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1. Introduction

Coordination games with heterogeneity in information and complementarity in ac-

tion have been widely applied to macroeconomic environments, financial markets and

even collective actions. Their welfare properties constitute the focus of a line of recent

studies. In this paper, we examine this issue in a context where individuals have finite

channel capacity to process relevant information.

The attention or capacity that individuals possess is scarce. Consequently, they

have to allocate their capacity optimally among various information sources and then

take actions based on the information they acquire. As Sims (2005) argue, this in-

formation processing constraint may have significant welfare implications for under-

standing the effects of policies that reveal public information and can be critical when

evaluating the optimality of policies, e.g., the transparency of public announcements.1

To abstract from a specific market structure and retain tractability, we formalize

our model in a “beauty contest” framework, as in Morris and Shin (2002), where the

payoff for an individual depends on the distance of his action from an unobservable

state and from the average action. To take the best action, agents must estimate the

underlying state and forecast the average action of others. There are two correlated

signals that reveal noisy information about the fundamental, and they can be observed

if agents pay attention to them. One of the signals is private and contains idiosyncratic

noise, and the other is public, can be potentially observed by all agents and contains

common noise. The main point of departure of our model is to assume that agents can-

not perfectly observe these signals because they possess a limited capacity to process

information. Consequently, agents can only observe these signals with idiosyncratic

observation noises.

One example of the aforementioned setting is that dealer-brokers in financial mar-

kets can easily access a large wealth of information from their clients’ portfolios and

can also analyze public announcements released by the central bank. Both sources

reveal noisy information on the market fundamental. Constrained by the limited

amount of capacity, deal-brokers need to decide on the allocation of their attention

to process each of the noisy signals.

With a fixed amount of capacity to split between these two signals, a number of

forces interact and shape agents’ decisions: decreasing returns to attention, the rela-

tive accuracy of the public signal to the private signal, the coordination motive and

1Sims (2005) argues that “rational inattention may have far-reaching implications for macroeco-
nomics and monetary policy generally, once its implications are fully worked out. In the meantime,
though, it may shed some light on transparency in monetary policy.”
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the correlation between the two signals.2 It is more attractive for agents to observe the

signal with higher accuracy, because a signal of higher quality helps agents estimate

the state more accurately. However, the force of diminishing returns to attention pro-

vides agents with incentives to diversify their attention and spend their capacity on

both signals.3 The coordination motive tilts the attention allocation decision toward

the public signal, which better aligns their actions. Furthermore, a higher correlation

across signals dampens the effect of diminishing returns to attention and amplifies the

effect of the coordination motive.

Questions naturally arise from this setting. Do individuals pick up more signals

when they are better able to process information? Does social welfare necessarily in-

crease when individuals possess more information-processing capacity? In the exist-

ing rational inattention literature, the answers to both questions seem to be yes.4 How-

ever, we show that the answers could be reversed when the signals to be observed are

highly correlated and/or when there exists strong strategic complementarity in ac-

tions. Under these conditions, one intriguing scenario arises, where agents can first

focus on the relatively more precise private signal and then diversify their attention

when capacity is higher; however, when there is a further increase in capacity, they

may reduce their attention on or even ignore the private signal of higher quality and

instead focus on the relatively imprecise public signal. We label this phenomenon

“attention misallocation.” Further, when the coordination motive or correlation is suf-

ficiently high, the relative accuracy is not extreme and the amount of capacity is not

very high, multiple equilibria can arise in this model.

We find a number of distinct results on social welfare, i.e., the average distance be-

tween individual decisions and the underlying state. First, social welfare may decrease

when individuals possess more capacity to process information. This result hinges on

the fact that agents may “misallocate” their attention from a social perspective and the

misallocation may become more severe in response to higher capacity. When there is

an increase in capacity, agents can observe signals more clearly and better estimate the

2Sims (2010) argues that finite capacity can be elastic in response to a change in environment, given
that the marginal cost of information processing is constant. In this case, inattentive agents are allowed
to adjust optimal capacity in such a way that the marginal cost of information-processing for the prob-
lem at hand remains constant, which is consistent with the concept of “elastic” capacity proposed in
Kahneman (1973). Luo and Young (2014) notes that the two assumptions, i.e., constant capacity and
constant marginal cost of information processing, are observationally equivalent in the sense that they
lead to the same model dynamics governed by the Kalman gain. In this study, for simplicity, we focus
on the fixed capacity assumption and do not consider the effect of prior uncertainty on elastic capacity.

3“Diminishing returns to attention” refers to the fact that the marginal increase in the agent’s welfare
is decreasing as capacity increases. Luo (2008) and Luo and Young (2010) illustrate this property in
partial equilibrium permanent income models with inattentive agents.

4For example, Luo (2008) shows that the welfare loss due to finite capacity decreases with channel
capacity within a partial equilibrium permanent income model. Maćkowiak and Wiederholt (2011)
obtains the same result in a general equilibrium business cycle model.
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underlying state. However, given the desire to align their actions, they may decrease

the attention paid to the private signal, even though it is relatively more precise, and

coordinate even more attention on the less precise public signal. When agents take

action, they assign a larger weight to the observation of the public signal, which exac-

erbates the “overreaction” to the public signal and causes a decrease in social welfare.

Second, the limit case of this model is the world of Morris and Shin (2002), in which

agents possess an infinite amount of capacity and can therefore perfectly observe both

signals. However, strikingly, social welfare in the Morris-Shin world may be even

lower than that in our model with capacity-limited agents. On the one hand, with

a finite amount of capacity, agents have a less precise estimation of the fundamental

than that in the Morris-Shin world. On the other hand, agents may endogenously pay

little attention to the public signal and therefore reduce their reliance on it in their

action which, to a certain degree, alleviates the overuse of the public signal. We show

that the second effect can dominate.

Third, our model also sheds some light on the debate about the transparency of

monetary policy. Morris and Shin (2002) show that social welfare can decrease when

the central bank delivers a clearer public announcement due to an overreaction to the

public signal. Svensson (2006) questions the empirical relevancy of this result and

argues that it only holds when public information is implausibly imprecise. We show

that endogenous attention allocation can amplify the “overreaction,” so that social

welfare can decrease when the precision of the public signal is reasonably high.

Finally, our results also offer a new perspective on the literature covering the effi-

cient use of information. Angeletos and Pavan (2007) show that equilibrium use and

the efficient use of information coincide if and only if the social and private values of

coordination are the same. However, once we allow for an endogenous information

structure, i.e., attention allocation of inattentive agents, this relationship breaks down.

2. Related Literature

There are two distinct approaches to modeling information acquisition in the related

literature: “costly acquisition” and “attention allocation.” Pioneering studies that adopt

the costly acquisition approach examine the implications of information acquisition in

coordination games by assuming that agents pay a cost to acquire information, e.g.,

Hellwig and Veldkamp (2009), Myatt and Wallace (2012) and Ming (2013).

In contrast, we follow Sims (2003) and assume that agents split a fixed amount of

capacity on the signals to be observed. This approach is necessary for our work be-

cause we want to offer a welfare analysis of the coordination game played by rationally

inattentive agents to study the effect that attention allocation has on social welfare.
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The advantage of this approach is that it is not indispensable to specify the exogenous

functional forms of costly attention, which would substantially affect agents’ choice

and welfare. We also relate the insights from our model to the literature on the social

value of public information. To achieve a clean comparison of social welfare between

models with exogenous and endogenous information structures, this approach seems

to be a natural choice for this particular problem.

Our setup differs from those of recent contributions to the literature that explicitly

deals with welfare-related issues. Maćkowiak and Wiederholt (2009, 2011) study how

individuals or firms allocate their attention among two independent states when they

set the price in a market-based economy or take collective actions. In our case, the

two signals are correlated. We explicitly characterize the role of their correlation in

optimal attention allocation and show that correlation is of critical importance for the

multiplicity and uniqueness of equilibrium. For example, a high coordination motive

does not necessarily give rise to multiple equilibria, unless the correlation between the

two signals is sufficiently high.

This paper is closely related to the literature on the efficient use of information,

e.g. Angeletos and Pavan (2006) and Colombo, Femminis, and Pavan (2012). The lat-

ter studies the interaction between the inefficient use and acquisition of information.

In their model, agents pay to gain private information and can observe the public

announcement precisely. In contrast, agents in our model can observe neither of the

signals perfectly. Unlike their setup, which has a unique equilibrium, the rational inat-

tention assumption in our model gives rise to the possibilities of multiple equilibria

and of one of the signals being endogenously ignored.

Our work also contributes to the growing literature on the social value of public

information. Cornand and Heinemann (2008) consider an interesting setup in which

only a fraction of the agents are allowed to observe the public signal. In our model,

agents can endogenously choose to ignore either public or private information, or di-

versify their attention between both. Myatt and Wallace (2009) study this issue in a

model with multiple information sources that differ in the degree of publicity. In our

model, the publicity of public information is endogenous: the idiosyncratic observa-

tion noise is determined by the amount of attention paid.

This paper is also broadly related to the literature on information choice, attention

allocation and asset allocation, which includes Peng (2005), Peng and Xiong (2006),

Nieuwerburgh and Veldkamp (2009, 2010) and Mondria (2010). The framework adopted

in these studies consists of multiple assets and a continuum of agents who face the in-

formation processing constraints.
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3. The Model

3.1. Players, Payoffs and Coordination

The economy is occupied by a continuum of agents, indexed by i ∈ (0,1). Each of them

can choose an action, ai ∈ R. In this economy, the fundamental state, θ, affects payoffs

of agents. It is selected by nature but unknown to agents. Following Morris and Shin

(2002), the payoff for agent i is specified by

ui = −(ai − θ)2 − α

1 − α
(Li − L̄), (1)

where α is constant, such that 0 < α < 1, and Li =
∫
(aj − ai)

2dj and L̄ =
∫

Lidi.

When agent i takes action, two types of loss are incurred. The first component is

measured by the distance between individual action and the uncertain state: agents

would be better off if they were to choose an action closer to the fundamental. The

second component is the distance between individual and average actions, which cap-

tures the idea that agents want to align their actions. A higher α implies that agents

assign a larger weight to this strategic concern in their payoff structure and have a

stronger incentive to coordinate.

3.2. Information Structure

Agents begin with some knowledge of the underlying state. Specifically, they share a

common normal prior over θ,

θ ∼ N
(

θ,σ2
)

(2)

where θ and σ2 are the mean and variance of the prior distribution, respectively. Each

agent can access two potentially observable signals, i.e., the private signal xi and the

public signal z, and the distribution is specified as follows,

si =

(
xi

z

)
,

(
θ + εxi

θ + εz

)
, (3)

where εxi
∼ N

(
0,σ2

x

)
and εz ∼ N

(
0,σ2

z

)
are independent of the true state θ. Note that

εxi
is independently and identically distributed across agents while εz is common. The

ex ante covariance matrix of si can be written as

Σ =

(
σ2 + σ2

x σ2

σ2 σ2 + σ2
z

)
. (4)

The information structure described thus far resembles that in Morris and Shin
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(2002). The public signal can be interpreted as a public announcement made by the

central bank or statistics released by the public agency. The private signal can be in-

terpreted as information only accessible to individuals and not to the general public.

Noise terms εxi
and εz can be interpreted as senders’ noise contained in the signals,

which cannot be reduced by paying attention to the signals. One implicit assumption

is that agents cannot directly observe the fundamental and can obtain information

only through analyzing the noisy signals about it.

Following Sims (2003), we assume that agents have a finite capacity to process

available information, and that the reduction in uncertainty about the true signals is

limited by finite entropy. Therefore, agents can only observe the noisy signals:

ŝi =

(
x̂i

ẑi

)
=

(
xi

z

)
+

(
ξxi

ξzi

)
, (5)

where (ξxi
ξzi

)′ are observation noises, which are independent of the true state and the

sender noises, and are independently and identically distributed across agents. The

presence of observation noises reflects the finite information processing capacity. Its

co-variance matrix is given by

Λ =

(
ω2

x 0

0 ω2
z

)
(6)

where ω2
x and ω2

z are variances in the observation noises for private and public signals,

respectively. Because the observation noises are idiosyncratic, noisy observation of the

public signal, ẑi, is imperfectly correlated across the agents, whereas the observation

of the private signal, x̂i, remains independent.

The posterior covariance matrix of si can be determined using the following Gaus-

sian updating formula,

Ψ = Σ − Σ (Σ + Λ)−1
Σ or Ψ

−1 = Σ
−1 + Λ

−1. (7)

We assume that each agent in this economy possesses a limited amount of capac-

ity to process information. Specifically, each agent is assumed to face the following

information-processing constraint:

1

2
ln

( |Σ|
|Ψ|

)
≤ κ, (8)

where |Σ| and |Ψ| denote the determinant of the prior covariance matrix of si and the

corresponding posterior covariance matrix, respectively, and κ is positive and denote
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the individual’s finite channel capacity. This constraint implies that the reduction in

the uncertainty about the state gained from observing new signals is bounded from

above by a finite capacity.

Given the specifications of (4), (6) and (7), the information processing constraint (8)

can be rewritten as

1

2
ln

(
ω2

x +
(
σ2

x + σ2
)(

1 − ρ2
)

ω2
x

)

︸ ︷︷ ︸
κ̂x

+
1

2
ln

(
ω2

z +
(
σ2

z + σ2
)(

1 − ρ2
)

ω2
z

)

︸ ︷︷ ︸
κ̂z

≤ κ̂, (9)

where the prior correlation across signals, ρ, and the effective capacity, κ̂, are defined

by,

ρ2 ≡ σ2σ2

(σ2
x + σ2) (σ2

z + σ2)
, κ̂ ≡ 1

2
ln
(

exp (2κ)− ρ2 (exp (2κ)− 1)
)

.

Effective capacity is the amount of capacity used to reduce observation noises while

a certain amount of capacity must be “wasted” to learn the correlated part of the two

signals twice. Intuitively, for a fixed amount of κ, the higher is the correlation between

signals and the lower is the effective capacity, κ̂. If the signals are independent, i.e.,

ρ = 0, then κ = κ̂.

The effective capacity spent on the private and public signals are denoted by κ̂x

and κ̂z, respectively. Naturally, we impose the following non-negativity restriction,

κ̂z ≥ 0, and κ̂x ≥ 0. (10)

The variances in observation noises can be recovered from equation (9) as follows:

ω2
x =

(
σ2

x + σ2
)(

1 − ρ2
)

exp(2κ̂x)− 1
, ω2

z =

(
σ2

z + σ2
)(

1 − ρ2
)

exp(2κ̂z)− 1
. (11)

If agents spend more effective capacity on observing a signal, then that signals’ ob-

servation noise is smaller or it is clearer to the agents. In a limit case, agents possess

an infinite amount of capacity and can therefore perfectly observe both signals, i.e.,

ω2
x = 0 and ω2

z = 0. To facilitate the characterization that follows, we define the rela-

tive accuracy of the public signal by

∇≡
√

(σ2
x + σ2)

(σ2
z + σ2)

,

and it can be readily verified that ρ <∇ < 1
ρ .
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3.3. Equilibrium

This model environment can be considered as a two-stage game. In the first stage,

nature draws the underlying state and agents make decisions on their attention allo-

cation by optimally splitting the effective capacity between the signals to be observed.

In the second stage, agents observe the realized signals and then take action.

We focus on a linear symmetric equilibrium in which all agents follow the same

strategy in attention allocation and adopt a linear strategy in actions. Because the

attention allocation is determined in the first stage, the heterogeneity in signal obser-

vations in the second stage does not affect their decision. Once agents decide their at-

tention allocation, the variances in observation noises are also determined. The action

strategy ai in the second stage is linear in both the prior and observations on signals,

ai = Πθ,iθ + Πx,i x̂i + Πz,i ẑi, (12)

where (Πθ,i,Πx,i,Πz,i) are the weights assigned to the prior and observations.

We first solve the second-stage game, where the equilibrium remains unique. The

solution to this game is the optimal weighting rule for any arbitrary allocation of at-

tention in the first stage. Then, we solve for the optimal attention allocation in the first

stage, taking the optimal weighting rule as given.

Given the linearity of the strategy and the normality of the information structure,

we can show that an agent’s action is a weighted average of the observations and their

prior. That is,

Πθ,i + Πx,i + Πz,i = 1. (13)

Individual i’s payoff depends on the other agents’ choices. Let the action strategy

of the other agents be (κ̂x, κ̂z,Πθ,Πx,Πz). The expected utility of individual i, E[ui],

can be written as the sum of three components,

E [ui] =− 1

1 − α

(
Π

2
θ,i

1

φθ
+ Π

2
x,i

1

φx,i
+ Π

2
z,i

1

φz,i

)

︸ ︷︷ ︸
L†

− α

1 − α

(
(Πz,i − Πz)

2 σ2
z + (Πθ,i − Πθ)

2 σ2
)

︸ ︷︷ ︸
L‡

+ C, (14)

with

φθ =
1

(1 − α)σ2
, φx,i =

1

σ2
x + ω2

x,i

, φz,i =
1

(1 − α)σ2
z + ω2

z,i

, (15)
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and

C =
−α

1 − α

[(∫
a2

j dj − ā2

)
− L̄

]
.

The first component of the utility function, −L†, is the quadratic loss of agent i,

when everybody uses the same weights on their signals in action strategy. It shows

that both sender and observation noises are of importance for the expected loss. The

second component, −L‡, is another possible source of expected loss for agent i: uti-

lizing a different action strategy from that used by the other agents. Obviously, when

agent i adopts the same strategy, L‡ becomes zero. Moreover, C is the effect of actions

taken by other agents on agent i and it cannot be affected by her choice. Note that

ω2
x,i and ω2

z,i are the variances of agent i’s observation noises on the private and public

signals, respectively, which are given by (11), and a is the aggregate action.

3.4. Characterization

Agent i maximizes E [ui] by choosing κ̂z,i optimally.5 To analyze the equilibrium allo-

cation of attention, we study agent i’s best response allocation strategy. We begin by

defining the relative marginal return of attention on the public signal, which turns out

to be convenient in the analysis of the main mechanisms. That is,

γ (κ̂z,i, κ̂
∗
z ) ≡

∂E [ui]/∂κ̂z,i

∂E [ui]/∂κ̂x,i
. (16)

It is straightforward that γ (κ̂z,i, κ̂
∗
z ) measures the relative attractiveness of paying ad-

ditional attention to the public signal, given others’ attention allocation plan κ̂∗z . There

are four forces that shape the attention allocation decision and thus affect γ. In the

following sections, we fix the correlation between the two signals and discuss the role

of the other three. We elaborate on the effect of the correlation in Section 4.2.

Lemma 1. γ (κ̂z,i, κ̂
∗
z ) decreases in κ̂z,i, increases in ∇, and increases in α.

First, the force of diminishing returns to attention takes hold. The more attention

that is paid to the public signal, the less attractive it becomes. Second, agents prefer the

signal with higher accuracy; that is, the higher its relative accuracy, the more attractive

it is. Third, the coordination motive tilts agents’ choice toward learning the public

signal because they are rewarded in two ways when they spend more attention on

the public signal: they are better informed about the underlying true state and their

actions are better aligned. In other words, due to the coordination motive, the relative

5Note that the optimal weighting rule
(

Π
∗
z,i,Π

∗
x,i,Π

∗
θ,i

)
in the second stage is uniquely determined

by the attention allocation plan
(

κ̂∗z,i, κ̂
∗
x,i

)
.

9



attractiveness of the public signal is magnified. The first part of Lemma 1 also implies

that agent i increases her attention on the public signal if and only if γ (κ̂z,i, κ̂
∗
z ) > 1,

and decreases her attention if and only if γ (κ̂z,i, κ̂
∗
z ) < 1.

In symmetric equilibrium, we impose the condition that κ̂z,i = κ̂∗z , and three situ-

ations can arise. First, agents spend all of their attention on the public signal, where

γ (κ̂∗z , κ̂∗z )> 1 and κ̂∗z = κ̂. Second, they spend all of their attention on the private signal,

where γ (κ̂∗z , κ̂∗z ) < 1 and κ̂∗z = 0. Third, they split their attention between both signals,

where γ (κ̂∗z , κ̂∗z ) = 1 and κ̂∗z ∈ [0, κ̂]. The following proposition offers the complete

equilibrium characterization.

Proposition 1. The equilibrium attention allocation is such that

κ̂∗z =





0 if ∇≤∇0

˜̂κz if ∇ ∈ (min{∇0,∇1},max{∇0,∇1})
κ̂ if ∇≥∇1

(17)

κ̂∗x = κ̂ − κ̂∗z

where

˜̂κz =
1

2
κ̂ + ln

(
(1 − α) (1 − ρ∇) + (∇− ρ)exp(κ̂)−

(
1 − ρ2

)

(1 − α) (1 − ρ∇)exp(κ̂) + (∇− ρ)−∇ (1 − ρ2)

)
(18)

and

∇0 =
exp (κ̂)ρ + 1

exp (κ̂) + ρ
, ∇1 =

(1 − α) (exp(2κ̂)− 1) +
(
1 − ρ2

)

(1 − α) (exp(2κ̂)− 1)ρ + exp(κ̂) (1 − ρ2)
. (19)

There exist multiple equilibria, i.e., κ̂∗z = {0, ˜̂κz, κ̂}, if and only if

∇1 <∇ <∇0 and α ≥ 1 − ρ

exp(κ̂)
; (20)

otherwise, the equilibrium attention allocation is unique.

When the relative accuracy is extreme, agents find it optimal to focus on only one

of the signals; that is, for a fixed amount of capacity κ̂ and a coordination motive α,

if the relative accuracy is sufficiently high, i.e., max{∇1,∇0} ≤ ∇, then agents choose

to only observe the public signal. If the relative accuracy is sufficiently low, i.e., ∇ ≤
min{∇1,∇0}, then agents choose to observe the private signal only.

When the relative accuracy is not too extreme, this model can admit either multiple
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0

1

κ̂
∗ z
/
κ̂

∇ρ
b

1/ρ
b

(a) α < 1 − ρ/exp (κ̂) .

0

1

κ̂
∗ z
/
κ̂

∇ρ
b

1/ρ
b

(b) α ≥ 1 − ρ/exp (κ̂) .

Figure 1. The equilibrium uniqueness and multiplicity.

equilibria or a unique equilibrium.6 See Figure 1. Multiple equilibria can arise when

the coordination motive (or correlation) is sufficiently high and/or the total amount

capacity is relatively low. First, the relative accuracy cannot be too extreme for the

existence of multiple equilibria. When everybody focuses on the lower quality signal,

agent i finds that the benefit of deviating and instead focusing on the relatively more

precise signal is dominated by the cost of adopting a different strategy from other

agents. Second, the coordination motive must be sufficiently large, such that when the

strategic concern is strong, agents are more severely punished for deviating from the

strategy adopted by other agents and therefore have less incentive to do so. Third,

if the amount of capacity available is too large, then it is too costly for agent i to fol-

low the others’ strategy, conditional on the rest of the population coordinating on a

“wrong” choice. In contrast, there is only a unique equilibrium if the coordination

motive (or correlation) is not sufficiently strong or capacity is large.

In both cases, a symmetric equilibrium is formed if all agents choose the global

minimizer of L†, because both L† and L‡ (defined in equation (14)) achieve global

minimization and no individual has an incentive to deviate from it. We label it strategic

utility maximizing equilibrium, because it generates the maximum of strategic utility,

which is defined by E[us
i ] ≡ −L† − L‡; that is the component, on which the choice of

agents has an influence.

4. Attention Allocation

This paper investigates how information acquisition—specifically the attention allo-

cation of inattentive agents—affects social welfare and related policy prescriptions in

an environment where coordination is an important concern. In this section, we an-

alyze the comparative statics of the equilibrium attention allocation, which provides

6Technically, L† can be either quasi-concave or quasi-convex in κ̂z,i. The equilibrium is unique if and
only if it is quasi-concave. In this model, the entropy is not a convex function of signal precision and that
is why multiple equilibria can possibly emerge in this model. In contrast, with the costly acquisition
approach, the cost function of noise reduction is usually assumed to be convex.
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building blocks for our examination of social welfare in Section 5, and policy issues in

Section 6. We also highlight the role that the correlation between the public and private

signals plays in attention allocation, as it is absent in most of the previous literature.

4.1. Non-monotonic Attention Allocation

For any relative accuracy and coordination motive, when the capacity is sufficiently

large, the effect of diminishing returns eventually dominates, which leads to a diversi-

fied attention allocation. Because both signals can be extremely clear, the coordination

motive and relative accuracy do not affect the attention allocation, with agents simply

splitting a large amount of attention evenly between the two signals.

Proposition 2. The share of effective capacity devoted to the public signal, κ̂∗z /κ̂, converges to

1/2, when capacity is sufficiently high.

When the capacity is not large enough, the three forces characterized in Lemma

1 are intertwined and affect how the equilibrium attention allocation responds to an

increase in capacity.

Proposition 3. If the public signal is less accurate than the private signal, agents specialize in

learning the latter, when the capacity is low. When the capacity increases, the share of effective

capacity devoted to the public signal is monotonically increasing, if the private signal is very

precise or the coordination motive is not so strong; otherwise, it is hump-shaped.

In the proof of the proposition, we offer a complete characterization of this com-

parative statics. If the private signal is sufficiently accurate or the coordination motive

is sufficiently low, it is never worthwhile to only observe the public signal, despite

the effect of the coordination motive. The key trade-off here is between the effects of

diminishing returns and relative accuracy, with the former eventually dominating the

latter when the capacity is higher. Let κ̂0 be the threshold value of κ̂, at which agents

are indifferent about specialization in the private signal or diversification. In this case,

when the capacity is higher than κ̂0, the share of attention devoted to the public signal

monotonically increases in κ̂. See Figure 2(a).

If the coordination motive is strong, its effect manifests in the non-monotonicity of

the share of attention spent on the public signal. See Figure 2(b). When there is an

increase in capacity, both the diminishing returns and the coordination motive have

larger effects, and both forces tilt the choice of attention allocation toward the public

signal. Thus, there is a sharp increase in κ̂∗z /κ̂. However, when agents allocate a pre-

dominant share of their attention to the public signal, the mechanism of diminishing

returns to attention takes stronger effect and pushes agents to diversify. The effect of

the coordination motive is eventually dominated and therefore, κ̂∗z /κ̂ decreases in κ̂.
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Figure 2. The equilibrium share of attention allocated to the public signal is either monotonic or hump-
shaped in effective capacity.

If the precision of the private signal is close to that of the public one, the effect of

the strong coordination motive can be so prominent that the share of attention on the

public signal can reach 100%. See Figure 2(c). It is interesting to observe that in this

case, agents’ attention fans out, contracts inward, then fans out again. The number of

signals that agents pick up does not monotonically increase in capacity.

Notably, κ̂∗z /κ̂ being hump-shaped implies that, the absolute amount of attention

paid to the more precise private signal can decrease (even to zero) when the total

amount of capacity increases, as the result of a strong coordination motive. We label

this effect “attention misallocation.” In Section 5, we demonstrate how this mechanism

critically affects the social welfare of this economy.

Lemma 2. When the private signal is more precise than the public signal, the ab-
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solute amount of effective capacity allocated to observing the private signal can even

decrease in the total amount of capacity, on the condition that 2α + ρ > 1. Specifically,

dκ̂∗x/dκ̂ < 0.

When the coordination motive is very strong, all three equilibria can exist in the

intermediate range of capacity. See Figure 2(d). Intuitively, this is the case in which

none of the effects of relative accuracy, diminishing returns or coordination motive

dominate the other two. Once other agents adopt one of the strategies, it is costly

to deviate because the coordination motive is very high. Note that, in this case, the

diversification equilibrium can never be the strategic utility maximizing equilibrium.7

Therefore, if we focus on the strategic utility maximizing equilibrium, agents can shift

their focus entirely from the private to the public signal when capacity crosses a cutoff

value of κ̂s. The key trade-off here is between taking advantage of high accuracy and

the desire for coordination.

In contrast, if the public signal is relatively more accurate, agents specialize in

learning the public signal to take advantage of both higher accuracy and better coordi-

nation when the capacity is lower than κ̂1, i.e., the threshold value at which agents are

indifferent between specialization or diversification. They eventually diversify, due to

the effect of diminishing returns, and the equilibrium share of attention devoted to the

public signal decreases monotonically. See Figure 2(e).

4.2. The Role of Correlation

In this section, we turn to the role of correlation. The indirect effect of a change in

correlation is straightforward. For any capacity κ, a higher correlation reduces the ef-

fective capacity available to agents, dκ̂/dρ < 0. Intuitively, because the two signals are

correlated, observing both of them costs agents some capacity to learn the correlated

part twice. The direct effect is characterized in the following proposition.

Proposition 4. For any effective capacity, a higher correlation dampens the effect of dimin-

ishing returns to attention and amplifies the effect of the coordination motive. Specifically, (i)

both κ̂0 and κ̂1 increase in ρ; (ii) κ̂s decreases in ρ.

First, for any amount of effective capacity available to agents, the observation

noises are reduced more effectively when the correlation is higher. See equation (11).

Because the two signals are correlated, knowing one of the signals helps reduce the

other’s observation noise. Therefore, agents have a stronger incentive to focus on one

of the signals and the effect of diminishing returns is mitigated.

7When there exist multiple equilibria, L† is quasi-convex and the diversification allocation leads to
a local minimum of E[us

i ].
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To demonstrate this, consider the case where only unique equilibrium exists for any

capacity.8 Due to the effect of diminishing returns, agents switch from specialization

to diversification when the effective capacity is higher than κ̂0 for the case of ∇< 1 and

κ̂1 for the case of ∇ > 1. When the correlation is higher, both cutoff values increase.

That is, agents find it worthwhile to diversify only when the effective capacity is at a

higher level. In this respect, the effect of an increase in the correlation differs from that

of a rise in the coordination motive α, which raises κ̂1 and lowers κ̂0.

Second, the correlation across signals also amplifies the effect of the coordination

motive. Consider the case where the private signal is more precise. The rise in correla-

tion entails a change in the trade-off between relative accuracy and coordination mo-

tive. In such a case, if agents spend more of their attention on the public signal, they

estimate the underlying state less accurately but they can better align their actions.

When the correlation between the private and public signals is higher, the two sig-

nals become more “substitutable,” in terms of estimating the fundamental. Therefore,

agents incur less welfare loss when they spend capacity on the less accurate public

signal and they favor the public signal even more.

There are three ways to see the effect of this mechanism. First, as shown in Propo-

sition 1, for any effective capacity level κ̂, and relative accuracy ∇∈ [∇1,∇0], multiple

equilibria emerge in this model when either α or ρ is sufficiently large. Second, when

we consider the strategic utility maximizing equilibrium in this case, agents shift their

focus from the private to the public signal at κ̂ = κ̂s. We observe that κ̂s decreases in

both ρ and α. Third, in Lemma 2, we show that, on the condition that either α or ρ is

sufficiently high, attention misallocation can arise.

5. "Too Much of a Good Thing": Social Welfare Analysis

Social welfare is the average distance of individual actions in society from the funda-

mental. Agents benefit more from predicting the average opinion than other individ-

uals, but it is a zero-sum game at the society level. In other words, the coordination

motive only affects individual welfare and disappears at the society level. In this sec-

tion, we analyze the comparative statics of social welfare by focusing on the strategic

utility maximizing equilibrium.

The expected social welfare, E [W s (a,θ)], is a weighted average of E
[
us

i

]
, which is

the objective expected utility maximized by agents, and the spillover effect, which is

not considered by agents. The spillover receives a higher weight in social welfare if

8As shown in Proposition 1, it is the case where α + ρ/exp(κ̂) < 1.
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the coordination motive, α, is stronger.

E [W s (a,θ)] = −E

[∫

i
(ai − θ)2

]

= (1 − α)

[
−σ2

(
1 +

φx

φθ
+

φz

φθ

)−1
]

︸ ︷︷ ︸
E[us

i ]

+α
[
−Π

2
θσ2 − Π

2
zσ2

z

]

︸ ︷︷ ︸
Spillover

.

The unintended spillover effect arises from agents’ desire to align their actions and

the fact that they do not consider the effects that their choices have on others. Agents

make use of the common prior and their correlated noisy observations on the public

signal, when they forecast the actions of others and choose their own actions. As both

the prior and the public signal are noisy, the actions taken by agents may be anchored

around commonly known but imprecise information. Therefore, the spillover con-

tributes negatively to social welfare and its magnitude is determined by how precise

the signals are, i.e., σ2 and σ2
z , and how much agents rely on them, i.e., Πθ and Πz.

Proposition 5. (Social Welfare and Capacity) When the capacity to process information

increases, social welfare can decrease. Specifically, there may exist κ̂a < κ̂b, such that

E [W s(κ̂a)] > E [W s(κ̂b)] .

It is interesting to observe that a higher capacity to process information does not

necessarily imply higher social welfare. On the one hand, E
[
us

i |x̂i, ẑi

]
, the part of wel-

fare optimized by agents, always increases in capacity. On the other hand, the spillover

can cause a decrease in social welfare when there is an increase in capacity. We know

that spending more attention on the private signal reduces the spillover and enhances

social welfare by lowering Πz. However, recall the mechanism of attention misallo-

cation shown in Lemma 2, agents may decrease the absolute amount of attention on

the more accurate private signal when capacity increases, which results in a higher

Πz. Therefore, an increase in capacity can be detrimental to social welfare. In addi-

tion to this mechanism, holding constant κ̂∗x, a higher capacity implies that the amount

of attention allocated to the public signal increases. Therefore, agents assign a larger

weight to their observations on the public signal, ẑi, which is also socially costly.9 In

short, a strong coordination motive or a high correlation between signals can distort

the allocation of attention so much that the spillover increases quickly in response to a

9We show that ∂Πθ/∂κ̂∗x = 0; that is, the increase in φx must equal the decrease in φz when κ̂∗x is opti-
mally chosen. ∂Πθ/∂κ̂ < 0, as holding κ̂∗x constant, a higher capacity implies a higher φz and therefore,
Πθ must decrease. Intuitively, when the capacity is higher, agents rely more on their observation(s) and
less on their prior knowledge.
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Figure 3. The non-monotonicity of social welfare.

higher capacity, which results in a decrease in overall social welfare.

To demonstrate this mechanism, we choose a set of parameters with high coordina-

tion motive (or high correlation) and intermediate relative accuracy, such that agents

switch their attention entirely from the private signal to public signal at κ̂s, in the

strategic utility maximizing equilibrium.10 When κ̂ = κ̂s, agents are indifferent about

only observing the private signal or the public signal; that is, E
[
us

i |x̂i

]
= E

[
us

i |ẑi

]
. In

other words, φx = φz. For the same reason, Πθ is the same in both cases. When κ̂ in-

creases from κ̂−s to κ̂+s , κ̂∗x decreases from κ̂s to 0 and Πz jumps from 0 to 1− Πθ, so that

there is a discontinuous decrease in social welfare. Because E [W s] monotonically in-

creases in κ̂, when κ̂ < κ̂s, there must exist κ̂a and κ̂b such that E [W s(κ̂a)] > E [W s(κ̂b)]

and κ̂a < κ̂s < κ̂b. See Figure 3(a).

If the accuracy of the private signal is higher (or ∇ is lower), the absolute amount

of attention paid to the private signal decreases gradually and the weight assigned to

the observation on the public signal also increases gradually. Therefore, social welfare

may decrease continuously in capacity. See Figure 3(b). The following equation sum-

marizes the key mechanisms discussed above, where the sign of + (−) stands for a

derivative being positive (negative).

dE [W s]

dκ̂
= (1 − α)

dE
[
us

i

]

dκ̂︸ ︷︷ ︸
+

+α




d
(
−Π

2
θσ2
)

dκ̂︸ ︷︷ ︸
+

+
∂
(
−Π

2
zσ2

z

)

∂κ̂∗x︸ ︷︷ ︸
+

dκ̂∗x
dκ̂︸︷︷︸
+/−

+
∂
(
−Π

2
zσ2

z

)

∂κ̂︸ ︷︷ ︸
−


 .

10This situation arises, when α > 1− ρ and ∇̃<∇< 1, where ∇̃ is defined in the proof of Proposition
3. Under this set of parameters, this model admits multiple equilibria and in this example, we focus
on the change of social welfare in response to an change in capacity in a strategic utility maximizing
equilibrium. However, this result does not rely on this particular case. In fact, the proof of Proposition
6 also implies Proposition 5. To establish Proposition 6, we focus on cases in which only a unique
equilibrium exists.
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Proposition 6. (Too Much Capacity) Social welfare can be higher when agents are endowed

with a finite amount of capacity to process information than when they have an infinite amount

of capacity. Specifically, there is a finite κ̂′, such that

E
[
W s(κ̂′)

]
> lim

κ̂→+∞

E [W s(κ̂)] ≡ E [Wms] .

This result is striking. When agents possess an infinite amount of capacity to pro-

cess information, they can perfectly observe both signals. In this case, the model is

identical to the Morris-Shin model, in which the social inefficiency is well understood,

i.e., agents overreact to the public signal. Specifically, the weight agents assign to the

public signal in their action is higher than that in their posterior belief, which is so-

cially costly because the coordination motive driving the overreaction does not count

in social welfare. Social welfare in the Morris-Shin model can be written as follows

E [Wms] = −
[

φms
x + φms

z + 1
(1−α)

φθ

(φms
x + φms

z + φθ)
2

+
Π

ms
z

α
(1−α)

φms
x + φms

z + φθ

]
1

σ4
,

where variables with superscript ms are counterparts in the Morris-Shin model.

In our case, capacity-limited agents cannot clearly observe signals; thus, their es-

timation of the underlying state is less accurate than that when they have an infinite

amount of capacity. However, agents may endogenously choose to spend very little

attention on observing the public signal, as a result, the total amount of noise in the

observation, ẑi, becomes very large. Therefore, they rely on it much less when they

take actions; that is, the weight that it is assigned, Πz, can be lower than Π
ms
z . A lower

level of capacity can actually be welfare enhancing, because it does, to some extent,

correct the inefficient use of public information. If the second effect dominates the

first, social welfare can be higher than that in the Morris-Shin model. See Figure 4.
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We demonstrate the two opposing effects with the following simple case. Let the

total amount of capacity in our model be κ̂0. We choose a set of parameter such that

agents are indifferent between specialization in the private signal or diversification;

that is, they endogenously ignore the public signal, or, φz = 0.11 We write social welfare

as follows

E [W s] = −
[

φx +
1

(1−α)
φθ

(φx + φθ)
2

]
1

σ4
.

Given the finite capacity, agents cannot perfectly observe the private signal and

thus the precision of observation of the private signal is smaller; that is, φx < φms
x .

Moreover, in the Morris-Shin model, the public signal is also informative and enhances

the estimation of the underlying state, which results in φx < φms
x + φms

z . Intuitively,

agents with finite capacity are always worse off in terms of estimating the underlying

state. It always holds that

−
[

φx +
1

(1−α)
φθ

(φx + φθ)
2

]
1

σ4
< −

[
φms

x + φms
z + 1

(1−α)
φθ

(φms
x + φms

z + φθ)
2

]
1

σ4
.

The second term in E [Wms] shows the additional welfare loss caused by overusing

the public signal in the Morris-Shin model. There is no overuse of the public signal in

this particular finite-capacity case in that Πz = 0, because φz = 0. The socially costly

overreaction to the public signal does not exist in this case

0 > −
[

Π
ms
z

α
(1−α)

φms
x + φms

z + φθ

]
1

σ4
.

When social inefficiency is high in the Morris-Shin model, the welfare loss due to

“overreaction” to the public signal can be so large that the gain from a better esti-

mation of the fundamental is dominated.

Given that the capacity can be “too much,” is it possible for agents to voluntarily

burn some capacity to achieve higher welfare? The answer is no. That is because, if

everyone else collectively discards some of their capacity, individual i can increase her

welfare by fully using all of her capacity to enhance the estimation of the fundamental

in the first stage and adopting the same action strategy in the second stage to avoid

being “punished” for using a different strategy.12

11Section 4 demonstrates that such a κ̂0 exists, unless both α + ρ > 1 and ∇ > ∇̃ hold, where ∇̃ is
defined in the proof of Proposition 3.

12This argument can be formalized and its proof is available on request.
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6. Policy Issues

In previous sections, we have fully characterized the optimal attention allocation and

explored its implications for social welfare via comparative statics. In this section,

we discuss two welfare-related issues to shed light on how policy prescriptions in the

literature can be amended, considering that agents are capacity-constrained.

6.1. Transparency of Public Announcement

This study adds another dimension to the debate about central bank transparency.

Unlike the common presumption that higher transparency is always beneficial, Morris

and Shin (2002) show that it may be detrimental to social welfare when the central

bank delivers clearer public announcements. In their beauty contest model with an

exogenous information structure, an increase in the precision of public information

entails two opposing effects. On the one hand, it allows agents to better estimate

the underlying fundamental. On the other hand, it also increases agents’ reliance on

the noisy public information in their actions, which is socially costly. Both effects are

enlarged as the precision of public information increases. Morris and Shin (2002) show

that social welfare is U-shaped, such that when the precision of the public signal is

exceedingly low, the second effect dominates. Specifically, social welfare decreases in

its precision if and only if

σ2
x

σ2
z
+

σ2
x

σ2
< (2α − 1)(1 − α). (21)

Therefore, it may be socially desirable to withhold public information.

One important critique of this argument is Svensson (2006), that questions its em-

pirical relevancy and stresses that it can hold only when public information is im-

plausibly imprecise.13 See the dashed line in Figure 5 where social welfare is plotted

against the left side of equation (21), holding σ2
x and σ2 fixed.14

However, we argue that the precision of the public signal needs not necessarily to

be exceedingly low to generate a decline in social welfare, when we allow for endoge-

nous attention allocation. When agents can decide to which information source they

pay their attention, the precision of each signal that they observe becomes endoge-

nous in that it not only depends on variances in sender noises, but also on those of

observation noises, which are chosen by agents.

To illustrate this, we plot social welfare in our model with the solid line in Figure

13Even the maximum of the right side of (21) is a very small number, which implies that σ2
z must be

sufficiently large for this condition to hold.
14In this numerical example, α = 0.7 and σx = 0.1. σ is normalized to unit.

20



0 0.5 1.0

E[Ws]

E[Wms]

σ
2
x

σ
2
z

+
σ
2
x

σ
2

E
[W

]

Figure 5. Central bank transparency and social welfare.

5.15 When the precision of the public signal is very low, agents ignore it and focus on

the private signal. Therefore, a marginal increase in the precision of the public signal

does not affect social welfare. When the precision of the public signal is sufficiently

high, agents diversify their attention. An increase in its precision leads to a higher

reliance on the public signal in their action, as in Morris and Shin (2002). In addition,

agents also direct a larger proportion of their attention toward the public signal in

response to a higher precision. This additional mechanism reinforces the previous one

and both contribute to the decline in social welfare. As a result, social welfare still

decreases, even when the precision of the public signal is reasonably large.16

6.2. Efficient Use of Information and Attention Allocation

Angeletos and Pavan (2007) offer a flexible efficiency benchmark to assess the welfare

properties of a general class of games where the social value of coordination may be

higher or lower than the private one. One of the key insights in their framework of the

exogenous information structure is that the equilibrium use of information is efficient

if and only if the social and private values of coordination coincide. However, in this

section, we demonstrate that this result may not hold once we allow for an endoge-

nous information structure. Further, in this model, even though attention allocation is

efficient, it does not necessarily lead to an efficient use of information.

To accommodate this analysis, we enrich the payoff structure in this model by fol-

lowing Angeletos and Pavan (2007). Specifically, individual utility (1) is revised by

15In this numerical example, the capacity available to agents is κ = 3.2 bits and all other parame-
ters are the same as those for computing the counterpart in the Morris-Shin model. With this set of
parameters, there is a unique equilibrium.

16When the precision of the public signal is high enough, agents pay all their attention to the public
signal. In this situation, an increase in the precision of the public signal is always welfare-enhancing.
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adding a non-strategic term:

ui = −(ai − θ)2 − α

1 − α
(Li − L̄)− α∗

2 (1 − α∗)
L̄. (22)

Therefore, the corresponding social welfare is given by

W s (a,θ) =
∫

i
uidi =

∫

i
−(ai − θ)2 − α∗

2 (1 − α∗)
L̄ di. (23)

The private value of coordination, or how much agents care about aligning their ac-

tions, is measured by α. The socially optimal degree of coordination is represented by

α∗ and it is the weight that the social planner would assign to the aggregate action in

its best response. Note that the beauty contest game considered in Morris and Shin

(2002) is a special case of this general setup, when α∗ = 0 or the social planner does

not value coordination. Efficient attention allocation and efficient use of information

are derived by solving a social planner problem while respecting the information pro-

cessing constraint (9).

In contrast to Angeletos and Pavan (2007), we argue that even when the central

planner corrects the coordination incentives of agents to the socially optimal level with

a tax policy, the equilibrium attention allocation and the use of information may still be

not socially optimal. The key to understanding this argument is to recall that multiple

equilibria may arise. Consider the case where the socially optimal degree of coordina-

tion α∗ is higher than the private value of coordination α and it is so high that there

exist multiple solutions in the central planner’s social welfare optimization problem.

It is obvious that the central planner picks the solution that gives rise to the highest

social welfare. In a decentralized economy, with a policy similar to that proposed in

Angeletos and Pavan (2007), the central planner can incentivize agents to value the co-

ordination as much as it does, but it is still undetermined on which equilibrium agents

coordinate. The planner needs another set of tools that help direct agents to coordinate

on the social welfare maximizing equilibrium.

Further, in this framework, the equilibrium use of information can still be ineffi-

cient, even though the equilibrium attention allocation is efficient. To see this, we as-

sume that α > α∗ > 0. The social planner also values the coordination and may dictate

that agents focus on the public signal and ignore the private one. Under the same con-

ditions, individuals could also choose exactly the same attention allocation. In other

words, the attention allocation is socially optimal. However, as the private and social

values of coordination differ, in the second stage, individuals would assign a higher

weight in their action strategy to the common prior than would the social planner. To

understand this, recall the fact that the common prior serves a “free public signal,”
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which does not require any attention, and individual observations on the public sig-

nal are imperfectly correlated across agents in this economy due to the idiosyncratic

observation noises. Therefore, the equilibrium use of information is still not socially

optimal.

7. Conclusion

There has been a recent surge of interest in modeling information acquisition and the

endogenous information structure in macroeconomic environments. See Veldkamp

(2011) for a textbook treatment on this topic and Hellwig, Kohls, and Veldkamp (2012)

for an excellent review. However, fewer studies have touched on the welfare impli-

cations of information acquisition in this class of economies. This study focuses ex-

clusively on a range of welfare issues in beauty contest models, in a context where

agents are rationally inattentive and therefore optimally allocate a limited amount of

attention between correlated private and public signals.

We fully characterize the sufficient and necessary conditions for the equilibrium

uniqueness and multiplicity, and show that the attention allocation and the number of

signals that agents decide to observe are not necessarily monotonic, in response to the

increase in the capacity of processing information. Unlike the literature, we also high-

light the role of the correlation between two signals, which critically affects the equi-

librium uniqueness and multiplicity, along with the welfare properties in this model.

Further, we show that in this setting, when capacity increases, the social welfare of this

economy may not necessarily increase. In fact, it can decrease as a result of attention

misallocation. Interestingly, social welfare can be even higher when agents possess a

finite amount of capacity than when they have an infinite amount of capacity.
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Appendix

Proof of Lemma 1. First, we solve for the weighting rule adopted by all of the other

agents, on the condition that their attention allocation is (κ̂∗x, κ̂∗z ):

Π
∗
x =

φ∗
x

φ∗
x + φ∗

z + φ∗
θ

, Π
∗
z =

φ∗
z

φ∗
x + φ∗

z + φ∗
θ

, Π
∗
θ =

φ∗
θ

φ∗
x + φ∗

z + φ∗
θ

,

where

φ∗
x =

1

σ2
x + (ω∗

x)
2

, φ∗
z =

1

(1 − α)σ2
z + (ω∗

z )
2

, φ∗
θ =

1

(1 − α)σ2
,

and

ω∗
x =

√
(σ2

x + σ2) (1 − ρ2)

exp (2κ̂∗x)− 1
, ω∗

z =

√
(σ2

z + σ2) (1 − ρ2)

exp (2κ̂∗z )− 1
.

Second, we solve for the optimal action rule for agent i, i.e., (Π∗
z,i,Π

∗
x,i,Π

∗
θ,i), condi-

tional on the others’ allocation strategy (κ̂∗x, κ̂∗z ) and his own (κ̂x,i, κ̂z,i). It is the solution

to the following optimization problem,

max
Πx,i,Πz,i,Πθ,i

E [ui] s.t.
(
κ̂z,j, κ̂x,j

)
= (κ̂∗z , κ̂∗x) for all j 6= i,

where E [ui] is given by equation (14). First order conditions imply that

Π
∗
x,i = Π

∗
x +

(
c1Π

∗
θ − c2Π

∗
x

)
(c1 + c5 + c3 + c4)−

(
c1Π

∗
θ − c3Π

∗
z

)
(c1 + c5)

(c1 + c5 + c2) (c1 + c5 + c3 + c4)− (c1 + c5)
2

, (24)

Π
∗
z,i = Π

∗
z +

(
c1Π

∗
θ − c3Π

∗
z

)
(c1 + c5 + c2)−

(
c1Π

∗
θ − c2Π

∗
x

)
(c1 + c5)

(c1 + c5 + c2) (c1 + c5 + c3 + c4)− (c1 + c5)
2

. (25)

where

c1 = (1 − α)σ2, c2 = σ2
x + ω2

x,i, c3 = (1 − α)σ2
z + ω2

z,i,

c4 = ασ2
z , c5 = ασ2.

Therefore, the relative marginal return of attention on the public signal γ can be re-

written by replacing Π
∗
x,i and Π

∗
z,i with (24) and (25).

γ =

[
C1 exp (2κ̂z,i) + C2 exp (2κ̂)

C3 exp (2κ̂z,i) + C4

]2 1

∇2 exp (2κ̂)
.
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where

C1 = [(1 − α)Π
∗
θ + (1 − α)Π

∗
z + Π

∗
x] (1 −∇ρ) ,

C2 = α

(
1

ρ2
− 1

)
Π

∗
z + [(1 − α)Π

∗
θ + (1 − α)Π

∗
z + Π

∗
x]

(∇
ρ
− 1

)
,

C3 = [(1 − α)Π
∗
θ + (1 − α)Π

∗
z + Π

∗
x]

(
1

∇ρ
− 1

)
,

C4 = α

(
1

∇ρ
− ρ

∇

)
Π

∗
z + [(1 − α)Π

∗
θ + (1 − α)Π

∗
z + Π

∗
x]
(

1 − ρ

∇
)

.

Therefore, we can show

∂γ (κ̂z,i, κ̂
∗
z )

∂κ̂z,i
< 0,

∂γ (κ̂z,i, κ̂
∗
z )

∂∆
> 0,

∂γ (κ̂z,i, κ̂
∗
z )

∂α
> 0.

Proof of Proposition 1. The first part of Lemma 1 implies that the best response of

agent i to the allocation strategy adopted by others is unique. Therefore, the allocation

(κ̂x, κ̂z) = (κ̂,0) constitutes a symmetric equilibrium if and only if γ(0,0) < 1. That is,

∇≤ exp (κ̂)ρ + 1

exp (κ̂) + ρ
≡∇0.

Similarly, the allocation (κ̂x, κ̂z) = (0, κ̂) constitutes a symmetric equilibrium if and

only if γ(κ̂, κ̂) > 1. That is,

∇≥ (1 − α) (exp(2κ̂)− 1) +
(
1 − ρ2

)

(1 − α) (exp(2κ̂)− 1)ρ + exp(κ̂) (1 − ρ2)
≡∇1.

A diversification symmetric equilibrium must be such that κ̂∗z ∈ (0, κ̂) and it exists

if and only if γ (κ̂∗z , κ̂∗z ) = 1. That is, such an equilibrium arises if

∇ ∈ (min{∇0,∇1},max{∇0,∇1}) .

The optimal allocation is given by (18). Obviously, the equilibrium must be unique, if

∇0 <∇1, which also implies α < 1− ρ
exp(κ̂)

. In other words, multiple equilibria emerge

if and only if the condition (20) holds.

Proof of Proposition 2. When κ̂ is sufficiently large, ∇1 monotonically increases and

limκ̂→+∞∇1 =
1
ρ while ∇0 monotonically decreases and limκ̂→+∞∇0 = ρ. Therefore,

for any ∇, when κ̂ is sufficiently large, it holds that ∇∈ (∇0,∇1). According to Propo-

sition 1, the equilibrium is unique and 0 < κ̂∗z < κ̂. Further, the last part of this propo-
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∇
∇

1

∇0 ∇1

0
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Multiplcity

(d) 1 − ρ2 < α < 1

Figure 6. Patterns of bounds ∇0 and ∇1.

sition can be obtained from equation (18).

Proof of Proposition 3. The complete characterization of the equilibrium attention al-

location can be summarized in the following claims.

Claim 1: If the relative accuracy is sufficiently low, agents specialize in learning

the private signal and then eventually diversify their attention when the capacity in-

creases, where

∇̂ =
1

ρ
− 1

ρ

1

2

√
α(1−α)
(1−ρ2)

ρ + 2(1−α)
(1−ρ2)

ρ2 + 1

;

in the former case, κ̂∗z /κ̂ is monotonically decreasing in κ̂ and in the latter, it can be

either monotonically increasing or hump-shaped.

Proof. It takes three steps to show this claim. First, we establish some properties of

∇0 and ∇1, illustrated in Figure 6. For any κ̂ > 0, the bounds ∇0 and ∇1 can be

characterized as follows,

1. limκ̂→+∞∇0 = ρ and limκ̂→+∞∇1 = 1/ρ.
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2. ∇0(0) =∇1(0) = 1.

3. ∇0 monotonically decreases in κ̂.

4. ∇1 may or may not be monotone:

(i) If 0 < α < 1−ρ
2 , ∇1 monotonically increases in κ̂. Otherwise, ∇1 decreases

and then increases, reaching the trough at κ̂ = ˆ̂κ, where

ˆ̂κ = ln

(
ρ +

√
α (1 − ρ2)/ (1 − α)

)
.

(ii) If
1−ρ

2 < α < 1 − ρ, ∇1 is always larger than ∇0 for any κ̂.

(iii) If 1− ρ < α, ∇0 and ∇1 cross only once at κ̂ = ln
( ρ

1−α

)
, on the condition that

κ̂ is positive. Further, ∇1 is smaller than ∇0 if and only if κ̂ < ln( ρ
1−α ).

(iv) If 1 − ρ < α < 1 − ρ2, ∇0 and ∇1 cross on the left side of ˆ̂κ; if 1 − ρ2 < α < 1,

they cross on the right side of ˆ̂κ.

We can show the first three items by using the expression in equation (19). The last

item can be verified by noting that,

d∇1

dκ̂
∝ (1 − α)exp(2κ̂)− 2 (1 − α)ρexp(κ̂) + ρ2 − α.

Denote ∇̂ ≡ ∇1

(
ˆ̂κ
)

and ∇̃ ≡ ∇1

(
ln
( ρ

1−α

))
, we obtain

∇̂ =
1

ρ
− 1

ρ

1

2

√
α(1−α)
(1−ρ2)

ρ + 2(1−α)
(1−ρ2)

ρ2 + 1

; ∇̃ =
1

ρ
− 1

ρ

α
(
1 − ρ2

)

1 − (1 − α)2
.

If ∇ ∈ (ρ,∇̂), it holds that ∇ <∇1 for any κ̂; and there exists a cutoff κ̂0, such that

for any κ̂ ∈ (0, κ̂0), ∇ < ∇0 and for any κ̂ ≥ κ̂0, ∇ ≥ ∇0. According to Proposition 1,

the first part of this Claim is shown.

Regarding the pattern of attention allocation κ̂∗z /κ̂, it can be categorized in the fol-

lowing three cases:

1. Despite the value of α, κ̂∗z /κ̂ decreases monotonically, when the public signal is

relatively more accurate, i.e., ∇ > 1.

2. When the coordination motive is not so high, i.e., 0 < α < 1 − ρ, κ̂∗z /κ̂ is mono-

tonically increasing in κ̂, if ∇ <∇, where ∇ = [ρ + (1 − α)]/[(1 − α)ρ + 1]; and

is hump-shaped in κ̂, if ∇ <∇ < 1.
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3. When the coordination motive is high, i.e., 1 − ρ < α, κ̂∗z /κ̂ is hump-shaped in κ̂,

if ∇ <∇ < min{∇̃,∇̂}; and is monotonically increasing in κ̂, if ∇ <∇.

The details of the proof of this final part are contained in the Technical Appendix.

Claim 2: If the coordination motive is strong, i.e., (1 − ρ)/2 < α ≤ 1 − ρ, and the

relative accuracy is not extremely high, i.e., ∇̂ < ∇ < 1, then agents re-allocate their

attention in the following fashion. When capacity increases, they specialize in learning

the private signal only, then diversify their attention allocation and then specialize in

learning the public signal only before eventually diversifying again. If the coordina-

tion motive is stronger, i.e., 1− ρ < α < 1− ρ2, then agents allocate their attention such

that when the relative accuracy is medium, i.e., ∇̂ <∇ < ∇̃, where

∇̃ =
1

ρ
− 1

ρ

α
(
1 − ρ2

)

1 − (1 − α)2
.

Proof. We show that ∇̃ < 1 if and only if ρ > 1 − α. The rest of the proof is similar to

that of Claim 1.

Claim 3: If the coordination motive is very strong, i.e., 1− ρ < α < 1, and the relative

accuracy is not extremely high, i.e., ∇̃ <∇ < 1, then agents re-allocate their attention

in the following fashion. When the capacity is sufficiently low, they focus only on the

private signal. When the capacity is higher, they may coordinate on one of the three

equilibria. When there is a further increase in capacity, they pay attention only to the

public signal, and when the capacity is sufficiently high, they eventually diversify.

Proof. The proof is similar to that of Claim 1.

Proof of Lemma 2. This proof offers a sufficient condition under which Lemma 2 holds.

We consider the following two cases: (i) 2α + ρ > 1, (1 − α)exp(κ̂) > ρ and ∇ < 1; (ii)

α + ρ > 1 and ∇ < ∇̂. Under these two cases, if κ̂ > κ̂0, 0 ≤ κ̂∗x < κ̂. Therefore, we can

show,

dκ̂∗x
dκ̂

∝ (∇− ρ) (1 − α)exp(2κ̂)−
[(

1 − ρ2
)
− (1 − ρ∇) (1 − α)

]
(1 − α)exp(κ̂)

− ((1 − α)exp(κ̂)− ρ)
[(

1 − ρ2
)
− (1 − α) (1 −∇ρ)

]

<
[
(∇− ρ)exp(κ̂)−

(
1 − ρ2

)
+ (1 − ρ∇) (1 − α)

]
(1 − α)exp(κ̂).
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Therefore, dκ̂∗x/dκ̂ < 0, if
[
(∇− ρ)exp(κ̂)−

(
1 − ρ2

)
+ (1 − ρ∇) (1 − α)

]
< 0. This

holds true, if

1 −∇ρ

∇− ρ
< exp(κ̂) <

(
1 − ρ2

)
− (1 − ρ∇) (1 − α)

∇− ρ
.

The first inequality must hold so that κ̂ > κ̂0. The second inequality can hold on the

condition that α is sufficiently large; that is,

α > 1 −
(
1 − ρ2

)

(1 − ρ∇)
.

Proof of Proposition 4. A simple calculation leads to

d∇1

dρ
=

(exp (2κ̂)− 1) (1 − α)
[
− (1 − α) (exp (2κ̂)− 1) + 2ρexp (κ̂)−

(
1 + ρ2

)]

[(1 − α) (exp (2κ̂)− 1)ρ + exp (κ̂) (1 − ρ2)]
2

.

Let T1 = − (1 − α) (exp (2κ̂)− 1) + 2ρexp (κ̂) −
(
1 + ρ2

)
. If and only if ρ < (1 −

α)exp (κ̂), T1 decreases in κ̂ and T1 < 0. In other words, d∇1/dρ < 0 for any κ̂ >

ln(ρ/(1 − α)). This implies that κ̂1 increases in ρ. Similarly, we can show that ∇0 is an

increasing function of ρ, and therefore κ̂0 increases in ρ.

Let l(κ̂) be the difference between the expected utility of adopting the strategy

κ̂∗z = κ̂ and that of κ̂∗z = 0, when condition (20) holds. The cutoff κ̂s is such that l(κ̂s) = 0.

It implies that κ̂∗z = κ̂ if and only if

l(κ̂) =

[
1 +

(1 − ρ2)

exp(2κ̂)− 1

]
∇2 − αρ∇−

[ (
1 − ρ2

)

exp(2κ̂)− 1
+ (1 − α)

]
> 0.

Under this circumstance, it is straightforward to show the following facts: l(κ̂) is

strictly increasing in κ̂, limκ̂→0 l(κ̂) < 0 and limκ̂→+∞ l(κ̂) > 0. Therefore, there is a

unique κ̂s > 0, such that l(κ̂s) = 0, where

κ̂s = ln

(√
(1 − ρ2) (1 −∇2)

α (1 − ρ∇)− (1 −∇2)
+ 1

)
.

By noting that κ̂s decreases in ρ, this proposition is shown.

Proof of Proposition 5. We show that social welfare can be decreasing in the case

where α + ρ > 1 and ∇̃ < ∇ < 1. If κ̂∗z = 0 or κ̂∗z = κ̂, social welfare is calculated by
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the following

E [W s] = −




1 + (1 − α)
φx

φθ(
φx

φθ
+ 1
)2


σ2,

E [W s] = −




1 + (1 − α)
φz

φθ(
φz

φθ
+ 1
)2


σ2 − α

(
φz

φθ

)2

(
φz

φθ
+ 1
)2

σ2
z ,

when κ̂ < κ̂s, κ̂∗z = 0 and dE [W (a,θ)]/dκ̂ > 0. To see this, we notice that φx increases

in κ̂ and E [W s] increases in φx,

dE [W s]

dφx
=

σ2
[
(1 + α) + (1 − α)

φx

φθ

]

(
1 + φx

φθ

)3
φθ

> 0.

Similarly, when κ̂s < κ̂ < κ̂1, κ̂∗z = κ̂ and social welfare increases in κ̂. When κ̂ = κ̂s,

agents are indifferent of specialization in private or public signals, which implies that

φx = φz, and social welfare discontinuously decreases at κ̂ = κ̂s. Because E [W s] mono-

tonically increases in κ̂, when κ̂ < κ̂s, there must exist κ̂a and κ̂b such that E [W s(κ̂a)]>

E [W s(κ̂b)] and κ̂a < κ̂s < κ̂b.

Proof of Proposition 6. Except in the case where α + ρ > 1 and ∇̃ < ∇ < 1, we can

show that κ̂∗x = κ̂0 and κ̂∗z = 0, when κ̂ = κ̂0. To show E [W s(κ̂0)] > E [Wms], we only

need to show f ≡ E [W s(κ̂0)]− E [Wms] > 0, where

f =
1(

ρ
(∇−ρ)

+ 1
(1−α)(1−∇ρ)

) − α

ρ
(∇−ρ)

(
ρ

(∇−ρ)
+ 1

(1−α)(1−∇ρ)

)2

− 1(
ρ(1−∇2)

(1−ρ∇)(∇−ρ)
+ 1

1−α

) − α

ρ(1−∇2)
(1−ρ∇)(∇−ρ)

(
ρ(1−∇2)

(1−ρ∇)(∇−ρ)
+ 1

1−α

)2
.

To provide a sufficient condition under which the inequality holds, we denote

f (α) = f1 (α) + f2 (α) ,
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where

f1 (α) =

(
1

1 − ρ∇ − 1

)
(1 − α)2

(
−α2 + 4α − 2

)( ρ

∇− ρ

)2

f2 (α) =
(1 − α)2 ρ∇

1 − ρ∇

[(
1

1 − ρ∇ − 1

)
(α − 2)2 + 2

(
1

1 − ρ∇ − 1

)2

− 2 − 1

1 − ρ∇
(2 − α)2

(1 − α)2

]

f1 (α) > 0 if and only if −α2 + 4α − 2 > 0, or α > 2 −
√

2. When ∇ is sufficiently

low and close to ρ,
ρ

∇−ρ can be arbitrarily large and 1
1−ρ∇ is close to a constant 1

1−ρ2 .

Therefore, f1 (α) can be arbitrarily large and f2 (α) is close to a constant. Moreover, it

must hold that ρ < (1 − α)exp(κ̂0) or,

(1 − α)

ρ
>

∇− ρ

1 − ρ∇ .

This holds when ∇ is low enough.
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Technical Appendix
(Not intended for publication)

Proof of Proposition 3, Part 3. The following claim is particularly useful for our char-

acterization.

Claim 1: When the equilibrium is unique, the fraction of attention paid to the public

signal, i.e., κ̂∗z /κ̂, strictly increases in κ̂ if and only if 0 < κ̂∗z /κ̂ < 1 and

κ̂∗z
κ̂

− F (κ̂) < 0, (26)

where

F ≡1

2
+

1

2

T

(1 − α) (1 − ρ∇) (∇− ρ)
· 1

1 − (1−ρ2)−(1−α)(1−ρ∇)
(∇−ρ)exp(κ̂)

· 1

exp (κ̂)− ρ
1−α

,

T =(1 − ρ∇)α [(1 − ρ∇) (1 − α)− ρ (∇− ρ)] .

Proof. We re-write equation (18) as follows,

κ̂∗z
κ̂

=
1

2
+

1
2 ln

[
(1−α)(1−ρ∇)+(∇−ρ)exp(κ̂)−(1−ρ2)
(1−α)(1−ρ∇)exp(κ̂)+(∇−ρ)−∇(1−ρ2)

]

ln [exp (κ̂)]
. (27)

Derive its derivative with respect to exp(κ̂) and we find that ∂(κ̂∗z /κ̂)/∂exp (κ̂) > 0 if

and only if the condition (26) holds.

We first show that in the case of ∇ > 1, κ̂∗z /κ̂ monotonically decreases in κ̂, when

κ̂ > κ̂1. There are three sub-cases.

Case 1: α < 1 − ρ and ∇ ∈
(

1−α+ρ2

(1−α)ρ+ρ
, 1

ρ

)
. We can verify that T < 0 and further

0 > ln

(
ρ

1 − α

)
> ln

((
1 − ρ2

)
− (1 − α) (1 − ρ∇)

∇− ρ

)
,

which implies that F (κ̂) is strictly increasing and approaches 1/2 from below when κ̂

approaches +∞.

We can also show that κ̂∗z /κ̂ approaches 1/2 from above, because the second term

in (27) is positive when κ̂ approaches +∞, i.e.,

lim
κ̂→+∞

ln

[
(1 − α) (1 − ρ∇) + (∇− ρ)exp (κ̂)−

(
1 − ρ2

)

(1 − α) (1 − ρ∇)exp (κ̂) + (∇− ρ)−∇ (1 − ρ2)

]

= ln

[ ∇− ρ

(1 − α) (1 − ρ∇)

]
> 0.
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Further, the first part of Proposition 3 implies that limκ̂→κ̂+1
κ̂∗z /κ̂ = 1. We can show that

κ̂∗z /κ̂ − F (κ̂) > 0, for any κ̂ > κ̂1, by constructing a contradiction. Suppose there exists

κ̂′ such that κ̂∗z (κ̂
′)/κ̂′ < F(κ̂′). Claim 1 implies that it must hold that κ̂∗z /κ̂ approaches

1/2 from below. A contradiction. This fact further implies that κ̂∗z /κ̂ monotonically

decreases, by using Claim 1 again.

Case 2: α < 1 − ρ and ∇ ∈
(

1,
1−α+ρ2

(1−α)ρ+ρ

)
. In this case, we can show that F (κ̂) is

strictly decreasing and approaches 1/2 from above, when κ̂ approaches +∞. Further,

it must hold that F(κ̂1) ≤ 1, that is because κ̂∗z /κ̂ must decrease, when κ̂ is slightly

higher than κ̂1, according to the first part of Proposition 3.

Similar to the previous case, Claim 1 implies that κ̂∗z /κ̂ − F (κ̂) cannot cross zero

from above; that is, κ̂∗z /κ̂ − F (κ̂) > 0 for any κ̂ > κ̂1. In other words, κ̂∗z /κ̂ decreases

monotonically.

Case 3: The proof for the case where α > 1 − ρ and ∇ > 1 is similar.

We then establish that κ̂∗z /κ̂ can be either monotonically increasing or hump-shaped

when ∇ < 1.

Case 1: α < 1 − ρ and ∇ ∈
(
ρ,∇

)
. In this case, we can show that F(κ̂) is mono-

tonically decreasing and approaches 1/2 from above. The first part of Proposition

3 implies that limκ̂→κ̂+0
κ̂∗z /κ̂ = 0. Under this case, κ̂∗z /κ̂ approaches 1/2 from below

because the second term in (27) is negative when κ̂ approaches +∞, i.e.,

lim
κ̂→+∞

ln

[
(1 − α) (1 − ρ∇) + (∇− ρ)exp (κ̂)−

(
1 − ρ2

)

(1 − α) (1 − ρ∇)exp (κ̂) + (∇− ρ)−∇ (1 − ρ2)

]

= ln

[ ∇− ρ

(1 − α) (1 − ρ∇)

]
< 0.

Using similar arguments in previous cases, we can show that κ̂∗z /κ̂ monotonically in-

creases in κ̂.

Case 2: α ∈ (0,1 − ρ) and ∇∈ (∇,1). This case differs from the previous one in that

κ̂∗z /κ̂ approaches 1/2 from above when κ̂ →+∞. Therefore, Claim 1 implies that κ̂∗z /κ̂

must be increasing and then decreasing, i.e., it is hump-shaped.

The proofs of the remaining cases are also similar.
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