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Chapter 1

Introduction

1.1 Expectations matter

Financial assets such as stocks or bonds can not be consumed or allocated for productive pur-

poses. The only objective they serve is the reallocation of liquid funds over time. In exchange

for an initial investment, the buyer of an asset receives a claim on future income in the form of

cash flows paid by the corporation issuing the asset. The price of such an asset, whether it is a

stock or a bond, should therefore be entirely determined by the expected present value of these

cash flows, whether they are dividends or interest payments.

The idea that asset prices reflect expected future cash flows is both intuitive an appeal-

ing. Nevertheless, it constitutes one of the main puzzles in the field of asset pricing: Excess

volatility. Stock prices are far more volatile than dividends. After the rational expectations rev-

olution by Muth (1961) and Lucas (1972) swept through macroeconomics and finance, financial

economists often assume in their models that investors take all available information into con-

sideration in order to form optimal predictions regarding future dividends. A large body of

empirical research (surveyed by Gilles and LeRoy, 1991) finds, however, that rational dividend

expectations can not be sufficiently volatile to be the sole driver of price fluctuations.

In addition to dividend expectations, time-varying discount factors can contribute to price

volatility. A claim on an expected payment of C100 in one year from now is in general worth
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less than C100 today, for two reasons. First, the investor has to be compensated for not being

able to access his invested money for one year. Second, the investor bears the risk that the

issuer of the asset will be unable to pay the full amount of C100, or any amount at all, at the

end of the year. The difference between the expected payoff and the price is in asset pricing

models parameterized by a discount factor. If this discount factor varies over time, for example

because the risk appetite of investors varies over time, prices could move without necessarily

any news regarding future dividends. In recent decades, modeling the behavior of discount

factors (alternatively: discount rates, state-price deflators, risk premiums) has been one of the

main objectives of the asset pricing literature. As John Cochrane (2011) states, in his address to

the American Finance Association:

“Discount-rate variation is the central organizing question of current asset-pricing

research. [...] Asset prices should equal expected discounted cash flows. Forty

years ago, Eugene Fama (1970) argued that the expected part, “testing market effi-

ciency,” provided the framework for organizing asset-pricing research in that era. I

argue that the “discounted” part better organizes our research today.”

Although it is not unreasonable to assume that risk aversion, preferences and therefore discount

factors change over time, I find Cochrane’s claim that time-variation of the discount factor is the

main or even the only relevant source of price fluctuations rather strong. To my judgment, there

is certainly still scope for research on expectations. For one thing, it is an oversimplification

to assume that all investors value assets according to expected dividends. Instead of buying an

asset for its dividends, many investors make investments in the hope of short-term trading prof-

its, thereby relying mainly on expectations on prices rather than dividends. Moreover, casual

observation confirms that different investors may form different expectations. There would be

little trade in a world of rational expectations and common knowledge (Lucas, 1978; Barberis

and Thaler, 2003). The idea that speculative considerations can drive price fluctuations is not
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new. For example, John Kenneth Galbraith (1961) notes, in his description of the run-up to the

1929 stock market crash:

“At some point in the growth of a boom all aspects of property ownership become

irrelevant except the prospect for an early rise in price. Income from the property, or

even its long-run worth are now academic. [...] What is important is that tomorrow

or next week market values will rise - as they did yesterday or last week - and a

profit can be realized.”

Nevertheless, many of the asset pricing models discussed by Cochrane (2011), are built around

the concept of a rational representative agent, which leaves little to no room for speculative

behavior or heterogeneous opinions to have an impact on prices.

Expectations matter. The essays in this thesis show that the way in which agents form ex-

pectations affects the dynamic properties of asset prices and therefore the appropriateness of

different econometric tools used for empirical asset pricing. In addition to standard rational ex-

pectations models, I study the class of models introduced by Brock and Hommes (1997, 1998),

in which boundedly rational agents may switch between various simple expectation rules. A

crucial feature of these models is that not all agents have to follow the same expectation rule,

but are allowed to form heterogeneous beliefs.

Chapters 2 and 3 present empirical estimations of two specific heterogeneous agent models.

Since the data generating processes are assumed to be nonlinear, due to the agents’ switching

between expectation rules, I apply nonlinear regression models. The final two chapters deal

with noncausal autoregressions. In Chapter 4, I show that noncausal autoregressions are better

able than their causal counterparts to capture the dynamics of asset prices that are generated

by heterogeneous agent models. Finally, in Chapter 5, I consider the estimation of a class of

standard rational expectations models, and show that noncausality of the instruments does not

necessarily have an impact on the consistency of the generalized method of moments (GMM)

estimator.
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This introductory chapter proceeds as follows. In Section 1.2, I describe the dataset of US

aggregate stock prices, dividends and earnings, which is used throughout the essays in this

thesis. Section 1.3 gives an overview of several univariate and multivariate time-series models,

used for empirical asset pricing, with special focus on nonlinear and noncausal extensions of

the benchmark autoregressive model. In Section 1.4, I review a small selection of asset pricing

models. Section 1.5 provides summaries of the essays.

1.2 Stock prices, dividends and earnings

All empirical results presented in this thesis rely mainly on the same dataset of historical US

stock prices, which is compiled, updated and published by Robert Shiller. The dataset contains

monthly observations of the Standard & Poor’s (S&P) 500 index, one of the prime stock market

indices, constructed as a weighted average of the stock prices of 500 large publicly traded

US companies. Although the S&P500 index was released only in 1957, Shiller has combined

several data sources to construct a US stock market index going back all the way to 1871.

Moreover, the dataset includes average dividends and earnings per share for the index. Detailed

information on the sources and compilation of the index is found in Shiller (1989).

Figure 1.1 shows the level (price, Pt) of the index and the average dividends (Dt) and earn-

ings (Et) for the period 1871-2012. Due to exponential growth, these plots do not reveal much

about price movements during the first 100 years. Rescaling the price by the level of the divi-

dends, resulting in the price-dividend (PD) ratio, improves the picture a bit, although the peak

experienced in the last 20-30 years still overshadows all previous fluctuations. This dominance

is less profound for the price-earnings (PE) ratio. The peak around the millennium is clearly

larger than in any period observed before, but the plot of the PE ratio also shows other inter-

esting periods, such as the boom and bust around 1929 and the decreasing valuation during the

1970s. The difference in patterns of the PE and PD ratio is due to the fact that dividends as a

fraction of earnings have been steadily declining over the last 60 years or so, which is depicted
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Figure 1.1: S&P 500 index (Pt), underlying dividends (Dt), earnings (Dt) and price-dividend (PD), price-

earnings (PE) and dividend-earnings (DE) ratios. Monthly observations 01.1871-06.2012. For construct-

ing the PE and DE ratio, earnings are smoothed over a period of 10 years, following the convention by

Shiller (1989). Source: http://www.econ.yale.edu/~shiller/

in the final plot of Figure 1.1. Companies are distributing a declining share of their profits as

dividends, which has resulted in higher PD ratios (Fama and French, 2001).

Financial economists are often interested in testing whether the (log) price is a random walk

or, equivalently, whether log-differences (returns) are unpredictable white noise. Figure 1.2

shows annual, monthly and daily returns (left panel). The plotted time series show that re-

turns are highly erratic and seem hard to predict. The autocorrelation plots in the middle panel,

however, suggest that there is some degree of predictability, with significant first-order autocor-

relations at the daily frequency and in particular at the monthly frequency. More evidence in

favor of return predictability has been documented. In particular the PE ratio turns out to be

a good predictor for returns (e.g. Campbell and Shiller, 2001, and Cochrane, 2011). Periods

during which the S&P500 index is highly valued in terms of the PE ratio, are typically followed

by low returns, while low valuations predict high returns over the next 5-10 years. This is evi-

dence for mean reversion in stock prices, which contradicts the random walk assumption. High

returns push up valuations, which in turn predicts low returns or decreasing valuations.

In addition to predictability of the level of returns, Figure 1.2 clearly shows dependence in

the second moments of returns. The time series on the left show that extreme observations (re-

gardless of the sign) typically occur within prolonged periods of high volatility, a phenomenon
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Figure 1.2: S&P 500 log-differences / returns. Annual observations 1871-2011 (top), monthly obser-

vations 01.1871-06.2012 (middle) and daily observations 4.1.2000-19.10.2012 (bottom). Autocorre-

lation plots for levels (middle) and squared returns (right), with 95% significance bounds. Sources:

http://www.econ.yale.edu/~shiller/ and FRED® (Federal Reserve Economic Data)

referred to as volatility clustering. This becomes more evident from the plots on the right,

which depict the autocorrelation functions of squared returns. In particular for higher frequen-

cies, squared returns are highly autocorrelated.

Extreme returns are not only clustered, they occur rather often. Assuming a Gaussian dis-

tribution, absolute returns in deviation from the mean should exceed three standard deviations

for only 0.1% of the observations. However, for the annual, monthly and daily data depicted

in Figure 1.2, around 1.5% of the observations can in fact be classified as such extreme events.

The distribution of returns therefore has ’fatter tails’ than a Gaussian distribution. The fact

that financial returns are non-Gaussian is well known (See e.g. Mandelbrot, 1963). Neverthe-

less, many theoretical asset pricing models are built on the assumption of Gaussianity (See e.g.

Munk, 2013)

The observation that returns are clearly not white noise does not necessarily imply a re-

jection of the efficient market hypothesis, which states that prices should reflect all available

information, thereby eliminating the possibility to achieve higher than average returns by mak-

ing investment decisions based on publicly available information (Fama, 1970). Although there

is evidence in favor of predictability over time for the aggregate stock market, it is a lot harder
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to predict which specific stocks will outperform others. Although market inefficiencies have

been documented (e.g. Gromb and Vayanos, 2010), many authors, including Malkiel (1973)

and Fama and French (2010), evaluate historic returns achieved by institutional investors, to

conclude that it is in fact very hard to create a portfolio in real time that is able to ’beat the

market’ for a prolonged period.

This thesis deals with stock prices only. The prices of many other financial assets, however,

possess rather similar time-series properties. Figure 1.3 depicts daily observations of the US

Dollar/Euro exchange rate, the yield on 10-year treasury bonds and the oil price over the period

4.1.2000-19.10.2012. Like with the S&P 500 index, these series show persistent, random-walk

type behavior in levels, and strong volatility clustering in the returns.
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Figure 1.3: USD/EUR exchange rate (top), 10-year treasury yield (middle) and WTI crude oil price

(bottom). Daily observations in levels (left) and log-differences / returns (right), 4.1.2000-19.10.2012.

Sources: FRED® (Federal Reserve Economic Data)

1.3 Autoregressions

This section provides a brief overview of selected tools available to econometricians for analyz-

ing time-series data. After outlining the benchmark autoregressive moving-average (ARMA)

model, I discuss nonlinear and noncausal extensions.
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A stationary time-series yt , may be generated by the following ARMA(p,q) process:

α(L)yt = θ(L)εt , (1.1)

in which α(z) = 1−α1z− ...−αpzp, θ(z) = 1+ θ1z+ ...+ θqzp and εt ∼ i.i.d.(0,σ2) is an

i.i.d. innovation, or error term. L is a standard lag operator (Lkxt = xt−k). For example, an

ARMA(1,1) process takes the form:

yt = α1yt−1 + εt +θ1εt−1, (1.2)

If q = 0, Equation (1.1) is referred to as an autoregressive AR(p) process, while the restriction

that p = 0 defines a moving-average MA(q) process. Although Equation (1.1) may be supple-

mented with an intercept term, in this thesis I consider only zero-mean time series, in which

case an intercept term becomes redundant.

If both polynomials α(z) and θ(z) have their roots outside the unit circle, the ARMA(p,q)

model has both infinite-order MA(∞) and AR(∞) representations:

MA(∞) : yt = α(L)−1θ(L)εt

yt =
∞

∑
j=0

ψ jεt− j

AR(∞) : θ(L)−1α(L)yt = εt

yt =
∞

∑
j=1

ω jyt− j + εt ,

(1.3)

in which
∞

∑
j=0

ψ jz
j = ψ(z) ≡ α(z)−1θ(z) and

∞

∑
j=0

ω jz
j = ω(z) ≡ −θ(z)−1α(z) (See Brockwell

and Davis, 1991, for details). Since the ARMA(p,q) process has an AR(∞) representation, it

can sometimes be approximated quite well by a finite-order autoregressive AR(k) process, with

k > p:

α(L)yt = εt

yt =
k

∑
j=1

α jyt− j + εt ,
(1.4)

8



Since the seminal contribution by Sims (1980), it has become a common approach in economics,

at least for multivariate time series, to ignore moving-average terms and to consider pure au-

toregressions like (1.4), which in the case of multivariate time-series is referred to as a vector

autoregression (VAR). In this thesis, I follow this convention also for univariate time-series. One

reason for omitting the moving average terms is the simplicity of estimation. For any observed

time series yt , an AR(k) model can be estimated consistently by regressing yt on its own k lags,

using ordinary least squares (OLS). Another reason is that the AR(k) process (1.4) is nested in

the nonlinear and noncausal autoregressions discussed below. Avoiding moving-average terms

therefore facilitates a more clear comparison between the different models applied in this thesis.

Nonlinearity is not a well-defined concept (See, for example, the discussion in Teräsvirta et al.,

2010, Chapter 1). One way to think about nonlinearity in the context of autoregressive models,

following Granger (2008), is to allow for time-varying parameters:

αt(L)yt = εt , (1.5)

in which αt(z) = 1−α1,tz− ...−αk,tz
k. The parameters αi,t (for i = 1, ...,k) vary over time

following some stochastic or deterministic process. A well known parametric example is the

smooth transition autoregressive (STAR) model:

(γ(L)(1−Gt)+δ (L)Gt)yt = εt , (1.6)

in which the two autoregressive polynomials γ(z) and δ (z) define the regimes of the model,

while the transition function Gt determines the weights of each regime. The STAR model (1.6)

corresponds to the time-varying parameter model (1.5) such that the time-varying parameters

are in fact a time-varying weighted average of two constant parameters: αi,t = γi(1−Gt) +

δiGt (for i = 1, ...,k). In the case that γ(z) = δ (z), the STAR model reduces to the linear

autoregression (1.4). In the STAR models considered in this thesis, the transition function

9



Gt takes the form of a logistic function:

Gt = (1+ exp [−β (st − c)])−1 , (1.7)

in which case (1.6) defines a Logistic STAR (LSTAR) model. In this case, the transition between

regimes depends on a constant parameter c, a slope parameter β and a transition variable st .

The slope parameter β determines the smoothness of the transitions. If 0 < β < ∞ the transition

function fluctuates smoothly over the interval 0 < Gt < 1. If β = 0, the transition function is

constant and the STAR (1.6) reduces to the linear autoregression (1.4), with αi =
γi +δi

2
(for

i = 1, ...,k). If γ = ∞, Gt is in each period either zero or one, depending whether st is smaller

or larger than c. In this case, the STAR is actually a Threshold Autoregressive (TAR) model.

The transition variable is typically a lagged value of the endogenous variable: st = yt−d (for

d > 0), but it can be any exogenous or predetermined variable. In Chapter 2 of this thesis, I

consider the case where st is a linear combination of multiple predetermined variables. As long

as the transition variables are predetermined or exogenous, the STAR model can be estimated

consistently by nonlinear least squares (NLS) or maximum likelihood (ML).

Various alternatives to the benchmark STAR model have been considered in the literature.

For example, instead of a logistic function, the transition function may also be an exponential

function, resulting in the Exponential STAR (ESTAR) model. Several other extensions, includ-

ing multivariate and multiple-regime alternatives, as well as details on estimating STAR models

are discussed by Teräsvirta (1994), Van Dijk et al. (2002) and Teräsvirta et al. (2010).

Returning to linear autoregressions, I assumed above that the polynomial α(z) in (1.4) has

its roots outside the unit circle. If instead, one or more of the roots lie on the unit circle (unit

root), the AR process (1.4) is nonstationary. In this thesis, I consider stationary time-series

only, which is in some cases established by differencing the variables. A third case, which has

so far hardly been considered in economic applications, is that one or more of the roots of α(z)

lie inside the unit circle. In this case, (1.4) defines a noncausal autoregression (Brockwell and

10



Davis, 1991). Lanne and Saikkonen (2011b) recently introduced a novel parameterization of

the noncausal AR(k) process (depending on k lags), to a ’forward-looking’ noncausal AR(r,s)

process depending on r lags as well as s leads, with r+ s = k:

φ(L)ϕ(L−1)yt = εt , (1.8)

with φ(L) = 1− φ1L− ...φrL
r, ϕ(L−1) = 1−ϕ1L−1 − ...ϕrL

−s. Both polynomials have their

roots outside the unit circle. If ϕ j 6= 0, for some j ∈ {1, ..,s}, (1.8) is a noncausal process, which

may be referred to as purely noncausal if φ1 = ...= φp = 0. When yt is a vector, (1.8) defines a

noncausal vector autoregressive process VAR(r,s) (Lanne and Saikkonen, 2013). An interesting

feature of the noncausal AR(r,s) process is its MA representation, which is both backward- and

forward-looking:

yt = ϕ(L−1)−1φ(L)−1εt =
∞

∑
j=−∞

ψ jεt− j, (1.9)

Since current observations of yt depend on future values of εt , it is no longer appropriate to refer

to εt as an innovation. One way of interpreting noncausality is that the time series yt is generated

by an economy in which agents form expectations based on information that is unobservable to

an econometrician who observes realizations of yt only. The residuals εt can therefore not be

interpreted as true shocks to the agents information set, i.e. they are nonfundamental (Hansen

and Sargent, 1991). In Chapter 4, I simulate examples of nonfundamentalness, by generating

time series which are part of a multivariate (VAR) or nonlinear (STAR) model. I then consider

an econometrician who observes one of these time series without knowledge of the correct data

generating process and tries to fit a linear univariate autoregression to the data. In many cases,

due to the missing information, noncausal autoregressions provide the best fit.

In order to estimate a noncausal autoregression, εt has to be non-Gaussian. For any non-

causal autoregression, a causal autoregression with identical first- and second-order moments

can be found, which can not be distinguished from its noncausal counterpart if εt is Gaussian.

Lanne and Saikkonen (2011b, 2013) provide ML estimators for noncausal (V)ARs under the

assumption of t-distributed errors. This is typically not a troubling assumption in the case of
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macroeconomic and financial data, as the t-distribution captures the fat tails discussed in the

previous section better than the Gaussian distribution.

Besides the autoregressive polynomial, it is also possible to allow for the moving-average

polynomial in (1.1) to have its roots inside the unit circle, resulting in a noninvertible ARMA

process (Meitz and Saikkonen, 2013). Although I do not use this class of models in this thesis, it

is worth mentioning in particular since these models have been proven useful recently in testing

for predictability of stock returns (Lanne et al., 2013).

To capture the observed volatility clustering as described in the previous section, another class

of nonlinear models is often used in financial econometrics. The assumption that the error term

εt is i.i.d., with a constant conditional variance, is replaced by the assumption that the condi-

tional variance of εt varies over time, depending on lagged squared error terms, resulting in the

so-called autoregressive conditional heteroscedasticity (ARCH(p)) model, introduced by Engle

(1982):

εt = σtνt

σ2
t ≡ Et

[
ε2

t

]
= ρ0 +ρ(L)ε2

t ,
(1.10)

in which ρ(z) = 1+ρ1z+ ...+ρpzp. As volatility is often fairly persistent, a high value of p can

be required to obtain a satisfactory fit. Bollerslev (1986) therefore introduced the Generalized

ARCH (GARCH(p,q)) model:

εt = σtνt

σ2
t ≡ Et

[
ε2

t

]
= ρ0 +ρ(L)ε2

t +δ (L)σ2
t ,

(1.11)

in which δ (z) = 1+ δ1z+ ...+ δqzq. A GARCH(1,1) is often able to capture rather persistent

volatility and is therefore preferred to the less parsimonious ARCH(p) model with a high num-

ber of lags p. (G)ARCH models are mainly useful in modeling volatility at high frequencies.

Throughout this thesis, as I am dealing with low-frequency data only, I assume that εt is i.i.d.

and therefore do not consider (G)ARCH type specifications.
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1.4 Discount factors, rationality and heterogeneity

I introduce the linear present value model and go over two generalizations that are considered

in this thesis: Consumption-based asset pricing and boundedly rational heterogeneous expecta-

tions. The price (Pt) of an asset should equal the discounted sum of the expected price in the

next period and any expected dividends (Dt+1) paid out in the meantime:

Pt = δEt [Pt+1 +Dt+1] . (1.12)

Iterating this equation forward results in the present value model, in which the price is deter-

mined by discounted dividend expectations only:

Pt =
∞

∑
i=1

δ iEt [Dt+i] . (1.13)

LeRoy and Porter (1981) and Shiller (1981) test the present value model by analytically de-

riving bounds for the volatility prices, implied by the present value model (1.13) and observed

dividends. The observation that these bounds are violated by the volatility of observed prices

is referred to as excess volatility. The result of excess volatility is robust to several alternative

tests (e.g. Campbell and Shiller, 1987, 1988 and West, 1988), typically involving a vector au-

toregressive representation of prices and dividends.

Partly motivated by the rejection of linear present value models, asset pricing research has

moved largely towards time-varying discount factors (See the surveys by Campbell, 2000, and

Cochrane, 2011):

Pt = Et [ζt+1 (Pt+1 +Dt+1)] , (1.14)

in which ζt denotes the stochastic discount factor (SDF), which varies over time according

to a certain stochastic process. A popular approach is the consumption-based discount factor,

linking asset markets to the real economy. The idea is that in each period, a representative agent

faces a choice between consuming the entire allocation of wealth, or postponing consumption
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by investing part of the wealth in a financial asset. The optimal discount factor for valuing the

asset can be shown to equal the intertemporal marginal rate of substitution:

ζt+1 = δ
U ′(Ct+1)

U ′(Ct)
, (1.15)

in which U ′(·) is the marginal utility of consumption, i.e. the first derivative of the utility func-

tion U(·) (See, e.g. Rubinstein, 1976, Lucas, 1978, Campbell, 2003, for details). Hansen and

Singleton (1982) show that this model can be estimated by the generalized method of moments

(GMM), using data on returns and aggregate consumption. The assumption of rational expec-

tations means that the difference between the expectation and realization is orthogonal to all

observable information. Equation (1.14) therefore implies the following moment condition:

E [(ζt+1Rt+1 −1)zt−1] = 0. (1.16)

in which Rt+1 =
Pt+1 +Dt+1

Pt
and zt−1 is a vector of predetermined instruments. Hansen and

Singleton (1982) choose lagged values of returns and consumption as instruments and assume a

constant relative-risk aversion utility function (U(Ct) = (1−γ)−1C
1−γ
t ). When the risk aversion

coefficient γ is equal to zero, the utility function is linear implying that agents are risk-neutral

and the SDF (1.15) becomes constant as in (1.12). I return to this procedure in Chapter 5.

Although the SDF can account for additional volatility in asset prices, the consumption-

based approach creates its own empirical problems such as the equity premium puzzle (Mehra

and Prescott, 1985). Observed stock returns are rather high, which implies an unrealistically

high degree of risk aversion γ . To overcome this problem, various more complex utility func-

tions have been proposed in order to generate high returns for moderate values of γ (e.g. Epstein

and Zin, 1989, and Campbell and Cochrane, 1999).

Besides time-variation in the discount factor, it is also possible to allow for time-variation in

the expectation operator. In the present value model (1.12) and the SDF model (1.14), expecta-

tions are assumed to be rational. Instead, several behavioral finance models have been proposed
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in which expectations are non-rational, based on limited information sets, and possibly hetero-

geneous (e.g. De Long et al., 1990a,b, Barberis et al., 1998, or Hong and Stein, 1999). In

Chapters 2, 3 and 4, I consider the class of models proposed by Brock and Hommes (1997,

1998), in which assets are priced by H types of boundedly rational agents who are allowed to

form heterogeneous expectations:

Pt = δ
H

∑
h=1

Gh,tE
h
t [Pt+1 +Dt+1] , (1.17)

in which Gh,t is the fraction of agents forming expectations according to Eh
t [·] at time t. Brock

and Hommes (1997, 1998) assume that the expectation operator Eh
t [·] is a simple linear uni-

variate prediction rule, not necessarily taking into account all available information. Agents

are allowed to switch between prediction rules, or strategies, based on evolutionary considera-

tions: More successful strategies become more popular. To this end, the fraction of each type is

modeled by multinomial logit probabilities:

Gh,t =
exp
[
βUh,t−1

]

H

∑
i=1

exp [βUi,t−1]

,
(1.18)

in which Uh,t is some metric evaluating the past performance of strategy h, such as realized

trading profits or forecast accuracy. In Chapter 2, I consider a variant of this model in which the

fractions of agents are determined by macroeconomic conditions. The metric Uh,t is therefore

replaced by a set of macroeconomic variables. Depending on the specification of the prediction

rules, the heterogeneous agent model (1.17)-(1.18) may be represented by a STAR model like

(1.6)-(1.7), such that the different regimes represent different prediction rules. Using annual

data on the S&P500 index, Boswijk et al. (2007) estimate a specific two-type example (H = 2)

of model (1.17)-(1.18), which is discussed in detail in Chapter 2.
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1.5 Review of the essays

Chapter 2: Heterogeneity in stock prices:

A STAR model with multivariate transition function

A heterogeneous agent asset pricing model, featuring fundamentalists and chartists, is applied

to the price-dividend and price-earnings ratios of the S&P500 index. Agents update their beliefs

according to macroeconomic information, as an alternative to the evolutionary selection scheme

in the heterogeneous agent models by Brock and Hommes (1998).

The asset pricing model can be parametrized as a STAR model, in which the two autoregres-

sive regimes represent the beliefs of each type of agent. To facilitate regime-switching based on

macroeconomic conditions, I generalize the transition function of the univariate STAR model

to a multivariate transition function, and propose a procedure based on linearity testing, follow-

ing Luukkonen et al. (1988), to select the appropriate linear combination of transition variables

from a larger set of macroeconomic variables. The results indicate that during periods of favor-

able economic conditions the fraction of chartists increases, causing stock prices to decouple

from fundamentals.

Chapter 3: Rational speculators, contrarians and excess volatility

In Chapter 3, I consider an evolutionary asset pricing model with three types of agents. Besides

rational long-term investors, that value assets according to expected long-term dividends, the

model includes rational and contrarian speculators with shorter investment horizons. In contrast

to Chapter 2, in which the agents choose between simple univariate expectation rules, in this

chapter the expectations of all agents are anchored in the same VAR model, which implies that

the VAR approach for testing present value models (Campbell and Shiller, 1987, 1988) can be

applied to evaluate the model empirically.

Supplementing the standard present value model with speculative agents dramatically im-

proves the model’s ability to replicate the observed dynamics of US stock prices over the period

1871-2011. In particular the existence of contrarians can explain some of the most volatile

16



episodes including the 1990s bubble, suggesting this was not a rational bubble. After allowing

for heterogeneous expectations, there is little evidence for time-variation in the discount factor.

Chapter 4: Noncausality and asset pricing

Recent literature finds that many macroeconomic and financial variables are noncausal, in the

sense that, within the class of linear (vector) autoregressions, these variables are best described

by noncausal models. In Chapter 4, I show that US stock prices are also noncausal. This implies

that agents’ expectations are not revealed to an outside observer such as an econometrician

observing only realized market data.

I show by simulation that misspecification of agents’ information sets or expectation for-

mation mechanisms may lead to noncausal autoregressive representations. In particular, asset

prices are found to be noncausal when the data are generated by heterogeneous agent models of

the type considered by Brock and Hommes (1998).

Chapter 5: GMM estimation with noncausal instruments

under rational expectations

I depart from the assumption of bounded rationality in Chapter 5, and consider a class of rational

expectations models, of which the standard consumption-based asset pricing model is a specific

example.

Lanne and Saikkonen (2011a) show that the GMM estimator is inconsistent, when the in-

struments are lags of variables that admit a noncausal autoregressive representation. I argue that

this inconsistency depends on the distributional assumption that the error terms in the regres-

sion model and in the noncausal autoregressive representation are jointly i.i.d., which does not

always hold. In particular under the assumption of rational expectations, which is the identify-

ing assumption for many macroeconomic and financial applications of GMM (e.g. Hansen and

Singleton, 1982), the GMM estimator is found to be consistent. This result is derived in a linear

context and illustrated by simulation of a nonlinear asset pricing model.
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Chapter 2

Heterogeneity in stock prices:

A STAR model with multivariate transition function
1

2.1 Introduction

Linear asset pricing models based on the efficient market hypothesis (EMH) are not well suited

to explain the observed dynamics of financial markets. According to these models, asset prices

reflect a rational forecast by the market of future cash flows (dividends) generated by the asset

and are therefore expected to be smoother than the actual cash flows. However, financial asset

prices such as stock prices are historically more volatile than real economic activity including

corporate earnings and dividends. Several studies (e.g. LeRoy and Porter, 1981; Shiller, 1981;

West, 1988; Campbell and Shiller, 1988, 2001) discuss this excess volatility in financial markets

and conclude that stock prices can not be explained by expected dividends alone.

Heterogeneous agent models provide an alternative to the EMH. In these models, the single

representative rational agent is replaced by boundedly rational agents who are heterogeneous

in beliefs, are not necessarily forecasting future dividends and may switch between trading

strategies over time. Hommes (2006) and Manzan (2009) provide surveys of such models in

economics and finance. The model in this paper is based on the work by Brock and Hommes

(1997, 1998), who introduce a simple analytically tractable heterogeneous agent model with

two types of agents: Fundamentalists and chartists. Fundamentalists believe, in accordance

with the EMH, that asset prices will adjust toward their fundamental value. Chartists (or trend-

1This chapter is based on an article published in the Journal of Economic Dynamics and Control (Lof, 2012)
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followers) speculate on the persistence of deviations from the fundamental value. I use data

on the S&P500 index to estimate a heterogeneous agent model in which macroeconomic and

financial variables simultaneously govern the agents’ switching between strategies. It turns out

that during periods of high economic growth, agents switch from fundamentalism to chartism,

i.e. loose sight of fundamentals and become more interested in following recent trends in asset

prices, which causes asset price bubbles to inflate.

Heterogeneous agent models are typically estimated empirically using regime-switching

regression models, with the distinct regimes representing the expected asset pricing processes

according to each type of agent. In particular smooth-transition regime-switching models such

as the smooth-transition autoregressive (STAR) models (Teräsvirta, 1994) are suitable, as the

modeled process is a time-varying weighted average of the distinct regimes. The time-varying

weights of the regimes are then interpretable as the fractions of agents belonging to each type.

Recent studies have estimated asset pricing models featuring chartists and fundamental-

ists for several types of asset prices including exchange rates (Manzan and Westerhoff, 2007;

De Jong et al., 2010), option prices (Frijns et al., 2010), oil prices (Reitz and Slopek, 2009;

Ter Ellen and Zwinkels, 2010) and other commodity prices (Reitz and Westerhoff, 2007).

Boswijk et al. (2007) apply the model by Brock and Hommes (1998) to price-dividend (PD)

and price-earnings (PE) ratios of the US stock market, finding that the unprecedented stock val-

uations observed during the 1990s are the result of a prolonged dominant position of the chartist

type over the fundamentalist type.

Agents are in general assumed to switch between strategies based on evolutionary consid-

erations. Boswijk et al. (2007) follow Brock and Hommes (1998) by letting the agents choose

their regime based on the realized profits of each type. Alternatively, the switching may be

based on relative forecast errors (Ter Ellen and Zwinkels, 2010), or on the distance between the

actual and fundamental price (Manzan and Westerhoff, 2007). In this paper, the agents’ choice

of strategy is not evolutionary, but varies instead over the business cycle. In practice, this means

I estimate a STAR model, in which the transition function depends on a linear combination of

exogenous or predetermined macroeconomic variables. This framework allows for identifying
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the macroeconomic conditions under which chartism or fundamentalism dominates the market.

The result that chartism is associated with economic expansion is novel but can be related

to existing results in the literature on the effects of the real economy on financial markets.

For example, Fama and French (1989), Campbell (2003) and Cooper and Priestley (2009),

amongst others, study the variation of risk aversion over the business cycle, and find more risk

appetite on financial markets during economic upturns. The interpretation of countercyclical

risk premiums is different from this paper. Instead of a rational representative agent becoming

less risk averse, I assume that under favorable economic conditions an increasing fraction of

agents chooses a more speculative trading strategy by becoming chartist. These findings are,

however, not necessarily inconsistent, as chartists are sometimes described as being less risk

averse than fundamentalists (Chiarella and He, 2002; Chiarella et al., 2009). Using a cross-

section of US stock returns, Chordia and Shivakumar (2002) find that momentum strategies are

profitable only during the most expansionary periods of the business cycle. Without making

any agent-based interpretations, Spierdijk et al. (2012) use a panel of stock market indices from

18 OECD countries to find that the speed of mean reversion towards the fundamental value

accelerates during periods of high economic uncertainty. This result confirms my findings since

a high speed of mean reversion implies a high fraction of fundamentalists.

The STAR model is typically univariate, in which the transition between regimes depends

on a lag of the dependent variable as in Teräsvirta (1994). Alternatively, the transition func-

tion may depend on a single exogenous or predetermined transition variable as in Reitz and

Westerhoff (2003), Reitz and Taylor (2008) and Reitz et al. (2011), who study the nonlinear

effects of purchasing power parity and central bank policies on exchange rates. In contrast to

these studies, I allow for a multivariate transition function depending on multiple exogenous

or predetermined transition variables with unknown weights, in order to estimate the nonlin-

ear effects of multiple economic variables simultaneously. Estimating this multivariate STAR

model raises two difficulties compared to the univariate STAR: Selection of the transition vari-

ables to include, and estimation of their weights. Medeiros and Veiga (2005) and Becker and

Osborn (2012) consider estimating STAR models with unknown weighted sums of transition
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variables, but both are limited to univariate models in which the transition functions depend on

linear combinations of different lags of the dependent variable. I propose to apply the linearity

test by Luukkonen et al. (1988) to select the transition variables from a large set of information

and simultaneously estimate their respective weights in the transition function. The resulting

STAR model with multivariate transition function provides a better fit to the PD and PE ratios

than linear models and STAR models with a single transition variable do, while the estimates

support the idea of a smooth transition between chartism and fundamentalism.

The next section presents the heterogeneous agent model and the STAR specification in

more detail. Data descriptions and linearity tests are given in Section 2.3 while Section 2.4

presents estimation results, interpretation and diagnostic checks. Section 2.5 concludes.

2.2 The model

In a simple linear present value asset pricing model, consistent with the efficient market hypoth-

esis, the price of a financial asset (Pt) equals the discounted sum of the expected asset price next

period and any expected cash flows (dividends, Dt+1) paid out on the asset in the coming period

(Gordon, 1959). Iterating forward, the price can be expressed as a infinite sum of discounted

expected dividends:

Pt =
1

1+ r
Et [Pt+1 +Dt+1]=

∞

∑
i=1

1

(1+ r)i
Et [Dt+i], (2.1)

in which the constant discount factor is given by (1+ r)−1. By introducing the dividend growth

rate gt , such that Dt = (1+gt)Dt−1, this equation can be rewritten as:

Pt

Dt
=

∞

∑
i=1

1

(1+ r)i
Et

[
i

∏
j=1

(
1+gt+ j

)
]
. (2.2)

According to equation (2.2), any movements of the PD ratio
(

Pt

Dt

)
can be caused only by time-

variation of the discount factor or by changed expectations on future dividend growth rates.

Under the assumption of a constant discount factor, an increase in the PD ratio should predict
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an increase in future dividends and vice versa. However, Campbell and Shiller (2001) argue that

neither the PD nor the PE ratio are good predictors for future dividend growth rates. Instead,

both valuation ratios work well as a predictor for future stock returns. High valuation ratios

predict decreasing stock prices, while low ratios predict increasing prices (Campbell and Shiller,

2001).

The assumption of a constant discount factor is very restrictive. Instead, modern asset pric-

ing models often incorporate a stochastic discount factor (SDF), representing the time-varying

risk aversion of a representative agent (Cochrane, 2011). Nevertheless, Campbell and Shiller

(1988) show that the finding of excess volatility is robust to several time-varying discount fac-

tors, including discount factors based on consumption, output, interest rates and return volatility.

Brock and Hommes (1998) provide an alternative to the present-value relationship (2.1) and

the SDF framework, by allowing asset prices to depend on the expectations of H different types

of boundedly rational agents:

Pt =
1

1+ r

H

∑
h=1

Gh,tE
h
t [Pt+1 +Dt+1] , (2.3)

with Eh
t [·] representing the beliefs of agent type h. The fraction of agents following trading

strategy h at time t is denoted by Gh,t . For analytical tractability, Brock and Hommes (1998)

assume a constant discount factor. This model nests the standard present-value model; when all

types have rational beliefs (i.e. Eh
t [·] = Et [·] ∀h), model (2.3) reduces to (2.1). Boswijk et al.

(2007) show that if dividends are specified as a geometric random walk process, model (2.3)

can be reformulated as follows:

yt =
1

1+ r

H

∑
h=1

Gh,tE
h
t [yt+1] , (2.4)

in which yt is defined as the PD ratio in deviation from its fundamental value. The results of

Campbell and Shiller (2001) suggest to estimate mispricings in the market as the PD ratio in
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deviation from its long-run average:

yt =
Pt

Dt
−µ, (2.5)

in which µ = 1
T

T

∑
t=1

Pt

Dt
represents an estimate of the fundamental value of the PD ratio. yt gives

the size of the bubble in the market, which can be negative as well as positive. The asset is

over-valued if yt > 0 and under-valued if yt < 0. The price of the asset Pt can be decomposed in

an estimated fundamental value µDt and bubble ytDt :

Pt = µDt + ytDt (2.6)

A widely cited example of model (2.3) distinguishes two types of agents, fundamentalists and

chartists, who are both aware of the fundamental value, but disagree about the persistence of the

deviation from this fundamental value. The fundamentalists’ strategy is to buy stocks when the

market is undervalued and sell when the market is overvalued. They believe in mean reversion;

mispricings in the market should disappear over time: EF
t [yt+1] = ηFyt−1, with ηF < 1+ r.

Chartists (or trend-followers), on the other hand, speculate that the stock market will continue

to diverge from its fundamental valuation: EC
t [yt+1] = ηCyt−1, with ηC > 1+ r.

By substituting these two beliefs into (2.4) and allowing the fractions of both agent types to

vary over time, the asset pricing process can be described by a smooth-transition autoregressive

(STAR) process:

yt = αFyt−1(1−Gt)+αCyt−1Gt + εt , (2.7)

with αF = ηF/(1+ r) < 1 and αC = ηC/(1+ r) > 1. The transition function Gt defines the

fraction of chartist in the market. The fraction of fundamentalists is in this two-type model is

given by 1−Gt . Although both types use a linear prediction rule, the time-varying fractions

of each agent type makes the process nonlinear and, under certain parametrizations, chaotic

(Brock and Hommes, 1998).

Boswijk et al. (2007) estimate a variant of this model for both the PD and PE ratio of the
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S&P 500 index, in deviation from their mean, for the period 1871 to 2003. They follow Brock

and Hommes (1998) by letting agents update their beliefs based on the realized profits of each

type in the previous period. Under these evolutionary dynamics, agents switch from the less

profitable strategy to the more profitable strategy. The transition function therefore becomes a

logistic function depending on lagged values of the dependent variable:

Gt = (1+ exp[−γ(ηC −ηF)yt−3(yt−1 − (1+ r)yt−2)])
−1 , (2.8)

in which γ represents the intensity of choice of the agents. If γ → ∞ all agents choose the

strategy that was most profitable in the previous period. On the other hand, if γ = 0, the fraction

of both types is exactly 50% in all periods, independent of the realized profits.

Instead of these evolutionary dynamics, I let the agents base their choice of strategy on

macroeconomic and financial information, which can be interpreted as an extension of the

agents’ information set. Of interest is to find which economic conditions can be associated

with each type of agent.

The transition function Gt is a logistic function, as in the logistic STAR (LSTAR) model by

Teräsvirta (1994):

Gt = (1+ exp[−γ(xt − c)])−1 , (2.9)

in which the transition variable xt is usually a lagged value or lagged difference of the dependent

variable, but can be any predetermined or exogenous variable. The transition function may also

depend on a linear combination of variables:

Gt = (1+ exp[−γ(Xtβ − c)])−1 , (2.10)

with Xt = [x1,t . . .xp,t ] and p is the number of included transition variables. For this model; γ , c

and β can not be all identified. This problem can be solved by placing a restriction on β . In this

paper, the elements of β are restricted to sum to one, so that Xtβ is a weighted sum of multiple

transition variables.
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Figure 2.1: S&P 500 index 1881Q1-2011Q4: price-dividend ratio (left) and price-earnings ratio (right).

2.3 Data and linearity tests

Figure 2.1 shows quarterly data of the PD (left) and PE (right) ratios of the S&P500 index since

18812. These valuation ratios show the level of the S&P500 index relative to the cash flows

that the indexed stocks are generating. In particular the path of the PE ratio (right) seems stable

or mean-reverting in the long run. Even after reaching record levels around the start of this

century, the PE ratio recently dropped again below its average value during the credit crisis in

2009. This latest peak is comparable in size to earlier episodes, most notably the 1920s. For

the PD ratio, this pattern is less clear. Due to relatively low dividend payouts by listed firms

in recent decades (Fama and French, 2001), the PD ratio climbs during the 1990s to much

higher levels than during any earlier peaks in the market. Although the model in Section 2.2

is expressed in terms of the PD ratio, I estimate the STAR model with both these valuation

ratios as the dependent variable. Earnings are smoothed over a period of ten years, creating the

so-called cyclically adjusted PE ratio. Both valuation ratios are taken in deviation from their

average value.

I follow the specification, estimation and evaluation cycle for STAR models proposed by

Teräsvirta (1994). The specification stage includes the selection of the appropriate lag structure

and justification of STAR modeling by testing for linearity. To find the optimal lag length, I

estimate linear AR(q) models including up to six lags for both the PD and PE ratio. Table

2.1 shows the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) for

all specifications. For both valuation ratios, the AR(1) model is selected as the appropriate

specification. The STAR model is therefore estimated with an autoregressive structure of one

2Source: Robert Shiller, http://www.irrationalexuberance.com/index.htm
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TABLE 2.1: AR(q): Selection criteria

yt q: 1 2 3 4 5 6

PDt

AIC -699.5 -696.7 -691.2 -686.7 -680.5 -676.7

BIC -692.8 -686.7 -677.8 -670.1 -660.6 -653.5

PEt

AIC -681.8 -678.1 -672.4 -669.7 -664.9 -662.1

BIC -675.2 -668.1 -659.1 -653.1 -645.0 -638.9

Notes: Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) for AR(q) models. Sample size

(for yt = PDt and yt = PEt ) is 208 observations: 1960Q1-2011Q4.

lag, as in equation (2.7). At the end of this paper, I verify the sufficiency of this lag structure by

submitting the residuals from the final STAR model to a test of serial independence.

The next step is to test for linearity and simultaneously select the transition variables. I con-

sider a set of financial and macroeconomic indicators as potential transition variables3. The first

set of indicators is related to the performance of the stock market and includes both dependent

variables (PD and PE), monthly returns (RET ) and the volatility of the S&P500 index (VOL),

defined as the variance of daily returns in each quarter. For the other indicators I follow the

choice of variables by Campbell (2003), who uses business cycle indicators, inflation and inter-

est rates to study the cyclical properties of risk premiums. The business cycle indicators con-

sidered by Campbell (2003) are real GDP (GDP) and consumption (CON). I supplement these

indicators with the output gap (OPG) and industrial production (IND). The inflation rates are

the consumer price index (CPI) and GDP deflator (DEF). The interest rates used by Campbell

(2003) are the short-term yield on 3-month US treasury bills (STY ) and the long-term yield on

10-year US treasury notes (LTY ). I add to this the 10-year yield on Baa-rated corporate bonds

(CBY ) and construct the term spread (T SP = LTY − STY ) and the yield spread of corporate

bonds over sovereign bonds (Y SP =CBY −LTY ). While the business cycle indicators measure

the current state of the economy, these interest rates and spreads contain expectations on future

macroeconomic conditions (Bernanke, 1990; Estrella and Mishkin, 1998). GDP, CON, IND,

CPI and DEF are measured in quarter-on-quarter growth rates. OPG is a percentage of GDP.

For the interest rates and the output gap I look at both levels and first differences (denoted by △).

3 Source: FRED® (Federal Reserve Economic Data)
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These data are not available for the full period of S&P500 data, so the model is estimated using

208 observations (1960Q1-2011Q4). All variables are standardized (demeaned and divided by

their standard deviation), to accommodate numerical estimation of the nonlinear model. For all

explanatory variables, I consider both first and second lags, which are therefore predetermined

with respect to the dependent variable.

To determine which of these variables are valid transition variables in the STAR model, they

are submitted to a linearity test based on a Taylor approximation of the STAR model following

Luukkonen et al. (1988). First, I consider the univariate transition function (2.9). A third-order

Taylor approximation of (2.7) with univariate transition function (2.9) around γ = 0 gives:

yt = φ0 +φ1yt−1 +
3

∑
i=1

φ1+iyt−1xi
t + et . (2.11)

Linearity can now be tested by estimating this Taylor approximation by OLS and testing the

null hypothesis Ho : φ2 = φ3 = φ4 = 0. Rejection of linearity implies that xt is a valid transition

variable.

Results of the linearity tests are given in Table 2.2, which shows the test statistics and cor-

responding P-values. The test statistic is asymptotically F(n,T − k− n− 1) distributed under

the null, with T = 208 (observations), k = 2 (unrestricted parameters) and n = 3 (restricted pa-

rameters). An asymptotically equivalent χ2-test may be applied here as well, but the F-test has

preferable properties in small samples (Teräsvirta et al., 2010). The results in Table 2.2 show

that several variables are valid transition variables.

I consider the LSTAR only, since a logistic transition function follows directly from the

logit switching rule in the model by Brock and Hommes (1998). Alternatively, the transition

function could be an exponential function as in the ESTAR model. To verify that the LSTAR

is the correct model, I apply a sequence of three F-tests based on (2.11) proposed by Teräsvirta

(1994) to choose between both transition functions: Ho1 : φ4 = 0, Ho2 : φ3 = 0 | φ4 = 0 and

Ho4 : φ2 = 0 | φ3 = φ4 = 0. If H02 yields a stronger rejection than H01 and H03, the ESTAR

model is the best choice. Otherwise, the LSTAR model is preferred. Table 2.2 shows that with
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TABLE 2.2: Linearity tests: Univariate transition function

yt = PDt yt = PEt

lag t −1 t −2 t −1 t −2

x F P L/E F P L/E F P L/E F P L/E

PD 0.667 0.573 L 0.974 0.406 L 3.359 0.020 E 2.811 0.041 E

PE 0.236 0.871 E 0.282 0.838 L 0.512 0.674 L 0.475 0.700 L

RET 2.407 0.068 E 0.600 0.616 L 2.741 0.044 E 0.266 0.850 E

VOL 1.621 0.186 L 0.818 0.486 L 0.496 0.686 L 0.541 0.655 L

GDP 4.742 0.003 L 0.868 0.459 L 3.495 0.017 L 0.574 0.633 L

CON 2.596 0.054 L 0.873 0.456 L 0.849 0.469 L 0.484 0.694 E

OPG 1.555 0.202 L 0.337 0.799 L 0.483 0.694 E 1.820 0.145 E

△OPG 3.847 0.010 L 0.760 0.518 L 3.299 0.021 L 0.614 0.607 L

IND 5.073 0.002 L 2.845 0.039 L 4.358 0.005 L 2.249 0.084 L

CPI 1.119 0.342 L 1.084 0.357 L 1.261 0.289 L 0.732 0.534 L

DEF 2.639 0.051 L 1.201 0.311 L 4.102 0.007 L 1.472 0.223 L

STY 1.139 0.334 L 1.247 0.294 L 1.205 0.309 L 1.339 0.263 L

△STY 0.254 0.858 L 1.475 0.223 L 0.162 0.922 L 0.577 0.631 L

LTY 0.238 0.870 L 0.577 0.631 E 0.283 0.838 L 0.833 0.477 L

△LTY 0.496 0.686 L 0.565 0.639 L 0.335 0.800 L 0.519 0.670 L

TSP 2.591 0.054 L 2.724 0.045 L 1.476 0.222 E 1.498 0.216 L

CBY 0.128 0.943 E 0.163 0.921 E 0.056 0.982 L 0.071 0.975 E

△CBY 0.391 0.760 L 0.076 0.973 L 0.109 0.955 L 0.354 0.787 L

YSP 1.414 0.240 L 1.971 0.119 L 1.375 0.252 L 2.216 0.087 L

Notes: F-test statistics and corresponding P-values for Ho : φ2 = φ3 = φ4 = 0 in equation (2.11), using both first and

second lags of several transition variables. L/E refers to the LSTAR or ESTAR model selected by the procedure of

Teräsvirta (1994).

most transition variables, the LSTAR (marked by L) is the preferred specification. Teräsvirta

(1994) further recommends to estimate the STAR model with the transition variable for which

rejection of linearity is the strongest. However, the fact that linearity is rejected for different

transition variables suggests to incorporate more than one variable in the transition function.

Allowing for a multivariate transition function, I now propose a similar procedure based

on linearity tests to select the appropriate transition variables X = [x1 . . .xp]. From substituting

xt = Xtβ into (2.11) it becomes clear that this Taylor approximation can not be estimated by

OLS if the weights β are unknown. To circumvent this problem, I first estimate β based on a

first-order Taylor approximation4 of (2.7), with a multivariate transition function (2.10) around

4A linearity test based on a first-order Taylor approximation does not allow to choose between a LSTAR and

ESTAR, but does provide power against STAR nonlinearity in general, except when the regime switching is in the

intercept rather than the autoregressive parameters (Luukkonen et al., 1988).
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γ = 0:

yt = φ0 +φ1yt−1 +φ2yt−1(Xtβ )+ et , (2.12)

or:

yt = φ0 +φ1yt−1 +
p

∑
i=1

θiyt−1xi,t−1 + et , (2.13)

such that θi = φ2βi. This Taylor approximation can be estimated by OLS for any set of ex-

planatory variables, after which the OLS estimates θ̂ and the restriction
p

∑
i=1

βi = 1 can be used

to derive estimates of β :

θi = φ2βi

p

∑
i=1

θi = φ2

p

∑
i=1

βi = φ2

β̃ j =

(
p

∑
i=1

θ̂i

)−1

θ̂ j. (2.14)

Selecting the optimal set of transition variables consists of the following steps. First, I estimate

(2.13) for each possible set of one to four transition variables, which never includes more than

one variable out of each of the following four groups: (i) Stock market indicators, (ii) business

cycle indicators, (iii) inflation rates and (iv) interest rates and spreads. This approach limits the

number of sets under consideration and, because several variables within each group are highly

correlated, it avoids multicollinarity within the transition function. For each set, I then compute

β̃ , following (2.14) and perform a t-test on each element of β̃ . In trying to avoid selecting an

overfitted model, I proceed only with those sets of variables for which all elements of β̃ are

significant at the 10% level. For these selected sets, I substitute xt = Xt β̃ into the third-order

Taylor approximation (2.11) in order to test the null hypothesis Ho : φ2 = φ3 = φ4 = 0. Finally,

I choose the set of variables yielding the strongest rejection of linearity as the optimal set of

transition variables. Table 2.3 reports the final results of this test procedure. With the selected

linear combinations of transition variables, the rejection of linearity is stronger than with any

of the single transition variables in Table 2.2. In both cases the LSTAR model is preferred over

the ESTAR.
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TABLE 2.3: Linearity tests: Multivariate transition function

yt Xt β1 β2 β3 F P L/E

PDt (VOLt−1, INDt−1,STYt−2) 0.20 0.54 0.26 7.98 4.7×10−5 L

PEt (INDt−1,DEFt−2) 0.67 0.33 . 7.79 6.0×10−5 L

Notes: Optimal set of transition variables Xt in terms of the highest F-test statistics and lowest P-values for Ho :

φ2 = φ3 = φ4 = 0 in equation (2.11), with xt = Xtβ . L/E refers to the LSTAR or ESTAR model selected by the

procedure of Teräsvirta (1994). The elements of β are estimated based on equations (2.13)-(2.14)

2.4 Results

The parameter estimates for the STAR model are presented in Table 2.4. The models are es-

timated by nonlinear least squares, preceded by a (p+ 1)-dimensional grid search for γ , c and

the (p−1) free elements of β to find starting values. The selection criterion in this grid search

is the sum of squares of the STAR model, which can be estimated by OLS when γ , c and β are

kept fixed. The estimated autoregressive parameters of each regime are denoted by α1 and α2,

rather than αC and αF , because the latter notation implies restrictions on these parameters that

I do not impose during estimation.

TABLE 2.4: Parameter estimates for STAR model

yt Xt α1 α2 γ c β1 β2 β3

PDt INDt−1

0.948 1.098 80.44 0.375 . . .

(0.010) (0.021) (52.79) (0.012) . . .

PEt INDt−1

0.898 1.019 1244 -0.371 . . .

(0.016) (0.011) (1247) (2.148) . . .

PDt (VOLt−1, INDt−1,STYt−2)
0.917 1.101 7.452 0.123 -0.012 0.721 0.291

(0.017) (0.026) (2.572) (0.089) (0.076) (0.077) (0.040)

PEt (INDt−1,DEFt−2)
0.841 1.045 4.739 -0.372 0.656 0.344 .

(0.036) (0.023) (1.873) (0.135) (0.069) (0.069) .

Notes: NLS parameter estimates for model (2.7) with univariate transition function (2.9) or multivariate transition

function (2.10). Standard errors in parenthesis. All estimated models include a constant, which are not significantly

different from zero and are therefore not reported.

The top rows of Table 2.4 show the parameter estimates for the STAR models (2.7) with

univariate transition function (2.9), using the transition variable for which rejection of linearity

is the strongest, which is the first lag of industrial production (INDt−1) for both valuation ratios.

Because there is only one transition variable, there are no weights β to estimate. Although both

estimated models include a mean-reverting and a trend-following regime, the results are not
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entirely consistent with the spirit of the heterogeneous agent model by Brock and Hommes

(1998), because the intensity of choice parameter γ is so high that the fraction of each type is

either zero or one. Contrary to the idea of heterogeneous beliefs these results suggest that the

entire population of agents makes the same switch simultaneously.

The bottom rows of Table 2.4 show the STAR models (2.7) with multivariate transition

function (2.10). With multiple transition variables, the estimates of γ are lower, in support of

a smooth transition between the regimes. In both estimated models, two distinct regimes are

identified. Each specification has one autoregressive parameter significantly smaller than one

(representing the fundamentalist type), while the other autoregressive parameter is significantly

greater than one (representing the chartist type). Interpreting β reveals that chartists are more

dominant during periods of economic expansion, while the fraction of fundamentalists increases

during economic downturns.

With yt = PDt , the effect of volatility (VOLt−1) does not seem significant. I keep this transi-

tion variable in the model, because excluding it does not improve the fit of the model. Industrial

production growth (INDt−1) has a positive coefficient, implying in this case it supports the

chartist type. An increase in industrial production causes an increase in the fraction of chartists

in the economy. Also the short-term yield on 3-month treasury bills (STYt−2) has a positive co-

efficient. A high yield on low-risk assets like treasury bills implies low levels of risk aversion,

and in this model a high fraction of chartists. With yt = PEt , the model does not include the ex-

act same set of transition variables, but the results tell a similar story: Chartism is the dominant

strategy during expansive periods, signaled by high industrial production growth (INDt−1) and

inflation (DEFt−2).

Several measures are applied to evaluate the fit of the STAR model, compared to the fit of

an AR(1) model and the linear regression model:

yt = ω1yt−1 +Xtω2 + et , (2.15)

which includes the same explanatory variables as the STAR model. Table 2.5 presents, in
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addition to the R2, AIC and BIC of all models, the results of a pseudo out-of-sample forecasting

exercise. Using an expanding window approach, I estimate all models using a subset of the

data (1960Q2-S) and use the estimated models to compute forecasts for period S + 1. This

process is repeated 48 times, creating pseudo out-of-sample forecasts for the period (2000Q1-

2011Q4), from which Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE)

are computed. Due to the high persistency of the valuation ratios, the R2 of all models including

the univariate AR(1) are relatively high. The improved fit of the STAR model over the linear

alternatives is small but seems robust to several measures. According to the AIC, BIC and out-

of-sample results, the STAR model with multivariate transition function outperforms its linear

alternatives as well as the STAR model with a univariate transition function. The result that the

STAR model (2.7)-(2.10) has a better fit than the linear model (2.15) implies that the variables in

Xt work better in explaining the switching process between mean-reverting and trend-following

regimes than they do in explaining the level of PDt and PEt , which supports the notion of

chartism and fundamentalism. The macroeconomic information is not simply correlated with

stock prices but has an effect on the nonlinear adjustment towards the fundamental value. Table

2.5 also shows the test statistics and bootstrap P-values for the linearity test by Hansen (1996,

1997). Like the linearity tests in Section 2.2, these tests show strong rejections of linearity, with

P-values lower than 1%.

An intuitive interpretation of the results is found by giving (2.7) the alternative formulation

of an AR(1) process with a time-varying parameter:

yt = δtyt−1 + εt , (2.16)

in which δt = α1(1−Gt)+α2Gt , which can be interpreted as an indicator of market sentiment.

When δt > 1 the valuation ratio is diverging from its mean, implying that the chartist regime is

dominant, while the valuation ratio is mean-reverting when δt < 1. Figure 2.2 offers a graphical

evaluation of both estimated models by showing plots of δt over time and scatter plots of Gt

against X ′
t−1β , evaluated at the estimates of the multivariate STAR model. Because of the
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TABLE 2.5: Goodness of fit

yt Xt model R2 AIC BIC MAE RMSE F lin P (boot)

PDt . AR(1) 0.966 -699.5 -692.8 1.317 1.526 . .

PDt INDt−1 Linear 0.966 -697.5 -687.5 1.321 1.532 . .

PDt INDt−1 STAR 0.970 -718.0 -704.7 1.292 1.490 23.81 0.002

PDt (VOLt−1, INDt−1,STYt−2) Linear 0.967 -699.1 -682.4 1.323 1.538 . .

PDt (VOLt−1, INDt−1,STYt−2) STAR 0.971 -723.3 -710.0 1.283 1.490 29.79 0.001

PEt . AR(1) 0.963 -681.8 -675.2 0.943 1.227 . .

PEt INDt−1 Linear 0.963 -679.9 -669.9 0.946 1.231 . .

PEt INDt−1 STAR 0.966 -696.1 -682.7 0.919 1.196 19.06 0.003

PEt (INDt−1,DEFt−2) Linear 0.965 -686.1 -672.8 0.940 1.216 . .

PEt (INDt−1,DEFt−2) STAR 0.967 -701.1 -687.8 0.904 1.193 24.62 0.002

Notes: Measures of goodness of fit of the STAR models from Table 2.4, a linear AR(1) model and the linear models

(2.15) including the same explanatory variables as the STAR. Mean Absolute Errors and Root Mean Square Errors

are computed from 48 pseudo out-of-sample forecasts for 2000Q1-2011Q4. The F-test for linearity by Hansen

(1996, 1997) tests Ho : α1 = α2 in the STAR model. The corresponding bootstrap P-value is computed based on

10.000 replications.

relatively low value of the intensity of choice parameter γ , both scatter plots on the right side of

Figure 2.2 clearly show a logistic curve. Most of the time, both chartists and fundamentalists

are represented in the economy, with δt fluctuating around one. In 2001 and again in 2008 the

market turned almost completely to the fundamentalist type for a prolonged period, causing the

bubble built up in the 1990s to deflate.

Finally, the estimated multivariate models in Table 2.4 are evaluated with diagnostic checks.

Table 2.6 presents results on tests of serial independence, parameter constancy and no remaining

nonlinearity. Eitrheim and Teräsvirta (1996) provide technical details on all three tests.

The test of serial independence test the null hypothesis of no qth order autocorrelation in

the residuals. For a qth order test, the resulting test statistic is asymptotically F(q,T − q−

4) distributed under the null, with T = 208 (sample size). I execute this test for first- up to

fourth-order autocorrelation. For both models, the test results give no reason the reject the null

hypothesis, confirming the sufficiency of an autoregressive structure of only one lag.

Under the null hypothesis of no time-variation of the parameters in (2.7) and (2.10), the

parameter constancy test statistic is asymptotically F(6,T −10) distributed. Also this test gives

no reason to reject the specification.
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yt = PDt , Xt = (VOLt−1, INDt−1,STYt−2)
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yt = PEt , Xt = (INDt−1,DEFt−2)
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Figure 2.2 :Regression results: Plot (left) of δt = α1(1−Gt)+α2Gt over time and scatterplot (right) of

Gt against Xtβ , evaluated at parameter estimates in Table 2.4.

The test of no remaining nonlinearity checks whether any variable has a significant nonlinear

effect on the residuals. This could be the case when a transition variable is omitted, or when

these variables have an effect on yt through some other nonlinear channel. The test statistic

is asymptotically F(3,T − 6) distributed under the null. This test is repeated for the first lags

of all potential transition variables considered in this paper. For the majority of the variables,

the null hypothesis of no remaining non-linearity can not be rejected at the 10% level. There

are some exceptions, in particular lagged returns (RETt−1), but including these variables in the

transition function does not improve the fit of the model. Given that the test is repeated for

many variables, it is possible that the rejections are Type I errors. Overall, the results of these

diagnostic checks are positive and provide support to the specification of the model.

2.5 Conclusion

In this paper, I identify two types of agents: fundamentalists and chartists. The presence of

chartists, who are predicting trends rather than fundamentals, explains the existence of bubbles

in asset prices. To estimate the effects of macroeconomic conditions on the behavior of agents,

I propose a STAR model with a multivariate transition function. This STAR model outperforms
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TABLE 2.6: Diagnostic tests

yt PDt PEt

Xt (VOLt−1, INDt−1,STYt−2) (INDt−1,DEFt−2)

F P F P

Serial independence: 1st 1.380 0.242 1.327 0.251

2nd 0.804 0.449 0.805 0.448

3rd 0.921 0.432 1.683 0.172

4th 0.846 0.498 1.250 0.291

Parameter constancy: 1.225 0.295 1.529 0.170

No remaining nonlinearity: PDt−1 1.210 0.307 4.195 0.007

PEt−1 0.389 0.761 2.974 0.033

RETt−1 4.878 0.003 4.816 0.003

VOLt−1 2.267 0.082 0.651 0.583

GDPt−1 0.835 0.476 0.943 0.421

CONt−1 0.639 0.591 0.326 0.807

OPGt−1 0.425 0.735 0.445 0.721

△OPGt−1 0.635 0.593 0.837 0.475

INDt−1 0.126 0.945 0.645 0.587

CPIt−1 1.231 0.299 1.478 0.222

DEFt−1 2.131 0.097 4.832 0.003

STYt−1 0.090 0.966 0.616 0.605

△STYt−1 0.277 0.842 1.730 0.162

LTYt−1 0.778 0.508 0.459 0.711

△LTYt−1 0.200 0.896 0.886 0.449

TSPt−1 1.192 0.314 1.283 0.281

CBYt−1 0.811 0.489 0.472 0.702

△CBYt−1 0.577 0.631 0.164 0.920

YSPt−1 0.469 0.704 0.048 0.986

Notes: F-test statistics and corresponding P-values for first- to fourth-order serial independence, parameter con-

stancy and no remaining non-linearity (Eitrheim and Teräsvirta, 1996)

STAR models with a single transition variable as well as linear alternatives in terms of goodness-

of-fit.

Agents are more willing to believe in the persistence of bubbles during times of positive

macroeconomic news. Chartists gain dominance during periods of favorable economic con-

ditions, mainly measured by industrial production. The fraction of fundamentalists increases

during economic downturns, which encourage agents to re-appreciate fundamentals.

Further research in this area may include an investigation of international stock markets, in

order to find whether the switching between chartism and fundamentalism is based on the same
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factors and occurs simultaneously across countries. In addition, the framework presented in this

paper is suitable to find the macroeconomic conditions under which any asset price deviates

from some measure of fundamental value. Other possible applications include the deviation of

exchange rates from purchasing power parity (see e.g. Rogoff, 1996), or the term structure of

interest rates in deviation from the expectations hypothesis (see e.g. Mankiw and Miron, 1986).
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Chapter 3

Rational speculators, contrarians and excess volatility
1

3.1 Introduction

Prices of financial assets are typically more volatile than real economic activity. As a result, it is

often impossible to associate asset price fluctuations with news regarding dividends underlying

the asset. This excess volatility of asset prices with respect to dividends has been documented in

many studies, such as Shiller (1981), Campbell and Shiller (1987), West (1988), or the survey

by Gilles and LeRoy (1991). The behavioral finance literature has proposed various models

to accommodate this excess volatility as well as other market anomalies (See e.g. the surveys

by Hirshleifer, 2001, Barberis and Thaler, 2003, and Shiller, 2003). In such models, price

movements can occur due to investor sentiment rather than fundamental news. Agents may

make investment decisions based on expected price movements in the short run rather than

expected dividends in the long run and often form non-rational expectations based on limited

information sets and underparameterized models (See e.g. De Long et al., 1990a,b, Barberis

et al., 1998, or Hong and Stein, 1999).

I consider a simple asset pricing model with three types of agents: Rational long-term

investors, rational speculators and contrarians. These agents are allowed to have heteroge-

neous investment horizons and may form heterogeneous expectations regarding short-term price

1This chapter is based on HECER Discussion Paper 358 (Lof, 2012b)
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movements. Nevertheless, all three types hold identical information sets and have their expecta-

tion formation mechanisms anchored in the same vector autoregressive (VAR) representation of

prices and dividends. The model can therefore be evaluated empirically using the VAR approach

for testing present value models, pioneered by Campbell and Shiller (1987, 1988), for which I

use a dataset containing annual observations on the S&P500 index and underlying dividends for

the period 1871-20112. Even if there is no disagreement at all among the agents regarding ex-

pected dividends, the model is able to generate prices far more volatile than the standard present

value model. Statistical tests indicate that the model is preferred to alternative representative

agent models in which only one of the considered expectation formation mechanisms exists.

The first two agent types both act in accordance with the standard present value model. The

only characteristic separating these agents is their investment horizon. The first type makes

long-term investments and therefore values assets according to the cash flows (dividends) that

the asset is expected to generate. I refer to agents of this type as rational long-term investors,

while the term fundamentalism is also used in the literature to describe this behavior.

The second type is only interested in one-period returns, so that the main determinant of the

asset’s current value is the expected selling price in the next period. This speculative behavior

is similar to that of the trend followers or the momentum traders considered in the literature, for

example by Brock and Hommes (1998), or Hong and Stein (1999). However, while trend fol-

lowers and momentum traders in general form expectations based on a simple univariate model

and a limited information set, typically by extrapolating recent returns, the short-term investors

considered in this paper form expectations by using the exact same model and information set

as the rational long-term investors. I therefore refer to these agents as rational speculators.

I refer to the first two types of agents as rational, even if they are, strictly speaking, bound-

edly rational. Their expectation formation mechanism is represented by a VAR model. These

expectations would be fully rational if the VAR is the true data generating process. Although

I show that the VAR provides an appropriate characterization of the data, it remains only an

2Source: http://www.econ.yale.edu/~shiller
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approximation, which does not take all aspects of the data generating process, such as the exis-

tence and strategies of other agents, explicitly into account.

The third type of agent also follows a short-term strategy. Regarding expected price changes,

however, this type takes the exact opposite, or contrarian, stance from the rational speculators.

These agents are therefore referred to as contrarian speculators, or contrarians. When the ratio-

nal speculators expect an x% increase in the price, the contrarians expect an x% decrease and

vice versa.

Several studies provide empirical evidence showing that agents do indeed sometimes em-

bark on such contrarian strategies, (e.g. Kaniel et al., 2008, or Grinblatt and Keloharju, 2000),

which is further supported by experimental evidence by Bloomfield et al. (2009). In addi-

tion, Park and Sabourian (2011) provide a theoretical justification of contrarian behavior, while

Lakonishok et al. (1994), Jegadeesh and Titman (1995), and Dechow and Sloan (1997) dis-

cuss the profitability of such strategies. This paper does not provide a theory or intuition for

contrarian behavior. Instead, I motivate the existence of contrarians empirically, by showing

that observed market dynamics can be replicated rather well when a certain fraction of mar-

ket participants is forming contrarian expectations. While the existence of rational speculators

can explain much of the volatility observed on financial markets, the contrarians turn out to

be an essential element of the model in order to approximate observed prices also in terms of

correlation.

Contrarian beliefs are in particular helpful in explaining the high valuations that the stock

market reached at the end of the 1990s, mainly driven by technology stocks. Whether this

episode constituted a bubble has been the subject of debate among many authors, including

Ofek and Richardson (2003), Pástor and Veronesi (2006), Bradley et al. (2008), O’Hara (2008)

and Phillips et al. (2011). The results in this paper indicate that dividend expectations are not

the dominant factor in the observed price increases during the 1990s. In this sense, it could be

justified to classify this event as a bubble. Nevertheless, it was not a rational bubble as defined

by Blanchard and Watson (1982), since the results show that rational speculators would have

driven the market in the opposite direction. Instead, the observed dynamics of the 1990s can
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be closely approximated by the contrarian valuation model, suggesting that nonrational beliefs

inflated this bubble.

To capture the observed regime switching behavior of financial markets (documented by

e.g. Ang and Bekaert, 2002, or Guidolin and Timmermann, 2008), I allow the agents to switch

between strategies. Agents are assumed to observe the recent performance of each strategy and

choose their own strategy accordingly, following the evolutionary selection scheme introduced

by Brock and Hommes (1997, 1998). This scheme has been applied in many theoretical and

empirical studies of heterogeneous agent models in finance, including Boswijk et al. (2007),

Branch and Evans (2010) and Lof (2013). Similar concepts, in which agents apply learning

principles to update expectations are considered by Timmerman (1994), Hong et al. (2007),

and Branch and Evans (2011), among others. Hommes et al. (2005) and Bloomfield and Hales

(2002) provide experimental evidence in favor of such principles being applied in the formation

of expectations. Alternatively, the fractions of different types of agents may be held constant

(Szafarz, 2012), or vary according to an exogenous process, such as the business cycle (Lof,

2012a).

As opposed to Brock and Hommes (1997, 1998), the expectations of different agents are in

this paper empirically generated by a VAR process. This VAR approach is also recently applied

by Cornea et al. (2012) to a heterogeneous agent model of the New Keynesian Philips curve, in

which price-setters are allowed to switch between forward-looking and naive backward-looking

inflation expectations. Cornea et al. (2012) generate only the expectations of the forward-

looking price-setters by a VAR. In this paper, on the other hand, I let all three types of agents

form expectations based on the same VAR framework, such that all agents have the same in-

formation set. Nevertheless, despite having identical information sets, the agents do not form

identical valuations of the asset. Since the expectations are derived from an unrestricted VAR,

the valuation based on expected long-term dividends and the valuation based on expected short-

term price changes, do not necessarily align.

This paper proceeds as follows. The next section outlines the present value model, the

concept of rational bubbles and the log-linear approximation by Campbell and Shiller (1988).
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In Section 3.3, the VAR approach is reviewed and applied to three representative agent models,

in which the representative agent is either a rational long-term investor, a rational speculator or

a contrarian. In Section 3.4, these models are merged into one regime switching model. The

section further includes estimation results and specification tests. In Section 3.5, the model is

generalized to allow for time-varying discount factors. Section 3.6 concludes.

3.2 The present value model and rational bubbles

According to the standard present value model, the price of an asset should equal the discounted

present value of the cash flows (dividends) that an asset is expected to generate:

Pt =
∞

∑
i=1

δ iEt [Dt+i] , (3.1)

in which which Pt refers to the asset price and Dt to its underlying dividend. The discount

factor δ is for simplicity assumed to be constant, implying risk-neutrality. In Section 3.5, I

examine the validity of this assumption by considering several time-varying discount factors.

Assuming rationality and market efficiency requires that the conditional expectation operator

Et [·] is the optimal prediction conditional on all available information. Because in equation

(3.1), the value is entirely determined by expected dividends, or fundamentals, this expression

is sometimes referred to as the fundamental value which would be equal to the observed market

price if all agents are rational fundamentalists (e.g. Szafarz, 2012).

Agents are not necessarily planning to hold the asset for a long period and may be more

interested in the short-term trading profits rather than long-term dividend yields. If agents are

planning to hold the asset for a short time only, say one period, the value of the asset should

equal the discounted sum of the expected dividend paid out in the next period and the expected

price at which the asset can be sold subsequently:

Pt = δEt [Pt+1 +Dt+1] . (3.2)

47



The long-term model (3.1) is the solution to the short-term model (3.2) under the following

transversality condition:

lim
i→∞

δ iEt [Pt+i] = 0. (3.3)

Hence, under this transversality condition the investment horizon of the agents should not have

an impact on the price. However, equation (3.2) has a more general solution which does allow

for a discrepancy between equations (3.1) and (3.2):

Pt =
∞

∑
i=1

δ iEt [Dt+i]+Ct , (3.4)

in which Ct ≡ δ−1Ct−1, or equivalently, Ct ≡ δ−tMt , in which Mt may be any martingale

process (i.e. Et [Mt+1] = Mt). Because Ct constitutes a discrepancy between the fundamental

value and the observed price, it may be referred to as a bubble. However, since the bubble

exists due to a violation of the transversality condition rather than the a violation of rationality,

Blanchard and Watson (1982) name it a rational bubble. The finding that rational dividend

expectations are not sufficiently volatile to explain observed price volatility can be regarded as

a rejection of the present value model (3.1) and is in the literature often interpreted as evidence

in favor of rational bubbles (Gürkaynak, 2008).

Two recent studies present theoretical analyses of asset pricing models in which long-term

fundamentalists and short-term speculators co-exist. Szafarz (2012) finds that the existence of

multiple investment horizons is a potential source of price volatility. Anufriev and Bottazzi

(2012), however, argue that variation in the investment horizon has a significant effect on mar-

ket dynamics only when agents hold heterogeneous expectations about future prices. In this

paper, I follow an empirical approach by applying the VAR-based tests of present value models

by Campbell and Shiller (1987, 1988) to an asset pricing model with heterogeneity in both in-

vestment horizons and expectations. As will become evident in the next section, heterogeneity

in investment horizons can explain the high level of volatility observed in stock prices. Nev-

ertheless, heterogeneity in expectations appears to be a crucial element required for generating

prices that do not only capture the volatility but also obtain a relatively high correlation with
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observed stock prices.

Before proceeding to estimation of the VAR it is preferable to apply the log-linear approx-

imation of the present value model derived by Campbell and Shiller (1988). The return on

holding an asset for one period (Rt+1 = (Pt+1 +Dt+1)/Pt) can be approximated by a linear

equation:

rt+1 = ρ pt+1 − pt +(1−ρ)dt+1 + k, (3.5)

in which pt ≡ log(Pt) , dt ≡ log(Dt) and rt ≡ log(Rt) . The parameter ρ is below, but close

to, one: It denotes the mean of the ratio Pt

Pt+Dt
, which Campbell and Shiller (1988) assume

to be approximately constant over time. Following Campbell and Shiller (1988), the constant

term k is ignored in much of the analysis below, because explaining price movements rather

than levels, is the main objective of this study. Engsted et al. (2012) show by simulation that

these log-linear returns are a close approximation to true returns even in the presence of rational

bubbles.

The assumption of a constant discount factor as in equations (3.1)-(3.2) implies that ex-

pected returns are constant:

Et [Rt+1] =
Et [Pt+1 +Dt+1]

Pt
= δ−1. (3.6)

Taking conditional expectations on both sides of equation (3.5), substituting constant expected

returns (Et [rt+1]≡ r̄) and re-arranging gives:

yt = ρEt [yt+1]+Et [△dt+1]+ k− r̄, (3.7)

in which yt ≡ pt − dt denotes the log price-dividend (PD) ratio. Equation (3.7) can be iterated

forward to obtain the long-term interpretation of the present value model, in which the valuation

of the asset is determined by expected future dividend growth rates:

yt =
∞

∑
i=0

ρ iEt [△dt+1+i]+
k− r̄

1−ρ
. (3.8)
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This solution requires the assumption of a transversality condition:

lim
i→∞

ρ iEt [yt+i] = 0, (3.9)

which, like condition (3.3), excludes the possibility of a rational bubble. Equation (3.8) can be

interpreted as the log-linear equivalent of (3.1).

It is also possible to derive a short-term interpretation of the log-linear present value model,

in which the value of an asset is determined by the expected return of holding the asset for one

period. Subtracting ρyt from equation (3.7) and dividing both sides by 1−ρ gives:

yt =
ρ

1−ρ
Et [△yt+1]+

1

1−ρ
Et [△dt+1]+

k− r̄

1−ρ
, (3.10)

or, since △yt =△pt −△dt :

yt =
ρ

1−ρ
Et [△pt+1]+Et [△dt+1]+

k− r̄

1−ρ
. (3.11)

In this model the PD ratio is entirely determined by one-period expectations of the change in

the price and dividend. Since the parameter ρ is below but close to one, the ratio
ρ

1−ρ is a rather

large number, implying that the expected price change is the dominant factor in the valuation

of the asset. Expectations on future dividends therefore only play a minor role in this short-

term valuation model, akin to the models by Hong et al. (2007) and Branch and Evans (2010),

in which agents have the option to omit dividends partly or entirely from their expectation

formation mechanism. Nevertheless, in this model dividends are not irrelevant, since observed

dividends play a role in the VAR-based expectations of price changes.

Unlike the long-term model (3.8), the short-term model (3.11) does not require the transver-

sality condition (3.9) and therefore allows for the existence of a rational bubble. In the next

section, I evaluate both models (3.8) and (3.11) using the VAR approach by Campbell and

Shiller (1987, 1988).
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3.3 The VAR approach

Campbell and Shiller (1988) propose to test the log-linear present value model (3.8) based on

an estimated VAR(q) for the log-PD ratio and the dividend growth rate (both measured in logs):

vt ≡




yt

△dt


 =

q

∑
i=0

Aivt−1 +ut . (3.12)

Both the PD ratio and the dividend growth rate are demeaned so that intercept terms are not

required and the parameters k and r̄ in (3.8) can be disregarded. I estimate a VAR(2) for annual

observations of the PD ratio and the dividend growth rate over the period 1872-2011. The

lag length of q = 2, is selected using the Akaike Information Criterion (AIC). This lag order

is consistent with the results of Campbell and Shiller (1988). Table 3.1 depicts the AIC for

different lag lengths, as well as diagnostic tests for the selected VAR(2). The second-order

VAR seems to describe the data well as there is no sign of autocorrelation or heteroscedasticity

in the residuals. Moreover, the results of a Chow forecast test at several potential break points

indicate that parameter constancy can not be rejected.

TABLE 3.1: VAR specification and diagnostics

lags 1 2 3 4 5 6

AIC -7.980 -7.986 -7.967 -7.953 -7.889 -7.889

Autocorrelation 17.63 (0.612)

Heteroscedasticity 51.62 (0.231)

Breakpoint 1890 1910 1930 1950 1970 1990

Chow FC 0.578 0.403 0.345 0.998 0.976 0.624

Notes: VAR(q) model (3.12), with annual data for 1872-2011. Top: Lag selection based on Akaike information

criterion. Middle: LM-type test statistics (p-values in parentheses) for Autocorrelation (5 lags) and Multivariate

ARCH (5 lags) in residuals of VAR(2). Bottom: P-values for Chow forecast test for parameter constancy. All three

diagnostic tests are executed with JMulti (Lütkepohl and Krätzig, 2004)

In order to proceed with testing the present value model, it is convenient to consider the

VAR(2) model in its companion form:




vt

vt−1


 =




A1 A2

I2 O2,2







vt−1

vt−2


+




ut

O2,1


 , (3.13)
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or:

zt = Bzt−1 + εt , (3.14)

in which zt ≡ (vt ,vt−1)
′ . If this VAR provides an accurate description of the data, which the

diagnostics in Table 3.1 indeed suggest, the matrix of estimated parameters B can be used to

replicate the conditional expectations in equation (3.8), and to compute a time-series of theoret-

ical PD ratios:

yrl
t =

∞

∑
i=0

ρ iEt [△dt+1+i] =
∞

∑
i=0

ρ i
(
e′2Bizt

)

= e′2B(I −ρB)−1
zt ,

(3.15)

in which ei is a vector of zeros in which the ith element is replaced by one. A full derivation is

provided Campbell and Shiller (1988). The superscript rl to the theoretical PD ratio indicates

rational and long-term. The generated theoretical PD ratio can be interpreted as an estimate of

how the PD ratio would behave if all agents are rational long-term investors, that value assets

according to rational expectations of future dividends.

For now, the parameter ρ is calibrated at a fixed value, as in Campbell and Shiller (1988). I

set ρ = 0.958 which is the sample average of the ratio Pt

Pt+Dt
. At the end of this section, I discuss

the sensitivity of the results with respect to this calibration.

Figure 3.1 shows the theoretical PD ratio (yrl
t ), as well as the realized PD ratio (yt). The

figure looks similar to the charts in Campbell and Shiller (1987). The theoretical PD ratio is

quite strongly correlated with the realized PD ratio (corr
(
yrl

t ,yt

)
= 0.799), but the volatility of

the theoretical PD ratio falls far behind of observed volatility. This is illustrated by the volatility

ratio (σ
(
yrl

t

)
/σ (yt) = 0.135), which expresses the standard deviation of the theoretical PD

ratio as a fraction of the standard deviation of the realized PD ratio. The long-term present

value model (3.15) therefore seems able to explain the direction of the stock market, but lacks

explanatory power regarding the observed volatility of the stock market. Already in the 1980s,

Campbell and Shiller, among others, interpreted this excess volatility as a rejection of present

value models. In fact, as Figure 3.1 shows, the discrepancy between the theoretical and observed

PD ratio has only increased further since then, with an unprecedented rise in the PD ratio during
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Figure 3.1: Observed PD ratio (yt) and theoretical PD ratio (yrl
t ), from long-term model (3.15), with

ρ = 0.958. corr
(
yt ,y

rl
t

)
= 0.799.

σ
(
yrl

t

)

σ (yt)
= 0.135.

the 1990s, which the present value model fails to capture.

The VAR approach can also be applied to the short-term model (3.11), which is the correct

model if all agents are rational speculators. These agents are speculators, as they are mainly

interested in short-term trading profits rather than in the dividends the asset generates in the

long run. They can be considered (boundedly) rational, however, as they form expectations

using the same information set and VAR model as the long-term investors considered above.

The conditional expectations of these rational speculators (rs) can therefore be replicated based

on the estimated VAR, similar as above:

yrs
t =

ρ

1−ρ
Et [△pt+1]+Et [△dt+1] , (3.16)

in which:

Et [△dt+1] = e′2Bzt , (3.17)

and:

Et [△pt+1] = Et [△yt+1]+Et [△dt+1]

= Et [yt+1]− yt +Et [△dt+1]

= e′1 (B− I)zt + e′2Bzt .

(3.18)

In addition, I consider the valuation model according to a second type of speculator: Contrarian
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Figure 3.2: Observed PD ratio (yt) and theoretical PD ratio (yrs
t ), from rational speculative model (3.16),

with ρ = 0.958. corr (yt ,y
rs
t ) =−0.403.

σ (yrs
t )

σ (yt)
= 2.065.

speculators (cs) or simply: Contrarians. These agents agree with the rational agents on expected

dividends, but form alternative expectations on expected changes in prices:

ycs
t =

ρ

1−ρ
Ẽcs

t [△pt+1]+Et [△dt+1] . (3.19)

In fact, regarding the expected price change, contrarians take the exact opposite stance from the

rational speculators:

Ẽcs
t [△pt+1] = −Et [△pt+1] . (3.20)

Figure 3.2 shows yrs
t and yt . The model with rational speculative expectations (3.16) appears

able to generate large price fluctuations, with the volatility of the theoretical PD ratio even

overshooting observed volatility (σ (yrs
t )/σ (yt) = 2.065). Nevertheless, the correlation with

the observed PD ratios is very weak, even negative (corr (yrs
t ,yt) =−0.403). From Figure 3.2,

it can be seen that during several episodes, most notably the 1990s, the theoretical PD ratio

moves in the opposite direction from the observed PD ratio. The rational speculative model

(3.16) therefore fails to explain the 1990s bull market any better than the long-term model

(3.15) does.

Figure 3.3 shows the empirical need for a model with contrarian expectations. The the-

oretical PD ratio ycs
t , which is generated by model (3.19), nearly matches yrs

t in terms of
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Figure 3.3: Observed PD ratio (yt) and theoretical PD ratio (ycs
t ), from contrarian model (3.19), with

ρ = 0.958. corr (yt ,y
cs
t ) = 0.447.

σ (ycs
t )

σ (yt)
= 1.977.

volatility: (σ (ycs
t )/σ (yt) = 1.977). Unlike the rational speculative model, however, the con-

trarian model generates a PD ratio that is positively correlated with the observed PD ratio

(corr (ycs
t ,yt) = 0.447). Although this correlation remains quite low compared to the long-term

model (3.15), it is evident from Figure 3.3 that in recent decades the contrarian model traces the

observed PD ratio remarkably well.

Based on Figure 3.1, it can be argued that the bull market in the 1990s was a bubble. It was,

however, not a rational bubble, as in that case the rational speculative model (Figure 3.2) should

be able to replicate the bubble. Instead, I find that the model requires nonrational, or contrarian,

beliefs in order to explain the 1990s bubble.

It is evident from Figures 3.1-3.3 that the performance (or fit) of the three alternative models

changes over time, which could indicate misspecification of the VAR, due to the existence

of structural breaks or time-varying parameters. The diagnostic tests presented in Table 3.1,

however, indicate that the VAR is correctly specified. In addition, I estimate the VAR and

generate yrl
t , yrs

t and ycs
t again for the last 40 years in the sample only, which are presented

in Figure 3.4. These plots tell a roughly similar story as Figures 3.1-3.3, suggesting that the

time-varying performance of the three models is not the result of misspecification of the VAR.

Instead, the time-varying fit of the three models could indicate that the market is subject

to regime switching behavior, with agents switching between the long-term strategy based on
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Figure 3.4: Observed PD ratio (yt) and theoretical PD ratio (yrl
t , yrs

t , and ycs
t ), from models (3.15), (3.16),

and (3.19), for 1972-2011.

expected dividends, and more speculative (rational or contrarian) strategies. In the next section,

I therefore combine equations (3.15), (3.16) and (3.19) into one regime switching model, in

which the asset price is determined by the interaction of rational long-term investors, rational

speculators and contrarians.

So far, the parameter ρ is calibrated at the sample average of the ratio Pt

Pt+Dt
. The obtained

results are somewhat sensitive to this calibration. This is illustrated in Figure 3.5, which shows

volatility ratios and the correlation between realized and theoretical PD ratios, for different

values of ρ , for all three models. For the long-run model, the sensitivity with respect to ρ is

rather modest. Campbell and Shiller (1988) make the same observation. For the speculative

models, however, small changes in ρ do have a great impact. Calibrating ρ and disregarding its

uncertainty seems therefore inappropriate. Instead, I estimate ρ in the remainder of this paper
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Figure 3.5: corr
(

yt ,y
j
t

)
and

σ
(

y
j
t

)

σ (yt)
for different values of ρ , for j = rl (left), j = rs (middle) and j = cs

(right)
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jointly with the other parameters in the model.

3.4 Heterogeneous agents

The results in the previous section indicate that the long-run present value model (3.15) can

explain the direction of stock market movements, but not its excess volatility. The speculative

models (3.16) and (3.19) are able to generate sufficient volatility, but their correlation with the

observed market falls short of the long-run model. In an attempt to specify a model which is

able to capture both correlation and volatility, I consider an economy in which all three agents

(long-term rational investors, rational speculators and contrarians) are present:

yha
t = Grl

t yrl
t +Grs

t yrs
t +Gcs

t ycs
t , (3.21)

in which the subscript ha denotes heterogeneous agents. The fractions of each type of agent

are denoted by Glr
t , Gsr

t and Gsc
t and are allowed to vary over time. This process of switching

between agent types or regimes is modeled based on evolutionary selection following Brock

and Hommes (1998), such that the fraction of each type of agents increases when its predic-

tions outperform the other types. The predictions of each type are evaluated by a measure of

fitness representing the distance between the theoretical PD ratio and the realized PD ratio in

the previous period:

U
j

t = −
(

y
j
t−1 − yt−1

)2

j ∈ {rl,rs,cs} . (3.22)

The fractions of each type are then determined by multinomial logit probabilities:

G
j
t =

exp
(

β jU
j

t

)

∑
k

exp
(
β kUk

t

) j,k ∈ {rl,rs,cs} , (3.23)

such that the fractions of the three types sum to one. The parameters β denote the intensity of

choice, which indicate the willingness of agents to switch between strategies. While Brock and

Hommes (1998) hold β constant across types, I allow for type-specific intensities of choice.
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Figure 3.6: Observed PD ratio (yt) and theoretical PD ratio (yha
t ), from heterogeneous agent model (3.21),

with ρ and β estimated by NLS (See Table 3.2). corr
(
yt ,y

ha
t

)
= 0.759.

σ
(
yha

t

)

σ (yt)
= 0.752.

This setting accommodates the idea by Hong et al. (2007) that agents may hold heterogeneous

thresholds for switching between strategies.

To obtain estimates of β and ρ , I estimate the following model by nonlinear least squares

(NLS):

yt = yha
t + εt . (3.24)

The top row of Table 3.2 shows the parameter estimates, while Figure 3.6 shows a plot of the

theoretical PD ratio yha
t . The generated PD ratio is highly correlated with the realized PD ratio;

corr
(
yha

t ,yt

)
= 0.759, which is of the same magnitude as the correlation coefficient for the long-

term model considered in Section 3.3. The volatility ratio for the heterogeneous agent model

is, however, much larger (σ
(
yha

t

)
/σ (yt) = 0.752). Unlike the representative agent models

considered in Section 3.3, the heterogeneous agent model is able to explain both the direction

as well as the volatility of the observed PD ratio to a large extent.

The fitted values of model (3.24), ŷha
t , are used to estimate the following regression by OLS:

yt = φ ŷha
t + εt . (3.25)

Table 3.2 reports the estimate and standard error of φ , showing that the null hypothesis that

φ = 1 can not be rejected.
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TABLE 3.2: Estimation results

ρ β1 β2 β3 φ σ
(

y
j
t

)
/σ(yt ) corr

(
yt ,y

j
t

)
R2

ha 0.966 0.799 5.175 1.125 0.962 0.752 0.759 0.548

(0.004) (0.599) (6.156) (0.401) (0.029)

rl 1.000 . . . 4.474 0.193 0.865 0.297

(0.073) (0.548)

rs 0.000 . . . 3.933 0.080 0.317 0.044

(0.000) (0.497)

cs 0.000 . . . 3.933 0.080 0.317 0.044

(0.202) (0.568)

Notes: NLS estimates and measures of fit for model (3.21)-(3.24). ha: Heterogeneous agents and evolutionary

dynamics (3.22)-(3.23). rl: Grl
t = 1, Grs

t = Gcs
t = 0. rs: Grs

t = 1, Grl
t = Gcs

t = 0. cs: Gcs
t = 1, Grl

t = Grs
t = 0. φ

is estimated by model (3.25). Annual data for 1872-2011. Standard errors (in in parentheses) are computed using

10.000 bootstrap replications.

In order to take into account the uncertainty underlying the estimated parameters in the VAR

model (3.12), all standard errors in Table 3.2 are based on the following bootstrap procedure:

1. Generate simultaneously an artificial series (T + 100 observations) of dividend growth

rates from the VAR model (3.12) using the parameter estimates B̂, and an artificial series

(T + 100 observations) of PD ratios from the model (3.21)-(3.24) using the parameter

estimates β̂ and ρ̂ . The innovations to both series are drawn (with re-sampling) from the

fitted residuals e′2ût and ε̂t .

2. Use the last T observations from both artificial series to estimate models (3.24) and (3.25).

Store the estimates β̃ , ρ̃ and φ̃ .

3. Repeat steps 1 and 2 R times. For each parameter, the standard deviation of the R artificial

estimates is reported in Table 3.2 as the parameter’s standard error.

For this procedure, I set T = 138, equal to the sample size in the estimations, while the number

of replications R = 10.000.

Figure 3.7 shows the estimated fractions of each type of agent over time. Rational long-

term investors are always present in the economy, with their fraction of the total population

fluctuating for most of the time between roughly 40% and 100%. After 1950, their fraction

stays close to the lower bound of this interval, suggesting that expected dividends have lost

relevance as a determinant of asset prices. This is consistent with the finding of decreasing
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Figure 3.7: Time-varying fractions of long-term investors (top), rational short-term investors (middle)

and contrarians (bottom)

dividend yields reported by Fama and French (2001). The fraction of contrarians is relatively

high during this period and increases further during the buildup of the 1990s bubble. The

fraction of rational speculators stays rather low during the entire sample period.

Table 3.2 further shows estimates of the representative agent models considered in Section

3.3, with the difference that the parameter ρ is now estimated using NLS. These models can

be seen as a restricted version of the model (3.21)-(3.24). Instead of the evolutionary dynamics

(3.22)-(3.23), the fractions Grl
t , Grs

t and Gcs
t are restricted to either zero or one. The parameters

β therefore drop from the model. The correlation coefficients, volatility ratios and R2 reported

in Table 3.2 suggest that the heterogeneous agent model is the preferred specification. The long-

term model generates a higher correlation coefficient (corr
(
yrl

t ,yt

)
> corr

(
yha

t ,yt

)
) but in all

other cases, the heterogeneous agent model generates higher correlation and volatility as well

as a better fit in terms of R2. The null hypothesis that φ = 1 is rejected for all three alternatives.

The parameter ρ is estimated under the restriction 0 ≤ ρ ≤ 1. For the heterogeneous agent

model, the estimate of ρ is rather close to the calibration in Section 3.3. For the representative
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agent models, however, a corner solution is reached with ρ estimated at either zero or one. In

the log-linear approximation by Campbell and Shiller (1988), the parameter ρ represents the

mean of the ratio Pt

Pt+Dt
. Of course, this mean can never be zero or one as this implies that

either prices or dividends are always equal to zero. It is furthermore easy to see that the two

speculative models (3.16) and (3.19) reduce to identical models in which one-period dividend

expectations are the sole determinant of prices in the case that ρ = 0. The finding that highly

unrealistic values of ρ are required to obtain the best fit can be interpreted as an economic

rejection of the three representative agent models.

For a formal statistical comparison of the heterogeneous agent model and the three repre-

sentative agent models I rely on the test for nonnested nonlinear regression models developed

by Davidson and MacKinnon (1981). The test is based on the following regression:

yt = (1−α)yH1
t +α ŷH2

t +ηt , (3.26)

in which yH1
t and yH2

t are two nonnested nonlinear regression models, such as the different mod-

els considered above. The parameters of yH1
t are estimated jointly with α by NLS, while the

test regression further includes the fitted values from NLS estimation of the model yH2
t . The

hypothesis H0 : α = 0 is equivalent to the hypothesis that yH1
t is the correct data generating

process. Table 3.3 shows the estimates and standard errors of α , from testing yha
t against yrl

t , yrs
t

and ycs
t as well as vice-versa. The top row shows the result when yH1

t = yha
t . The hypothesis that

yha
t is correct, can not be rejected against any of the three alternatives. Moreover, the bottom

row of Table 3.3 shows that the hypotheses that yrl
t , yrs

t or ycs
t are correct are all rejected against

the alternative yH2
t = yha

t .

3.5 Time-varying discount factors

I have so far assumed a constant discount factor and, as a result, constant expected returns. The

log-linear approximation by Campbell and Shiller (1988) does, however, allow for time-varying

discount factors. If discount factors are allowed to vary over time, equation (3.7) becomes
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TABLE 3.3: Nonnested hypothesis tests

rl rs cs

H1: ha 0.792 0.611 0.611

(0.662) (4.468) (4.342)

H2: ha 0.787 0.927 0.927

(0.028) (0.024) (0.027)

Notes: NLS estimates of α in model (3.26). Top: yH1
t = yha

t and ŷH2
t = ŷ

j
t , j ∈ {rl,rs,cs} . Bottom: yH1

t = y
j
t ,

j ∈ {rl,rs,cs} and ŷH2
t = ŷha

t . Rejection of H0 : α = 0 implies rejection of yH1
t (Davidson and MacKinnon, 1981).

Annual data for 1872-2011. Standard errors (in parentheses) are computed using 10.000 bootstrap replications.

(disregarding the constant term k):

yt = ρEt [yt+1]+Et [△dt+1]−Et [rt+1] . (3.27)

There are several ways to model time-varying discount factors. Campbell and Shiller (1988)

evaluate three simple specifications of the discount factors, based on short-term interest rates,

consumption and volatility of the S&P500 index, in addition to a constant discount factor. With

a time-varying discount factor, expected returns are computed as follows:

Et [rt+1] = γEt [xt+1] , (3.28)

in which γ is the risk aversion coefficient and xt denotes interest rates, consumption or volatility.

In the first case, xt is the log-yield on Treasury Bills (T-bills), representing the opportunity cost

of capital. In the second case, xt is the log-growth rate of consumption, such that the model

(3.27) becomes an consumption-based asset pricing model with constant relative-risk aversion

utility function. In the third case, xt is the squared (lagged) log-return of the S&P500 index, as

a simple measure of market volatility or risk.

The constant-discount factor is nested in the time-varying specifications. When γ = 0, it is

easily seen that the expected return drops out from equation (3.27), reducing it to the constant

discount factor models considered in the previous sections.

I evaluate the three specifications of the time-varying discount factor in the heterogeneous

agent model (3.21). Following Campbell and Shiller (1988), I add xt as a third variable to the
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TABLE 3.4: Time-varying discount factors

γ σ
(

y
j
t

)
/σ(yt ) corr

(
yt ,y

j
t

)
R2

constant . 0.777 0.797 0.621

T-Bill -0.013 0.690 0.687 0.467

(0.304)

consumption 0.138 0.858 0.767 0.564

(0.210)

volatility 0.824 0.714 0.794 0.618

(0.157)

Notes: NLS estimates and measures of fit for model (3.21)-(3.24), with constant discount factor or time-varying

discount factor (3.28) based on interest rates, consumption or volatility. Annual data for 1891-2009. Standard

errors (in in parentheses) are computed using 10.000 bootstrap replications.

VAR model (3.12), after which the long-term model (3.15) with time-varying discount factor

becomes:

yrl
t =

∞

∑
i=0

ρ i (Et [△dt+1+i]−Et [rt+i+1]) =
(
e′2 − γe′3

)
B(I −ρB)−1

zt , (3.29)

while the speculative models (3.16) and (3.19) become:

yrs
t =

ρ

1−ρ
Et [△pt+1]+Et [△dt+1]−

1

1−ρ
Et [rt+1] , (3.30)

and:

ycs
t =

ρ

1−ρ
Ẽcs

t [△pt+1]+Et [△dt+1]−
1

1−ρ
Et [rt+1] , (3.31)

in which:

Et [rt+1] = γe′3Bzt . (3.32)

Due to limited data availability, the models with time-varying discount factors can be estimated

only for the period 1891-2009. Campbell and Shiller (1988) find that these three time-varying

discount factors are not helpful in explaining stock price movements in the long-run model. The

results presented in Table 3.4 confirm that this finding also holds for the heterogeneous agent

model considered here. Of the four specifications, the constant discount factor is the preferred

option. Table 3.4 shows the correlation, volatility ratio and R2 for the estimated heterogeneous
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agent models (3.21) with different time-varying discount factors as well as a constant discount

factor over this period. The table further shows the NLS estimate of the risk aversion coeffi-

cient γ . Using the discount factor based on either interest rates or consumption, the restriction

γ = 0 (i.e. a constant discount factor) can not be rejected. These specifications are therefore

not preferred to the model with constant discount factor. Although the volatility ratio for the

consumption-based model is slightly higher than for the model with constant discount factor,

the latter yields a higher correlation and a better fit overall.

In the case of a volatility-based discount factor, γ is significant, but Table 3.4 shows that

also this model is not an improvement in terms of correlation, volatility ratio or R2 with respect

to the constant discount factor model. Besides not improving the fit of the model nor increasing

the volatility of replicated prices, including a time-varying discount factor based on volatility

does not diminish the empirical need for heterogeneous horizons and expectations. As Figure

3.8 shows, with a volatility-based discount factor the estimated fractions of the different types

evolve following a similar path as with a constant discount factor (Figure 3.7). In fact, the

estimated fraction of contrarians is often even higher than with a constant discount factor.

Various more complex discount factor specifications, besides these three examples, could

be considered. As Cochrane (2011) argues, for any behavioral model there exists an equivalent

rational expectations model with time-varying discount factor. Nevertheless, this does not imply

that modeling discount factors instead of expectations is always the most sensible strategy. The

results presented in this paper show that a simple and straightforward extension (allowing for

heterogeneous horizons and expectations) can generate significantly more volatility than the

linear present value model. Specifying a parametric process for the evolution of a discount

factor that is able to accomplishing the same result could instead be a rather complex task. The

three specifications considered in this section are at least not adequate.
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Figure 3.8: Time-varying fractions of long-term investors (top), rational short-term investors (middle)

and contrarians (bottom), with volatility-based time-varying discount factor

3.6 Conclusion

I develop an empirical asset pricing model in which the expectations of all agents are derived

from a VAR representation for price-dividend ratios and dividend growth rates. Taking into

account the performance of each strategy in the previous period, agents choose between a long-

term strategy, valuing asset based on expected dividends, and two types of short-term strategies,

valuing assets mainly based on expected price changes. This heterogeneous agent model is able

to generate far more volatile PD ratios than a standard present value model, thereby tackling a

considerable part of the excess volatility puzzle.

The existence of speculators can explain the volatility of stock prices. Nevertheless, het-

erogeneity in expectations among the speculators is required in order to approximate observed

prices in terms of volatility as well as correlation. In particular to replicate the stock market

during the 1990s accurately, a large fraction of market participants needs to adopt contrarian

beliefs. As this requires a deviation from the assumption of rationality, I argue that the 1990s
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bubble was not a rational bubble.

The introduction of time-varying discount factors into the model does not significantly al-

ter the results. Overall, the results suggest that observed excess volatility with respect to the

standard present value model is better explained by nonstandard expectations rather than by

time-varying discount factors.
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Chapter 4

Noncausality and asset pricing
1

4.1 Introduction

Recent research (e.g. Lanne and Saikkonen, 2011a,b) finds that many financial and economic

variables are noncausal, in the sense that when these variables are modeled as linear autoregres-

sions, current observations seem to depend on both past and future realizations, rather than only

on past realizations. This paper discusses noncausality of asset prices and dividends. Recent

literature dealing with noncausality focuses mainly on econometric issues, such as instrument

selection in GMM estimation (Lanne and Saikkonen, 2011a) and forecasting (Lanne et al. 2012

a,b). In this paper the focus is not on empirical implications but rather on the economic in-

terpretation of noncausality. I show by simulation that noncausality is observed when relevant

information is excluded from the econometric model. Asset prices are shown to be noncausal

when the econometric model is based on observed market data, but fails to include the correct

expectation formation mechanism.

A noncausal autoregressive (AR) process differs from a conventional causal AR process

in the dependence on both future and past errors, implying that future errors are predictable

given the realized observations of the variable in question. An early discussion of noncausal

autoregressions is provided by Breidt et al. (1991). Recently, Lanne and Saikkonen (2011b)

1This chapter is based on an article published in Studies in Nonlinear Dynamics and Econometrics (Lof, 2013)
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introduced a useful reparametrization of the noncausal AR process allowing for explicit depen-

dence on both leads and lags of the variable in question. A stationary noncausal AR(r,s) process

yt , depending on r lags and s leads (with r and s both positive integers), is defined by:

φ(L)ϕ(L−1)yt = εt , (4.1)

with φ(L) = 1− φ1L− ...φrL
r, ϕ(L−1) = 1−ϕ1L−1 − ...ϕrL

−s, εt ∼ i.i.d.(0,σ2) and L is a

standard lag operator (Lkyt = yt−k). Both polynomials have their roots outside the unit circle.

If ϕ j 6= 0, for some j ∈ {1, ..,s}, (4.1) is a noncausal process, which may be referred to as

purely noncausal if φ1 = ... = φp = 0. When yt is a vector, (4.1) defines a noncausal vector

autoregressive process VAR(r,s) (Lanne and Saikkonen, 2013).

Lanne and Saikkonen (2011b) point out that noncausality is related to noninvertibility, as

noncausal AR processes and noninvertible Moving Average (MA) processes are close approx-

imations of each other. Exact definitions of causal and invertible processes are provided by

Brockwell and Davis (1991) or Meitz and Saikkonen (2013): An ARMA process is invertible

when the error term can be expressed as a weighted sum of past and present components of the

process: εt =
∞

∑
j=0

α jyt− j, with
∞

∑
j=0

∣∣α j

∣∣< ∞. An ARMA process is causal when each component

can be expressed as a weighted sum of past and present error terms. For example, it is well

known that any stationary causal AR(r,0) process has a backward-looking, infinite-order, MA

representation:

yt = φ(L)−1εt =
∞

∑
j=0

µ jεt− j, (4.2)

in which
∞

∑
j=0

µ jz
j = µ(z)≡ φ(z)−1. The MA representation of a purely noncausal AR(0,s) pro-

cess is, on the other hand, forward-looking:

yt = ϕ(L−1)−1εt =
∞

∑
j=0

ω jεt+ j, (4.3)
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in which
∞

∑
j=0

ω jz
− j =ω(z−1)≡ϕ(z−1)−1. A noncausal AR(r,s) process, with r and s both greater

than zero, has a MA representation that is both backward- and forward-looking:

yt = ϕ(L−1)−1φ(L)−1εt =
∞

∑
j=−∞

ψ jεt− j, (4.4)

in which ψ j is the coefficient of z j in the Laurent-series expansion of ϕ(z−1)−1φ(z)−1 (Lanne

and Saikkonen, 2011b). Since a stationary noncausal process can not be inverted into a backward-

looking MA representation, its errors are nonfundamental2. Nonfundamentalness arises when

the agents in the economy base their expectations on a larger information set than the informa-

tion set available to an econometrician, in which case the residuals from the estimated autore-

gression are not an interpretable function of the true shocks to the agents’ information (Hansen

and Sargent, 1991; Alessi et al., 2011). In this situation, a noncausal autoregression may fit the

data better, because it takes the omitted information into account, by allowing for predictable

errors, even without explicit specification of the correct information set (Lanne and Saikkonen,

2011b)3.

The agents’ information set is a flexible concept. The most obvious example of an econo-

metrician having a smaller information set than the agents in the economy is the omission of

one or more relevant decision variables from the estimated model. In this paper, I argue that

another example of such a situation occurs when the econometrician and the agents observe

the same variables, but the econometrician misunderstands the complexity of the expectation

formation mechanism, by estimating a linear model while the true mechanism is nonlinear.

Throughout this paper, an observed variable or vector of variables is referred to as noncausal,

when a noncausal linear (vector) autoregressive model fits the data better than a causal (vector)

autoregressive model. Observed noncausality may be the result of omitted information rather

than an actual dependence on future observations. In Section 4.3, I show that noncausality is

often observed when a linear univariate autoregressive model is estimated for a variable that

2This paper only deals with stationary time-series, excluding the ’borderline’ possibility of a unit root process

that is not invertible but fundamental (Alessi et al., 2011).
3Forni et al. (2009) propose an alternative approach by applying large-dimensional factor models, which in-

crease the econometrician’s information set and thereby avoid nonfundamentalness.
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was actually generated by a multivariate or nonlinear process. In section 4.4, the existence of

heterogeneous beliefs is shown to be a possible source of noncausality of asset prices. In this

case, different agents form different expectations about the future, making it difficult for an

econometrician to observe or infer these expectations. This is an important missing piece of

information, since on financial markets these expectations ultimately drive asset prices.

To motivate the search for sources of noncausality in asset pricing, the next section presents

empirical evidence that historical US stock prices are indeed noncausal.

4.2 Empirical results

To determine whether a causal or noncausal autoregression fits a certain variable yt better, I

will follow the model selection procedure proposed by Lanne and Saikkonen (2011b). First, a

causal autoregression AR(p) is estimated by least squares to find the optimal number of lags p

such that the model seems adequate in describing the autocorrelation. In this paper the number

of lags is selected by the Bayesian Information Criterion (BIC). Next, model (4.1) is estimated

by maximum likelihood (ML) for all possible combinations of r and s for which r + s = p,

using the ML estimator proposed by Lanne and Saikkonen (2013, 2011b) for univariate and

multivariate processes. After estimating all possible AR(r,s) models, the specification yielding

the largest value of the likelihood function is chosen as the adequate autoregression. If for this

model s > 0, the variable yt is referred to as noncausal.

The noncausal process as defined in equation (4.1) does not require any distributional as-

sumptions, except that the errors are i.i.d. Estimating the model, however, does require further

assumptions on the distribution. Causal and noncausal autoregressive processes are indistin-

guishable when the error terms are Gaussian (Breidt et al., 1991). Therefore, a non-Gaussian

distribution needs to be assumed. With macro-economic and financial time series this does not

need to be a problem, since Gaussianity if often rejected for these time series due to fat tails.

In their empirical applications, Lanne and Saikkonen (2013, 2011b) assume t-distributed errors.

I follow this assumption. In the empirical results below, this assumption is justified by a test
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for normality. For the simulation exercises later in the paper, random errors are drawn from a

t-distribution.

The model selection procedure of Lanne and Saikkonen (2011b) is applied to univariate

and bivariate time series related to asset pricing, using long-term data on the US stock market

provided by Shiller (2005). This dataset includes annual observations from 1871 to 2010 on

the value of the S&P500 index (Pt) and the average dividends (Dt) paid to investors holding

shares in this index. Noncausality is checked for the log-difference of prices (△pt = log(Pt)−

log(Pt−1)) and dividends (△dt = log(Dt)− log(Dt−1)), as well as for the bivariate processes

(△pt ,△dt)
′ and (δt ,△dt)

′, with δt = log(Pt/Dt) is the log price-dividend (PD) ratio. Table 4.1

depicts the log-likelihood values for all estimated AR(r,s) models. Log-differenced dividends

are found to be causal, but log-differenced prices and both VARs are best described by noncausal

models.

Table 4.1 further shows some diagnostic test results. After selecting the number of lags p

based on a Gaussian causal AR, Gaussianity of the residuals is tested. Gaussianity is rejected by

a Jarque-Bera test for all ARs, justifying estimation by non-Gaussian maximum likelihood. The

residuals of the autoregression selected as adequate are furthermore subjected to tests for auto-

correlation (Ljung-Box) and conditional heteroscedasticity (McLeod-Li). There is no evidence

for remaining autocorrelation or heteroscedasticity at the 5% level. In general, the selected

noncausal autoregressions seem to describe these time series well.

Table 4.1

△pt △dt (δt ,△dt)
′ (△pt ,△dt)

′

(r,s) L (r,s) L (r,s) L (r,s) L

(1,0) 41.8 (1,0) 123.3 (2,0) -240 (1,0) -360

(0,1) 42.8 (0,1) 119.9 (1,1) -228 (0,1) -350

(0,2) -229

JB 0.01 0.00 0.00 0.00

LB 0.08 0.20 0.19 0.22 0.13 0.27

MLL 0.36 0.12 0.11 0.06 0.08 0.06

Notes: Log-likelihood values for all possible AR(r,s) specifications such that p = r + s. The specification that

maximizes the log-likelihood for each variable is depicted in bold. The lag length p is selected by the BIC, based

on a causal Gaussian AR, after which Gaussianity of the residuals is tested with a Jarque-Bera test. JB refers to

the p-value of this test. LB and MLL refer to the p-values of the Ljung-Box and McLeod-Li tests (5 lags), applied

to the residuals of the optimal (non)causal t-distributed AR.
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The VAR including PD ratios and dividends (δt ,△dt)
′ was proposed by Campbell and

Shiller (1988) to model agents’ expectations of PD ratios and dividends under constant dis-

count rates. The result that (δt ,△dt)
′ is noncausal is consistent with findings by Lanne and

Saikkonen (2013), who show that the VAR proposed by Campbell and Shiller (1987) to model

the expected term spread of interest rates is also noncausal. Noncausality of (δt ,△dt)
′ implies

that agents do not base their expectations only on lags of the PD ratio and the dividend growth

rate. The same argument applies to the second VAR in Table 4.1, including the growth rates

of prices and dividends (△pt ,△dt)
′. Taking expectations conditional on all information dated

t −1 and earlier shows that these expectations can not be expressed as a function of observable

data alone:

Et−1




δt

△dt


 = Φ1




δt−1

△dt−1


+Π1Et−1




δt+1

△dt+1


+Et−1




ε1,t

ε2,t




Et−1




△pt

△dt


 = Π1Et−1




△pt+1

△dt+1


+Et−1




ε1,t

ε2,t


 .

An economic interpretation of noncausality is therefore that agents’ expectations are not re-

vealed when only realized prices and dividends are observed. Future realizations or a wider

information set are required to infer the true expectations. This observed dependence on lead-

ing observations may be caused by misspecification of the agents’ information set. This issue

is further discussed in the remainder of this paper.

4.3 Misspecified autoregressions

By simulating two simple AR processes, I illustrate that misspecification of the econometric

model can cause noncausality. In the first example the variable of interest is generated as a mul-

tivariate model, but estimated as a univariate process. In the second example the data generating

process is nonlinear, while a linear model is estimated.
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First, the omitted-variable problem is considered. The data are generated by a first order

causal bivariate process:




xt

yt


=




a b

0 c







xt−1

yt−1


+




εx,t

εy,t


 εx,t ,εy,t ∼ t3(0,1). (4.5)

The i.i.d. errors εx,t and εy,t t-distributed with three degrees of freedom, zero mean and vari-

ance one. The simulated errors are t-distributed rather than Gaussian, because Gaussian causal

and noncausal ARs are indistinguishable, as discussed in Section 4.2. I calibrate a = c = 0.8

and generate 200 observations of xt and yt for different values of b. After this simulation, yt is

dropped from the information set and xt is estimated as a univariate AR process to check non-

causality by the model selection procedure discussed in the previous section. This simulation is

repeated 5000 times. Table 4.2 shows how often the model selection procedure selects causal

and noncausal representations for different values of b.4 When b = 0, the causal autoregression

is the correct specification and is selected in 98% of the simulations. However, when b 6= 0,

xt is driven by two shocks εx,t and εy,t , while only one shock can be identified by estimating

an autoregression. Due to this nonfundamentalness, a noncausal autoregression is selected as

the adequate specification more often, up to 40% of the simulations for b = 0.8. Interestingly,

when b becomes larger in absolute value, εy,t becomes the dominant shock and the causal AR

is again selected more often. In the case that b = 10, the contribution of εx,t to the dynamics of

xt , relative to the contribution of εy,t , is so small that the true process can be well approximated

by a causal AR process with only one shock.

TABLE 4.2

b -10 -0.5 0 0.2 0.5 0.8 1 2 10

Causal 93% 68% 98% 94% 69% 60% 66% 87% 93%

Noncausal 7% 32% 2% 6% 31% 40% 34% 13% 7%

Notes: Percentage of causal and noncausal outcomes of the AR for xt after 5000 simulations of model (4.5), with

a = c = 0.8 and different values of b. The sample size in each simulation is 200 observations.

4The simulations are also carried out for different values of a and c between -1 and 1 and for different sample

sizes (500 and 1000). As long as a and c are not too close to zero, (i.e. the simulated data are not white noise), the

results are similar to those in Table 4.2 and are therefore not explicitly reported.
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Next, a univariate nonlinear Logistic Smooth Transition Autoregressive (LSTAR) process is

generated:

yt = α1yt−1(1−G(st−1))+α2yt−1G(st−1)+ εt

G(st−1) = (1+ exp[−γst−1])
−1

εt ∼ t3(0,1). (4.6)

This process is a weighted average of two causal AR(1) regimes. Since the weights are time-

varying, the process is nonlinear. However, when γ = 0, the transition function G(st−1) = 1/2 in

all periods, so the process is linear. On the other hand, when γ =∞, G(st−1) is either zero or one,

meaning the process reduces to a Threshold Autoregressive (TAR) process. In short, the process

becomes more nonlinear when γ increases. I choose the transition variable st−1 =△yt−1 and the

calibration α1 = 0.8 and α2 = −0.2, so that each regime is stationary and differs considerably

from the other regime. A sample of 200 observations is simulated for different values of γ: 0,

0.2, 0.5, 1, 2 and 10.000(≈ ∞), after which a linear AR model is fitted to the data to check for

noncausality. Table 4.3 displays the results of 5000 repetitions. In the linear case (γ = 0), a

noncausal specification is selected in 4% of the simulations. However, the number of noncausal

representations selected steadily increases with γ , up to 66% of the simulations for the TAR

model. These results show that not only after omitting variables, but also after misspecification

of the functional form, a noncausal process often approximates the true process better than a

causal process, even if the true process depends by no means on the future.

TABLE 4.3

γ 0 0.2 0.5 1 2 ∞

Causal 96% 92% 82% 68% 53% 34%

Noncausal 4% 8% 18% 33% 47% 66%

Notes: Percentage of causal and noncausal outcomes of the AR for yt after 5000 simulations of model (4.6), with

st−1 =△yt−1, α1 = 0.8, α2 =−0.2. The sample size in each simulation is 200 observations.

4.4 Heterogeneous expectations

Returning to asset pricing, the results of the previous section suggest that the observed non-

causality in Table 4.1 could be the result of misspecification: The evolution of asset prices over
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time depends on information that may be known to the agents, but is not observable by an

econometrician.

The existence of heterogeneous beliefs is a natural candidate for such a situation. Kasa et al.

(2010) derive conditions under which informational heterogeneity (agents receiving different

signals about future dividends) imposes agents to forecast the forecasts of other agents, as in

Townsend (1983), which leads to a nonrevealing equilibrium. Kasa et al. (2010) explicitly show

how the process of prices and dividends is under these conditions not invertible into a backward-

looking moving average process and argue that an econometrician who does not observe these

different signals will misinterpret the (nonfundamental) residuals from a VAR as shocks to the

agents’ information.

To check what type of investor behavior generates noncausality, I simulate asset prices under

different expectation regimes. I consider a representative-agent model and two models featur-

ing boundedly rational agents with heterogeneous beliefs. After each simulation, I act as an

econometrician who does not understand the structure of the underlying model and estimate

both causal and noncausal VARs for prices and dividends, to find out which VAR fits the data

best. The starting point for this simulation exercise are the dividends, which are assumed to be

exogenous, not depending on asset prices. To be precise, dividends are generated by a causal

AR(1) process:

dt = α1 +α2dt−1 + εt , (4.7)

with εt ∼ t3(0,σ
2
ε ). The fundamental value p∗t of the asset equals the sum of all expected future

dividends, discounted at a constant discount factor r:

p∗t =
∞

∑
i=1

Et−1 [dt+i]

(1+ r)i

Et−1 [dt+i] = α1 +α2Et−1 [dt+i−1] .

(4.8)

In a world where all agents have rational and homogeneous beliefs about the future (i.e. a

rational representative-agent model) the asset price should reflect the expected fundamental

77



value of the asset:

pt = p∗t +ηt ηt ∼ t3(0,σ
2
η). (4.9)

The i.i.d. error term ηt is added so that pt is not an exact linear function of dt−1, which would

make the parameters in a VAR including prices and dividends not identifiable. The error term

can however be justified as noise due to trading frictions. As discussed in Section 4.2, the error

terms are drawn from a t-distribution. This is for empirical rather than theoretical considera-

tions. Even though Kasa et al. (2010) address heterogeneous beliefs and nonfundamentalness in

a theoretical context with a linear Gaussian model, non-Gaussian data are required for empirical

detection of noncausality.

A more general version of model (4.8)-(4.9) relaxes the assumptions of homogeneity and

rationality and allows for heterogeneous beliefs. I follow the asset-pricing model proposed

by Brock and Hommes (1998), featuring many types of boundedly rational agents who form

different beliefs about the future. With H different types of agents, asset prices are determined

by the following equation:

pt =
H

∑
h=1

nh,tEh,t−1 [pt+1 +dt+1]

1+ r
+ηt , (4.10)

where Eh,t(·) represents the expectation formation mechanism of agent type h and nh,t is the

fraction of the population behaving according to type h at time t. In the special case that H = 1

and E1,t(·) denotes rational expectations Et(·), (4.10) reduces to (4.9). To introduce heteroge-

neous beliefs it is useful to formulate (4.10) in deviation from the fundamental value:

xt =
H

∑
h=1

nh,t fh,t

1+ r
+ηt , (4.11)

with xt = pt − p∗t is the realized difference from the fundamental value and fh,t = Eh,t−1 [pt+1]−

Et−1

[
p∗t+1

]
. Following Brock and Hommes (1998), agents hold identical beliefs about the

fundamental value, but disagree on the dynamics of the deviation from the fundamental value.

In particular, each type applies linear prediction rules based on lagged prices to form their
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expectations:

fh,t = ghxt−1 +bh. (4.12)

The fraction of each type, nh,t , varies over time according to evolutionary dynamics. The type of

agent that realizes a high profit from trading in the previous period will become more influential

in the next period:

nh,t =
exp(βUh,t−1)

H

∑
i=1

exp(βUi,t−1)

, (4.13)

where Uh,t = (xt − (1+ r)xt−1)( fh,t−1 − (1+ r)xt−2)− ch denote the realized profits for each

type, such that the fractions of all types add up to one. A full derivation of these equations

is provided by Brock and Hommes (1998). These evolutionary dynamics are comparable to

the ’forecasting the forecasts of others’ property considered by Townsend (1983) and Kasa

et al. (2010): Agents do not commit only to their own beliefs, but take into consideration the

expectations of other agents, knowing that the expectations of others have a direct effect on

asset prices. The parameter β defines the willingness or capability of agents to switch to another

strategy.

I now consider an example with two different agent types (H = 2): Optimists and pessimists

(or bulls and bears). The optimist type forms expectations with a positive bias, while the pes-

simist type forms expectations with a negative bias:

fO,t = b

fP,t = −b,
(4.14)

with b ≥ 0. This model reduces to the representative-agent benchmark (4.9) if b = 0. Opti-

mists believe the asset is undervalued while pessimists believe the asset is overvalued. This

disagreement could be the result of heterogeneous information on the fundamentals: The opti-

mists (pessimist) receives positive (negative) signals about future fundamentals, although also

other factors such as different levels of risk-aversion could cause the different beliefs.
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Another, widely cited, example of the model by Brock and Hommes (1998) features fun-

damentalists and chartists. The fundamentalist believes deviations from the fundamental value

should disappear:

fF,t = 0. (4.15)

The other type is the chartist or trend-follower, who believes deviations from the fundamental

value in the previous period will persist:

fC,t = gCxt−1. (4.16)

The parameter gC defines the difference between the behavior of the agents. When gC = 0 , both

types are identical. When 0 < gC < 1+r, both types agree that deviations from the fundamental

value should disappear over time, but they disagree about the pace of this correction. In Brock

and Hommes (1998) gC ≥ 1+ r, meaning the chartists believe that the asset price will diverge

from the fundamental value. Fundamentalists will therefore buy stocks when the price is under

its fundamental valuation and sell when it is above. Chartists act the other way around which

may create both positive and negative stock price bubbles even in the absence of random shocks

(Brock and Hommes, 1998). Chartists are commonly thought of as technical traders, although

Parke and Waters (2007) argue that similar behavior could be observed when agents experi-

ment with different information sets to form expectations. The model with fundamentalists and

chartists reduces to the representative-agent benchmark (4.9) when gC = 0, or nF,t = 1 ∀t.

I simulate dividends (4.7) and asset prices according to the representative-agent model (4.9),

the optimist-pessimist model (4.10)-(4.14) and the fundamentalist-chartist model (4.10)-(4.13)

and (4.15)-(4.16). Plots of 200 simulated observations of the asset prices under each model

are given in Figure 4.1, together with the calibration of the parameters. The calibration of the

profit functions and switching probabilities (4.13) is identical to the calibration by Brock and

Hommes (1998). Figure 4.1 shows that under the representative-agent model, the difference

between the fundamental values and the realized price is i.i.d. random noise (top panel). With

the fundamentalist-chartist model, longer lasting deviations are observed. Thinking of annual
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Figure 4.1: Simulated asset prices. Fundamental values and realized prices generated by: Representative

agent (Top panel), Fundamentalists and Chartists (Middle panel) and Optimists and Pessimists (Bottom

panel). Calibration: α1 = 4, α2 = 0.8, σ2
ε = 1, r = 0.1, σ2

η = 2, β = 3.6, gC = 1.2, cF = 1, cC = cO =

cP = 0, b = 5.5

data, the middle panel shows several examples of stock price bubbles lasting up to a decade.

Finally, the bottom panel of Figure 4.1 shows the optimist-pessimist model, with continuous

cycles of overvaluation followed by undervaluation lasting just a couple of years.

Apart from the calibration mentioned in Figure 4.1, the models are simulated with five

different values values for b and gC, measuring the discrepancy between beliefs of optimists and

pessimists and of chartists and fundamentalists respectively. The bias parameter b is calibrated

1.1, 2.2, 3.3, 4.4 and 5.5, corresponding to a discrepancy between optimists’ and pessimists’

beliefs equal to respectively 1, 2, 3, 4 and 5% of the average fundamental value. The parameter

gC is calibrated at 0.8, 0.9, 1.0, 1.1 and 1.2. Larger values of gC are not possible, as this model

becomes unstable and converges to infinity when gC ≥ (1+ r)2 (Brock and Hommes, 1998).

After each simulation, the model selection procedure described in Section 4.2 is applied to

determine whether the VAR including (demeaned) prices and dividends (pt ,dt)
′ is causal or

noncausal. Since dividends follow a stationary AR process, there is no need to take (log) dif-

ferences. This process is repeated 5000 times. Table 4.4 shows how often causal and noncausal

specifications are selected for each model.
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TABLE 4.4

Representative agent

Causal 98%

Noncausal 2%

Optimists and Pessimists

b 1.1 2.2 3.3 4.4 5.5

Causal 98% 78% 66% 63% 60%

Noncausal 2% 22% 34% 37% 40%

Fundamentalists and Chartists

gC 0.8 0.9 1.0 1.1 1.2

Causal 92% 83% 62% 33% 10%

Noncausal 8% 17% 38% 67% 90%

Notes: Percentage of causal and noncausal outcomes of the VAR for (pt ,dt)
′ after 5000 simulations of a

representative-agent model (4.9) and of two heterogeneous-agents models (4.10)-(4.16) at multiple calibrations.

The representative-agent model is identical to the two heterogeneous-agents models when b = gC = 0 The sample

size in each simulation is 200 observations.

With a representative agent the VARs of prices and dividends are found to be almost ex-

clusively causal. However, with heterogeneous agents noncausality is found more often, up

to 40% of the simulations with the optimist-pessimist model and even up to 90% with the

fundamentalist-chartist model, even though all types of agents considered are fully backward-

looking in the sense that they base their decisions only on past prices and dividends. Moreover,

Table 4.4 clearly shows that noncausality is selected more often when the discrepancy between

agents’ beliefs (measured by b and gC) increases. These results confirm that heterogeneous

beliefs are a potential source of noncausality. This is consistent with the simulation results

in Section 4.3, since the fractions and strategies of each type of agent are unobservable and

therefore omitted from the estimated model. Parke and Waters (2007) note that asset prices are

generated by a process Pt = f (Ωt−1,nt ,εt), where Ωt−1includes all past prices and dividends

and nt include the fractions of each type. In this case an econometrician will have access to

Ωt−1, but can not observe behavior or expectations. An estimated model will therefore be of

the form Pt = f̂ (Ωt−1, ε̂t), so that nt is an omitted variable.
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4.5 Conclusion

This paper presents empirical results confirming that, within the context of linear (vector) au-

toregressions, asset prices show a dependence on future observations and are therefore non-

causal. A simulation study shows that the existence of heterogeneous beliefs is a potential

source of noncausality. In this example, the econometrician has a smaller information set avail-

able than the actual agents in the economy and therefore misspecifies the agents’ expectations

formation mechanism. When only realized market data are observed, an important piece of

information about the asset pricing process is omitted, namely the expectations and fractions of

each type of agent.

Investor heterogeneity is not the only potential source of noncausality. Also in a represen-

tative agent model, the evolution of asset prices may depend on unobservable elements such as

a time-varying (stochastic) discount factor.

The result that asset prices are noncausal, raises opportunities for further research. Non-

causal forecasting methods proposed by Lanne et al. (2012 a,b) may be helpful in predicting

asset prices and returns. Moreover, in structural modeling of asset price dynamics, the issue

of nonfundamentalness should be addressed (e.g. Forni et al. 2009, Fernandez-Villaverde et al.

2007).
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Chapter 5

GMM estimation with noncausal instruments

under rational expectations
1

5.1 Introduction

In a recent paper, Lanne and Saikkonen (2011a) warn against the use of the generalized method

of moments (GMM; Hansen, 1982), when the instruments are lags of variables that admit a

noncausal autoregressive representation. With such noncausal instruments, the two-stage least

squares (2SLS) estimator is shown to be inconsistent under certain assumptions on the distribu-

tion of the error term in the regression model. In this paper, I make no explicit assumptions on

this distribution. Instead, the errors are implied by a rational expectations equilibrium and are

in fact prediction errors. GMM estimation is in this case consistent even when the instruments

are noncausal.

The application of GMM is widespread in empirical macroeconomics and finance (see,

e.g. the survey by Hansen and West, 2002). Typical examples include the estimation of an

Euler equation (e.g. Hansen and Singleton, 1982, Campbell and Mankiw, 1990) or a Philips

curve (e.g. Gali and Gertler, 1999). In these examples, the moment conditions are based on

the assumption of rational expectations, implying that error terms must be orthogonal to all

observed information. A lagged value of any observable variable should therefore be a valid

instrument.

1This chapter is based on an article forthcoming in the Oxford Bulletin of Economics and Statistics (Lof, 2013)
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Lanne and Saikkonen (2011a) consider a linear regression model with a single regressor:

yt = δxt +ηt , (5.1)

and evaluate the situation in which xt is noncausal. A variable is noncausal, when it follows a

noncausal autoregressive process, that allows for dependence on both leading and lagging ob-

servations. A noncausal AR(r,s) process, as defined by Lanne and Saikkonen (2011b), depends

on r past and s future observations:

φ(L)ϕ(L−1)xt = εt , (5.2)

with φ(L) = 1− φ1L− ...− φrL
r, ϕ(L−1) = 1−ϕ1L−1 − ...−ϕrL

−s, εt ∼ i.i.d.(0,σ2) and L

is a standard lag operator (Lkyt = yt−k). A noncausal AR process has an infinite-order moving

average (MA) representation that is both backward- and forward-looking:

xt = ϕ(L−1)−1φ(L)−1εt =
∞

∑
j=−∞

ψ jεt− j, (5.3)

in which ψ j is the coefficient of z j in the Laurent-series expansion of ϕ(z−1)−1φ(z)−1 (Lanne

and Saikkonen, 2011b). When xt is a vector, (5.2) defines a noncausal VAR(r,s) process (Lanne

and Saikkonen, 2013).

Lanne and Saikkonen (2011a) make the following distributional assumption on the errors in

(5.1) and (5.2):

(εt ,ηt)
′ ∼ i.i.d.(0,Ω), (5.4)

with nonzero covariance: Ω12 = E [εtηt ] 6= 0. Since xt and ηt are correlated, OLS estimation

of equation (5.1) is inconsistent. However, the MA representation (5.3) reveals that also 2SLS

estimation is inconsistent when lags of xt are used as instruments, since these lags depends on

εt and are therefore correlated with ηt : E [xt−iηt ] = ψ−iE [εtηt ] = ψ−iΩ12, which is nonzero if

ϕ j 6= 0, for some j ∈ {1, ..,s} in equation (5.2). The next section shows that this inconsistency

does not hold under the assumption of rational expectations.
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5.2 Prediction errors

For ease of exposition, I consider the linear regression model (5.1), with xt generated by a

Gaussian first-order noncausal autoregression. Lof (2011) provides additional simulation results

showing robustness to non-Gaussian and higher-order autoregressive specifications of xt . The

result is further illustrated in the next section with a nonlinear asset pricing model.

If the dependent variable yt in the linear regression (5.1) is the outcome of a rational expec-

tations equilibrium, the error term error term ηt has the interpretation of a prediction error:

yt = δEt−1 [xt ]

ηt = −δ (xt −Et−1 [xt ]) ,
(5.5)

in which Et−1 [·] ≡ E [· | Θt−1] and Θt−1 denotes the information set which includes all infor-

mation observable in period t −1. In this case, all variables belonging to Θt−1 are uncorrelated

with ηt . Lagged values of xt , assuming they are observable (xt−i ∈ Θt−1, i ≥ 1), are therefore

valid instruments regardless of their dynamic properties:

E [xt−iηt ] = E [xt−iEt−1 [ηt ]] {i ≥ 1}

= E [xt−iEt−1 [−δ (xt −Et−1 [xt ])]]

= −δE [xt−i (Et−1 [xt ]−Et−1 [xt ])] = 0.

(5.6)

To see how this differs from the result by Lanne and Saikkonen (2011a), assume the regressor

xt to be generated by a Gaussian first-order noncausal autoregressive process, AR(0,1):

xt = αxt+1 + εt

=
∞

∑
j=0

α jεt+ j,
(5.7)

with εt ∼ N(0,σ2). Since xt is Gaussian, the noncausal process (5.7) is indistinguishable from a

causal AR(1,0) process, and its optimal forecast is identical to the causal case: Et−1 [xt ] =αxt−1

(Lanne et al., 2012). The realized prediction error (assuming the true value of α is known) is
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then:

et = xt −Et−1 [xt ]

= xt −αxt−1

(5.8)

The prediction error et is the true ’innovation’ in xt and is, other than in a causal autoregression,

not equal to the error term εt . In fact, from the MA representation of xt (5.7), it is straightforward

to see that the prediction error is correlated with lags and leads of εt :

E [etεt−i] = E [xtεt−i]−αE [xt−1εt−i]

=





0−ασ2 = −ασ2 {i = 1}

α iσ2 −αα i+1σ2 = (1−α2)α iσ2 {i < 1}

0−0 = 0 {i > 1},

(5.9)

Since the implied error term ηt is an exact linear function of the prediction error et (ηt =−δet),

ηt is correlated with leads and lags of εt , which contradicts the assumption (5.4) made by Lanne

and Saikkonen (2011a). The prediction errors et and ηt are, however, uncorrelated with lags of

xt :

E [etxt−i] = E [xtxt−i]−αE [xt−1xt−i]

= α iE
[
x2

t

]
−αα i−1E

[
x2

t

]
= 0 {i ≥ 1},

(5.10)

which means that lags of xt are valid instruments for estimating (5.1), regardless of whether xt

is causal or noncausal.

This result can be extended to a multivariate context. Let xt be a K-dimensional vector of

variables that is generated by a noncausal VAR(0,1) process:

xt = Bxt+1 + εt , (5.11)

with εt ∼ N(0,ΣB), while x∗t follows a causal VAR(1,0) process:

x∗t = Ax∗t−1 + ε∗t , (5.12)
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with ε∗t ∼ N(0,ΣA). The processes xt and x∗t are identical in first- and second-order moments

when:

B = Γ∗
0A′Γ−1

0

ΣB = Γ∗
0 −BΓ0B′,

(5.13)

in which the covariance functions are defined by:

Γ0 = E [xtx
′
t ] = BΓ0B′+ΣB

Γ∗
0 = E [x∗t x∗′t ] = AΓ∗

0A′+ΣA.
(5.14)

It is straightforward to verify that Γ0 = Γ∗
0, when (5.13) holds. Under these conditions, also the

autocovariance functions of xt and x∗t are identical:

Γ−i = E
[
xtx

′
t+i

]
= BiΓ0

Γ∗
i = E

[
x∗t x∗′t−i

]
= AiΓ∗

0.
(5.15)

Since Γ−i = Γ′
i, the autocovariance function of the causal and noncausal processes are identical

if and only if BiΓ0 = Γ∗
0A′i, or equivalently: Bi = Γ∗

0A′iΓ−1
0 , which is satisfied for all i when

B = Γ∗
0A′Γ−1

0 and Γ0 = Γ∗
0.

The equivalence in first- and second-order moments implies that, under Gaussianity, the

processes (5.11) and (5.12) are indistinguishable, so Et−1 [xt ] = Axt−1 is the optimal forecast

for both the causal and noncausal process (Lanne et al., 2012). The vector of forecast errors is

then, analogous to equation (5.8), et = xt −Axt−1. As in the univariate case (5.9)-(5.10) et is

correlated with lags and leads of εt , but uncorrelated with lags of xt :

E
[
etx

′
t−i

]
= Γ′

−i −AiΓ0

= Γ0B′i −Γ0B′iΓ−1
0 Γ0 = 0 {i ≥ 1}.

(5.16)

Under the assumption that the error term in a regression equation like (5.1) is a linear combina-

tion of prediction errors: ηt = γ ′et, lags of xt are uncorrelated with this error term (E [ηtxt−i] = 0

∀i ≥ 1) and are therefore valid instruments.
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5.3 Example: Consumption-based asset pricing

Consumption-based asset pricing was amongst the first applications of GMM (Hansen and Sin-

gleton, 1982). The model to estimate is an Euler equation relating financial returns (Rt =

P−1
t−1(Pt +Dt)) to the marginal rate of substitution:

Et−1

[
β

u′(Ct)

u′(Ct−1)
Rt

]
= 1, (5.17)

in which Pt refers to asset prices, Dt to dividends and Ct to consumption. Multiplying this

optimality condition with a vector of predetermined instruments zt−1 and assuming a constant

relative-risk aversion utility function (u(Ct) = (1− γ)−1C
1−γ
t ) gives the required moment con-

ditions for GMM estimation:

E

[(
β

(
Ct

Ct−1

)−γ

Rt −1

)
zt−1

]
= 0. (5.18)

This approach has become leading practice in empirical finance (see e.g. Ludvigson, 2011,

for a recent survey). It is illustrative to see that a simple regression model, similar to (5.1), is

obtained after log-linearizing the Euler equation:

rt = µ + γ△ct +ηt , (5.19)

in which rt = log(Rt) and ct = log(Ct). Yogo (2004) shows that the error term ηt is in this case

indeed a linear combination of prediction errors, as assumed in Section 5.2:

ηt = (rt −Et−1 [rt ])− γ (△ct −Et−1 [△ct ]) , (5.20)

I simulate returns and consumption according to (5.17), to verify that the GMM estimator is

consistent even if the instruments are noncausal. The first step is to define log consumption and

dividend growth as a first-order VAR process, (△ct ,△dt)
′ = xt , in which dt = log(Dt). This

process may be causal or noncausal, i.e. is generated by equation (5.12) or (5.11). The restric-
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TABLE 5.1: Calibration

A ΣA β γ

(i) (△ct ,△dt)
′ ≡ xt

(
−0.161 0.017

0.414 0.117

) (
0.0012 0.0018

0.0018 0.014

)
0.97 1.3

(ii) △ct =△dt ≡ xt −0.14 0.009 0.97 1.3

Notes: Calibrations of A, ΣA, β and γ in the Euler equation (5.17). The first calibration (i) follows Wright (2003).

In the second calibration (ii), consumption and dividends are identical as in a Lucas-tree economy (Lucas, 1978).

The autoregressive process may be causal or noncausal. The parameter values of the noncausal autoregressive

process are derived from A and ΣA according to equation (5.13)

tions (5.13) apply, so both specifications are identical in their mean, variance and autocorrelation

function. Given a simulated sample of consumption and dividends, I generate returns following

the approach of Tauchen and Hussey (1991). Multiplying equation (5.17) by
Pt−1

Dt−1
, results in

a nonlinear stochastic difference equation describing the dynamics of the price-dividend (PD)

ratio:

Pt−1

Dt−1
= Et−1

[
β

(
Ct

Ct−1

)−γ
Dt

Dt−1

(
1+

Pt

Dt

)]
, (5.21)

which can be simulated by calibrating a discrete-valued Markov chain that approximates the

conditional distribution of consumption and dividend growth. Details on this approximation for

the causal VAR are provided by Tauchen (1986) and this method can be implemented for the

noncausal VAR too, as the conditional distributions of the causal and noncausal processes are

identical under Gaussianity and the restrictions in (5.13). Returns are then computed from the

simulated dividends and PD ratios.

I consider two different calibrations of the matrices A and ΣA in (5.12), which are given in

Table 5.1. The first calibration (i) of A and ΣA is following Wright (2003) and is based on actual

data on annual consumption and dividend growth. In the second example (ii), consumption

growth follows a univariate AR(1,0) or AR(0,1) process, which is calibrated to have identi-

cal variance and autocorrelation as consumption growth in the first calibration, while dividend

growth is set equal to consumption growth. This is an example of a “Lucas-tree economy”, in

which household income consists of dividends alone. It is well known that in this case there

exists a no-trade equilibrium in which households consume their entire endowment of dividends

(Lucas, 1978).

I use the simulated returns and consumption growth rates to estimate β and γ by two-step
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efficient GMM, based on the moment conditions (5.18), using zt−1 =

(
1,

Ct−1

Ct−2
,Rt−1

)′

as in-

struments, following Hansen and Singleton (1982). I consider 10,000 replications with sample

sizes of 50 and 1000 observations.

Table 5.2 displays the simulation results. The main result is that for both calibrations, non-

causality of the instruments seems to have no effect on the finite-sample or asymptotic proper-

ties of the GMM estimator. In both cases, the GMM estimates of β and γ are rather poor for

small samples, but improve for larger samples. It is clear that the inconsistency of the estimator

derived by Lanne and Saikkonen (2011a), does not hold under the assumptions in this model.

Figure 5.1 shows plots of the correlation between the Euler-equation errors ut = β̂

(
Ct

Ct−1

)−γ̂

Rt −

1 and lags and leads of εt and
Ct

Ct−1
. These correlation plots are consistent with the results de-

rived in Section 5.2: When consumption is generated by a causal process, ut is only correlated

with εt , but not with its leads and lags. With noncausal consumption, on the other hand, the error

term ut is correlated with lags and leads of εt , so assumption (5.4) does not hold. Despite these

intertemporal correlations, the important point to notice is that lags of
Ct

Ct−1
are uncorrelated

with ut , which means they are valid instruments.

TABLE 5.2: Simulation results

Causal Noncausal

Calibration (i) (ii) (i) (ii)

T 50 1000 50 1000 50 1000 50 1000

β 0.965 0.970 0.970 0.970 0.965 0.970 0.970 0.970

(0.030) (0.004) (0.001) (0.000) (0.030) (0.004) (0.001) (0.000)

γ 1.742 1.293 1.115 1.285 1.743 1.292 1.114 1.285

(3.556) (0.810) (0.202) (0.067) (3.580) (0.809) (0.190) (0.067)

Notes: Average two-step efficient GMM estimates and standard deviations (in parenthesis) of β and γ , model

(5.17), after 10,000 replications of sample size T . Instruments are zt−1 =

(
1,

Ct−1

Ct−2
,Rt−1

)′

. Consumption and

dividends are generated by a causal or noncausal autoregressive process. Returns are computed following the

approach of Tauchen and Hussey (1991). Calibrations of the Euler equation and autoregressive processes are given

in Table 5.1.
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Figure 5.1: Correlations of errors and instruments. Correlations between residuals from GMM estimates

in Table 5.2: ut = β̂

(
Ct

Ct−1

)−γ̂

Rt −1 and lags and leads of εt and
Ct

Ct−1

, for calibration (i), top, and (ii),

bottom.

5.4 Conclusion

Instead of making explicit distributional assumptions on the error terms in a regression model,

I argue that these errors are to be interpreted as prediction errors. This interpretation is con-

sistent with the approach by Hansen and Singleton (1982), amongst others, who base GMM

estimation on moment conditions implied by rational-expectations theories. All variables in-

cluded in the information set on which agents condition to form expectations are in this case

valid instruments, whether these are causal or noncausal. This is good news to those who apply

GMM, although other caveats, such as weak instruments or misspecified economic theories, are

of course still around to complicate the tasks of applied econometricians.
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