stakeholders, laboratory tests, scientific experiments, etc. Very often, it is also necessary to use experts’ assessments of leading specialists in the area.

The selection of the type and the importance of the criterion and indicators for the analysis and assessment of efficiency of the agro-eco-management at different levels are to be done by the experts in the field.

20 Often the assessment requires more complicate calculations (comparing current and long-term effects, “discounting”, etc.) similar to the analysis of efficiency of long-term investment.
Stages in analysis of agro-environmental management and strategies

The analysis and the improvement of agro-eco-management and strategies is to include following stages (Figure 12):

Figure 12. Stages in analysis and improvement of agro-eco-management

First, assessment of the specific management needs of conservation of natural environment utilized and/or affected by agriculture. The later depends on the particular characteristics of diverse natural resources and ecosystems they are part of, and the number, interests and strategies of related agents. For instance, persistence of serious eco-problems and risks is an indicator that an effective system of eco-management is not put in place. Therefore, trends, factors, problems, and risks associated with the natural environment and its individual elements (land, water, air, biodiversity, eco-systems, climate, etc.) are to be identified.

Modern science offers quite precise methods to assess the state of environment, and detect existing, emerging and likely challenges - environmental changes, degradations, destructions and depletion of natural resources, eco-risks, etc. [MEA; Bachev, 2013c]. What is more, science offers reliable instruments to estimate agricultural contribution to and impact on the state (“health”) of environment and its different components, including in different spatial and temporal scales. For instance, there are widespread applications of numerous eco-indicators for pressure, state, respond, and impact as well as for integral assessment of agrarian environmental sustainability [FAO, 2010a].

The lack of serious eco-problems, conflicts and risks is an indicator that there is an effective system for eco-management, and therefore there is no need for changing public strategy for environmental conservation. However, usually there are significant or growing environmental problems and risks associated with the agriculture in developed and developing countries alike.
Second, assessment is to be made on the efficiency and the potential of available and other feasible modes and mechanisms of management for environmental conservation, and for overcoming the existing, emerging and likely eco-problems and risks associated with agriculture. The analysis is to embrace the system of agro-eco-management and its individual components – institutional environment and various (formal, informal, market, private, contract, internal, individual, collective, public, specialized, multifunctional, simple, complex, etc.) forms for governing eco-activities of agrarian agents (farms of different type). In fact, most analyses are restricted to a certain form (formal, farm, cooperative, public program) ignoring other important, dependent, or complementary modes.

The efficiency of individual modes are to be evaluated in terms of their strategies and (comparative) potential to safeguard and develop agents eco-rights and investments, stimulate socially desirable level of environment protection behavior and activity, rapid detection of eco-problems and risks, cooperation and reconciliation of eco-conflicts, and to save and recover total environmental (conservation, recovery, enhancement, transaction, direct, indirect, private, public etc.) costs. Furthermore, the efficiency of individual forms cannot be fully understood without analyzing the complementarities and/or contradictions between different forms and strategies – e.g. the high complementarities between (some) private, market and public forms for eco-management; conflicts between the “gray” and “light” sector of agriculture and natural resources exploitation, etc.

Most assessments include only direct, production (eco-recovery, eco-maintenance, eco-enhancement), or program (international assistance, taxpayer) costs. The analysis is to include all (social) costs associated with different forms of eco-management – private, third party, public, current, long-term, production, transaction, etc. In addition to the proper individual and third-party production (technological, agronomic, ecological etc.) costs, the eco-management is usually associated with significant transaction (governance) costs.

The efficiency checks are to be performed periodically even when the system of agro-eco-management seems “works well”. That is because the good conservation of natural resources could be done at excessive social costs or further improvement of the environment may be done at the same social costs. In both cases there is an alternative more efficient organization of agro-eco-management, which is to be introduced. For instance, often the too expensive for the taxpayer “state eco-management” (in terms of incentives, total costs, adaptation and investment potential) could be replaces with more effective private, market or hybrid mode (public-private partnership). Besides, the assessments are usually limited to the absolute efficiency of individual forms of eco-management (related costs, environmental effects) ignoring their comparative efficiencies. The analysis is to incorporate both absolute and comparative (in relation to other feasible modes) efficiency of the diverse management modes.

The comprehensive analysis let determine the deficiencies (“failures”) in dominating market, private, and public modes to manage effectively existing, emerging and likely eco-problems and risks, and specify the needs for (new) public intervention in agrarian eco-management. They could be associated with the impossibility for achieving socially desirable and practically possible environmental goals, significant transaction difficulties (costs) of participating agents, inefficient utilization of public money and resources, etc.
Third, the alternative and practically possible modes for new public intervention able to correct (market, private and public) failures are to be identified, their comparative efficiency and complementarities assessed, and the most efficient one(s) selected. Only technically, economically, and politically feasible modes of new public intervention in the environmental management are to be specified. Their comparative (goal achieving, coordinating, stimulating, costs-minimizing, etc.) efficiency to and complementarities with other practically possible modes of public involvement (assistance, public-private partnership, property rights modernization, etc.) is to be assessed, and the best one(s) introduced.

The public modes not only support (market and private) transaction, but are also associated with significant (public and private) costs. Therefore, the assessment is to comprise all costs for implementation and transaction - direct (tax payer, assistance agency) expenses, and transacting costs of bureaucracy (for coordination, stimulation, control of opportunism and mismanagement), and costs for individuals’ participation and usage of public modes (adaptation, information, paper works, payments of fees, bribes), and costs for community control over and for reorganization of bureaucracy (modernization, liquidation), and (opportunity) costs of public inaction21.

Suggested analysis is to be made at different levels (farm, eco-system, regional, sectors, national, international) according to the type of eco-challenge and the scale of collective actions necessary to mitigate specific eco-problems and risks for each component of the natural environment (soils waters, air, etc.) and integrally for the natural environment as a whole. It is not one time exercise completing in the last stage with a perfect system of eco-management. It is rather a permanent process, which is to improve eco-management along with the evolution of natural environment, individual and communities (social) awareness and preferences, and the modernization of technologies and institutional environment. Besides, the public (local, national, international) failure is also possible (and often prevail) which brings us into the next cycle in the improvement of eco-management in agriculture.

The comparative institutional analysis let define the efficiency and the potential of divers mechanisms and modes of management to deal with diverse problems and risks associated with the natural environment. Moreover, it let improve the design of the new forms of public intervention according to the specific market, institutional and natural environment of a particular farms, eco-system, region, sub-sector, country, and in terms of the perfection of coordination, adaptation, information, stimulation, restriction of opportunism, controlling (in short – minimizing transaction costs) of participating actors (decision-makers, implementers, beneficiaries, other stakeholders). What is more, that analysis unable us to predict likely cases of a new public (local, national, international) failures due to impossibility to mobilize sufficient political support and necessary resources and/or ineffective implementation of otherwise “good” policies in the specific socio-economic environment of a particular country, region, sub-sector etc. Since public failure is a feasible option its timely detection permits foreseeing the

21 Some of the environmental losses are expressed in economic terms (e.g. decline in income in related industries, replacement and recovery costs, negative effects on human welfare). However, a significant part of the social value cannot be expressed in monetary terms – e.g. negative impact in biodiversity, other ecosystems, human health, future generations etc.
persistence or rising of certain environmental problems, and informing (local, international) community about associated risks.

Evolution of eco-management and strategies in Bulgarian agriculture

Institutional environment

During most of the post-communist transition period (1989-1990), the rights on agrarian resources (farmland, water) and the diverse eco-rights (on clean, aesthetic nature; preservation of nature resources, biodiversity) were not defined or were badly defined and enforced (Table 3). Inefficient public enforcement of the laws, and the absolute and contracted rights was common. That has had negative consequences on the development of farming structures, and the forms and efficiency of eco-management [Bachev, 2010a].

Table 3. Evolution of environmental management in Bulgarian agriculture

<table>
<thead>
<tr>
<th>Institutions</th>
<th>Private modes</th>
<th>Market modes</th>
<th>Public modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-communist transition (1989-2000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not well defined eco- and resource rights, bad enforcement; Sustainability concept absent</td>
<td>Provisional lease in contracts on natural resources; Unregistered farms; Firms; Cooperatives</td>
<td>Trade with informal brands, origins, and ecosystem services; Free (monopoly) agricultural water pricing</td>
<td>State and cooperative farms; Organization under privatization, liquidation and reorganization; Outdated system of eco-regulations, monitoring and information</td>
</tr>
<tr>
<td>Better defined and badly enforced rights on agrarian resources, and contracts</td>
<td>Unregistered farms; Firms; Cooperatives; Water User Associations; Vertically integrated modes</td>
<td>Trade with formal brands, origins, organic products, and ecosystem services; Free (monopoly) agricultural water pricing</td>
<td>Special Accession Program for Agrarian and Rural Development; Cross-compliance; Environmental regulations, standards, and agencies; Regulations for organic farming; Agricultural Advisory Service</td>
</tr>
<tr>
<td>EU membership (since January 1, 2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-defined rights, and better enforcement; EU Community Acquis; Collective institutions</td>
<td>Unregistered farms; Firms; Cooperatives; Water User Associations; Vertically integrated modes; NGOs; Codes of behavior; Eco-labels</td>
<td>Trade with formal brands, origins, organic products, and ecosystem services; Free (monopoly) agricultural water pricing; Insurance against natural disasters</td>
<td>EU eco-regulations and standards; EU Operational Programs; National programs for eco-management; National Plan for Agrarian and Rural Development; Direct payments; Advisory Service; Eco-monitoring and assessment; Protected zones (NATURA); Compensations for natural disasters; Mandatory eco-training; Garbage taxation; State companies for Natural Parks/ Support to trans-border initiatives</td>
</tr>
</tbody>
</table>
Privatization of the farmland and the assets of ancient public farms took almost 10 years to complete. During a good part of that period, the management of critical agrarian resources was in ineffective and “temporary” structures (such as organizations under privatization, liquidation or reorganization; Land commissions, etc.) with no interests in effective and sustainable exploitation. Besides, short-term lease of the natural resources and material assets was a major form for the farm extension [Bachev, 2010a]. Out-dated and sectoral system of public policing, regulations and control dominated until recently, which corresponded little to the contemporary needs of eco-management. There was no modern system for monitoring the state of soils, waters, and air quality, and credible information on the extent of environmental degradation. There was neither awareness of the “concept” of sustainable development nor any needs to include it in the public policy, and private and community agenda. The lack of “culture of sustainability” has also impeded the evolution of voluntary measures, and private and collective actions (and institutions) for effective eco-management.

Before the EU accession (January 1, 2007), the country’s laws, standards and institutions were harmonized with the Community Acquis. That introduced a modern framework for eco-governance including the new rights (restrictions) on protection of environment, integrated territory, water and biodiversity management, preservation of traditional varieties and breeds, animal welfare, “polluter pay principle” as well as corresponding control, monitoring, and assessment institutions (e.g. Executive Environmental Agency, Hydro-melioration Agency, etc.).

The EU accession has introduced and enforced a “new order” - strict regulations and control; tough quality and environmental standards; environmentally friendly zoning; financial support for eco-conservation and market instability, etc. Moreover, the huge European markets have been opened which enhanced competition and let local farms explore their comparative advantages (low costs, high quality, specificity and purity of produce) giving strong incentives for investments in farm modernization and conforming to the high (EU) product, labor, technology, animal welfare, and eco-standards. The external demand, monitoring, pressure, and sanctions by the EU lead to a better enforcement of the laws and the standards. What is more, internal collective actions and social demand for good governance have also got momentum leading to some improvement of public management. Good examples for the later are the success of eco-organizations putting a 5-year ban on GM crops, timely reaction against eco-violation in protected zones, revoking unlawful “exchanges” of valuable public lands, etc.

Nevertheless, the new “rules of the game” have not been always clearly understood by the public authorities, private organizations and individuals. There is not yet readiness for effective (full) implementation of the new public order because of the lack of information and experience or administrative capacity (lack of comprehension, deficient court system, corruption). Often, the enforcement of eco-standards is difficult since costs for detection and penalizing of the offenders are high, or there is no direct links between the performance and the eco-impact – e.g. banned fields burning after harvesting is still widespread in the country [EEA, 2010]. The institutional modernization has been also associated with new conflicts between the diverse private, collective and social interests. However, the results of the public choices have not always been for the advantage of the effective eco-management. For instance, strong lobbying efforts of certain private groups and businesses led to a 20% reduction in numbers and 50% reduction in the area of initially identified sites for the pan-European network NATURA 2000 [MWE].
Private modes and strategies of eco-management

The newly evolving market and private structures were inefficient in dealing with various economic and eco-issues. The privatization of farmlands and the assets of ancient public farms took 10 years to complete while some state assets (e.g. irrigation, services, etc.) have not been not effectively reorganized until recently. During much of the period, the management of farmland, land related assets (permanent crops; buildings; irrigation, drainage and flood protection facilities), eco-systems and water-resources, was in ineffective “temporary” structures (such as organization under privatization, liquidation or reorganization; Privatization Boards, Liquidation Councils, Land Commissions, etc.). The sales and long-term lease markets for land and other natural resources did not emerge until 2000, and the annual leasing was the major form for management until recently. That was combined with a high economic and institutional uncertainty and a big inter-dependency of agrarian assets leading to domination of primitive and low productive structures [Bachev, 2010a].

Much of the farming activities were carried in inefficient and unsustainable structures – public farms, part-time and subsistence farms, production cooperatives, and huge business farms based on provisional lease-in contracts, etc. (Table 4). Most livestock holdings have been also miniature “unprofessional” farms breaching the majority of animals in the country (Table 5). The farms adjustments and the intensifying competition have been associated with a significant decrease in the number of unregistered, cooperative and livestock holdings without adequate transfer of the land, livestock, and environmental management to other structures. Despite some augmentation of the average farm size, the share of abandoned agricultural lands and the primitive domestic livestock operations has been considerable from the beginning of the transition now.

Dominating modes for carrying out the farming activities have had little incentives for current and long-term investment to enhance productivity and environmental performance [Bachev, 2008]. For instance, the cooperative’s big membership makes the individual and collective control on the management very difficult and costly. That focuses managerial efforts on the short-term indicators, gives a great possibility for mismanagement and using the cooperatives in the best private (managers and associates) interests.
Table 4. Number, size and importance of different farms in Bulgaria

<table>
<thead>
<tr>
<th>Year</th>
<th>Public</th>
<th>Unregistered</th>
<th>Cooperatives</th>
<th>Agro-firms</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>2101</td>
<td>1600000</td>
<td>na</td>
<td>na</td>
<td>1602101</td>
</tr>
<tr>
<td>1995</td>
<td>1002</td>
<td>1772000</td>
<td>2623</td>
<td>2200</td>
<td>1777000</td>
</tr>
<tr>
<td>2000</td>
<td>232</td>
<td>755300</td>
<td>3125</td>
<td>2275</td>
<td>760700</td>
</tr>
<tr>
<td>2010</td>
<td>350900</td>
<td>900</td>
<td>6100</td>
<td></td>
<td>357900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Share in number (%)</th>
<th>Share in farmland (%)</th>
<th>Average size (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>0.13</td>
<td>89.9</td>
<td>2423.1</td>
</tr>
<tr>
<td>1995</td>
<td>99.9</td>
<td>10.1</td>
<td>338.3</td>
</tr>
<tr>
<td>2000</td>
<td>99.3</td>
<td>980</td>
<td>1.7</td>
</tr>
<tr>
<td>2010</td>
<td>98.0</td>
<td>807</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Average size (ha)

<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy cows</th>
<th>Buffalo cows</th>
<th>Ewes</th>
<th>She-goats</th>
<th>Breeding pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>87.3</td>
<td>85.3</td>
<td>56.7</td>
<td>98.2</td>
<td>87.1</td>
</tr>
<tr>
<td>2009</td>
<td>79.6</td>
<td>63.5</td>
<td>89.3</td>
<td>96.2</td>
<td>78.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Share</th>
<th>Share</th>
<th>Share</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>farms</td>
<td>farms</td>
<td>farms</td>
<td>heads</td>
</tr>
<tr>
<td>farms</td>
<td>heads</td>
<td>farms</td>
<td>heads</td>
</tr>
<tr>
<td>heads</td>
<td>heads</td>
<td>heads</td>
<td>heads</td>
</tr>
<tr>
<td>1-2</td>
<td>3-9</td>
<td>20 and ></td>
<td>100 and ></td>
</tr>
</tbody>
</table>

Source: National Statistical Institute

Table 5. Number and size of livestock holdings

<table>
<thead>
<tr>
<th>Type of holdings</th>
<th>Share</th>
<th>Share</th>
<th>Share</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>farms</td>
<td>farms</td>
<td>farms</td>
<td>heads</td>
</tr>
<tr>
<td></td>
<td>heads</td>
<td>heads</td>
<td>heads</td>
<td>heads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy cows</td>
<td>1-2</td>
<td>3-9</td>
<td>20 and ></td>
<td>100 and ></td>
</tr>
<tr>
<td>2003</td>
<td>87.3</td>
<td>11</td>
<td>0.6</td>
<td>9.5</td>
</tr>
<tr>
<td>2009</td>
<td>79.6</td>
<td>14.6</td>
<td>2.3</td>
<td>33.2</td>
</tr>
<tr>
<td>Buffalo cows</td>
<td>0.4</td>
<td>0.9</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>2003</td>
<td>85.3</td>
<td>11.4</td>
<td>1.2</td>
<td>6.9</td>
</tr>
<tr>
<td>2009</td>
<td>63.5</td>
<td>21.6</td>
<td>6.9</td>
<td>60.7</td>
</tr>
<tr>
<td>Ewes</td>
<td>1-9</td>
<td>10-49</td>
<td>100 and ></td>
<td>5.9</td>
</tr>
<tr>
<td>2003</td>
<td>56.7</td>
<td>26</td>
<td>22.6</td>
<td>33.2</td>
</tr>
<tr>
<td>2009</td>
<td>29.8</td>
<td>9.6</td>
<td>13.2</td>
<td>0.4</td>
</tr>
<tr>
<td>She-goats</td>
<td>10-49</td>
<td>100 and ></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>98.2</td>
<td>1.2</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>2009</td>
<td>96.2</td>
<td>5.8</td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Breeding pigs</td>
<td>1-2</td>
<td>3-9</td>
<td>200 and ></td>
<td>7.8</td>
</tr>
<tr>
<td>2003</td>
<td>87.1</td>
<td>3.3</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2009</td>
<td>78.8</td>
<td>8.8</td>
<td>57.4</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Food
Besides, there are differences in the investment preferences of diverse coops members due to the non-tradable nature of the cooperative shares (“horizon problem”). Given the fact that most members are small shareholders, older in age, and non-permanent employees, the incentives for long-term investment for land improvement, environmental conservation, and renovation of material and biological assets have been low. The “member-oriented” (non-for-profit) nature of the cooperatives also prevents them to adapt to diversified needs of members, and market demand and competition.

On the other hand, the small-scale and subsistent farms possess insignificant internal capacity for investment, and a small potential to explore economy of scale and scope (big fragmentation and inadequate scale). Besides, they have little incentives for “non-productive” environment and biodiversity conservation, animal welfare etc. spending. Moreover, there has been neither administrative capacity nor a political will to enforce the quality and eco-standards in that vast informal sector of the economy. Consequently, the primitive technologies and a low compliance with the modern agronomic, safety and eco-standards have been widespread. The dairy sector is particularly vulnerable since only one-third of the holdings meet formal EU standards until recently [MAF].

The larger business farms operate mainly on leased land and concentrate on high pay-off investment with a short payback period (e.g. cereals, sunflower, other industrial crops). They have been more sensitive to the market demand and the institutional regulations since largely benefit or lose from the timely adaptation to the new standards and market preferences. Besides, these enterprises have a higher capability to fund and adapt to the new formal and market requirements. However, until recently, there has been no effective outside (authority, community, international) pressure for respecting the eco-rules by the business enterprises.

Restructuring of the commercial farms continues as most of them apply “survival tactics” (“concentration on products with secure marketing”) rather than a long-term strategy toward sustainability (preserving soil fertility, observing crop rotation and agro-techniques requirements) (Figure 13). What is more, a great portion of the subsistent, smaller commercial farms and the cooperatives have been unable to adapt to the evolving market, institutional and natural environment – intensified market competition; new EU quality, safety, and eco-standards; challenges associated with climate change, etc. [Bachev, 2013a]. For example, our survey has found out that more than a quarter of the farms are with a low potential for adaptation to the new state and EU quality, safety, and environmental standards, almost 37% of them are less adaptable to the market demand, prices and competition, and every other one is inadaptable to the evolving natural environment (warning, extreme weather, droughts, floods, etc.).

22 Subsistence and semi-market farms comprise the best part of the farms in the country as almost 1 million Bulgarians are involved in farming mostly on a part-time base and for “supplementary” income [MAF].
Figure 13. Share of farms implementing different strategies in Bulgaria (percent)

Source: interviews with farm managers, 2012

The “medium-term sustainability” of the farms is estimated as “low” for the unregistered holdings, grazing livestock, and pigs and poultry farms (Figure 14). Furthermore, less than 7% of all farms “forecast” a high sustainability. A particular type of firms (the Companies) is the only exception where the majority of enterprises envisages being highly sustainable in years to come. The later reflects both the environmental sustainability and the ability of holdings to manage eco-projects.

Figure 14. Share of farms with different levels of medium-term sustainability in Bulgaria

Source: interviews with farm managers, 2012

The smaller size, owner operating and extensive nature of the majority of farms let avoid certain problems of the large public enterprises from the past such as over-intensification, lost natural landscape, biodiversity, nitrate and pesticide contamination, huge livestock and manure concentration, and uncontrolled erosion [Bachev, 2010]. The subsistent and small-scale farming has also revived some traditional and more sustainable technologies, varieties, and products, and avert some livestock epidemics such as the Mad cow disease and the Avian flu.
The private mode has introduced incentives and possibilities for integral eco-management (including revival of the eco- and cultural heritage; anti-pollution, esthetic, and comfort measures, etc.), investing in eco-system services, origins, labels, and profiting from the inter-dependent activities such as farming, fishing, agro-tourism, processing, and marketing. There are numerous good examples for private introduction and enforcement of quality and eco-standards by the individual farms (voluntary and trade initiatives), a vertical integrator (dairy and vine processor, retailer, exporter), or a foreign investor (cereals, oil crops) [Bachev, 2004, 2010, 2013a].

The private management has been associated with the improved environmental stewardship on owned and marketed resources, but less concern to the manure and garbage management, over-exploitation of leased and common resources, and contamination of soils, waters and air [Bachev 2008]. However, the process of farms adaptation leads to the intensification of production, which could revive or even deepen some of the eco-problems unless a pro-environmental management is put in place.

Moreover, the “free market” management of the giant and semi-monopoly servicing (water, insurance, mechanization, etc.) companies usually comes with unfavorable pricing and terms for the majority of farms. In 1990s the State monopoly “Irrigation Systems” was reorganized into a Joint-stock company owned by the Ministry of Agriculture and responsible for the management of state assets, provision of irrigation and drinking water, drainage and flood protection. Furthermore, the Union of Water Users was initiated and 176 Water User Associations (WUA) emerged. Nevertheless, the later collective form was unable to improve the efficiency (low incentives, lack of “real” ownership, etc.) and deal with the monopoly position of the 21 semi-autonomous regional branches of the Irrigation Systems. Since 2001 the user-rights on irrigation assets of the Irrigation Systems have been freely transferred to newly reestablished WUA. Around 70 WUA have been formed servicing 30% of the total equipped for the irrigation area. However, expected “boom” in the efficiency from the collective management of irrigation has not materialized because of the semi-monopoly situation (terms, pricing, etc.) of the regional water suppliers, few incentives for the water users to innovate facilities and expand irrigation, and uncompleted privatization of the state assets [Bachev, 2011].

What is more, the evolution of various farmers and eco-associations in the country has been hampered by the big number and the diversified interests of agents – a different ownership size, operation, type of farming, preferences, age, and horizon. However, there have been few examples for the effective agrarian organizations mostly with the small-membership and strong common interests of participants - e.g. tobacco, silk-warm, bee-honey etc. Furthermore, in recent years some the environmental organizations have been quite successful in the eco-monitoring, campaigns against GM crops cultivation and removal of the restrictions in protected areas, and other actions such as garbage cleaning, etc. For instance, among other activities the Bulgarian Society for Bird Protection monitors the birds’ species varieties and numbers in different type of territories [BSBP].
Market modes

A market-driven organic farming has also emerged and registered a significant growth. There has been almost 70 folds increase in the number of organic operators since 2003, and the organic producers comprise the largest part (95.1%) of the organic operators totaling 2016 farms, processors, and traders in 2012 [EUROSTAT, MAF]. There has been enormous augmentation of the organic areas and the number of livestock (“fully converted” or “in transition” to organic production) but they are still a tiny portion of the Utilized Agricultural Area (UAA) and overall livestock population (Table 6). The “fully converted organic areas” accounts for 25.4% of the total organic areas with the “Industrial crops” and the “Permanent crops” comprising the biggest shares (27.1%) of the organics areas (Figure 15). In addition there have been few livestock farms and apiaries certified for the bio-production with the highest growth in the organic goats and sheep, and a lion share of the bees. There are also more than 470 thousands ha approved for gathering of wild organic fruits and herbs [MAF].

Table 6. Evolution of organic production in Bulgaria

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming area, ha</td>
<td>650</td>
<td>1113</td>
<td>2432</td>
<td>3061</td>
<td>11808</td>
<td>16663</td>
<td>11789</td>
<td>25647</td>
<td>26622</td>
<td>40378</td>
</tr>
<tr>
<td>% in UAA</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
<td>0.23</td>
<td>0.33</td>
<td>0.23</td>
<td>0.51</td>
<td>0.52</td>
<td>0.79</td>
</tr>
<tr>
<td>Wild herbs, fruits, ha</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>110143</td>
<td>397835</td>
<td>489083</td>
<td>401425</td>
<td>546195</td>
<td>543655</td>
</tr>
<tr>
<td>Cattle na na</td>
<td>395</td>
<td>329</td>
<td>395</td>
<td>470</td>
<td>272</td>
<td>364</td>
<td>976</td>
<td>1173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% in all cattle</td>
<td>0.11</td>
<td>0.05</td>
<td>0.14</td>
<td>0.05</td>
<td>0.07</td>
<td>0.17</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep na na</td>
<td>294</td>
<td>1054</td>
<td>1690</td>
<td>2471</td>
<td>5831</td>
<td>6698</td>
<td>6648</td>
<td>9175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% in all sheep</td>
<td>0.02</td>
<td>0.07</td>
<td>0.21</td>
<td>0.21</td>
<td>0.42</td>
<td>0.49</td>
<td>0.46</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats na na</td>
<td>32</td>
<td>131</td>
<td>1058</td>
<td>1624</td>
<td>2732</td>
<td>2773</td>
<td>3397</td>
<td>2831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% in all goats</td>
<td>0.01</td>
<td>0.03</td>
<td>0.28</td>
<td>0.45</td>
<td>0.75</td>
<td>0.78</td>
<td>0.99</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bees colonies na na</td>
<td>23508</td>
<td>33981</td>
<td>35747</td>
<td>44861</td>
<td>41089</td>
<td>46429</td>
<td>58855</td>
<td>85346</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Food, EUROSTAT

The organic form has been introduced by the business entrepreneurs who managed to organize and fund this new venture arranging independent certification and finding buyers for the highly specific (“organic”) output. In addition, there have been few examples for successful integration of small-scale producers in the organic supply chains nationally and internationally. A case study on a “typical” model for the integration of a small-scale dairy producer in the modern supply chain for the organic produce is presented in another publication [Bachev, 2014]. Produced bio-fruits, vegetables, oil plants, herbs, spices, and honey have been mostly for the export since a tiny market for the organic products exists in the country. The slow development of the internal organic market is caused by the high prices of products, and limited consumer confidence in the authentic character of products and certification.
Eco-labeling of the processed farm products (based on “self-regulation”) has also appeared but it is perceived more as a part of the marketing strategy of companies rather than a genuine eco-action [Bachev, 2008]. What is more, the (free) market management of the semi-monopoly servicing, supplying etc. companies comes with unfavorable pricing and terms for the farmers, and only few among them purchase water, insurance against natural disasters (draughts, floods etc.), and other services presently.

Public modes

During the transitional period the public (Government and local authority) intervention in the environmental management was not significant, comprehensive, sustainable, or even related to the matter [Bachev, 2008]. The eco-policies were fragmented and reactive to the urgent problems (natural disasters such as flooding, droughts, etc.) with different agencies responsible for the individual aspects of eco-management.

In passed years a number of national programs have been developed to deal with the specific eco-challenges in accordance with EU rules such as: for the preservation of biodiversity and environment; limitation of emissions of Sulphur Dioxide, VOC, Ammonia; waste management; development of water sector; combating climate change; developing organic agriculture; management of lands and fights against desertification; agrarian and rural development etc. Moreover, the national monitoring systems of the environment and biodiversity are also set up, and the mandatory eco-assessment of the public programs introduced.

Nevertheless, the actual eco-policies rest fragmented and largely reactive to the urgent eco-problems (floods, storms, drought) rather that based on a long-term strategy for sustainable development. As a result of the inefficient priority setting, management and enforcement (bad coordination, gaps, incompetence, ineffective enforcement, corruption, etc.), and administrative
capability23 a minor impact of the public programs prevails [Bachev, 2008, 2010, 2013a]. Indicative for the public inefficiency is the level of the “national expenditures for protection and restoration of environment” which have been merely 1.9% of the GDP, and the agriculture getting a tiny portion of the total public eco-spending [MEW].

What is more, recent financial and economic crisis further deteriorated funding of the public (including environmental) projects. For instance, the recultivation of degraded farmlands by the MAF was initiated recently but it accounts only for 200-250 ha per year [EEA, 2010]. Similarly, serious eco-challenge is still caused by the state deficiency in storing and disposal of the out-of-dated pesticides, which are responsible for a good part of all polluted localities in the country [EEA, 2010].

There has also been a numerous international (UN, EU, unilateral, NGOs, etc.) assistance projects to “fill the gap” in the local failures. However, they have been limited in scale, unsustainable in time; often overtaken by local groups, funding improperly used; and with no significant positive impact [Bachev, 2008, 2013a]. Furthermore, the agrarian education and the National Agricultural Advisory Service (NAAS) has not been effectively reorganized and provide modern and continues training on the rural development and eco-, climate change, and water-management issues. Neither they reach all agents via effective methods of education, advice and information suited to the specific needs of different agents. What is more, the integral approach of the soil, water and biodiversity management in the planning, funding, management, monitoring, controlling and assessment has not been completely applied, and the stakeholders involved in the decision-making process at all levels. Neither the modern “eco-system services”, “life-cycle”, “water accounts”, “eco-foot-prints” and other modern approaches have been incorporated into the program management.

The environmental data collection and monitoring have significantly improved in the last few years caching up with the modern EU standards. However, the adequate information and independent assessment has not been secured yet and include: agricultural benefits and impacts; waters quality; total costs; eco- and water-foot prints; impacts on and of climate change; existing and likely eco-risks, etc. Nor mechanisms for timely disclosure and effective communication of data to the decision-makers, stakeholders and public at large are assured. The agrarian and environment related research has not been modernized and severely underfunded in the last twenty-five years. Consequently, the agro-environmental innovation as well as the understanding of the agricultural use and the impacts on natural environment, and the various aspects, factors and efficiency of eco-management greatly deterred.

Furthermore, during most of the transition the agrarian long-term credit market was practically blocked while newly evolving farming structures left unassisted by the government. Until 2000 the Aggregate Level of Support to Agriculture was close to zero, and very small afterward [Bachev, 2010a]. Besides, the multifunctional role of farming was not recognized, and the provision of “environmental service” funded by the society.

23 e.g. due to organizational and financial reasons Ministry of Water and Environment often does not get the relevant water information from the institutes of Bulgarian Academy of Sciences [EEA, 2010].
There has been enormous progress in the public support in recent years – e.g. National Fund Agriculture, EU Special Pre-accession Program for the Agrarian and Rural Development (SAPARD), EU CAP measures, etc. For instance, the SAPARD introduced measure “Agro-ecology” but it was not approved by the end 2006 and only few projects were actually supported. What is more, in 2008 the EC suspended SAPARD due to mismanagement and a significant funding lost.

The EU accession has brought new opportunities for the public support to private and collective agrarian and eco-activities. The EU CAP and the National Plan for Agrarian and Rural Development 2007-2013 (NPARD) provide significant funding for the EU Area-based payments and the National top-ups; agro-environmental payments and other measures (e.g. organic farming, management of agricultural lands with high natural value and handicaps, traditional livestock, protection of soils and water, preservation of landscape); modernization of farms, processing, and marketing; diversification of agrarian and rural activity; infrastructural development; keeping traditions; training, etc. The specialized budget of the NPARD directed for the various eco-measures accounted for 27% of the total in 2007-2013 period. In addition, funding for eco- and other projects has been also available from the EU Fund LIFE+ and the Operational Programs “Environment”, “Fishery and Aquaculture”, and “Regional Development”. The “cross-compliance” (with safety, animal-welfare, environmental, etc. standards) for receiving a public support has been also introduced. Consequently, the area-based direct payments and the other subsidies improved farms income and eco-performance, induced farming on abandoned lands, and brought about some amelioration of the environmental situation [Bachev, 2013a].

However, it becomes difficult to reform the inefficient system of the management of the public programs. In 2007 no public payment was made for the projects associated with the NPARD measures but the Area-based payments for the regions with handicaps. The progression in the implementation of public support has been slow and far behind the targets (Table 6, Figure 15). While few measures such as the “Setting up of young farmers” and “Payments to farmers in regions with handicaps” have been successful, the number of approved and funded projects in other areas has been insignificant.

Due to the restrictive criteria\(^{24}\), widespread lack of formal land management titles, complicated and costly procedures, and massive mismanagement and corruption, the new public support has not been effectively utilized and benefited unevenly different farms. Consequently, mostly bigger farms and groups with “good connections” have participated in the public programs because of the superior entrepreneurial experience, available resources, “personal and political connections, and capability for adaptation to the formal requirements and for winning projects.

\(^{24}\) For area-based payments the minimum farm size is 1 ha (for permanent crops 0.5 ha), and for agro-ecological payments 0.5 ha, while landless livestock holdings are not-eligible for these type of support.
Table 7. Progress in implementation of 2007-2013 NPARD in Bulgaria (% of target)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projects</td>
<td>Euro</td>
<td>Projects</td>
</tr>
<tr>
<td>111 Training and information</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>112 Setting up young farmers</td>
<td>11.25</td>
<td>-</td>
<td>55.20</td>
</tr>
<tr>
<td>121 Modernization of farms</td>
<td>6.77</td>
<td>6.27</td>
<td>27.86</td>
</tr>
<tr>
<td>122 Economic value of forests</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>123 Value to agricultural and forestry products</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>141 Semi-subsistence farm</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>142 Producer groups</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>143 Advice and consultation</td>
<td>3.62</td>
<td>-</td>
<td>9.30</td>
</tr>
<tr>
<td>211 Payments to mountainous areas with handicaps</td>
<td>40.04</td>
<td>-</td>
<td>43.50</td>
</tr>
<tr>
<td>212 Payments to other areas with handicaps</td>
<td>100.17</td>
<td>-</td>
<td>107.85</td>
</tr>
<tr>
<td>214 Environment payments</td>
<td>2.80</td>
<td>-</td>
<td>4.45</td>
</tr>
<tr>
<td>223 First afforestation</td>
<td>0</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>226 Restoring forestry</td>
<td>0</td>
<td>-</td>
<td>0.90</td>
</tr>
<tr>
<td>311 Diversification into non-agricultural activities</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>312 Business development</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>313 Agro and rural tourism</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>321 Rural services</td>
<td>0</td>
<td>-</td>
<td>4.77</td>
</tr>
<tr>
<td>322 Village development</td>
<td>0</td>
<td>-</td>
<td>18.00</td>
</tr>
<tr>
<td>431-32 Local cooperation</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Food

Figure 15. Utilization of the NPARD funds by December 31, 2012 (percent)

Source: Ministry of Agriculture and Food
Up to date experience shows that the bulk of the public subsidies go to few large agri-firms and cooperatives specialized in field crops. At the same time, many effective small-scale farms receive no or only a tiny fraction of the public support. For instance, despite it increased number only 24% of all farms currently receive Area based payments, and merely 6% of the cattle holdings, 4% of the sheep and pig holdings, and 3% of the poultry farms [MAF, 2013]. Moreover, less than 7% of the beneficiaries get the lion share (more than 80%) of all direct payments. Similarly, around 2% of the biggest farms (more than 500 ha) manage around 60% of the supported by the environmental Measures 211 and 212 areas [MAF, 2013]. The overall support to agriculture continues to rest low, and a small proportion of the farms benefits from the public aid most of them being large enterprises from regions with less socio-economic and eco-problems [Bachev, 2010, 2013a].

The experts assessment indicates that there is a “good” or “significant” impact of the CAP implementation on the economic, social and environmental sustainability of the large farms, agri-firms, and farms specialized in field crops, while the CAP effect on other type of farms is “insignificant” or “neutral” (Figure 16). Therefore, public assistance further enlarges “transitional” disparities between different farms, sub-sectors, eco-systems, and regions. The minor amount of supported farms and agro-ecosystems, deficiency of clear criteria for eco-performance, and the lack of effective control leads to little contribution of new public (CAP) measures to improvement of eco-situation in the country.

Figure 16. Impact of CAP on economic, social and environmental sustainability of Bulgarian farms

Source: expertise with leading experts, 2012
Efficiency of environmental management in agriculture

Farmland management

A by-product from the new market and private management has been a considerable disintensification of agriculture, ease of the general eco-pressure and pollution comparing to the pre-reform level. The market adjustment has been associated with a sharp decline in all crop (but sunflower) and livestock (but goat) productions since 198925. Some traditional crop varieties and livestock breeds have been also recovered. A considerable portion of the agricultural lands has been left uncultivated for a long period of time – e.g. in some years the abandoned land reached one third of the total [MAF]. In recent years, the unutilized farmlands have been 10% of the total while the fallow land accounts for 9% of the arable land. Besides, the average yields for the major products shrunk to 40-80% of the pre-reform level.

The number of livestock has also decreased significantly – 51% for the cattle, 53% for the poultry, 80 % for the pigs, and 81% for the sheep [MAF]. Consequently, the Aggregate Livestock Index26 in the country has been one of the smallest in Europe - 0.4 in recent years [EEA, 2011]. The tractors and combines employed in agriculture have diminished by 64%, and now 5.6% of the farms own tractors and 0.7% own harvesters while 30-40% hire or use them in association [MAF]. All these have further relaxed the overall agricultural pressure on the environment.

The amount of fertilizers and pesticides used in agriculture has also declined considerably, and now their per ha application is 22% and 31% of the 1989 level (Figure 17). In recent years, N, P and K fertilizers are applied for 37.4%, 3.4% and 1.9% of the UAA [MAF]. The sharp reduction in the chemical use has diminished drastically the risk of chemical contamination of soils, waters, and farm produce. A good part of the farm production has informally got (semi) “organic” character obtaining a good reputation for the high quality and safety locally and internationally. However, a negative rate of fertilizer compensation of N, P, K intakes dominate and the average of 23595,4t N, 61033,3t P\textsubscript{2}O\textsubscript{5} and 184392t K\textsubscript{2}O have been irreversibly removed annually from the soils since 1990 [EEA, 2010]. Besides, unbalance of nutrient components has been typical with the application of 5.3 times less P and 6.7 times less K with the appropriate N rate. What is more, monoculture or simple rotation has been constantly practiced by the large operators concentrating on few profitable crops (sunflower, cereals, etc.). All these practices further contributed to the deterioration of soil quality and soil organic matter content.

There has been considerable increase in the farmland affected by acidification (Figure 18). That has been a result of the long-term application of specific nitrate fertilizers and unbalanced fertilizer application without adequate input of phosphorus and potassium The share of acidified soil decreased after 1994, but in recent years there has been a reverse tendency along with the

25For potatoes by 33%, wheat 50%, corn and burley 60%, tomatoes, Alfalfa hay and table grape 75%, apples 94%, pig meat 82%, cattle meat 77%, sheep and goat meat 72%, poultry meat 51%, cow milk 45%, sheep milk 66%, buffalo milk 59%, wool 85%, eggs 45%, and honey 57% [NSI].

26the number of livestock units (equines, cattle, sheep, goats, pigs, poultry and rabbits) per UAA.
augmentation of N use. As much as 4.5% of the acidified farmlands are with level harmful for the crops [EEA].

Figure 17. Irrigation and chemical application in Bulgarian agriculture

![Graph showing irrigation and chemical application](image)

Source: National Statistical Institute

Figure 18. Share of degraded agricultural lands in Bulgaria (percent)

![Graph showing degraded lands](image)

Source: Executive Environment Agency

The fraction of salinized land doubled after 1989 but it has been merely 1.1% of the total farmland [EEA, 2010]. The widespread application of primitive irrigation techniques, and inappropriate crop choice, rotation and agro-techniques augment inefficiency of the water use and local soil erosion. What is more, since 1990 no effective measures have been taken to normalize soil acidity and salinity.

Pollution of the soils and waters from the industrial activities, waste management, and improper farming activities has been also a serious environment and health risk. The illegal garbage yards in the rural areas have noticeably increased reaching an official figure of 4000
with a real number far bigger than the reported amount [EEA, 2011]. The farms have contributed extensively to the waste “production” with organic and industrial materials adding significantly to the local pollution of air, water, soils, and disturbing population comfort (noise, odor, dirty roads, etc.). Nevertheless, data for the last years show that soils in the country have been in good ecological state both in terms of the organic content and the contamination with heavy metals and metalloids [EEA, 2011]. Moreover, polluted with the heavy metals and pesticides soils represents bellow 1% of the farmlands.

The erosion has been a major factor contributing to the land degradation (Figure 18). Its progressing level has been a result of the extreme weather but it has been also adversely affected by the dominant agro-techniques, deficiency of anti-erosion measures, uncontrolled deforestation, and recultivation of permanent grasslands. Due to ineffective management 34% of the arable lands have been subjected to the wind erosion and 64% to the water erosion [EEA, 2010]. Since 1990, the erosion affects 25-65% of the farmland and losses varied from 0.2 to 40 t/ha in different years. The annual losses of earth masses from the water erosion are estimated at 145Mt and a two-third of it comes from the arable land. The soil losses from the water erosion depend on the cultivation practices and range from 8 t/y for the permanent crops to 48 t/y for the arable lands. Losses from the wind erosion are around 30 t/y and depend on the deforestation, uncontrolled pasture, ineffective crop rotation, plowing pastures, etc. The soil compression affects (mostly) agricultural lands due to the untimely transportation and inappropriate agro-techniques - e.g. using heavy machineries when soil moisture is high. It is considered as a threat for the soils in the country but no data are available for the extent in agricultural lands.

Water management

The restructuring of farms and production has been accompanied with a sharp reduction in the irrigated farmland and a considerable distortion of the irrigation facilities (Figure 17). Consequently, there has been more than 21 folds decline in the water used in agriculture comparing to 1989 (Table 7). In recent years, sector “Agriculture, hunting, forestry and fishery” comprises merely 3.2% of the total water use, and 0.3% of the generated waste waters [NSI]. All these contribute to a considerable reduction of the water stress in the country - since 1990 the Water Exploitation Index declined considerably from 55% (the second in Europe) to 33% [EEA, 2010].
Table 8. Evolution and agricultural use of water resources in Bulgaria

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total water resources (10^9/m³/year)</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Water resources per capita (m³/inhabitant/year)</td>
<td>2427</td>
<td>2562</td>
<td>2661</td>
<td>2748</td>
</tr>
<tr>
<td>Total water withdrawal (10^9/m³/year)</td>
<td>14,04</td>
<td>na</td>
<td>8,674</td>
<td>na</td>
</tr>
<tr>
<td>Agricultural water withdrawal (10^9/m³/year)</td>
<td>3,058</td>
<td>0,141</td>
<td>0,144</td>
<td>0,143</td>
</tr>
<tr>
<td>Share of agricultural water withdrawal in total (%)</td>
<td>21.78</td>
<td>-</td>
<td>1.66</td>
<td>-</td>
</tr>
<tr>
<td>Share of total actual renewable water resources withdrawn by agriculture (%)</td>
<td>14.36</td>
<td>0.66</td>
<td>0.68</td>
<td>0.67</td>
</tr>
<tr>
<td>Area equipped for irrigation (1000 ha)</td>
<td>1263</td>
<td>789</td>
<td>622</td>
<td>104,6</td>
</tr>
<tr>
<td>Share of cultivated area equipped for irrigation (%)</td>
<td>29.17</td>
<td>17.55</td>
<td>17.36</td>
<td>3.18</td>
</tr>
<tr>
<td>Area equipped for irrigation actually irrigated (%)</td>
<td>na</td>
<td>5.42</td>
<td>4.96</td>
<td>51.29</td>
</tr>
</tbody>
</table>

Source: FAO, AQUASTAT

There is a huge reduction of the irrigated farmland after 1990 as 2-5% of the irrigation network has been actually used\(^{27}\). What is more, a considerable physical distortion of the irrigation facilities has taken place affecting most part of the internal canals. As a result the area equipped for irrigation in agriculture substantially decreased. Furthermore, primitive irrigation techniques have been widespread and augmented inefficiency of the water use and the local soil erosion.

The water losses in the irrigation system amount 70% as consequence of the poorly maintained facilities, low efficiency, and water stealing [Alexandrov]. Nevertheless, the overall negative irrigation impact of irrigation on the erosion and the salinization has been diminished considerably after 1990 [EEA, 2010]. The decline in irrigation has also had a direct harmful effect on the crop yields and the structure of rotation [Bachev, 2010b]. The level of irrigation depends on the humidity in each year, the kind of irrigated crops and the water prices. The irrigation has not been effectively used to correct inappropriate seasonal and regional distribution of rainfalls, and mitigate effect of climate change\(^{28}\) on farming and land degradation. Subsequently, the farms little capability for adaptation has resulted in huge crop, livestock and property losses during recent droughts and floods.

There has been a considerable amelioration of the quality of surface and ground waters as a result of unintended decrease of the negative impact of agriculture and the sharp decline in the chemical fertilizers and pesticides application. This trend has diminished drastically the

\(^{27}\) Irrigation water accounts for the major share in total agricultural water use – 74.2% [NSI].

\(^{28}\) Eighteen of the past 21 years are with positive anomalies in average temperatures and there is a trend for increasing soils’ water deficiency [EEA, 2010]. According to climate forecasts temperature will continue to increase, rains quantity to decrease, more extreme events (thunderstorms, floods, droughts, hurricane winds) to occur, and water stress experienced around the country.
pressure on environment and the risk of chemical contamination of soils and waters. Nitrate and phosphate content in surface water decreased throughout transition and slightly increase in the last several years [EEA, 2012]. Currently only 0.7% of the samples exceeds the Ecological Limit Value (ELV) for the nitrate. Despite all improvement, many water eco-systems have been at risk cased by the agricultural emissions in the water and increasing application of chemicals. For instance, in drinking water around 5% of the analyses show deviation of the nitrates up to 5 times above the appropriate level [EEA, 2010]. The later is mostly restricted to 400 small residential locations but it is also typical for almost 9% of the big water collection zones. Improper use of the nitrate fertilizers, inappropriate crop and livestock practices, and non-compliance with the specific rules for farming in water supply zones, all have been responsible for that problem.

Furthermore, around a quarter of the riverlength does not meet the standards for water quality [MAF]. Monitoring of the waters for irrigation show that in 45% of the samples, the nitrates concentration exceeds contamination limit 2-20 folds [EEA, 2010]. Nitrates have been also the most common polluter of ground waters with slight excess over the ecological limit [EEA, 2010]. A moderate concentration of N (bellow 25 mg per liter) in different levels of the underground waters dominates with increasing trends in shallow waters and downward trends in others. Besides, around country a tendency for the reduction in pesticides concentration in the underground water has been reported with occasional cases of the Triasines over the ELV after 2000. There has been further improvement since 2007 and the concentration of pesticides in all samples has been bellow the water quality standards. The Nitrate Vulnerable Zones cover 53% of country’s territory and 68% of UAA [MAF]. The lack of effective manure storage capacity and sewer systems in the majority of farms, challenge posed by the inadequate storage and disposal of expired and prohibited pesticides, and the illegal garbage dumps in rural areas, all have contributed significantly to the persistence of the problem.

Most part of the post-communist livestock activity has been carried out by a great number of small and primitive holdings often located within the residential borders. Moreover, only 0.1% of the livestock farms possess safe manure-pile sites, around 81% of them use primitive dunghills, and 116 thousands holdings have no facilities at all [MAF, 2010]. Besides, decreasing amount of manure has been used for the fertilization of merely 0.2% of the utilized farmlands in recent years. Serious eco-challenge has been posed by inadequate storage and disposal of expired and prohibited pesticides which amount has augmented since 2001 [EEA, 2010]. A good portion of country’s polluted localities (28%) has been associated with these dangerous chemicals. Despite progression in management (modernization of storehouses, safe capsulation, exporting for deactivation, etc.) in the past years there are still 298 abandoned storehouses (57% of all) in 292 locations containing 1956t old pesticides (15.3% of the total amount). In the last several years a stable amount of nullified sediments from the industrial and residential waters have been utilized in agriculture and for the recultivation of degraded lands. In 2010 the applied sediments in agriculture and for recultivation of degraded lands (13644 t dry content) increased up to 49% share of the totally utilized sediments in the country [EEA, 2010].

54
Biodiversity management

Since 1990 the amount of protected areas in the country almost doubled [NSI]. Specially introduced rules for the agricultural practices in the NATURA territories and EU CAP environmental and other measures additionally created conditions for the improvement of biodiversity management. Furthermore, the market and private initiatives led to recovering of some traditional (and more sustainable) livestock breeds and plants varieties as well as introducing new crops and livestock (novel food, industrial and energy crops; exotic animals like ostrich, etc.) increasing the agricultural biodiversity.

Nevertheless, the widespread lack of proper eco-management has affected negatively biodiversity in some agro- and related ecosystems. For instance, the intensive large-scale cereal and industrial crop enterprises have paid little attention to the biodiversity protection in enormous fields of operations.

On the other hand, a considerable portion of farmlands have been left uncultivated for a long time or entirely abandoned, and some agro-ecosystems lost their “agro” character turning into natural ecosystems. That has caused uncontrolled “development” of species allowing development of some of them and suppressing others. Some of the most valuable ecosystems (such as natural grasslands and pastures) have been also severely damaged. A part of the meadows has been left under-grazed or under mowed, and intrusion of shrubs and trees took places. Some fertile semi-natural grasslands have been converted to cultivation of crops, vineyards, or orchards. This has resulted in irreversible disappearance of plant species diversity. In addition, certain municipal and state pastures (with official and/or practical “common access” status) have been degraded by unsustainable use (over-grazing) by the “private” and “domestic” animals. Besides, a reckless collection of valuable wild plants (berries, herbs, flowers) and animals (snail, snakes, fish) have led to destruction of all natural habitats.

The Index of Birds in Agricultural Lands in the country has been negative and for the last 5 years the variety of bird species under monitoring living in the agricultural lands has decreased by 10% [EEA, 2010]. The birds in agricultural territories are with the largest amount of diminishing number (including moderate and strong tends) but there are no studies on factors for these trends [BSBP]. Last but not least important, during the last several decades there has been significant degrading impacts of agriculture on the biodiversity as all 37 typical animal breeds have been endangered, among them 6 have been irreversibly extinct, 12 have been almost extinct, 16 are endangered, and 3 are potentially endangered [MEW].

Air and green-house gas management

The agriculture (crop and livestock) practices contribute to a considerable dust and odor contamination of air in some areas. Particularly disturbing have been the small-scale and

29 20% of the agricultural lands in Bulgaria are lands of a High Nature Value [MAF].
domestic livestock operations often located within the residential territories (villages, town) and increasing local odor and noise pollution. The agriculture has been also responsible for the considerable emissions of certain harmful substances in the air. It releases approximately 75% of the Ammonia (NH₃) and 11% of the Non-methane organic compounds (NMVOC) in the country (Figure 19). The biggest sources of NH₃ have been cattle (dairy cows and buffalo cows) and for NMVOC – the one-year crops with fertilization [EEA, 2011]. The agricultural contribution to the Nitrogen oxides (NOₓ) and Carbon monoxide (CO) has been also insignificant – 2.3% and 0.4% accordingly.

There has been enormous reduction of the overall green-house gas (GHG) emissions from the agriculture since 1988 (Figure 20). Moreover, the decline in the sector's contribution has been higher than the national one. That has come as “unintentional” outcome of the post-communist restructuring of the sector and the new models of farm management. During 2000-2004 there was a period of an increase and since then a stable trend for diminishing agricultural GHG emissions. The sector is the second biggest emitter of GHGs contributing between 7-10% of the total amount during the last decade. The main factors of agricultural GHGs have been agricultural soils (56%), enteric fermentation (22%), and manure management (19%) [EEA, 2011].

Figure 19. Harmful emissions in air from Bulgarian agriculture (2009)

![Graph showing harmful emissions](source: Executive Environment Agency)

30 GHGs from Agriculture result from the production and processing of agricultural products, soil fertilization, animal manure processing and preservation. The emissions from the combustion processes for energy production and from agricultural machines are not reported but they are insignificant amount.
Figure 20. Trends in green-house gas emissions from Bulgarian agriculture

Source: EEA, 2011

Agriculture mostly produces N\textsubscript{2}O and CH\textsubscript{4} emissions. In the last decade the majority of N\textsubscript{2}O emissions comes from the agricultural soils, manure management, and fields burning. The methane emission is 36% of the agricultural GHGs and the biggest portion comes from the enteric fermentation from domestic livestock and manure management. The reduction of livestock number has been responsible for the considerable decrease in the agricultural CH\textsubscript{4} emission in past years. On the other hand, there is a six-fold increase of CH\textsubscript{4} from the rice cultivation since 1999 as a result of the partial recovery of this sub-sector in recent years. Illegal field burning of the residues and crops also emits GHGs-precursors, which have not been significant, but they doubled since the period before 1990.

Agro-ecosystem services management

The “ecosystem services” are the multiple resources, products, processes and other benefits, which humans obtain from the natural ecosystems [Daily; MEA]. They are generally classified into following groups:

- **provisioning services** as food; water; pharmaceuticals, biochemicals, and industrial products; energy; genetic resources;
- **regulating services** like carbon sequestration; climate regulation; waste decomposition and detoxification; purification of water and air; crop pollination; pest and disease control; mitigation of floods and droughts;
- **supporting services** like soil formation; nutrient dispersal and cycling; seed dispersal; primary production;
- **generation and maintenance of biodiversity**;
- **cultural services** as cultural, intellectual and spiritual inspiration, recreational experiences, scientific discovery.
The “agro-ecosystem services” comprise the ecosystem services provided by the agro-ecosystems [Bachev, 2009]. The later are commonly defined as spatially and functionally coherent units of the agricultural activity incorporating the living and nonliving components and their interactions [AEHP; Shiferaw et al.]. That implicitly includes as a key component the agricultural activity such as crop production, raising animals, natural resource management (land modification, set aside measures), etc. According to their specific characteristics and the goals (and levels) of the analysis, the boundaries of the individual agro-ecosystem could be a part of a separate farm (e.g. a cultivated parcel, a meadow, a pond), located in numerous farms, or cover a larger region in a country or (sub)continent. Moreover, the individual agro-ecosystem could include, be a part, or overlap with other ecosystems - dryland, mountain, coastal, urban, etc.

The concepts of the “agro-ecosystem services” and the “agro-ecosystem services management” are among the newest for the theory and practice in Bulgaria [Bachev, 2009]. There are a great variety of agro-ecosystem services in the country with quite specific components, specificities, forms of management, efficiencies, etc. In this part we briefly present a study on the forms, efficiency and challenges of the management of agro-ecosystem services in Western Stara Planina (WSP).31

The agro-ecosystems in the WSP are a part of the unique ecosystem of WSP. The later covers area of 4043 km², including 2099 km² in Bulgaria and 1944 km² in Serbia [Grigorova and Kazakova]. The greatest portion of that ecosystem is forest (60%) and the rest is farmland. The WSP is under two specific institutional environments (policies, jurisdictions, formal and informal modes of governance of Bulgaria and Serbia). Our analysis concentrate on the management forms and efficiency in Bulgarian territory.

The agro-ecosystems of WSP provide a wide range of specific services (Figure 21). A great number of agents from and outside region benefit from and affect services of these agro-ecosystems – landowners, farmers, residents, businesses, visitors, consumers, scientists, interest groups, etc.

31 It is located in western part of Stara Planina (Balkan Mountain) - a mountain range in the eastern part of the Balkan Peninsula which runs 560 km from the Vrashka Chuka on the border between Bulgaria and eastern Serbia eastward through central Bulgaria to Cape Emine on the Black Sea. The mountain gives the name of the Balkan Peninsula.

32 50% of the population in ZSP own agricultural lands [Grigorova and Kazakova].
Figure 21. Services of Agro-ecosystems in Western Stara Planina

Approximately 70% of the farmlands in WSP comprise meadows and pastures [MAF]. They provide abandon feed for the farm and household animals, and create good conditions for the development of grazing livestock (sheep, goats, cattle, buffalos, horses) and domestic animals (poultry, rabbits, pigs). In addition, there are plenty of wild flowers and herbs, which favor beekeeping and herbal-honey productions as well as the collection of natural medical plants.

Furthermore, a wide range of farm products is produced in this environment used for the provisioning of the local population and marketing. Some of the local farm-based produces are well-known for the quality, unique taste and original character (e.g. strawberry, raspberry, blackberry, berry jams, herb honey, sheep yogurt and cheese, lamb meat, wool, fur, prune, plum brandy) and marketed at regional, national and international markets. Simultaneously, they favor development of related productions and services being important income source for the local populations – (jam, dairy, brandy, leather) processing, dying wool, weaving and crafts making, on-farm and direct marketing, agro-tourism.

For many local and not-permanent residents interactions with the agro-ecosystems are favorite mode of recreation (part-time or hobby farming, short or longer term visits) or life style (weekend/summer houses). Local traditions and ethnic culture of the Torlaks and Karakachans are closely related to the agro-ecosystems and farming system – specific agricultural and related
products (e.g. Chiprovtsi hand-made carpets), crop varieties and animal breeds, production methods/technologies, festivals, cuisine, crafts.

The unique shape and quality of the landscape is a critical feature of the agro-ecosystems dominating by the natural or semi-natural high mountain pastures, riparian meadows, stony and rocky terrains. All these features of the agro-ecosystems attract many visitors from the region, country and abroad. Next, the agro-ecosystems contribute significantly for the maintaining and improving soil quality - vegetation cover reducing soil loss and degradation and promoting water infiltration. Furthermore, carbon sequestration is important service of the grasslands, berry bushes, orchards and vineyards storing considerable amount of CO\textsubscript{2} stock.

The agro-ecosystems also provide combined services with the larger ecosystem of WSP. A great variety of wild fruits, herbs, chestnuts, mushrooms, birds, animals and fish are available and picked up or hunted by local population and visitors. What is more, some of them are commercially gathered for processing and sells bringing additional incomes for around 20% of the population [Grigorova and Kazakova]. The ecosystem WSP is a source of clean mountain and mineral water used by the farmers (animals, irrigation), residents (drinking, household needs), businesses (inputs, bottling) and health centers (balneotherapy) in the region and neighboring areas. Besides, it purifies water and air and regulate climate making region one of the favorite destination for tourism, recreation and treatment - well-known mountainous resorts Berkovitza, Varshetz, Izketz are located there.

Moreover, some of the country’s most popular natural wonders like Rocks of Belogradchik33, Iskar Gorge, and number of picks, waterfalls, and caves are located in WSP enhancing cultural services of the ecosystem. The territory of the WSP is with high ornithological and botanical importance designated as Pan-European network NATURA 2000 site (Map 1). Maintaining this rich biodiversity is a great service of the ecosystem WSP. For instance, in its flora there are more than 2000 species of higher plants (among which 12 Bulgarian and 79 Balkan endemics34) while its fauna comprise more than 180 bird species, more than 50 species of mammals, 26 species of amphibians and reptiles, and many butterfly species of conservation importance [Grigorova and Kazakova]. That increases the educational and scientific services of this unique ecosystem as well.

We have been identified various market, private and public modes used for governing of the agro-ecosystem services in WSP (Table 9). The post-communist private management and market adjustments has been associated with the domination of small-scale and subsistence holdings (Table 10), a sharp decline in the crop and livestock (but goat) productions, and a general desintensification of the agricultural activity. By-product from this market and private governance has been the overall improvement of the agro-ecosystems services in WSP [Bachev, 2009]. The farm and related products got “organic” character obtaining a good reputation for high quality and safety while the region become attractive destination for many local and foreign tourists willing to experience genuine nature, traditional cuisine and lifestyle.

33 In 2009 it was nominated to be one of New 7 Natural Wonders of the World but did not passed through selection.

34 Besides, hill “Vrashka Chuka” is worlds only place of \textit{Eranthis bulgaricus}.
A market-driven organic production emerged but it is restricted to few farms, processors and traders. Nevertheless, the country’s biggest producers of the organic raspberries and the bee-honey, and one of the biggest organic sheep holdings, are all located in the WSP. A number of effective private modes evolved to manage relations between farmers, processors, food stores, and consumers. A high specificity and capacity dependency are widely safeguarded by cooperation (services, processing), long-term contracts (marketing of milk and organic berries), interlinked organization (milk marketing against free provision of cooling vanes and credit), and compete integration (diversification of farming into processing, agro-tourism). Often a non-agrarian agent (processor, food store, restaurant chain, exporter) driven by market or institutional demand initiates, funds, and integrates eco-farming. That is the case with Danon baying milk from big dairy farms (and enforcing safety, quality, environmental, animal-welfare standards), a Japanese investor financing organic apiaries and exporting bio-honey, a leading restaurant chain integrating dairy farming and processing.

The market and private voluntary, non and for-profit forms contribute significantly to the improvement of eco-management but their scope is usually restricted to a (owned) portion of the agro-ecosystems (services). For instance, a fifth of the agricultural lands have been abandoned which caused uncontrolled “development” of species and lost of farmlands quality. Furthermore, part of the permanent natural and semi-natural meadows have been left under-grazed or under-mowed, and intrusion of shrubs and trees into grassland took places putting pressure on priority species (such as Souslik) and related chain (Marbled Polecat) [Grigorova and Kazakova].
Table 9. Modes of management of agro-ecosystem services in Western Stara Planina

<table>
<thead>
<tr>
<th>Market modes</th>
<th>Private modes</th>
<th>Public modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal branding</td>
<td>Voluntary initiatives</td>
<td>Environmental regulations</td>
</tr>
<tr>
<td>Organic (berry) farming</td>
<td>Long-term supply contracts</td>
<td>Eco-information, monitoring, assessment</td>
</tr>
<tr>
<td>Organic apiaries</td>
<td>Voluntary processing and services (shops, hotels, restaurants)</td>
<td>Promotion or joining eco-initiatives (festivals, networks, advertisements)</td>
</tr>
<tr>
<td>Organic livestock (milks, berries)</td>
<td>Vertical integration of farming into processing and services</td>
<td>Designated zones of eco-importance (natural parks, NATURE)</td>
</tr>
<tr>
<td>Specific origins (lamb, cheese, berries, carpets, crafts)</td>
<td>Interlink organization of production and services</td>
<td>Area-based direct payments</td>
</tr>
<tr>
<td>Organic processing (berries, milk, herbs)</td>
<td>Eco-labeling (dairy)</td>
<td>Cross-compliance requirement</td>
</tr>
<tr>
<td>Eco-labeling</td>
<td>Clientatlisation (cheese, meat, berries)</td>
<td>Support for adaptation of quality, safety, eco etc. standards</td>
</tr>
<tr>
<td>On farm and direct marketing</td>
<td>Agro and eco-tourism</td>
<td>Support to collective actions (producers groups, cooperation)</td>
</tr>
</tbody>
</table>

Source: field study, 2009

Table 10. Major characteristics of farms in Western Stara Planina, Bulgaria

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of farms</td>
<td>12151</td>
<td>Share of farms with cattle (%)</td>
<td>17,2</td>
</tr>
<tr>
<td>Average Utilized Agricultural Area (ha)</td>
<td>0,997</td>
<td>Average cattle per farm</td>
<td>2,9</td>
</tr>
<tr>
<td>Share of arable land (%)</td>
<td>33,6</td>
<td>Share of farms with sheep (%)</td>
<td>51,1</td>
</tr>
<tr>
<td>Share of cereals (%)</td>
<td>18,4</td>
<td>Average sheep per farm</td>
<td>5,5</td>
</tr>
<tr>
<td>Share of horticulture (%)</td>
<td>4,3</td>
<td>Share of farms with goats (%)</td>
<td>62,7</td>
</tr>
<tr>
<td>Share of grassland (%)</td>
<td>58,7</td>
<td>Average goats per farm</td>
<td>2,6</td>
</tr>
<tr>
<td>Share of permanent crops (%)</td>
<td>4,9</td>
<td>Share of farms with pigs (%)</td>
<td>47,2</td>
</tr>
<tr>
<td>Share of farms with bees (%)</td>
<td>6,3</td>
<td>Average pigs per farm</td>
<td>1,5</td>
</tr>
<tr>
<td>Average bees colonies per farm</td>
<td>7,1</td>
<td>Share of farms with poultry (%)</td>
<td>69,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average poultry per farm</td>
<td>14,2</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Food

Most of the cooperatives in the region have shown serious disadvantages (ineffective management, low incentives for long-term investment, small adaptability to members and market...
needs, etc.) and many have gone bankrupt in last 10 years. Similarly, majority of the dairy farms and processors have failed to adapt to the tough new EU standard and had to cease commercial activity. Finally, the private interests of particular individuals and groups have harmed the legitimate public rights to the ecosystem services due to the restricting access, conversion of the proper use (farmland/or forest land into construction), or escaping public order on the natural resource management.

Furthermore, implementation of the new public order is less effective than in the other (more developed, plain, urbanized, etc.) parts of the country due to the lack of agents’ awareness and experience, inaccessible training and information, inadequate administrative capacity, and mismanagement, etc. Consequently, the majority of farms (small-scale and subsistent holdings) have not been able to participate in the diverse public support schemes. For example, less than 5% of all farms from the WSP, comprising 18% of the grasslands and 8% of the arable land, are registered in the Land Parcels Identification System (indicating the land eligible for the EU CAP support). Moreover, in many cases, the enforcement of the eco-standards has been difficult since the costs for detection of offenders are high in large and remote mountainous areas. For instance, the requirement for the minimum-maximum number of animals on pastures, and other mandatory eco-standards have been very difficult to enforce - only 5 % of the beneficiaries being subject to inspection, high costs, corruption, etc. Finally, the WSP ecosystem services management is comprised by two distinct systems in Bulgaria (implementing the EU CAP) and Serbia (in a negotiation process for EU membership since 2014).

Figure 22. Estimates of Services of Agro-ecosystems in Western Stara Planina

Source: expert assessment, 2013
The assessment of experts35, has found out that the highest value among the agro-ecosystem services of the WSP is given to the “purification of water and air” while the lowest estimate is for the “carbon sequestration” (Figure 22).

Impacts of EU CAP implementation on farms eco-management and strategies

The greatest share of surveyed farms36 indicates an increased level of a part of the main indicators in the present time comparing to the levels in the period before the EU CAP implementation (Figure 23). For instance, higher or considerable higher is the level of the total income, costs, investments, profit, labor productivity, efficiency of the production and management in the majority of farms. Also the biggest portion of the holdings has an improved access to the public support, and augmented amount of the subsidies for production, income and investment support. At the same time, the share of farms with lower total indebtedness comparing to the pre-accession period is 38\%, while with a higher one bellow 18\%.

According to the more than a half of the farms they have an improved qualification and information, agro-techniques and crop rotation, and livestock conditions, as well as increased product and food safety, and innovation activity comparing to the period before the CAP implementation. All that is a direct or indirect result of the favorable impact of the different CAP mechanisms on the key aspects of the activities of majority of surveyed farms.

However, a good fraction of the farms report lack of change in the share of sold output, market access, diversification of products and services, deepening of specialization, and in the environmental preservation. Also a big part of the farms have no changes in their dependency from suppliers and buyers, increased integration with suppliers and buyers, and improved involvement in the professional organizations and access to the agricultural advisory system. Furthermore, a big portion of the holdings do not report changes in the profitability, land and livestock productivity, overall indebtedness and financial independency, efficiency of production, management and contractual relations, competiveness, economic and social sustainability, agro-techniques and crop rotation, livestock conditions, product and food safety, introduction of innovation, qualification and information. Besides, more than a third of the farms have no improvement in the relations with the state organizations and in the access to the public support in comparison to the pre-accession period.

35 Panel of 7 experts, including providers, stakeholders, and annalists, evaluated each type of the agro-ecosystem services in a scale 1 (lowest combine value) to 5 (highest combine value).

36 Carried in the end 2012 with managers of 84 commercial farms. Structure of type, size, specialization and location of surveyed farms corresponds to real structure of commercial farms in country.
Therefore, the implementation of diverse instruments of the EU CAP does not lead to a progressive change in the main indicators of a good part of Bulgarian farms. The later is either due to the lack of the positive effect from the CAP on a portion of the holdings (for example, lack of effective public support) or due to the neutralized effect of the CAP on other negative factors which could have deteriorated even further the state of farms (in conditions of the lack of the counterbalancing the existing negative trends CAP instruments).

For a considerable share of the farms the current levels of the main indicators is lower or significantly lower comparing to the level before the CAP introduction. For instance, 27% of the
surveyed holdings indicate deteriorated financial independence, more than 24% are with diminished profit, almost 17% are with reduced net income and competitiveness, around 16% are with inferior economic sustainability, almost 15% are with lower profitability, and 14% are with deteriorated social sustainability. Similarly, nearly 19% of the farms are with worsened relations with the state organizations, above 13% of them have decreased efficiency of the contractual relations, every tenth is with inferior livestock conditions, almost 9% of the holdings are with decreased access to the public support, and more than 8% are with reduced membership in professional organizations.

All these show that the EU CAP implementation has been associated with deterioration of the main indicators of a considerable portion of farms. This is either because of the negative effects of the CAP on a party of farms, or due to the lack of effective mechanisms for assisting the farms adaptation and for compensating the influence of other negative factors (e.g. competition with heavily subsidized imported products at the national and international markets, high interest rates for bank credits, big market price fluctuations, etc.). Therefore, the CAP implementation does not contribute to the improvement of environmental conservation capability and efficiency in a great portion of the farms in the country. That necessitates improvement of the CAP implementation through perfection of the management public programs, change in the design and/or beneficiaries of some CAP instruments, or requires rethinking and reforming individual mechanisms or the policy as a whole.

Eco-management in agricultural farms with high eco-activity

Characteristics of “eco-active” farms

We define “eco-active” the farmers who are interested in the environmental measures of the NPARD and in the protection of natural environment. Here we presents the results of a large-scale study on forms, factors and efficiency of eco-management in “eco-active farms” of different type and location.

37 Based on a 2014 survey carried out during the NAAS training of farmers on Measure 214 “Agri-environmental payments” of NPARD. The training of the agricultural producers is free of charge, and it is mandatory for all beneficiaries from the Measure 214. Therefore, the interested farmers had strong incentives and low costs (time for traveling and training, etc.) for participating in the specialized training. In the survey 306 registered agricultural producers have taken part (4.52% of all farms in the country registered according to the Regulation № 3, 1999 for the creation and maintaining register of agricultural producers). Structure of surveyed farms by juridical status, geographical locations, size, etc. approximately corresponds to the real structure of all farms in the country.
The owners and/or managers of the predominate part of the surveyed farms are males, as most of them are younger than 55 (Figure 24). Moreover, the majority of the participants are young farmers (younger than 40), which indicate the considerable interest of this group of producers toward the amelioration of environmental efficiency of farms.

Figure 24. The owner (Manager) of farm is (percent):

![Graph showing ownership and gender distribution]

Source: survey with agricultural producers, May 2014

The survey has found out that almost 7% of the farmers are “not aware” with the environmental problems in the region where their farms are located. According to a good part of the farmers, their holding is located in a region “without environmental problems” (37,9%), while the biggest portion indicate that they are in a region “with normal environmental problems” (39,9%).

However, the number of farms in regions with environmental problems of different type is not minor. More than 21% of the surveyed farms are in regions with “frequent droughts”, above 7% are located in regions “with exhausted soils”, and almost 5% are in regions “with frequent slush, hails and frosts”. What is more, almost 4% of the farmers indicate that their farms are located in regions “with extreme environmental problems” and equal number select regions “with eroded soils “, while more than 2% of them are in regions “with polluted ground waters”.

On the other hand, the number of farms in regions “with polluted soils”, “with destructed biodiversity” and “with polluted surface waters” is small (bellow 1%), which is an indicator for the insignificant problems of this sort in the Bulgarian agriculture.

The greatest part of the surveyed farms (65%) are with relatively little “agricultural experience” pointing out that they are involved in farming for a period up to 5 years, including 21,9% of them “less than 2 years”. The rest of the farmers are with prolong farming experience, but with needs for the additional information and training for the agri-environmental measures of the NPARD and/or formal certification in that area.

The majority of surveyed farmers indicate that the period in which they take care for the natural environment is between 2 to 5 years. More than 27% of them are with a long-term
experience (6 and more years) in the environmental protection. Nevertheless, for a considerable portion of farms (29.4%) the period associated with the protection of natural environment is short (“up to 2 years”). There is a correlation between the period in which surveyed farmers are involved in farming and the period in which they are involved in the environmental protection. However, the tendency is with the increasing the farming experience to decrease the share of farmers with the relevant experience in environmental protection. The later demonstrates that, the specific problem of “environmental management” is relatively new for the most farms in the country.

Forms and scope of environmental management in farms

The knowledge and the implementation of the principles of environmentally friendly agriculture is the base of the effective eco-management in agricultural farms. None of the surveyed farms believe that it is “not important to know” the principles of the environmentally sustainable agriculture, which proves a good understanding of the importance of the integration of eco-management in the overall management of farms.

According to the more than a half of surveyed farms, they know “well” or “good” the principles of environmentally friendly agriculture (Figure 25). With relatively highest internal capability for the eco-management are the Cooperatives, while the share of the Sole Traders with a great ecological competency is the lowest.

The most numerous with a good eco-knowledge are among the farms specialized in the beekeeping, pigs, poultry, and rabbits, mix crop-livestock production, and mix crops production, while the least amount are among those specialized in the grazing livestock. The majority of large farms are characterized with a high knowledge acquiring capability for the eco-management, while the share of farms with small size with a high competency in the area of eco-management is relatively lower.

Relatively more farms in plain regions of the country know “good” or “very good” the principles of environmentally sustainable agriculture, while in the mountainous region the portion of farms with similar knowledge is less important. Also a bigger part of the farms in less-favored regions different from the mountainous are with a high eco-competency comparing with the farms in less-favored mountainous regions. The North-Western is with the most significant share of farms with a high eco-knowledge, while the South-Eastern region is with the smallest fraction of farms with a good eco-competency.
Figure 25. Extent of knowledge of principles of environmentally friendly agriculture in farms of different type and location* (percent)

Some farms improve their eco-capability by hiring an expert as part of the Physical Persons (0,8%) and a larger portion of the Companies, Corporations, etc. (11,8%) point out that they “have specialists in the farm, who knows well the principles of environmentally friendly agriculture”. Besides, every tenth farm “use outside consultant if it is necessary”, as the external supply with the eco-knowledge in most popular among the Physical Persons (10,8%) and the Sole Traders (9,1%), the farms which are predominately for subsistence (15%) and with a small size (12,5%), and those specialized in the permanent crops (14,3%), field crops (13,9%), grazing livestock (12,5%), and vegetables and mushrooms (10,3%), as well as farms located in the mountainous regions (16%), with lands in protected zones and territories (18.7%), and less-favored mountainous regions (15%).

However, in a third of the farms, the level of competency in environmentally sustainable agriculture is “satisfactory”. The later means that the internal capability for the effective eco-management in the considerable portion of farms is low. The highest share of farms with such features are among the Cooperatives (37,5%), farms with a small size (35,3%), those specialized in grazing livestock (50%), vegetables and mushrooms (37,9%) and permanent crops (37,8%), and farms located in plain regions (34,4%), in less-favored regions different from the mountainous (27,3%), and in the North-East region of the country (34,7%).
Furthermore, a good portion of the Sole Traders (4.5%), farms specialized in pigs, poultry, and rabbits (33.3%) and grazing livestock (12.5%), farms located in the less-favored mountainous regions (15%), mainly mountainous regions (4%), and the South-East region of the country (5.1%) indicate that they “do not know” the principles of environmentally sound agriculture. Moreover, some of the farms study the eco-principles “only if that is necessary”, as a particularly big is the share of this type of farms among the Sole Traders (13.6%), farms in the mountainous regions (12%), and in the less-favored mountainous regions (15%). Therefore, in the future more efforts are to be put to improve the eco-competency of farms in the later groups with a low eco-culture through education, training, consultation, advises, etc.

The eco-competency is a necessary but not a sufficient condition for the effective eco-management. Due to various reasons (economic, technological, behavioral, etc.) and/or in different periods of time, the farmers not always strictly implement the principles of the environmentally friendly agriculture. According to the majority of surveyed farms they implement “well” or “completely” the eco-principles in agriculture (Figure 26). Nevertheless, the share of farms implementing these principles “satisfactorily” is not small, while those “not implementing at all” are minority.

Figure 26. Extent and conditions of enforcement of principles of environmentally-friendly agriculture in farms (percent)

Source: survey with agricultural producers, May 2014

A small fraction of the surveyed Physical Persons indicate that the implementation and enforcement of the eco-principles in the farm depends on certain conditions such as the economic justification, the importance of eco-actions, an ecological problem in the farm, a contract with the state, or the collective actions with other agents. For instance, for 2.3% of the later farms this is the “economic justification”, as these are mainly farms with a large size and predominantly for subsistence, farms specialized in field crops, vegetables and mushrooms,
permanent crops, mix crops and mix livestock productions. A part of the Physical Persons (1,2%) implement eco-principles only “if their individual efforts are important”, and those are entirely small farms in permanent crops. A quarter of the farms specialized in beekeeping enforce eco-principles “ only if there is an ecological problem in the farm”. A tiny portion of the Physical persons (0,4%) implements eco-principles “if there is a contract with the state”, and those are exceptionally subsistence farms specialized in mix crops production. Another small section of the Physical Persons (0,4%) points out implementing the eco-principles in case of “collective actions with others”, and those are small farms in permanent crops and field crops.

For none of the farms the “existence of a private contract” is a condition for the implementation of eco-principles, which shows that this form is not important for the Bulgarian farms at current stage of development.

To the greatest extent (“strictly” or “well”) implement the principles for environmentally sound agriculture the large-scale farms (100%), the Cooperatives (87,5%) and the Companies, Corporations, etc. (82,3%), the farms specialized in beekeeping (100%), mix crop-livestock production (82,9%) and mix crops production (82,6%), and those located in the plain regions (77,9%), with lands in protected zones and territories (87,5%), less-favored mountainous regions (80%), and in the North-East (85,7%) and the South-West (80%) regions of the country.

On the other hand, the share of farms “not enforcing” eco-principles is relatively smaller for the Sole Traders (63,6%), farms specialized in pigs, poultry and rabbits (33,3%) and vegetables and mushrooms (58,6%), those with a smaller size (73,5%), and located in the mountainous regions (72%), in less-favored regions different from the mountainous (54,5%), and in the North-West region of the country (69,6%).

The transition to officially certified organic production is a major form for the eco-management in Bulgarian agricultural farms. Here the eco-behavior of the agricultural producers is regulated and stimulated by the dynamics of market demands and the premium to the market prices of certified organic products. Simultaneously, the authenticity of products and the adequacy of the eco-activity with the officially set up standards is controlled by the independent bodies. Our survey has also confirmed that a relatively bigger portion of the eco-active farms are already “certified for the organic production” and around a quarter of them are “in a process of certification“ (Figure 27).
A part of the farms “experiment” with the organic agriculture along with the conventional production, informing that they are “with mix organic and traditional production”, including 14,3% of the Physical Persons, 23,5% of the Companies, Corporations, etc., and 4,5% of the Sole Traders.

The other private and market forms for the eco-management are less used in the surveyed farms, predominately by the Physical Persons. For instance, merely 1,5% of the Physical Persons are “with own eco-label, protected origin, etc.”, 2,3% have “collective eco-label, protected origin, etc.”, and 0,8% “provide eco and related services”. At the same time none of the surveyed farms is “integrated for eco-supply for a particular buyer” or has a “long-term contract for eco-supply for a particular buyer”. Nevertheless, there are widely employed informal private and market forms for the eco-management as 9,3% of the surveyed Physical Persons point out that they are “with naturally ecologically pure production”, and 4,6%, of them having built a “reputation for ecologically pure products”.

In addition, a good portion of the farms has plans for a “bio-certification” or for a “eco-label, protected origin, etc.” (5,9% of the Companies, Corporations, etc., and 3,9% of the Physical Persons). About a quarter of the surveyed farms estimate that they are with a “traditional production”, including a three-quarters of the Cooperatives, 31,8% of the Sole Traders, 23,5% of the Companies, Corporations, etc., and 22,4% of the Physical Persons. A bigger share of firms characterize their production as “intensive” (13,6% of the Sole Traders and 17,6% of the Companies, Corporations, etc.), while among the Physical Persons this percent is 2,3% and zero for the Cooperatives. At the same time, only 5,9% of the surveyed Companies, Corporations, etc., and 2,3% of the Physical Persons describe their production as “extensive”.

A portion of the surveyed farms (with exception of the Cooperatives) also has own initiative or participates in another private, collective or state initiatives for the protection of the nature (Figure 28). For instance, 28,2% of the Physical Persons, 18,2% of the Sole Traders, and 17,6% of other type of firms “implement own eco-initiative”.

Source: survey with agricultural producers, May 2014
Figure 28. Share of farms participating in various initiative for protection of nature (percent)

Source: survey with agricultural producers, May 2014

Furthermore, some of the farms implement a contractual form as 9.3% of the Physical Persons report having “a signed private eco-contract”, while 6.4% of the Physical Persons, 5.9% of the Companies, Corporations, etc., and 4.5% of the Sole Traders having “a signed eco-contact with the state”.

A part of the farms participate in the eco-initiatives of other farms and organizations. For 8.1% of the Physical Persons this is “informal initiative of other farms”; for 17.6% of the Companies, Corporations, etc., and 4.5% of the Sole Traders, and 3.9% of the Physical Persons that is an “eco-initiative of the state”; and for 5.6% of the Companies, Corporations, etc., and for 1.5% of the Physical Persons this is an “eco-initiative of the supplier to the farm”. Besides, a small fraction of the Physical Persons participate in an “eco-initiative of a non-governmental organization” (3.1%), “eco-initiative of a buyer” (1.9%), “formal eco-initiative of other farms” (1.2%), “eco-initiative of the investor in the farm” (1%), and “eco-initiative of a creditor” (0.4%). Also a portion of the surveyed Companies, Corporations, etc. (5.9%), and Physical Persons (1.9%) report that “participate in an eco-cooperative”. The later farms use the cooperative form for realization of a higher (“collective”) eco-effect or as a necessary condition for the participating in some public or private initiative (program).

Certified for the organic production, in a process of bio-certification or with a plan for the bio-certification are entirely the Physical Persons and the Sole Traders, where each second applies (“officially certified” or “in transition to”) the norms of the organic agriculture (Figure 29). On the other hand, none of the Cooperatives, Companies, Corporations, etc. is using or is planning that particular form of eco-management.

The greatest part of the certified for the organic production is among the farms specialized in the permanent crops, vegetables and mushrooms, mix livestock production, and mix crop-livestock production. At the same time, the share of farms with complete certification among
those specialized in field crops and mix crops production is small, while none of the farms with “pure” livestock specialization (grazing livestock, pigs, poultry, and rabbits, and beekeeping) has been officially certified. Simultaneously, in a process of organic certification are farms of all type of specialization, as the biggest share is among the groups specialized in beekeeping, permanent crops, mix livestock production, and pigs, poultry and rabbits. Therefore, the majority of surveyed farms specialized in permanent crops, beekeeping, and mix livestock, and a good portion of those specialized in mix crop-livestock production, vegetables and mushrooms, and pigs, poultry and rabbits practically implement (“officially” or “in a transition to”) the principles of the organic agriculture. What is more, with a plan for the bio-certification are a part of the farms with different specialization, with exception of those in grazing livestock, and pigs, poultry and rabbits. Consequently, in a near future, all of the farms specialized in beekeeping, and almost all holdings in the permanent crops, will apply the organic form for eco-management.

Figure 29. Organic production in farms of different type and location (percent)

Source: survey with agricultural producers, May 2014

The biggest part of the farms certified for the organic production or in the process of bio-certification is with a small and a middle size for the sector. On the other hand, while the share of large-scale bio-certified farms is similar to that of small and middle sized, none of them is in a process or with a plan for bio-certification. The share of bio-certified farms among those for subsistence is small, but many of them are in a process or with a plan for bio-certification. Therefore, in near future every other of the “non/semi-market” farms (predominately for
subsistence) will apply this “market-oriented” form of eco-management. The share of farms with bio-certification, in a process of certification, or with a plan for bio-certification, in the overall number of farms in the plain-mountainous regions is in more advance stage. The same is true for the farms with lands in protected zones and territories, and in the less-favored mountainous regions in contrast to the farms in less-favored regions different from the mountainous where there is still no bio-certified farm. The South-West region is with the greatest share of farms, which are certified for the organic production. In the other regions of the country, the portion of farms in the process of bio-certification is considerable, with the exception of the North-West region with a comparatively small fraction of the farms implementing (officially or in transition to) the norms of organic agriculture. All these figures give a good insight on the structure and the prospect of the organic production in Bulgarian farms since no other comparable data are practically available.

The scope of the eco-management is not equal to all of the surveyed farms. For instance, for 17,6% of the farms the cares for protection of the natural environment are focused “only on owned land”, including for 19,3% of the Physical Persons, 13,6% of the Sole Traders, and 12,5% of the Cooperatives.

A portion of the farms are looking after protection “only of leased-in land” (8,8%), and the later concerns 12,5% of the Cooperatives, 9,3% of the Physical Persons, and 9,1% of the Sole Traders. However, the greatest share of the farms concentrate their efforts on the protection of the “owned and leased-in land” (42,8%), as such approach apply 64,7% of the surveyed Companies, Corporations, etc., 62,5% of the Cooperatives, 40,9% of the Sole Traders, and 40,5% of the Physical Persons. Also some small fraction of the Companies, Corporations, etc. (5,9%) report focusing its care “only on waters which they use”.

Besides, a considerable portion of the surveyed farms take care for “all natural resources in the region of the farm” (24,2%), including 25,9% of the Physical Persons, 29,4% of the Companies, Corporations, etc., and 9,1% of the Sole Traders. What is more, for 32,6% of the surveyed farms the cares for the protection of natural environment cover the “natural environment as a whole independent from the region”, including for a half of the Cooperatives, 32,4% of the Physical Persons, 29,4% of the Companies, Corporations, etc., and 27,3% of the Sole Traders. Furthermore, a small portion of the Physical Persons are “only involved in restoration of the natural environment”. A little bit bigger fraction of the surveyed farms “ are involved also with the improvement of the natural environment” (6,9%), including 12,5% of the Cooperatives, 6,6% of the Physical Persons, 5,9% % of the Companies, Corporations, etc., and 4,7% of the Sole Traders.
Factors for eco-management in agricultural farms

The different ideological, economical, market, public, etc. factors in various extent stimulate or restrict the activities of agricultural producers for the protection of natural environment. To the greatest extent the eco-activity of a big part of the surveyed farms is stimulated by: the “personal conviction and satisfaction of farmers from the eco-activity”, farm “participation in the public support programs”, “received direct public subsidies”, “professional eco-training of the farmer and the hired labor”, “market competition”, “access to the farm and eco-advises”, “possibilities to increase profit”, “eco-benefits for your farm in the longer-term”, and “European Union policies” (Figure 30).

Figure 30. Extent in which eco-activities of farms is stimulated by various factors (percent)

Source: survey with agricultural producers, May 2014

For the different type of farms there is a considerable variation in ranging of the factors, which stimulate their eco-activity. For instance, the eco-actions of the most Physical Persons to
the greatest extend in stimulated by: the “personal conviction and satisfaction of the farmer from the eco-activity” (29%), “participation in the public support programs” (23,5%), “received direct public subsidies” (22,4%), “professional eco-training of the farmer and the hired labor” (21,6%), “access to the farm and eco-advices” (20,8%), “market competition” (20,5%), and “possibilities to increase profit” (20,5%). The eco-actions of the majority of the Sole Traders to the greatest extent are stimulated by: the “participation in the public support programs” (50%), “professional eco-training of you and the hired labor” (45,4%), “received direct public subsidies” (36,4%), “integration with the processor of your produce” (31,8%), “personal conviction and satisfaction from the eco-activity” (27,3%), “European Union policies” (27,3%), “possibilities to increase profit” (22,7%), “economic efficiency of eco-costs” (22,7%), “immediate eco-benefit for the farm in the present” (22,7%), “eco-benefit for the farm in the long run” (22,7%), “integration with the supplier of your farm” (22,7%), “available eco-information and innovations” (22,7%), and “tax preferences” (22,7%). For the most Companies, Corporations, etc. the factors, which mostly stimulate the eco-actions are: the “received direct public subsidies” (47,1%), “market competition” (41,2%), “European Union policies” (41,2%), “state control and sanctions” (35,3%), “eco-benefit for the farm in the long run” (35,3%), “personal conviction and satisfaction from the eco-activity” (29,4%), “immediate eco-benefit for the farm in the present” (23,5%), “market demand and prices” (23,5%), “participation in the public support programs” (23,5%), “access to the farm and eco-advices” (23,5%), “financial capability of the farm” (23,5%), and “social recognition of the eco-contribution of your farm” (23,5%). For the Cooperative farms there has not been reported factors strongly stimulating and restricting eco-activities, which are common for the majority of this type of holdings.

According to the biggest part of the surveyed farms their eco-activities to the greatest extent is restricted by the following factors: the “amount of direct costs for eco-friendly activity” (13.7%), “state control and sanctions” (13.4%), “state policies” (13.4%), “financial capability of the farm” (12.1%), “market demand and prices” (10.5%), “market competition” (9.8%), and “amount of costs for eco-cooperation with others” (9.8%).

For the different type of farms the factors, which mostly restrict the eco-activity are quite specific. The eco-actions of the biggest part of the Physical Persons to the greatest extend are restricted by: the “amount of direct costs for eco-friendly activity” (14,3%), “state control and sanctions” (13,9%), “financial capability of the farm” (12,7%), “market competition” (10,4%), and “tax preferences” (10,4%). For the most part of the Sole Traders the eco-activity to the greatest extent is restricted by: the “amount of direct costs for ecofriendly activity” (9,1%), “financial capability of the farm” (9,1%), “market competition” (9,1%). For the most Companies, Corporations, etc. the dominant obstacles for the eco-activities are: the “amount of costs for eco-cooperation with others” (29,4%), “official regulations, standards, norms, etc.” (23,5%), “state policies” (23,5%), “amount of direct costs for ecofriendly activity” (17,6%), “immediate private eco-benefits in the present moment (17,6%), “private eco-benefit in the long run” (17,6%), “eco-benefits from your activity received by others” (17,6%), “access to the farm and eco-advices” (17,6%), “existence of a long-term contract with the state” (17,6%), “economic efficiency of eco-costs” (11,8%), “availability of partners for eco-cooperation” (11,8%), “financial capability of your farm” (11,8%), “integration with the
processor of your produce” (11.8%), “available ecological information and innovations” (11.8%), “professional eco-training of the farmer and the hired labor” (11.8%), “state control and sanctions” (11.8%), “environmental problems and risks in your farm” (11.8%), and “tax preferences” (11.8%).

The identified above incentives and restrictions for the different type of agricultural farms are to be taken into account in the process of improvement of the public policies and programs for agro-ecology and eco-management.

The public support with diverse instruments of the EU CAP is an important factors for the improvement of eco-management of agricultural farms in the country. For instance, the direct Area base payments are linked with the requirement to “keep farmland in good agronomical and ecological state”, the participation in the measures of the NPARD is associated with the compliance of the “good agricultural practices” (including appropriate protection of soils, waters, biodiversity, animal welfare, etc.), the involvement in the “environmental measures” of the NPARD aims at implementation of higher eco-standards in comparison to the good agricultural practices, etc. What is more, the public intervention (subsidizing, zoning, mandatory eco-norms and standards, market support, etc.) leads to development of diverse bilateral, trilateral, hybrid, etc. forms of governance of the agrarian sphere as well as of the eco-management in the sector. All they let improve the overall and the environmental protection capabilities of agricultural farms, and conserve, restore and/or improve natural resources through agricultural activity. In particular, the public subsidies make “economically possible” the agricultural activity in “less-favored” regions and in protected zones and territories (national parks, reserves, NATURA 2000, etc.) supporting conservation of the soil fertility, natural biodiversity, services of (agro)ecosystems, etc.

The received public support by the surveyed farms (with “higher eco-activity”) is relatively higher than the average in the country for the farms of a similar type and location. The most of the surveyed farms received in the past or are currently receiving support through Measure 214 “Agro-environmental payments” of the NPARD, the Directs Area-based payments from the EU, Measure 141 “Semi-subsistence farming” and Measures 111, 114 and 143 “Professional training and advise”, the National tops-ups for products, livestock, etc., Measure 112 “Setting up of young farmers”, and Measure 121 “Modernization of agricultural holdings” (Figure 31).

38 The assessment of the level and impact of the support of the agricultural farms of different type in the country with individual instruments of the EU CAP is done Bachev et al. (2014).
For other Measures of the NPARD the shares of participating farms in the forms of direct public support in relatively small. Nevertheless, comparing to the rest of the farms in the country, the “eco-active” farms take advantage to a greater extent from the “environmental measures” of the NPARD such as Measure 214 “Agro-environmental payments”, Measure 211 “Natural handicap payments to farmers in mountain areas”, Measure 212 “Payments to farmers in areas with handicaps, other than mountain areas”, and Measure 213 “Payments for NATURA 2000 for farmlands”.

The actual public support with the various mechanisms of the EU CAP to farms of different juridical type is quite different. For instance, a comparatively higher share of the Companies, Corporations, etc. have been taken advantage from the Area-based payments (70,6%), Agro-environmental payments (70,6%), and the National tops ups for products, livestock, etc. (47,1%). On the other hand, the relative portions of the beneficiaries from the Measures 111, 114 и 143 “Professional training and advises” is higher for the Sole Traders (40,9%) and the Physical Persons (39%), while of the Measure 141 “Semi-subsistence farming” for the Physical Persons (43,6%). The surveyed Cooperatives are leaders only for the Measure 121 “Modernization of agricultural holdings” (37,5%), while their relative share is lower for the “area-based payments” and the “national tops ups” (12,5%), and Measures 112 “Setting up of young farmers” (12,5%), 213 “Payments for NATURA 2000 for farmlands” (12,5%) и 214 “Agri-environmental payments” (25%), and without beneficent for all other measures from the NPARD.

There is also a great differentiation in the support through various measures for the farms with different specialization, size and location.

For instance, to the biggest extent from the area-based payments have been taking advantage the farms specialized in mix crops-livestock (63,4%), in less favored regions different from the mountainous (63,6%), and those with lands in protected zones and territories (62,5%).
Simultaneously, the relative portion of the beneficiaries from the direct area-based European subsidies for the farms specialized in mix livestock (24,1%), beekeeping (25%), vegetables na mushrooms (34,5%) is lower or zero (pigs, poultry and rabbits). Likely wise, comparatively the biggest share of the beneficiaries of the “agro-environmental payments” are among the Physical Persons (56,4%), large-scale farms (61,5%) and those with lands in protected zones and territories (75%), and farms specialized in field crops (66,7%), mix crops-livestock production (63,4%), and mix livestock production (62,1%). At the same time, a relatively smaller-share of farms specialized in vegetables and mushrooms (34,5%) and grazing livestock (37,5%), and none in these in pigs, poultry and rabbits have received this type of subsidy.

In another main eco-measure “Natural handicap payments to farmers in mountain areas” the greatest share of the beneficiaries are among the Physical Persons (20,5%), farms specialize in vegetables and mushrooms (27,6%), predominantly subsistence holdings (37,5%), farms with lands in protected zones and territories (56,2%) and located in less-favored mountainous regions (40%). Simultaneously none of the farms specialized in pigs, poultry and rabbits, and beekeeping, and relatively a smaller portion of the farms in grazing livestock (12,2%) and large size (7,7%) have got this type of payments.

There is also a great variation in the support by the individual measures in different regions of the country. For example, the relative share of the beneficiaries of the Area-base payments in the North-West and the North-East regions are higher that in the other regions of the country – accordingly 56,5% and 53,1% of the surveyed farms. On the other hand, the beneficiaries of the National tops ups from the South-Central and the South-East regions are relatively more than in the other regions of the country – accordingly 42,1% and 41% of the farms. Likely wise, the North-West region, South-West region and South-East region are among the leaders regarding the numbers of supported farms by majority of the NPARD measures, including the special “eco-measures”. For instance, the biggest share of farms with “Agro-environmental payments” and “Natural handicap payments to farmers in mountain areas” are in the South-East (66,7% and 33,3% correspondingly) and the North-West (60,9% and 30,4% correspondingly) regions. On the other hand, the North-East and the South-Central regions are among the leaders only for one of the measures (accordingly Measure 141 and Measures 111, 114 и 143), while the North-Central region for none of the public support instruments.

The individual mechanisms for support of the EU CAP impact unequally the agricultural farms, which received or are receiving public support (Figure 32). According to the majority of surveyed farms, the biggest (“average” or “strong”) impact on their farms have been caused by the Measures 111, 114 и 143 “Professional training and advices”, Measure 214 “Agro-environmental payments”, “Direct Area-based subsidies by the EU”, Measure 112 “Setting up of young farmers”, Measure 141 “Semi-subsistence farming”, Measure 121 “Modernization of agricultural holdings”, “National tops ups for products, livestock, etc.” (48,4 %) and Measure 211 “Natural handicap payments to farmers in mountain areas”.

80
The impact of the remaining instruments of the CAP on the greatest part of the surveyed beneficiaries is “low” or “none”. What is more, a part of the farms evaluate the impact of the public support instruments on their holdings as “negative”. The later concerns more than 10% of the beneficiaries from the Measure 223 “First afforestation of non-agricultural land”, Measure 226 “Restoring forestry potential and introducing prevention actions”, and Measure 313 “Encouragement of tourism activities”.

The impacts of the eco-measures of the NPARD on surveyed farms of different type and location is dissimilar. For instance, for the two-third of the Sole Traders and the Cooperatives, supported in the past or currently with the Measure 214 “Agro-environmental payments”, the impact of that instrument on their farms is “strong” (Figure 33). Likewise, that measure effect is strong on the majority of farms specialized in the fields crops, grazing livestock, mix livestock production, mix crop-livestock production, the large scale farms, and the farms located in less-favored mountainous regions and the North parts of the country. For the remaining fractions of the farms the impact of the agro-environmental payments is with lower significance. Moreover, according to one fifth of the supported farms in vegetables and mushrooms, and a good portion of predominately subsistence farms, as well as farms situated in the South-West region of the country these type of payments has got no impact at all.

Source: survey with agricultural producers, May 2014
Figure 33. Impact of measure 212 “Agro-environmental payments” of NPARD on supported farms of different type and location (percent)

Similarly, according to the bulk of the supported farms in the less-favored mountainous regions, those with lands in the protected zones and territories (44.4%), the Sole Traders (33.3%), the farms specialized in permanent crops (36.8%), and the holdings located in the South-West region of the country (37.5%), the impact of the Measure 211 “Natural handicap payments to farmers in mountain areas” on their farms is “strong”.

Nevertheless, for the greatest part of the farms, the impact of these type of payments is “neutral”, including for all of the supported Companies, Corporation, etc., a three-quarters of the specialized in mix crops production, 38.5% of the farms in field crops and 37.5% in vegetables and mushrooms, 37.4% of the holdings located in plain regions, a third of farms with middle sizes, with lands in protected zones and territories, and in less-favored regions different from the mountainous, 26.7% of the predominately subsistence farms, 22.6% of the Physical Persons, 22.2% of the mix crops-livestock holdings, and a considerable portion of the beneficiaries in the North-West (57%), North-Central (44.4%), North-East (40%) and South-Central (37.5%) regions of the country. Furthermore, for a significant part of the beneficiaries the effect of that type of support on their farms is “negative”, including for all large-scale holdings, one-third of the Sole Traders, 23.1% of the farms in the South-East region of the country, each fifth of the farms with mix livestock production, and 15.4% of the farms specialized in field crops.
Therefore, the accrual and likely effects of the different instruments of public support on the diverse type of agricultural holdings is to be taken into account in the process of the improvement and the design of support measures during the next programming period.

Efficiency and perspectives of eco-management in agricultural farms

Specific impact on individual components of environment

Diverse activities of the agricultural farms is associated with positive, negative or neutral impacts on the different components of the natural environment (soils, waters, air, biodiversity, climate, etc.). According to the majority of respondents to that question\(^{39}\), the crop production activity of their farms is associated with “positive effects on soils quality” (86%). A good part of the surveyed farms also believe that their crop production activity is associated with positive effects in terms of biodiversity (37,5%), air quality (27,1%), climate (21%), surface (18,3%) and ground (17,9%) waters, and landscape (15,7%).

In addition, the majority of respondents believe that, their crop production activity does not affect the climate (30,1%), ground (24%) and surface (22,3%) waters, and landscape (20,5%). Furthermore, a relatively small portion of the farms thinks that their crop production activity is associated with “negative effects” in relation to the different elements of the natural environment. The greatest is the share of the farms, which believe that their crop activity affects negatively the climate (6,5%), soils quality (5,7%), and surface waters (5,2%).

According to the most of the respondents\(^{40}\), the livestock activity of their farms is associated with positive effects for biodiversity (66,7%) and soils quality (65,3%) (Figure 44). A good portion of the holdings also believe that this type of activity is associated with positive effects in relation to the climate (25,3%), landscape (17,3%), surface and ground waters (14,7%), and air quality (13,3%). The majority of farms also suggest that their livestock activity does not affect the climate (48%), air quality (42,7%), ground (40%) and surface (38,7%) waters, and landscape (32%). However, a relatively big share of the holdings believes that their livestock activity is associated with “negative effects” in terms of air quality (10,7%), surface waters (9,3%), ground waters (8%), and climate (6,7%).

According to a good part of surveyed farms, the overall activity of their farms is associated with positive effects in relation to soils quality and biodiversity (Figure 34). Also not so small fraction of the farmers believe that their activity has positive effects for the air quality, climate, surface and ground waters, and landscape.

\(^{39}\) 74,8% of surveyed farms and 87,1% of the surveyed farms with crop specialisations.

\(^{40}\) 24,5% of surveyed farms and 88,2% of the surveyed farms with livestock specialisations.
Figure 34. Impact of the overall activity of agricultural farms on individual components of natural environment (percent)

Source: survey with agricultural producers, May 2014

Finally, the majority of the respondent farms to that question\(^{41}\) also think that their overall activity does not affect the climate, surface and ground waters, landscape and air quality. Only a small fraction of the surveyed farms believes that their overall activity is associated with negative effects related to the natural environment, and these is mostly true for the negative impact on climate and ground waters.

Efficiency and prospects of environmental activity of farms

The eco-management in the agricultural farms is associated with inevitable augmentation of the production and the transaction costs of different type. For a big part of the surveyed farms their natural environment protection activity is connected with a “high” augmentation of long-term investments (23,5%), overall production costs (19,6%), expenditures for registration, tests, certification, etc. (19,6%), and specialized costs for the conservation of natural environment (19,3%).

Also for the majority of farms, their eco-management is associated with “average” growth in the specialized costs for the protection of natural environment (40,8%), the overall production costs (38,9%), long-term investments (35,6%), costs for studying the official regulations and standards (33%), the overall management costs (32,3%), costs for acquiring information, training, and consultations (31,37%), costs for marketing of products and services (31%), costs for participation in the programs for public support (31,4%), costs for private negotiations and

\(^{41}\) 64,4% of all surveyed farms.
contracts (29.8%), costs for registrations tests, certifications, etc. (28.8%), costs for cooperation with others (25.8%), and the costs for resolutions of disputes and conflicts (23.2%).

According to the predominate portion of the surveyed farms, their natural environment protection activity is also associated with the augmentation of farm economic efficiency, as for around one fifth of them that is to a “great” extent, for majority in “average” extent, and for a small portion 9 in “insignificant” extent (Figure 35).

Figure 35. Share of farms in which environmental protection activity is associated with increasing of economic efficiency (percent)

Source: survey with agricultural producers, May 2014

To the greatest extent the eco-activity of farms leads to increasing the economic efficiency for the Sole Traders, the farms specialized in beekeeping, mix livestock production, and pigs, poultry and rabbits, and the holdings located in less-favored mountainous regions, and in the South-East, North-Central and South-West regions of the country.

At the same time, for a relatively greater portion of the farms specialized in grazing livestock and permanent crops, the holdings with smaller size for the industry, and those located in less-favored regions different from the mountainous, and in the South-East region of the country, the eco-activity is not connected with any positive change in the economic efficiency.
According to the majority of surveyed farms, their natural environment protection activity is also associated with the augmentation of ecological efficiency of the farm, as for more than a fifth of them in a “high” extent, for the majority in “average” extent, and for a smaller portion in “small” extent (Figure 36). The eco-activity of farms leads to increasing in farm ecological efficiency for a relatively biggest portion of the farms specialized in beekeeping, pigs, poultry and rabbits, and mix crops-livestock production, large-scale holdings, and the farms located in less-favored mountainous regions, those with lands in protected zones and territories, and the farms in the North-East and the South-West regions of the country.

Figure 36. Share of farms, in which environmental protection activity is associated with increase in ecological efficiency (percent)

![Graph showing the share of farms, in which environmental protection activity is associated with increase in ecological efficiency (percent).]

Source: survey with agricultural producers, May 2014

On the other hand, for a good fraction of the holdings specialized in grazing livestock (12,5%), those located in less-favored mountainous regions (9,1%) and with a small size for the industry (5,1%), the eco-activity is not connected with any change in the ecological efficiency.

The eco-active farms are with various plans (intentions) for the eco-management in near future. The greatest part of the surveyed farms (43,8%) does not foresee any change in their eco-activity in the near future. However, a considerable fraction of them (31%) are having intentions to “expend the current eco-activities”. At the same time, the share of farms, which are planning to restrict their current eco-activity is insignificant (1,3%).

In near future, a relatively great number of farmers are having intentions to “participate in the agro-environmental measures of the NPARD” (32%), for “eco-registration and certification” (16%), for “receiving the “area-based green payments’ from the EU” (13,7%), and for
“introduction of new eco-products” (13.7%). Also a good portion of the farms are planning to “introduce new eco-services” (6.5%), “direct marketing of eco-products” (6.2%), and “participate in eco-cooperation with other farms” (5.5%).

Furthermore, a relatively smaller fraction of the surveyed farms intend to “participate in eco-initiatives of other farms” (3.3%), “integrate closely with a trader of eco-products” (2.6%), “integrate closely with an eco-exporter” (2.6%), “participate in eco-association with non-farmers” (2.3%), and “integrate closely with an eco-processor” (0.6%). Besides, a considerable share of the farms (12.1%) indicates having a “plan for eco-actions in a more distant future”.

Conclusion and policy recommendations

Our analysis has demonstrated that suggested new interdisciplinary framework let better understand, assess and improve the agro-eco-management and strategies in the specific market, institutional and natural environment of the individual farms, ecosystems, regions, sub-sectors and countries. We have also showed that the post-communist transition and the EU integration has brought about significant changes in the environmental management in the Bulgarian agriculture. The newly evolved market, private and public governance has led to a significant improvement of the eco-management and the eco-impacts of agriculture introducing modern eco-standards and public support, enhancing environmental stewardship, disintensifying production, recovering landscape and traditional productions, and diversifying quality, eco-products and services. The agrarian transition and integration has been also associated with some new challenges such as unsustainable exploitation of the natural resources, lost biodiversity, land degradation, water and air contamination etc.

Furthermore, the implementation of the “common” EU policies has been having unlike results in the specific “Bulgarian” conditions. Up to date it enlarges the income, technological, and eco-discrepancy between different type of farms, sub-sectors of agriculture, and regions of the country. In a longer-term the eco-hazard(s) caused by agriculture will likely expand unless effective public and private measures are taken to mitigate the existing eco-problems and risks. Moreover, the specific structures for the management of farming activity (small commercial, semi-market, and subsistence farms, production cooperatives, large business firms, etc.) will continue to dominate in years to come and have to incorporate the eco-management needs.

Therefore, a significant improvement of the public (Government, EU, etc.) interventions in the agrarian and eco-management is needed to enhance the sustainability of prospective farms, and the sustainable agrarian and rural development. The further implementation of the EU common (agricultural, environmental, regional, etc.) policies would have no desired impacts on the environmental conservation and improvement unless special measures are taken to improve the eco-information and assessments; modernize the system of property rights, public regulations and enforcement; perfect the management of public organizations, programs and services; and extend the public support to and partnerships with the dominating farming (including small-scale and subsistence) structures, etc.
First large-scale study on the forms, factors and the efficiency of eco-management in the “eco-active” farms in Bulgaria have found out that the structure of these holdings is similar to the country’s with more massive presence of farms specialized in the permanent crops. Besides, the biggest part of the eco-active farmers are with a small “farming experiences” proving that the specific issue of the “eco-management” is new for most of the Bulgarian farms.

The majority of eco-active farms knows and implements well the principles of eco-friendly agriculture. With the greatest internal knowledge capability are Cooperative farms, while for some Physical Persons the implementation of eco-principles is associated with certain conditions such as economic rationality, importance of the eco-actions, existing environmental problem in the farm, a public contract, or a collection action with others.

A good portion of the eco-active farms are certified or in a process of certification for the organic production, while others are with a plan for a bio-certification. Other market, private, and collective forms of eco-management (such as own or collective eco-label, protected origin, supply of eco and related services, establish good reputation, participation in diverse private, collective and public initiatives) are less frequently employed by the Bulgarian farms.

To the greatest extent the eco-activity of the eco-farms farms is stimulated by the personal conviction and satisfaction of the farmers from eco-activity, the participation in the public support programs, the received direct public subsidies, the professional eco-training of the farmer and the hired labor, the market competition, the access to the farm and eco-advises, the possibilities to increase profit, the co-benefits for your farm in the longer-term, and the European Union policies. On the other hand, the factors mostly restricting the eco-activities of farms are the amount of the direct costs for eco-friendly activity, the state control and sanctions, the state policies, the financial capability of the farm, the market demand and prices, the market competition, and the amount of costs for eco-cooperation.

The public support to the eco-active farms is higher than the average in the country for the farms of the similar type and location. The greatest fraction of these farms have been supported through the Measure 214 “Agro-environmental payments” of the NPARD, the Directs Area-based payments from the EU, the Measure 141 “Semi-subsistence farming”, and the Measures 111, 114 and 143 “Professional training and advise”, the National tops-ups for products, livestock, etc., the Measure “Setting up of young farmers”, and the Measure 121 “Modernization of agricultural holdings”.

For most beneficiaries the biggest impact on their farms have been caused by the Measures 111, 114 и 143 “Professional training and advices”, the Measure 214 “Agro-environmental payments”, the “Direct Area-based subsidies by the EU”, the Measure 112 “Setting up of young farmers”, the Measure 141 “Semi-subsistence farming”, the Measure 121 “Modernization of agricultural holdings”, the “National tops ups for products, livestock, etc.”, and the Measure 211 “Natural handicap payments to farmers in mountain areas”.

According to the good part of the eco-active farms, the overall activity of their farms is associated with positive effects to the soils quality and biodiversity. The majority of them also believe that their overall activity does not affect the climate, surface and ground waters, landscape and air quality. Only a tiny amount of the farms suggest that the overall activity is
associated with negative effects to the nature, and that mostly concerns the negative impact on climate and ground waters.

For a big part of the eco-farms their environment protection activity is connected with a “high” augmentation of the long-term investments, the overall production costs, the expenditures for registration, tests, certification, etc., and the specialized costs for the conservation of natural environment. Furthermore, for the majority of farms, their eco-management is associated with “average” growth in the specialized costs for the protection of natural environment, the overall production costs, the long-term investments, the costs for studying official regulations and standards, the overall management costs, the costs for acquiring information, training, and consultations, the costs for marketing of products and services, the costs for participation in the programs for public support, the costs for private negotiations and contracts, the costs for registrations tests, certifications, etc., the costs for cooperation with others, and the costs for resolutions of disputes and conflicts.

According to the greatest fraction of the eco-active farms, their environment protection activity is also associated with the augmentation of the economic and ecological efficiency of their holdings.

Further improvement of the institutional environment, public policies and the modes of public intervention is necessary to modernize the system of eco-management in Bulgarian agriculture. More particularly the public policies and strategies are to be directed to:

First, better integration of the environmental (including neglected eco-system services, ground water, etc.) policy in the agrarian and development policies as the effective design and the enforcement of long-term eco-measures get a high priority. Furthermore, it is to be stability and certainty in the eco-policy (long-term public commitment rather than frequent changes) in order to induce effective private and collective actions.

Second, complete application of the integral approach of soils, waters and biodiversity management in the planning, funding, management, monitoring, controlling and assessment at all levels with stakeholders’ involvement in the decision-making process at all levels. Moreover, the eco-system services, life-cycle, eco-, energy and water accounts and footprints, and other modern approaches are to be incorporated into the program design and management at all levels.

Third, improving the coordination and the efficiency of actions of various public and private agents involved in the eco-management. The individual elements and the responsibilities in the public eco-management are to be integrated under a single agent/organization to improve coordination, reconcile conflicting interests, and decrease inconsistency, controversies, gaps and inefficiency of actions.

Forth, better defining, regulating and further privatizing (collectivizing) the property, user, management, trading, discharge, etc. rights and assets related to the eco-resources, eco-system services, renewable energy supply, (N, GHG, etc.) emissions, waste discharges, etc.

Five, employing a greater range of economic instruments including appropriate pricing, quotas, public funding and insurance, taxing, interlinking, etc. to improve the eco-resources use efficiency and the risk-sharing, prevent over-intensification and pressure on the natural
environment, and support farms adaptation to changing market, institutional and natural environments.

Six, organizationally and financially securing adequate eco-data collection, monitoring, and independent assessment, including on the agricultural linkages with the state of the natural environment such as: soil, water and air contamination; the impacts on biodiversity; the waste production and decomposition; the total social costs, the energy intensity, eco- (water) footprint, the benefits from farming; the effect on eco-conservation and improvement; the renewable energy production; the impacts of climate change; the existing and likely risks, etc. What is more, adequate mechanisms to assure timely disclosure and effective communication of available information to the decision-makers, stakeholders and public at large are to be put in place.

Seven, better adapting the EU CAP and the national instruments to the specific Bulgarian conditions through greater support to farm modernization and adaptation, eco-innovations, and prospective business and non-for profit modes; relaxing the EU criteria for the semi-market and young farmers; directing funds to the prospective and unsupported measures, and organizations, and better implementing planed eco-measures.

Nine, improving the eco-education and training of farmers, administrators, other stakeholders and public at large through modernization of the agrarian education and Agricultural Education and Advisory Service. The later are to reach all agents via effective methods of education, advice, and information (TV, radio, on line information; demonstration, etc.) suited to their specific needs; set up a system of continues training and sharing experiences; include the eco-, water, waste management, climate change and rural development issues; cooperate with other (public and private) academic institutions and private organizations; involve farmers and stakeholders in the programs management, implementation and assessment at all levels.

Eight, employing more hybrid (public-private, public-collective, etc.) modes given their coordination, incentives, and control advantages. The public organization and enforcement of the most eco-standards is very difficult especially in the huge informal sectors and remote areas. A greater public support is to be given to the voluntary initiatives of the professional, community and non-governmental organizations (informing, training, assisting, funding, risk-sharing, etc.), as well as assistance in cooperation at grass-root, eco-system, watershed, trans-regional, trans-border levels as much more efficient forms of state intervention. Accordingly, a real participation of the farmers and stakeholders in priority setting, management, and assessment of the public programs and regulations at all levels is to be institutionalized.

Ten, giving a special public support (training, information, funding, partnership, preferences, etc.) to the “eco-active” farms having a higher knowledge and applying greatly the principles of environmentally-friendly agriculture, which would induce (implement, demonstrate advantages, inspire and involve others, etc.) the overall improvement of the agro-eco-management in the country.

Eleven, improving the overall institutional environment and the public governance perfecting property rights protection, laws and contracts enforcement, combating against
mismanagement and corruption in the public and third sectors, removing restrictions for market, private and collective initiatives, etc.

Last but not least important, giving more public support to multidisciplinary and interdisciplinary research on all aspects and impacts of the eco-management, including factors and forms of eco-management, and their impact on individual and collective eco-behavior and environmental preservation.

References:

Farmer M. (2007). The Possible Impacts of Cross Compliance on Farm Costs and Competitiveness, Institute for European Environmental Policy, KVL.

Grigorova, Y. & Kazakova, Y. (2008). High Nature Value farmlands: Recognizing the importance of South East European landscapes, Case study report, Western Stara Planina,