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ABSTRACT

Safiullah, Hameed M.S.I.E, Purdue University, August 2011. Evaluation of Grid
Level Impacts of Electric Vehicles . Major Professor: Andrew Liu.

Currently, most countries are looking to reduce their dependency on imported

oil. The added advantage of reducing green house gas emissions and other pollutants

has been strong reasons for the growing support for Electric Vehicles. As electric

vehicles would be using the power grid to charge their batteries, there are prevalent

doubts as to whether the existing power grid will be able to support the increase

in load. It is of great interest to the electric utilities to evaluate the capability of

the existing grid to withstand high electric vehicle penetration. The fact that there

will be higher concentration of electric vehicles in affluent neighborhoods is of great

concern. In this thesis, the impact of electric vehicle concentration is studied and

the effects evaluated. The electric vehicle flow in the system is first modeled and

the corresponding behavior is studied. This model is integrated into an agent-based

simulation to model the demand curve of residential customers. Finally, the demand

curve is used in a loss-of-life calculation of the transformer to evaluate the impact on

the grid.
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1. INTRODUCTION

Energy security is one of the biggest concerns in the world political landscape. In-

stability in oil producing nations has further fueled the need to be less reliant on

foreign sources of energy. The U.S. transportation sector, which imports two thirds

of its daily consumption, is one sector that is heavily dependent on foreign sources of

energy [1]. The ability to move even a part of the sector from petroleum products to

electricity is of great interest as it mitigates this risk of crude oil dependence.

In recent times, there have been tremendous developments in electric vehicle (EV)

and plug-in hybrid electric vehicle (PHEV) technologies. EVs and PHEVs use elec-

tricity stored in batteries as the primary fuel for propulsion. The significant difference

between the two technologies is that PHEVs can utilize a secondary fuel source for

propulsion when the battery is depleted. Current examples of EVs include Nissan

Leaf, Think City and Tesla Roadster. The dominant model for PHEVs is the Chevro-

let Volt. In this study, there is no distinction between PHEVs and EVs as the impact

on the grid would be the same. Henceforth, the term EVs is used to describe vehicles

that use the grid to charge the batteries. When compared to other alternative fuel

vehicle technologies, these vehicles have an advantage because of the readily available

power grid infrastructure. However, this shifting of the energy requirement from the

transportation sector to the power grid might increase the strain on the grid. Battery

charging during peak hours might increase the peak load and would require relatively

expensive energy from peaking power plants. On the other hand, off-peak charging

could potentially be very beneficial to the electricity industry due to load-leveling.

Load-leveling could reduce utility system average costs of power [2].

Electric distribution systems are designed for a particular expected demand based

on a regular demand pattern. High penetration of electric vehicles (EVs) would cause
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a considerable change in the regular consumption pattern [2]. Though only a small

percent of vehicles will be electric in the coming years, the fact that there would higher

penetration of EVs in affluent neighborhoods would cause localized effects, and is a

major concern to electric utilities. It is possible that the electric power system may

be adequate to handle the new patterns and levels of demand, or the system may be

overloaded for prolonged time periods. Both circuits and transformers are vulnerable

to these overloads with the transformer being more susceptible. The objective of this

thesis is to evaluate the impacts of electric vehicle on the distribution transformers.

1.1 Related Work

Some of the recent studies [3–9] have tried to model the electric demand from un-

controlled charging of EVs. In these studies, the time of charging is usually assumed

or based on vehicle arrival data from national household surveys. The quantity of

charge required is dependent on the distance traveled by the vehicles. Some of the

work assume that the charge in the batteries are completed depleted every day. Oth-

ers use either empirical data or vehicle miles traveled (VMT) from transportation

authorities to obtain the distance traveled by the vehicles in the system.

Bri et al. [9] proposed a multi-paradigm modeling methodology to analyze the

effects of PHEV adoption on electricity demand. The traffic system and the electric-

ity demand were modeled separately. TRANSIMS (an open-source transportation

software) was used in traffic system modeling. The model is a very detailed agent-

based simulation model. The velocity of the vehicles is used in charge depletion.

Detailed and large amount of transportation data is required for such a model. The

electricity demand is modeled using a bottom-up engineering approach. The data

from the transportation simulation is incorporated into the demand model to obtain

the electricity demand with EVs in the system.

Meliopolous et al. [10,11] proposed a methodology for computing loss of life of dis-

tribution transformers for given power profiles. A random load schedule was assumed.



3

The method is split into three parts. First, a distribution transformer was simulated

to obtain the current flows through a transformer for a given load profile. Then, an

electro-thermal model of the transformer is used to obtain the hot-spot temperature

inside a transformer. Finally, the hot-spot temperature is used to calculate the loss

of life of a transformer.

J. Taylor et al. [8] used conditional miles driven and arrival time probabilities to

simulate the charging of EVs. The system VMT and arrival data is used in their study.

The system-wide impact analysis was also performed. However, the importance of

evaluating localized effects of EV penetration was recognized and proposed as future

work.

1.2 Proposed Methodology

A multi-paradigm modeling approach (Figure 1.1) is used to examine the effects

of the introduction of EVs on the electricity grid. The multi-paradigm approach en-

ables different sub-systems to be simulated with the most representative modeling

approaches, levels of data, and model granularity that reflect the subsystems most

accurately. This paper considers three subsystems of the electricity system: an elec-

trified personal transportation system, residential electricity demand model and a

transformer model. The analysis is performed for the city of Indianapolis, Indiana.

The proposed modeling methodology is a combination of the most accurate and fea-

sible aspects of the mentioned works. As mentioned in Taylor et al. [8], the spatial

diversity in EV penetration is important because of the higher penetration of EVs

in affluent neighborhoods. The proposed model identifies the high penetration loca-

tions in Indianapolis, Indiana, and EV impact analysis is performed for those zones.

Location specific vehicle miles traveled is used in the simulation.

A four step transportation model is adapted to model the behavior of vehicles

in the system using TransCAD (transportation planning software). As many trans-

portation planning organizations use TransCAD, we use the software to obtain zonal
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vehicle miles traveled and for related analyses. Then, we use a residential demand

model that simulates the consumption pattern of all electric appliances in the sys-

tem. The EV data model is then integrated into this model as an appliance. After

integration, we can obtain the modified load consumption pattern. To quantify the

impact that the EV charging could have on distribution transformers, a loss of life

calculation from Meliopolous et al. [10] is utilized.

Figure 1.1.: The multi-paradigm modeling framework

This thesis covers numerous aspects of the modeling process. The remainder of

the thesis is organized as follows:

• Chapter 2 discusses the electric vehicle modeling methodology. Along with

the description of methodology, an application of the traffic simulation is also

discussed.

• Chapter 3 discusses the residential demand model along with various electricity

demand prediction techniques in practice.

• Chapter 4 describes the methods used to obtain the transformer loss of life.
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• Chapter 5 elaborates on the obtained results and its implications to electricity

distribution networks. The chapter also discusses the future work in this area.
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2. ELECTRIC VEHICLE MODELLING

At present, 27% [1] of the total energy consumption in the U.S. is used for transporta-

tion. Gasoline and diesel fuel, the primary sources of energy used in the transporta-

tion sector, constitute 69% [12] of the total U.S. petroleum products consumption. In

2009, the petroleum products consumption in the U.S. was 18.8 million barrels per

day [12], and 51% [13] of it is attributed to foreign import of crude oil and petroleum

products. Such high dependence on foreign imports creates a major concern about

energy security, mainly because a considerable amount of the foreign imports are

from national oil companies that reflect their respective government’s motive either

financially or strategically [14]. As energy plays a vital role in the health of any

economy, it is essential for oil importing countries to move towards alternative energy

sources. There have been several recent developments in automobile technology that

use alternative energy sources instead of petroleum products. The two major tech-

nologies that are widely researched and developed are electric vehicles and hydrogen

fuel-cell vehicles. The functioning of a hydrogen fuel-cell vehicle closely resembles

a conventional vehicle in terms of driving range (distance) and refueling time. But

the need to set up a hydrogen fuel pump infrastructure is daunting. All efforts to

establish a “technology readiness” for fuel cell vehicles will take several years [15]. On

the other hand, electric vehicles have considerably less driving range per full charge

and the batteries require long periods to attain full charge. In spite of these dis-

advantages, the fact that the average distance traveled per day is 40 miles [16] and

the ready availability of charging facilities make electric vehicle usage immediately

viable. Furthermore, continuous development in the field of battery technology will

bring down the cost as well as increasing battery capacity, thereby, increasing driving

range. Hence, this study is based on electric vehicles and plug-in hybrid electric ve-
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hicles instead of fuel-cell vehicles. In this chapter, the methodology to model vehicle

flows and vehicle miles traveled per zone is described. These two parameters are used

to model the power consumption pattern of electric vehicles. The fact that there are

range anxiety problems attached to electric vehicle usage is recognized in this study.

A Shukla et al. [17] had developed an optimization framework for choosing alterna-

tive fuel charging station locations. But, the optimization was done for fast-charging

(Level 3: 15 minutes charging time). But, Level 3 chargers are not expected to be

available in the near future. As a holistic solution to facilitate electric vehicle usage,

a method is devised to rank a given set of proposed Level 1/Level 2 charging station

locations also. The proposed locations are public places where people tend to spend

a considerable amount of time. Details of the charging levels are described in the

following chapters.

2.1 Background: Electric Vehicles

Conventional internal combustion engine vehicles use gasoline or diesel powered

engines to provide power to the power train for propulsion. The IC (internal combus-

tion) engines have poor energy conversion efficiencies; a typical IC engine operates

at 20% [18]. These engines are also blamed for their negative effect on the environ-

ment. Alternative technologies have used electric motors to replace or supplement IC

engines in automobiles. Automobiles that require electricity drawn from the power

grid are broadly categorized into battery electric vehicles (EVs) and plug-in hybrid

electric vehicles (PHEVs). The equipment configuration used in battery electrical

vehicles is comparatively simple. It consists of a battery pack(s) that can be charged

using an electric outlet. The battery feeds electrical energy to the electric motor that

is used to propel the vehicle. Vehicles of this type currently available in the market

are Nissan Leaf, Think City and Tesla Roadster. There are several configurations

of plug-in hybrid electric vehicles that are more complicated than battery electric

vehicles. The three major configurations are parallel hybrid systems, series hybrid
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systems and series-parallel hybrid systems. In the parallel architecture, both the en-

gine and electric motor is connected to the power-train. Depending on the on-board

computer logic, the engine and electric motor is variably used to propel the vehicle

and achieve efficient operation. On the other hand, in series architecture, only the

electric motor is connected to the power-train. The engine is connected to a generator

that either powers the electric motor or charges the battery pack. This configuration

is seen in the GM Chevy Volt. The third is the series-parallel architecture, in this

arrangement the engine is connected to the power-train and a generator. It is a hybrid

of the series and parallel architecture [10].The current and future vehicles will be of

the above configurations.

All of the above mentioned vehicle systems require electrical energy from the

power grid to charge the on-board batteries. The charging scheme can be classified

into different levels: level 1, level 2 and level 3 [19, 20]. Table 2.1 describes each of

the type.

Table 2.1: Different charging levels

Charging Level Voltage/Current Requirement

Level 1 120 V / 16 A

Level 2 208-240 V / 12 A to 80 A

Level 3 No specific limits; very high voltages

(300-600 V DC), very high currents

Though the power requirement of Level 1 charging is only about 1.44 kW (12 A)

or 1.92 kW (16 A), a dedicated circuit is recommended as existing circuits will have

multiple outlets and a shared circuit breaker. A shared circuit breaker would cause

frequent tripping when other appliances are used simultaneously with EV charging.

Level 2 and Level 3 chargers would require special equipment because of the high

voltage and high current requirement. Level 3 charging requires high voltage setup
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and exorbitantly expensive infrastructure. Level 2 is the preferred and recommended

scheme for residential charging because Level 1 charging can take a very long time to

attain full charge (typically 8 hours or more) and could pose as a deterrent to electric

vehicle acceptance. Since utility companies are responsible for providing required

electrical energy for charging, the infrastructure setup becomes a big challenge as the

present distribution systems may not handle the heavy loads from EVs. The time

of charging and the vehicle miles traveled are good indicators of charging patterns.

The latter (vehicle miles traveled) is an important information for utilities as it is an

indication of the amount of energy that would be drawn from the grid. This chapter

elaborates on the method that would be used to calculate these parameters. The

method is based on a widely used and accepted transportation planning methodology

known as the four-step process.

2.2 Transportation Planning Methodology

The most widely used and accepted transportation planning and forecasting method

is the conventional four-step model [21–23]. The steps involved in the modeling are

as shown in Figure 2.1. The internal Activity System (A) is typically represented

by socio-economic, demographic, and land use data defined for TAZs (traffic analysis

zones) or other convenient spatial units. The Transportation System T (T) is typi-

cally represented via network graphs defined by links (one-way homogeneous sections

of transportation infrastructure or service) and nodes (link endpoints, typically in-

tersections or points representing changes in link attributes). Both links and nodes

have associated attributes (for example, length, speed, and capacity for links and turn

prohibitions and penalties for nodes).

The geographical area being considered is split into zones known as transporta-

tion/traffic analysis zones (TAZs). A traffic analysis zone is the unit of geography

most commonly used in conventional transportation planning models such as the four

step model. The spatial extent of zones typically varies in models, ranging from very
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large areas in the exurb to as small as city blocks or buildings in central business dis-

tricts. There is no technical reason why zones cannot be as small as single buildings.

However, additional zones add to the computational burden [24].

Zones are constructed by census block information. These blocks are used in the

transportation model by providing socio-economic data. States differ in the socio-

economic data that they attribute to the zones. Most often the critical information

is the number of automobiles per household, household income, and employment

within these zones. This information helps to further the understanding of trips that

are produced (departure) and attracted (arrival) by the zone. The trips produced

and attracted are converted to origin-destination (OD) matrices, where each element

of the matrix represents the number of travelers moving from the origin to the des-

tination. The OD matrix is used with the road network information (transportation

system) in the four-step model to calculate the flow on each road/link. The modeling

of vehicle flow in each road/link involves an iterative procedure to achieve an equilib-

rium (a state in which the traffic flow in each link does not violate any constraint).

Metropolitan planning agencies use the vehicle flow information for congestion man-

agement and road network planning. A detailed description of the four-step model

is presented in the following sections. The steps in the model are described in the

subsequent sections.

2.2.1 Trip Generation

In this study, we use the term “trip” to denote the movement of a vehicle from

one location to another. The trip generation step is used to determine the number of

trips produced and attracted by each travel analysis zone (TAZ).

The trips are classified into three categories. First, the home-based work (HBW)

trips. These trips start from home and end in a work place. Second, the home-based

other (HBO) trips. These trips originate at home and are undertaken for purposes

other than work, for example: trips to a shopping mall from home, trips to a grocery
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Figure 2.1.: The four step model [22]

store from home etc. Third, the non-home-based (NHB) trips. These trips do not

originate from home, for example: trips from an office to a restaurant, etc.

The procedure makes use of certain available information about a zone to estimate

the number of trips that would originate from or end in the zone. The socio-economic

and geographical data of each zone contain valuable indicators that could be used to

estimate the trips. For instance, a zone closer to the downtown area, with lots of

shopping activities, will make shorter trips than a zone in the outer suburbs.

In the trip generation step, each trip is composed of an origin end and a destination

end. The trip ends are denoted as “production” or “attraction” based on the trip

type. For home-based trips (HBW or HBO), the home-end of the trip is always the

production and the non-home end is the attraction. For a non-home-based trip, origin

of the trip is the production and destination of the trip is the attraction.

Socio-economic data of the zone such as population, number of households and

employment information are used to estimate the trips between zones. Household

data gives an indication of the number of people residing in the zone and are used

for estimating the home-based trip productions. The employment in the zone relates
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to the work trip attraction. The other interesting data is the retail employment that

are used for calculating shopping based trips.

2.2.2 Trip Distribution

This step is used to match the trip production and attraction of each zone based on

geographical factors to form complete trips. For example, the trips that are produced

in a zone in Carmel, IN will be distributed to other zones in Indianapolis downtown,

shopping districts, etc. based on their geographical proximity and thereby forming

complete trips (with an origin and a destination). The process is repeated for every

zone in the system.

The equation for calculating the trip distribution is based on the general assump-

tion that the farther the distance of the destination, the lesser trip attractions [22].

The effect of travel time varies depending on the trip type. Travel time has a pro-

nounced effect on non-home-based trips as it is discouraging to travel very long dis-

tances for personal chores. On the other hand, travel time has very little effect on

work-based trips as the travel destination cannot be substituted.

For the model, the most widely used procedure in trip distribution known as the

“gravity model” is used. The trip length or travel time between zones are represented

by using the “friction factors”. As a result of this procedure, the number of complete

trips from one zone to another is estimated. The Gravity Model formulation [25] is

expressed as follows:

Tij = Pi ∗
AjFijKij∑n

j=1
(AjFijKij)

, (2.1)

where,

Tij : number of trips from zone i to zone j,

Pi : number of trip productions in zone i,

Aj : number of trip attractions in zone j,

Fij : the friction factor between zones i and j (travel time between i and j),

Kij : optional adjustment factor.
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Friction Factors Table (Fij)

Friction factors [25] are used to account for the impedance or separation between

two zones. Factors like distance or travel time are used as a measure of impedance.

Friction factors are inversely proportional to the impedance factors. It attempts to

include the willingness to travel. The friction factors are different for each of the trip

types. For our model, friction factors are developed using a gamma function. The

gamma functions [25] used to develop these functions used the following equation:

Fij = α ∗ Iβij ∗ e
Iij∗γ, (2.2)

where,

Fij : the friction factor between zones i and j,

α, β and γ : model coefficients; β and γ should be negative; α is the scaling factor,

Iij : the impedance factor(travel time) between zones i and j, and

e : the base of natural logarithm.

I is the impedance matrix. The trip length (in minutes) is used as impedance in our

study. I is represented as a matrix and each cell Iij represents the time it takes to

travel from zone i to zone j without traffic. The I matrix is obtained by processing

the road network GIS (Geographic Information System) of Indianapolis. The GIS

road network of Indianapolis is as shown in Figure 2.2.

The aim is to select an impedance function and its corresponding parameters such

that the gravity model reproduces the trip length distribution of the study area. There

are several ways to arrive at the parameters. We have used parameters suggested by

NCHRP Report 365 - Travel Estimation Techniques for Urban Planning [25]. The

report used several calibrated models from urban areas and found the relation between

the number of trips and travel to fit a gamma distribution function. From the results,

the work suggests that the gamma function be used with the parameters presented

in Table 2.2.
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Figure 2.2.: Indianapolis GIS road network

Table 2.2: Gamma function parameters

Trip Purpose α β γ

HBW 28,507 -0.02 -0.123

HBO 139,173 -1.285 -0.094

NHB 219,113 -1.332 -0.01

2.2.3 Mode Choice

The next step in the modeling process is the mode choice. The travelers will be

assigned to different modes of transportation based on several factors. The choices
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are based on relative availability and attractiveness of the mode. The attractiveness

of the mode is dependent on mass transit accessibility, time spent on travel, cost of

travel, automobile ownership and facilities such as carpool lanes.

The cost of travel could be mass transit fares, the price of gasoline, parking, and

a mileage rate for driving. Time spent on travel will comprise time spent waiting

for transit, time transferring between routes, or time spent to drive and park the

car and reach the final destination. All these parameters are factored into the mode

choice selection procedure. Some other factors such as parking costs and the time it

takes to walk from garage or parking spot to the destination are also accounted. The

downtown parking costs are generally high and when accounted for would discourage

automobile use. This data is very difficult to collect and hence is ususally omitted in

the modeling. But inclusion of these factors would make the modeling more accurate.

Further assumptions can be made for mass transit riders. For example, the traveler

would use mass transit only if the facility is accessible within a predetermined distance

from home. Otherwise, they would have to travel by car or other means to use the

mass transit.

2.2.4 Trip Assignment

The final step of the modeling is the trip assignment process. This step is used

to estimate vehicle flows on each of the road segments, also called as links. In this

process, the model initially uses the GIS information to choose the shortest route

between two zones. It then iterates based on the congestion pattern to achieve equi-

librium on the flow. This step is used in analyzing the congestion in road networks.

Since the focus of this study is not concerned with road network congestions, we do

not use this step. The result of this step is used by planning organizations to manage

congestion and in road network planning.
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2.3 Electric Vehicle Behavior Modeling

For our analysis, the hourly vehicle departure and arrival data for each zone

would be required to estimate the residential time of charging. The daily vehicle

miles traveled would be required to estimate the electrical energy used from the grid

to recharge the batteries. Using these two parameters for each zone, the electrical

vehicle charging behavior would be easily estimated since the time of charging and

the quantity of charging is known. For commercial locations, the hourly vehicle flow

data would be used to estimate the number of vehicle that would be influenced by the

charging facility. The hourly vehicle flow would be calculated using the production-

attraction matrix and origin-destination matrix from the trip distribution step.

2.4 Facts and Assumptions

Recent studies reveal that most cars travel with only one or two people in a car, an

average of 1.58 passengers per car [26] dropping to under 1.2 per vehicle for travelling

to work. We use the average car occupancy of 1.58 to convert person trips to vehicle

trips in the OD matrix.

According to the national household survey conducted by the U.S. Bureau of

Transportation statistics [16], 87 percent of daily trips take place in personal vehicles

and 91 percent of people commuting to work use personal vehicles. Furthermore,

the public transit system functions mostly in urban Indianapolis with limited or no

service to suburban areas. Due to these facts, less emphasis is given to mass transit

and the mode choice step is not used extensively. The analysis is more focused on

personal vehicles and the related trips.

While converting the productions-attractions to an origin-destination matrix, we

use an hourly distribution table [27] for the time-of-day analysis. We split the given

trips based on the hourly distribution table. This data is essential in analyzing the

number of trips for each hour of the day. Different distributions are used for each

trip type. Table 2.3 [27] shows the trip distribution used. The departure/arrival
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distributions specify the pattern of vehicle departures/arrivals in a given zone. As

for the analysis, we will be concerned with the arrival distribution as it reflects the

number of people likely to use the service.

Table 2.3: Hourly distribution table [27]

HOUR DEPARTURE HBW RETURN HBW DEPARTURE HBO RETURN HBO DEPARTURE NHB RETURN NHB

0 0.4 0 0.35 0.35 0.3 0.3

1 0.2 0 0.15 0.15 0.1 0.1

2 0 0 0 0 0 0

3 0.2 0 0.05 0.05 0 0

4 0.4 0 0 0 0.05 0.05

5 2.7 0 0.25 0.25 0.2 0.2

6 7.9 0 1 1 0.75 0.75

7 19.2 0 2.9 2.9 3.3 3.3

8 9.2 0 1.7 1.7 2 2

9 3 0 1.5 1.5 1.8 1.8

10 0.7 0 2.2 2.2 2.8 2.8

11 0.6 0 2.2 2.2 3.15 3.15

12 0.7 1.4 2 2 5.1 5.1

13 0.6 1.4 2.4 2.4 3.6 3.6

14 0.6 3.2 2.1 2.1 3.45 3.45

15 0.6 5.7 3.1 3.1 4 4

16 0.6 13.1 4.05 4.05 4 4

17 0.6 11.8 4 4 3.1 3.1

18 0.6 3.1 4.25 4.25 2.35 2.35

19 0.6 1.7 5.6 5.6 3.15 3.15

20 0.6 1 3.95 3.95 2.9 2.9

21 0 2.9 3 3 1.95 1.95

22 0 2.8 1.95 1.95 1.2 1.2

2.5 Methodology

The transportation planning software TransCAD [28] is used for the modeling

purpose. TransCAD is a widely used transportation planning software. It uses GIS

(Geographical Infomation Systems) and transportation modeling capabilities (four-

step model) to analyze the road network and traffic systems. The zone level socio-

economic data and the road network information were obtained from the Indianapolis

Metropolitan Planning Organization (IndyMPO). The data is for the nine counties

in Indianapolis. They are Boone, Hamilton, Hancock, Hendricks, Johnson, Madison,

Marion, Morgan and Shelby. For each of the zones in these counties, we have infor-

mation on population, number of households, number of automobiles per household,
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number of people employed in each sector, average income and income level classifi-

cation among other data. TransCAD uses the four-step model mentioned above to

process the data. The GIS capability of TransCAD is used to identify the affluent

neighborhoods. The TAZs with an average income greater than $91336 and where

more than 70% of the people have more than one vehicle are chosen. These locations

represent the zones that are expected to have high EV penetration. The selected

zones in Indianapolis are as shown in bright red in Figure 2.3.

Figure 2.3.: Selected zones in Indianapolis

2.5.1 Hourly Vehicle Flow Modeling

The socio-economic data is used in the trip generation process to generate the trip

productions and attractions per zone for each trip type. These trips are then made

into complete trips by matching trip productions from one zone to trip attractions in

another zone in the trip distribution step. The final result of this step is a production-
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attraction (PA) matrix whose rows and columns are made up of all the zones in the

system. The average car occupancy of 1.58 is used to convert the person trips to

vehicle trips. Each row in the matrix represents the vehicle trip productions of a zone

and the column represents the vehicle trip attractions of the zone. The production-

attraction (PA) matrix is then converted to an origin-destination (OD) matrix. For

home-based trips, the production-attraction matrix follows the convention that the

home-end of a trip is always the production end. For example, even if the trip

originates at work and ends at home, the home end would be the production end.

On the other hand, the origin-destination matrix does not follow this convention. For

home-based trips, if the trip originates at work and ends at home, the work-end is

the origin and the home-end is the destination. For example, consider the HBW trip

matrix shown in Figure 2.4. If the matrix is a PA matrix, there would be 280 trips

that could either start or end at Zone-380 (home). Essentially, there are 140 people

who live in Zone-380 and work in Zone-440. If the matrix is an OD matrix, there

would be 280 trips that start at Zone-380 and end at Zone-440. Essentially, there are

280 people who live in Zone-380 and work in Zone-440.

Figure 2.4.: HBW matrix

While converting the PA matrix, we make use of the hourly distribution matrix [27]

to obtain hourly OD matrices. The summations of the elements of each row of the

hourly OD matrices are the hourly vehicle flow for each zone. For example, in Figure

2.4, consider Zone-382 , the summation of the elements of the row corresponding to

Zone-382 in the 1st hour OD matrix reflects the number of vehicle that depart from

Zone-382 at hour 1. In the given matrix, 610 people are leaving Zone-382 at the

particular time. By repeating the procedure for each of the 24 hourly OD matrices,



20

we could obtain the hourly flow for each zone. The hourly vehicle flow for a zone

with high EV penetration is as shown in Figure 2.5.

Figure 2.5.: Hourly vehicle flow for a zone with high EV penetration

2.5.2 Vehicle Miles Traveled

The vehicle miles traveled distribution data for each zone is very essential in

modeling the energy consumption of the electric vehicles. The production-attraction

matrix and distance matrix is used to estimate the vehicle miles traveled distribution

data. Each element of the distribution matrix represents the distance between the

row zone and column zone. As the PA matrix gives the number of trips between the

zones, and the distance matrix gives the distance between the zones, we arrive at a

distance frequency table by matching the rows of the PA matrix and distance matrix.

This data will be used in the power system simulation as a distribution to account

for variability in the energy consumption of electric vehicles. The vehicle distance

traveled distribution is as shown in Figure 2.6. In the simulation, this distribution

would be used to generate the quantity of charge. The procedure will be described

in Section 4.2.1.
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Figure 2.6.: Hourly vehicle flow for a zone with high EV penetration

2.5.3 Commercial Charging Station Ranking

One of the major hindrances to EV adoption is the range anxiety problem. Many

people worry about the EVs running out of charge. Since EVs take hours to charge,

there is a prevalent anxiety about the vehicle range among EV users. To mitigate this

and increase public confidence, the utility company in Indianapolis had proposed to

build charging stations in chosen locations. This study benefits them by evaluating

each of the locations. The evaluation gives an indication to the number of vehicles

that could benefit from the charging station at a location. The proposed charging

station locations are as follows: (1) IPL at 1230 W Morris Street, (2) IPL at 3600 N

Arlington Avenue, (3) Denison Merchants Garage at 31 S Meridian Street, (4) Simon

Mall Garage at 50 W Georgia Street, (5) Simon Mall Garage at 129 W Maryland

Street, (6) IMA at 4000 Michigan Road, (7) Indy airport at 7801 Col H Weir Cook

Memorial Drive, (8) JW Marriot at 10 S W Street, (9) State of Indiana at 100 N

Senate Avenue, (10) Convention and Visitors bureau at 100 S Capitol Avenue, (11)

IUPUI at 1040 W Michigan Street, and (12) Enerdel at 8740 Hague Road

The task was to rank the charging stations based on the number of vehicles that

could be influenced. We map the proposed charging station locations in TransCAD
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Figure 2.7.: Proposed charging station locations

and identify the corresponding zone. Charging stations will attract not only the

visitors to a particular zone but also the visitors to the neighboring zones. Based on

this idea, the analysis is performed for all the zones covered by a 0.25 mile as well as

a 0.5 mile radius. Figure 2.8 shows the zones being covered by the charging station

at Denison Merchants garage. The green circle represents the 0.25 mile radius area

of influence and the red circle represents the 0.5 mile radius area of influence.

The zones covered by the area of influence are manually counted from the map.

The previously mentioned vehicle flow modeling procedure is performed for all the



23

Figure 2.8.: Area of influence of Denison Merchants garage

zones. The summation of the results represents the number of vehicles that would

be influenced by the charging station. Figures 2.9 and 2.10 show the hourly vehicle

flow through each of the proposed locations. The proposed locations are split into

commercial and fleet locations. Commercial locations are those with heavy public

access, while, fleet locations are owned by a certain organization with a fleet of EVs.

From the vehicle flow modeling, the total vehicle flow through each of the locations

is obtained (Figures 2.11 and 2.12).
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Figure 2.9.: Hourly vehicle flow in commercial locations

Figure 2.10.: Hourly vehicle flow in fleet locations
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Figure 2.11.: Total vehicle flow through commercial locations

Figure 2.12.: Total vehicle flow through fleet locations
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3. RESIDENTIAL DEMAND MODELLING

Accurate electricity demand prediction is essential for the efficient operation of power

systems. Independent System Operators (ISOs), balancing authorities and utility

companies use predicted demand for procuring and managing the available sources of

power. The decision makers are faced with a multitude of operational difficulties on

different time-horizons and at different hierarchies of the power grid. For instance,

the grid operators must forecast the day-to-day energy demand of the system for the

unit commitment and economic dispatch procedures. Also, yearly energy predictions

are used for capacity planning and investment decisions. Accurate demand prediction

is essential for participating in deregulated electricity markets. An electricity market

participant should have an accurate estimate of the hourly load to procure energy

in advance. An underestimation would lead to paying high real-time prices for over

consumption. Overestimation would result in wastage of resources. Furthermore, the

electricity market price is set based on electricity demand prediction. Load forecasting

is therefore at the core of electricity markets [29].

Energy demand prediction models have been used for a variety of reasons. Com-

monly, energy demand prediction is used on a macro-level to measure the system

electricity load for optimal generator scheduling. The same analysis done on a longer

time-horizon is useful for guiding important policy decisions. For this kind of model-

ing, more attention is paid to macro-level factors such as temperature, weather, etc.

Time-series predictions seem to be the most common technique for this application.

These techniques are good at using historical data to predict cyclical patterns and

thus are a good choice. At a macro-level, the effect of switching ON/OFF of a single

device does not affect the system and hence is not of much interest. However, for

building-level analysis of the effect of electric vehicles, the ON/OFF switching of a
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single high-power consuming device is of great importance. More detailed modeling

techniques are required to represent the complex interactions of the end-use appli-

cations in a building. The level of detail of input parameters is a function of data

availability, model focus and purpose, and assumptions. Increased detail allows for

a more comprehensive investigation of consumption patterns, although accurate as-

sumptions may significantly ease the modeling process and provide suitable results.

Since the modeling is done for only a few buildings at a time, computationally inten-

sive calculations are both feasible and economical.

Emphasis of this chapter is placed on models that are applicable to utility level

energy prediction through building energy modeling. The total energy consumption

of a building comprises of the energy required by all the end-use appliances, inclusive

of the losses and the system inefficiencies. The end-uses may have complex inter-

related effects with regards to energy consumption. Energy consumption modeling of

buildings seeks to quantify the energy requirements as a function of certain measurable

parameters.

3.1 Time-horizons of Demand Prediction

Demand forecasting is done for various purposes. The choice of the time period

of a forecast depends on its purpose. Forecasts can therefore be classified based on

the time-horizons: short-term load forecasts aim to predict the demand for an hour

into the future and up to several days, medium-term load forecasts are from one-week

to a year, and long-term load forecasts are for several years. Usually, the short-term

load forecast is used for a time-horizon of less than 24 hours. Until recently, the main

focus of demand prediction has been short-term load forecasts as most day-to-day

power system operations depend on it. Electricity deregulation has increased interests

in medium-term load forecasts. Medium-term load forecast enables companies to

estimate the load demand for a longer time interval which helps them, for example, in

the negotiation of contracts with other companies. Long- term forecasts are primarily
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used in capacity planning and investments decisions. Each of these forecasts would

require different sets of input variables depending on the application.

Electricity demand is influenced by several factors - ranging from socio-economic

factors to seasonal and weather effects. Depending on the region and climatic con-

ditions, some factors may have a greater impact than others. The prediction has to

be constructed depending on the task and data at hand. Therefore, it is essential to

determine the factors that have a significant effect on electricity demand. Univariate

models are used when extensive data is not available. Univariate models use only one

variable (past demand) to predict future demand. They are standard and effective

for very short term load forecasts for up to six hours ahead [29–31].

3.2 Demand Prediction Techniques

Techniques used for demand prediction can be broadly classified into two cate-

gories: top-down and bottom-up. The terminology is with respect to the hierarchical

position on input data as compared to the housing sector [32].

One method traditionally used in estimating demand is by performing statistical

analysis on historic data to project observed trends in consumption into the future.

A number of statistical methods, such as regressions and exponential smoothing, as

well as classification methods, such as neural networks and fuzzy logic, have been

used to predict future demand loads based on past data. In this study, we use an

agent-based model which is a combination of statistical and engineering models.

3.2.1 Top-down Models

Top-down models predict the energy consumption using macro-level factors; vari-

ables which are commonly used by top-down models include macroeconomic indica-

tors (gross domestic product (GDP), employment rates, and price indices), climatic

conditions, housing construction/demolition rates, and estimates of appliance own-
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Figure 3.1.: Demand prediction techniques in practice

ership and number of units in the residential sector. The two types of top-down

approaches identified by [32] are:

Econometric models : These models are based on price (of, for example, appliances)

and income. The model develops relations between the income factor and affordability

of appliance. Based on the different income groups, energy consumption is predicted.

Technological models : Technological models attribute energy consumption to broad

characteristics of the entire housing stock such as appliance ownership trends.

3.2.2 Bottom-up Models

The bottom-up approach uses end-use or appliance level input data for demand

prediction. Usually, models account for consumption of individual end-uses, individ-
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ual houses or group of houses. These models are then extrapolated or scaled-up to

represent the whole system. The bottom-up models are classified into two types based

on the methodology: statistical methods and engineering methods. Most statistical

models are based on the idea of regression analysis; the methods attribute housing

energy consumption to particular end-use or end-use parameters. Engineering meth-

ods (EM) explicitly account for the energy consumption of end-uses based on power

ratings and use of equipment and systems and/or heat transfer and thermodynamic

relationships.

Statistical Techniques

The vast quantity of customer energy billing information stored at the major

energy suppliers worldwide is a very valuable data source for energy modeling. Cus-

tomer energy billing information is one of the most valuable sources of data for energy

prediction. Historically, various statistical techniques have been used to utilize this

and other source of data to regress the energy consumption as a function of end-use

appliances and house characteristics. Occupant’s behavior seems to have a far greater

impact than any other parameter. The statistical techniques have the ability to in-

corporate occupant behavior into the model. This is of great benefit to the residential

building models. The following is a brief description of each of the mentioned models:

Regression [29, 32] - The regression technique uses regression analysis to deter-

mine the coefficient of the model corresponding to the input parameter. The coef-

ficient signifies the amount of change in the energy consumption per unit change in

input parameters. The input parameters are those factors that affect or are likely to

affect the energy consumption. So, these models regress to find a relation between

aggregate energy consumption of the dwelling to certain factors. Those relations

that are determined to have a negligible effect are removed for simplicity. Based on

the combinations of inputs, the model’s coefficients may or may not have physical

significance.
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Conditional Demand Analysis (CDA) [33] - This method makes use of end-use

appliance penetration levels in regression. The appliance ownership is indicated as a

binary variable. The coefficients attached to the appliance parameter can denote the

usage or rating. This method reflects the differences in ownership of each household

appliance in the regression model.

Artificial Intelligence/Computational Intelligence systems [29,32] - These methods

are relatively new compared to the other statistical methods. They are basically an

extension of the idea of building a mathematical model to represent the system. But,

the system model and data fitting are derived from the principles of computer science.

Engineering Techniques

The engineering techniques model the physical characteristics and interactions

of the appliances in a system. They are the only method that does not rely on

historical data. The engineering model could be as detailed as possible. There are

several models that reflect the exact thermodynamic characteristics of the system.

The engineering models could also use a simple representation for appliance that do

not have complicated operation or interactions. The engineering techniques have the

greatest flexibility when modeling new technologies that do not have any historical

information. The prevalent engineering techniques [32] are as follows:

Distributions - This technique makes use of appliance ownership and usage char-

acteristics to model the energy consumption. The method does not consider the

interactions of the end-use appliances.

Archetypes - This technique classifies the housing stock broadly into certain cat-

egories. One house of each category is modeled and then expanded to represent the

system under consideration.

Sample - This technique uses input information from an actual sample house. This

model has the capability to represent the intricate interactions between end-uses. As
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the type of houses varies widely, a large number of houses have to be modeled to

represent the entire power system.

3.2.3 Critical Analysis of Prediction Techniques [32]

Table 3.1: Comparison of different prediction techniques

Top-down Bottom-up

statistical

Bottom-up

Engineering

Positive

attirbutes

- Long term forecasting in the

absence of any discontinuity

- Inclusion of macroeconomic

and socioeconomic effects

- Simple input information

- Encompasses trends

- Encompasses occupant be-

havior

- Determination of typical

end-use energy contribution

- Inclusion of macroeconomic

and socioeconomic effects

- Uses billing data and simple

survey information

- Model new technologies

- ”Ground-up” energy estima-

tion

- Determination of each end-

use energy consumption by

type, rating, etc

- Determination of end-use

qualities based on simulation

Negative

attirbutes

- Reliance on historical con-

sumption information

- No explicit representation of

end-uses

- Coarse analysis

- Multi-collinearity

- Reliance on historical con-

sumption information

- Large survey sample to ex-

ploit variety

- Assumption of occupant be-

havior and unspecified end-

uses

- Detailed input information

- Computationally intensive

- No economic factors

Each approach meets a specific need for energy modeling which corresponds to its

strongest attribute:

• Top-down approaches are used for supply analysis based on long-term projec-

tions of energy demand by accounting for historic response.
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• Bottom-up statistical techniques are used to determine the energy demand con-

tribution of end-uses inclusive of behavioral aspects based on data obtained

from energy bills and simple surveys.

• Bottom-up engineering techniques are used to explicitly calculate energy con-

sumption of end-uses based on detailed descriptions of a representative set of

houses, and these techniques have the capability of determining the impact of

new technologies.

3.3 Demand Prediction using Agent-based Simulation

Most of the prevalent top-down/classical demand prediction models use historical

usage patterns to predict future demand. However, in the future, there could be

devices like EVs that has not been used in the past. Due to the lack of information

for these kinds of devices, many of the classical methods often fail. For this reason an

agent-based simulation technique is used in this work for forecasting the residential

electricity demand with EVs.

A bottom-up approach has been used to forecast electricity usage at the household

level using an engineering model that decomposes usage to the appliance level. Each

appliance in the agent-based model is modeled independently with varying degrees

of complexity. Some of the devices such as lights have only two states (ON and

OFF), while other devices such as air-conditioners have several states of operation.

Appliances such as air-conditioners and refrigerators consume more electricity during

periods of high temperature, and the usage of other devices such as water-heaters has

a negative correlation with the temperature. These complexities are well defined in

the agent-based model. The bottom-up approach also enables the addition of new

devices such as EVs. It is comparatively easy to add the effects of these devices to the

system. An EV is added as another device to the system and modeled independently.

Appliances are assigned to the household based upon local appliance saturation

levels, in our case for the city of Indianapolis. Every appliance has an hourly starting
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probability, as well as a consumption cycle that dictates its electricity usage when

turned ON. Starting probabilities differ for weekdays and weekends while appliances

that consume electricity during standby periods are also given a standby load. The

household’s electricity usage is then determined at the minute time scale through

the simulation of whether every appliance available in the representative household

is currently ON or OFF, and if ON, the level of electricity being drawn is measured.

The daily household usage amount can then be calculated through a summation of

the usage levels at every minute during the day. The daily profile results of a number

of representative households can be combined to form an average household usage

profile.

The framework for the model is built on two major components: a dataset and

a simulation engine. The first component includes a list of the appliances that may

appear in a household, appliance saturation levels, daily frequency at which a partic-

ular appliance is used, usage profile of an individual appliance, standby power needed

by a particular appliance and the consumption cycle of an appliance. The second

component includes a set of stochastic simulation processes, which generate temporal

electricity consumption profiles for all appliances of each household separately on the

hourly time scale and sums the individual appliances to generate an electricity load

profile for an average household.

The agent-based modeling differs from those generally used for prediction in a

number of significant ways. Firstly, the statistical models that use historical data

have difficulty in modeling a new device like an EV. The widespread adoption of

EVs will have a significant impact on the electrical load profile of the system. The

bottom-up approach provides an accurate representation on the EV adoption and

hence benefits that the macro-level predictions cannot provide. Furthermore, be-

cause of the flexibility in programming, the EV adoption can be incorporated while

accounting for localized effects. For instance, the driving pattern differs for each part

of the system under consideration. The EV system parameters such as time of charge
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and amount of charge (depends on the average miles traveled per day) can be different

for different geographic parts of the system.

3.3.1 The Dataset

The main datasets used in the work are gathered from the United States En-

ergy Information Administration’s Residential Energy Consumption Survey [34]. The

datastes used are as shown in Tables 3.2, 3.3 and 3.4.

The appliance characteristic is shown in Table 3.2. The descriptions of the columns

are as follows:

• The appliance saturation level indicates the percentage of households that pos-

sess the appliance.

• Weekday/Weekend Frequency indicates the number of times an appliance is

used on a given day.

• The wattage (W) specifies the range of wattages for the appliances.

• The average annual kWh consumption of the appliance. This value would be

converted to average daily kWh consumption for modeling purposes.

The weekday/weekend starting probabilities is as shown in Tables 3.3 and 3.4.

This data will be used in the simulation for ON/OFF switching of the appliances.

1Modeled with control loop and based on thermal cycles. Hence, values would vary based on the
building construction area.
2Very negligible amount
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Table 3.2: Appliance characteristics [34]

ApplianceName Saturation Weekday Weekend Wattage(W) Annual kWh

Frequency Frequency Consumption

Stove and Oven 1 0.70428 0.7 0.7 1200-2200 1000

Stove and Oven 2 0.70428 1 1 1200-2200 1000

Stove and Oven 3 0.70428 0.6 0.65 1200-2200 1000

Microwave Oven 0.89105 0.98 1 150-1200 209

Coffee Maker 0.63035 0.98 1 900-1200 116

Refrigerator 1 45 45 725 1239

2nd Refrigerator 0.22568 45 45 725 1239

Freezer 0.3463 45 45 375 1039

Dishwasher 0.56809 0.7 0.75 1200-2400 512

Clothes Washer 0.77432 0.88 0.88 350-500 120

Electric Dryer 0.69261 0.78 0.78 1800-5000 1079

Television 1 2.1 2.2 110-130 137

2nd Television 0.80545 0.3 0.33 110-131 138

3rd Television 0.45914 0.3 0.33 110-132 139

Set Top Box 0.78 0 0 20-25 70

Video Recorder 0.7354 0 0 20-25 70

DVD 0.80934 0 0 20-25 70

Radio/Player 0.72763 4.18 4.54 70-400 81

Prsnl. Comp. 0.69261 3 3.15 270 262

Printer 0.60311 0.78 0.85 600 216

Lighting 1 18 26 500-1500 940

Other Loads 1 5 5 100-900 1000

Central A/C 0.64202 0.85 0.95 1 27961

Room A/C 0.29183 0.85 0.95 1 9501

Elec. Water Htr. 0.60311 11 13 4500-5500 2552

Telephone 0.80545 0 0 2 2

Answering Machine 0.54864 0 0 2 2

Elec. Spc Hting. 0.40856 2.5 2.75 1 35241

Pool Pump 0.03113 10 12 1000 1500
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Table 3.3: Appliance weekday starting probability [34]

Hour

ApplianceName 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Stove and Oven 1 0.21 0.21 0.21 1.07 3.20 4.27 4.27 4.27 4.27 4.41 4.58 4.43 4.15 4.76 6.18 7.72 12.13 12.13 7.72 4.41 1.88 1.10 0.33 0.40

Stove and Oven 2 0.21 0.21 0.21 1.07 3.20 4.27 4.27 4.27 4.27 4.41 4.58 4.43 4.15 4.76 6.18 7.72 12.13 12.13 7.72 4.41 1.88 1.10 0.33 0.40

Stove and Oven 3 0.21 0.21 0.21 1.07 3.20 4.27 4.27 4.27 4.27 4.41 4.58 4.43 4.15 4.76 6.18 7.72 12.13 12.13 7.72 4.41 1.88 1.10 0.33 0.40

Microwave Oven 0.20 0.20 0.40 0.40 1.78 2.59 3.19 3.83 3.70 4.13 4.29 4.15 3.89 4.46 5.79 8.76 10.00 10.30 9.24 8.15 5.82 2.79 1.51 0.36

Coffee Maker 0.20 0.20 0.40 0.40 1.78 2.59 3.19 3.83 3.70 4.13 4.29 4.15 3.89 4.46 5.79 8.76 10.00 10.30 9.24 8.15 5.82 2.79 1.51 0.36

Refrigerator 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17

2nd Refrigerator 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17

Freezer 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17

Dishwasher 2.33 2.33 2.33 2.42 2.59 3.46 4.06 4.32 4.32 4.15 3.98 3.89 4.15 4.67 4.93 5.19 5.62 6.40 7.09 7.52 5.62 3.46 2.85 2.33

Clothes Washer 2.60 1.80 1.60 1.60 1.60 2.08 3.20 4.40 5.60 5.64 5.20 4.80 4.40 4.40 4.80 5.00 5.32 5.40 5.48 5.60 5.72 5.80 4.80 3.20

Tumble Dryer 2.60 1.80 1.60 1.60 1.60 2.08 3.20 4.40 5.60 5.64 5.20 4.80 4.40 4.40 4.80 5.00 5.32 5.40 5.48 5.60 5.72 5.80 4.80 3.20

Television 0.73 0.37 0.37 0.37 0.73 1.10 1.46 1.83 2.19 2.56 2.92 3.65 4.02 4.38 4.74 5.47 6.93 9.12 12.04 13.87 11.31 6.20 2.55 1.10

2nd Television 0.73 0.37 0.37 0.37 0.73 1.10 1.46 1.83 2.19 2.56 2.92 3.65 4.02 4.38 4.74 5.47 6.93 9.12 12.04 13.87 11.31 6.20 2.55 1.10

3rd Television 0.73 0.37 0.37 0.37 0.73 1.10 1.46 1.83 2.19 2.56 2.92 3.65 4.02 4.38 4.74 5.47 6.93 9.12 12.04 13.87 11.31 6.20 2.55 1.10

Set Top Box 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

Video Recorder 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

DVD 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

Radio/Player 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

Personal Computer 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

Printer 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

Lighting 1.89 1.68 1.89 2.10 3.15 4.20 3.99 3.36 3.15 2.94 2.73 2.10 2.10 2.10 2.31 3.15 4.20 8.40 11.55 11.55 9.45 6.30 3.36 2.31

Other Occasional Loads 1.03 0.83 0.83 0.83 1.03 2.04 3.06 3.24 3.44 3.54 3.64 3.74 3.94 4.14 4.55 4.96 5.79 6.70 7.71 8.51 9.01 8.10 5.67 3.66

Central Air Conditioning 1.49 1.22 1.02 0.68 0.54 0.50 0.45 1.04 1.22 1.63 2.85 3.73 5.15 7.18 9.19 10.57 11.25 10.98 9.08 6.50 5.15 3.73 2.85 2.03

Room Airconditioning 1.49 1.22 1.02 0.68 0.54 0.50 0.45 1.04 1.22 1.63 2.85 3.73 5.15 7.18 9.19 10.57 11.25 10.98 9.08 6.50 5.15 3.73 2.85 2.03

Water Heater 1.40 0.80 0.90 1.10 2.00 4.40 8.90 10.70 8.90 6.60 5.20 3.80 3.60 3.30 3.20 2.60 4.20 4.80 5.20 4.70 4.20 3.90 3.60 2.20

Telephone 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88

Answering Machine 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88

Electric Space Heating 3.44 2.99 3.01 3.14 3.31 4.12 5.37 5.59 5.54 5.05 4.64 4.43 4.17 3.69 3.57 3.48 3.93 4.73 4.85 4.81 4.64 4.17 3.95 3.39
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Table 3.4: Appliance weekend starting probability [34]

Hour

ApplianceName 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Stove and Oven 1 0.37 0.05 0 0 0 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.3 1.02

Stove and Oven 2 0.37 0.05 0 0 0 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.3 1.02

Stove and Oven 3 0.37 0.05 0 0 0 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.3 1.02

Microwave Oven 0.37 0.05 0 0 0 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.3 1.02

Coffee Maker 0.37 0.05 0 0 0 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.3 1.02

Refrigerator 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17

2nd Refrigerator 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17

Freezer 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17

Dishwasher 1.73 0.96 0.4 0.4 0.4 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.8 8.6 8.16 7.01 5.05 2.03

Clothes Washer 1.73 0.96 0.4 0.4 0.4 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.8 8.6 8.16 7.01 5.05 2.03

Tumble Dryer 1.73 0.96 0.4 0.4 0.4 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.8 8.6 8.16 7.01 5.05 2.03

Television 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

2nd Television 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

3rd Television 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

Set Top Box 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

Video Recorder 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

DVD 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

Radio/Player 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

Personal Computer 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

Printer 3.4 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.4 3.88 4.85 4.85 5.93 6.13 6.8 6.8 6.8 7.77 8.25 6.8 5.34 4.85 3.88

Lighting 1.03 0.33 0.33 0.83 1.78 2.64 3.56 3.74 3.44 3.04 3.04 3.24 3.94 4.14 4.55 4.96 5.79 6.7 8.21 9.11 9.81 8.5 4.32 2.96

Other Occasional Loads 2.55 1.33 1.23 1.23 1.33 1.73 2.13 3.55 4.07 3.99 3.77 3.97 4.07 4.47 4.97 6 6.32 6.84 7.34 7.56 6.79 6.67 4.84 3.22

Central Air Conditioning 1.491 1.220 1.016 0.678 0.542 0.501 0.447 1.043 1.220 1.626 2.846 3.726 5.149 7.182 9.187 10.569 11.247 10.976 9.079 6.504 5.149 3.726 2.846 2.033

Room Airconditioning 1.491 1.220 1.016 0.678 0.542 0.501 0.447 1.043 1.220 1.626 2.846 3.726 5.149 7.182 9.187 10.569 11.247 10.976 9.079 6.504 5.149 3.726 2.846 2.033

Water Heater 1.8 1 0.9 0.8 1.5 2.3 2.6 4.7 7.7 8.3 7.4 6.1 5.1 4.3 3.9 3.9 5.2 5.8 5.6 5.2 4.7 4.4 4 2.8

Telephone 2.4 1.2 0.7 0.6 0.7 1.3 2.1 2.45 3.35 3.2 3.2 3.84 3.84 4 4.8 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.8 3.2

Answering Machine 2.4 1.2 0.7 0.6 0.7 1.3 2.1 2.45 3.35 3.2 3.2 3.84 3.84 4 4.8 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.8 3.2

Electric Space Heating 3.437 2.986 3.008 3.136 3.308 4.125 5.371 5.585 5.542 5.048 4.640 4.425 4.168 3.695 3.566 3.480 3.931 4.726 4.855 4.812 4.640 4.168 3.953 3.394
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3.4 Agent-based Modeling using GridLAB-DTM

3.4.1 Classification of Load

The open source power system simulation software GridLAB-DTM is used for load

modeling in this work. It is developed by The Pacific Northwest National Laboratory.

It has an agent-based residential building demand simulation module that is used

for demand prediction of residential houses. For the purpose of modeling, end-use

appliances are split into two categories: simple time invariant loads without thermal

cycle and complex time variant loads with thermal cycle. The simple time invariant

appliances are modeled as a voltage dependent power consuming device, and there is

no control loop that turns the device ON or OFF. The power consumed is constant

when the device is switched ON. On the other hand, devices with thermal cycles

have a control loop to turn ON or turn OFF the device. The switch ON or OFF is

managed by the control logic programmed into the HVAC controller.

Simple time invariant loads without a thermal cycle

For appliances without thermal cycle, the obtained dataset is used to model the

appliance. The loads are split into two categories based on their load shape [35]:

analog load shapes and pulsed load shapes.

1. Appliance with analog load shapes

Analog load shapes (Figure 3.2) are used for loads that are constantly present

in the system. The amount of power consumption varies throughout the hours.

The starting probability for these loads is used as the percentage of energy

consumed at that hour. So, given the total consumption over the entire day,

the starting probability denotes the percentage of energy spent at that hour. In

GridLAB-DTM, an analog loadshape is defined using the following form [35]:

object plugload {



40

name ‘lights‘;

shape "type: analog;

schedule: light_start_probability;

energy:Daily Energy Consumption";

};

The ‘energy’ or ‘power’ parameter could be used interchangeably as constant

power (kW) over an hour is the energy (kWh) consumed in that hour. In the

household model, lights and other occasional loads are modeled using analog

load shapes.

Figure 3.2.: Analog load Shapes [35]

2. Appliance with pulsed load shape

Pulsed load shapes (Figure 3.3) are used for appliances that switch ON and

switch OFF in a given time frame. In other words, these appliances consume

power in the form of a pulse. Most appliances are not ON throughout the day

and hence their energy consumption is modeled as a pulse. Pulsed loadshapes

emit 1 or more pulses at random times such that the total energy is accumulated

over the period of the loadshape. The random times are defined by the starting
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probabilities at each hour. In GridLAB-DTM, a pulsed loadshape is defined

using the following form [35]:

object sample {

myshape "type: pulsed;

schedule: schedule-name;

energy: value kWh;

count: value;

power: value kW";

}

In this form, the ‘schedule’ specifies the starting probability, the ‘energy’ speci-

fies the average daily energy consumption, ‘power’ specifies the power rating of

the appliance and ‘count’ denotes the number of pulses, i.e. the frequency of

switching-on. All these values are obtained from the dataset mentioned above.

Given that the power is constant, the duration of the pulse will vary that the

amount of energy consumed in the given time-period (day) is as specified.

Figure 3.3.: Pulsed load shape [35]

Most of the appliances are modeled using the pulsed load shape. This model

is efficient in modeling the household as it accounts for the power rating of

the appliance, daily energy consumption and most importantly the occupant
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behavior through the starting probabilities. It is inherently simple and easy to

implement provided the necessary data is available.

Complex time variant loads with a thermal cycle

Devices with thermal cycles are relatively more difficult to model. The power

consumption is acquired by building a physical/engineering model of the system ac-

curately. In addition the control logic is also specified to modulate the behavior of

the system. For these devices, the control system will adjust the duty cycle such that

the output energy satisfies the control requirements. Many of the large end-use appli-

ances have thermal cycles. Basically, those devices that emit enough heat to affect the

surrounding air temperature are included in the thermal model of the house. These

include, but not limited to, HVAC, hot water heating, refrigerators, ovens and clothes

dryers. In our model, we have used a detailed physical/thermal model of the HVAC

alone. Usually, the HVAC is the largest appliance with a thermal cycle in a house.

The HVAC system tries to maintain the set temperature inside the house. Several

external factors such as heating degree day, cooling degree day, outside temperature

and building material affect the energy consumption. To account for the interactions,

a thermal model of the house is constructed using an equivalent thermal model (ETP)

of the house [35,36]. The ETP model has been proved to be very efficient in providing

accurate representation of building energy consumption [36].

Figure 3.4 [36] depicts the ETP model of a house. It shows the path of heat

flow within a house. There are three sources of heat: solar radiation, internal gains

that accumulate through heat produced by the appliances and the HVAC that is

set to regulate the temperature within the house. The total heat affects the air

temperature and the temperature of mass (walls, furniture, etc.) in the house. The

air temperature of the house is thermally coupled with the outside air temperature,

through the building material (thermal envelop), and the mass temperature. The

model can be represented by a set of second order differential equations [35, 36].
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UAwall UAmass

QHVAC
Qinternal

QSun UAwall – the gain/heat loss coefficient (Btu/oF.h or W/oC) to 

the ambient

UAmass – the gain/heat loss coefficient (Btu/oF.h or W/oC) 

between air and mass

QHVAC – heat rate for HVAC (Btu/hr or W)

QInternal – heat rate from other appliances (Btu/h or W)

QSun – heat gain from solar (Btu/h or W)

Sun

Out

Temp

Appl-

iances

Figure 3.4.: The ETP model of a house

These equation are used in determine the important thermal characteristic of the

house. The solution to these equations determines the air temperature and thereby

the energy consumption of the HVAC system.

3.4.2 Household Model Simulation

To simulate the electricity consumption of the household, the open-source GridLAB-

DTM simulation environment is used. All the devices in the appliance list are included

in the model. Only HVAC is modeled as a time-variant complex system with thermal

cycles. All the other devices are modeled as a simple time-invariant system without

a thermal cycle. The starting probability of the devices reflects the occupant behav-

ior most effectively. The HVAC system operates based on the outside temperature.

Figure 3.5 shows the simulated power consumption of the HVAC, and also depicts



44

the relation between the outside temperature and the HVAC energy consumption.

As outside temperature increases above a certain point, the HVAC works to cool

down the house and hence consumes more energy. Similarly, as outside tempera-

ture decreases below a certain point, the HVAC works to heat-up the house. This

relationship is well observed in the model.

Figure 3.5.: Relationship between the outdoor temperature and HVAC power con-

sumption

The other simple appliances use the power schedule obtained from national av-

erages in the modeling. The switch-ON/switch-OFF characteristics and power con-

sumption pattern of the appliance are as shown in Figure 3.6. The simulation environ-

ment provides measurement at different time intervals. The total power consumption

of the household is as shown in Figure 3.7.
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Figure 3.6.: Power consumption characteristics of the appliances
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Figure 3.7.: Total household power consumption
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4. DISTRIBUTION SYSTEM IMPACTS -

TRANSFORMER MODELING

4.1 Introduction

Distribution systems function as the serving end of a power system. Distribution

transformers are responsible for stepping-down distribution level voltage (7.96kV/13.8kV)

to residential level voltages. Depending on the household characteristics of the cus-

tomer, the number of customers connected to a single transformer varies. In all cases,

transformers are designed for specific load capability based on the expected power

demanded by the customer(s). When EVs are connected to the grid, it manifests as

a large unexpected load that is not accounted for in the distribution system plan-

ning. The distribution system is planned to withstand momentary heavy loads. But

a sustained heavy load such as EVs would pose certain complications. This chapter

explains how the impact on the distribution level transformer is evaluated.

To evaluate the impact of this scenario on the system, it is necessary to model the

distribution system. The modeling procedure consists of four procedures: residen-

tial household modeling, center-tapped transformer modeling, electro-thermal trans-

former modeling and loss-of-life calculation. The residential household containing

standard appliances and EV is modeled in GridLAB-DTM. Demand is simulated for

an entire year, taking into account the weather conditions. The distribution trans-

former serving the household(s) is also modeled in the simulation. This simulation

model will be elaborated later in terms of power flow in the distribution. Using the

power flow module of the simulation, the current flow through the transformer for a

particular household load pattern is obtained from the model.
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The study focuses on evaluating the capability of a power system to handle new

loads. The transformers are an integral component of the distribution system that

is more likely to be affected due to localized heavy loads. The heavy loads draw

large currents from the secondary (customer-end) of the transformer causing rise of

temperature in the different transformer components. An electro-thermal model of

a transformer is used to evaluate various components of the system and subsequent

evaluation of the adequacy of the system and/or the evaluation of the risk of failure.

For the transformers, we can evaluate the loss of life for specific temperature profiles

of the transformer.

Simulations are performed using two systems in the study. The residential house-

hold and center-tapped distribution transformer is modeled in GridLAB-DTM, while

the electro-thermal model and loss-of-life calculation of the transformer is performed

in Matlab. Using the household and transformer simulation, the currents through

the transformer winding is calculated. With knowledge of the currents in the trans-

former windings, the temperature of the windings can be calculated using a simplified

first-order electro-thermal model. The temperature evolution is computed from the

electro-thermal model of the system components. Based on transformer winding tem-

perature, the hot spot temperature of the transformer, loss of life, and expected life

can be calculated over a planning period.

Two scenarios are examined. In the first case, the homeowners do not own any

EVs. In the second case, we assume that each homeowner owns one EV. We focus

on the impact on distribution transformers. Specifically, we compare the loss of life

and expected life of a distribution transformer for these two cases.

The test system, consists of a medium voltage distribution transformer (7.96 kV to

120/240 V, 15 kVA) feeding a residential circuit. Three-phase overhead transmission

lines deliver the power to the center-tapped distribution transformer that serves three

houses. To charge the EVs, the following assumption is made. The owners of the

house use their 120 V, 15 A garage outlets to charge their cars.
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4.2 Residential Household Model

A customer’s household is modeled by using the residential module of GridLAB-

DTM. Estimating end-use consumption that accurately reflects the magnitude, aver-

age hourly shape, and probability and variance of the load is critical for the household

simulation to work. The household simulation accounts for the simulation of stan-

dard home appliances in a typical house. Since only the effects on a single distribution

transformer are studied, a house from a wealthy neighborhood is simulated using the

simulation methodology described in the previous chapter. The EV is added as an-

other appliance to evaluate its impacts on the transformer.

4.2.1 EV Electrical Load

The added electric load due to EV charging is based on two parameters that are

obtained from the EV modeling. The arrival time of the vehicles and the distance

traveled by the vehicle are used in calculating the consequent EV demand. For the

high incomes zones, arrival time (Figure 2.5) and trip distance (Figure 2.6) distribu-

tion are used to generate the required parameters.

Along with the residential model, the EV is added as an appliance by employing

these parameters. In the GridLAB-DTM model, the hourly vehicle flow is translated

as schedule and the vehicle miles traveled is converted to energy consumption. For a

Nissan Leaf, 24 kWh battery capacity can be used to travel 100 miles. That would

be translated to .24 kWh/mile. In essence, the electric vehicle charging characteristic

are derived from the conditional miles driven and arrival time probabilities as shown

in Figure 4.1, which is similar to the charging pattern used in Taylor at al. [30].

4.3 Center-Tapped Single Phase Distribution Transformer

The power-flow module of GridLAB-DTM is used in the computation of the cur-

rents through a transformer. The power-flow module is a fundamental power system
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Figure 4.1.: Conditional miles driven and arrival time probabilities

analysis tool. Given the voltage of the three-phase distribution feeder (a conductor

which carries power from one equipment to another) and the load on the transformer,

it determines voltage at all points (nodes, transformers) on the distribution system.

This in turn defines the currents on the system and indicates if the system is properly

loaded.

The typical residential distribution system distribution transformer model is used

to compute the expected transformer currents for a specified electric load demand.

The model, shown in Figure 4.2, is fully described in [37]. The specific scenario mod-

eled here is a single phase distribution transformer feeding a house. The transformer

is a 7.960 kV to 120/240 V transformer rated at 15 kVA. The transformer has a series

resistance RA and reactance XA of 0.007 p.u. and 0.035 p.u. respectively [37].

Figure 4.2 shows a center-tapped single phase distribution transformer. Z0, Z1, and

Z2 are transformer winding impedances. Usually, three wires (triplex) are available
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Figure 4.2.: Equivalent circuit of a split-phase transformer model [37]

at the customer end. SL1 and SL2 are 120V (V1 and V2) loads. Loads that require

240V (V1 + V2) is represented by SL3. To compute the winding impedances Z0, Z1,

and Z2 the interlaced transformer design equations are used [37].

To compute the winding currents I0, I1, and I2 in the above figure an iterative

process from [37] is utilized. The GridLab-DTM simulation uses the forward-sweep

and backward sweep procedure [37] to calculate the winding currents. The method

outlined in [10,37] to compute the transformer currents is an iterative process consist-

ing of a forward sweep and a backward sweep. The forward-sweep/backward-sweep

method is a fast algorithm that is used to solve for power-flow equations in distribu-

tion systems. Figure 4.3 shows the simulation results for the base case scenario (BC)

and again for the EV scenario. These currents form the input to the electro-thermal

transformer model, which is in turn used to compute the expected distribution trans-

former temperature, and thus the distribution transformer loss-of-life.
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Figure 4.3.: Sample scenario transformer current for the low voltage (Low V) and

high voltage (High V) side windings

4.4 Hourly Electro-Thermal Hot-Spot Temperature Computation

A simplified electro-thermal transformer model [10] of a center-tapped single phase

convection cooled distribution transformer is shown in Figure 4.4.

The nodes in Figure 4.4 represent:

• The high voltage winding (node h).

• The low voltage winding center tap 1 (node 1).

• The low voltage winding center tap 2 (node 2).

Each circuit element represents a thermal phenomenon: the conductance com-

ponents (Gx,x) represent heat transfer within and between the transformer windings

(estimated from temperature gradients between transformer windings [10]); the ca-

pacitive components (Cx,x) represent transformer winding thermal inertia (computed

from the winding mass and winding specific heat constant [10]); and the current

sources represent heat sources in the form of ohmic losses in each of the transformer

windings.
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Figure 4.4.: Electrothermal model of a transformer [10]

The detailed description of the modeling procedure and dynamics of the trans-

former winding temperatures is found in AP Meliopolous et al [10, 11]. The numeric

values of the circuit parameters chosen were analytical computed and experimentally

verified [10].

The input to the above model is the transformer currents Ih, I1, and I2 over a

specific time period, typically one day. The result from the modeling is the estimated

transformer temperature over the simulated time span. In the mentioned models,

the circuit parameters of the electro-thermal model are dependent on ambient tem-

perature. A flat ambient temperature of 20◦ C is assumed for simplicity and ease of

calculation.

The hot-spot temperature is defined as the maximum winding temperature in

a given hour. Thus, the transformer currents, from the center-tapped single phase

distribution transformer, are sampled every 10 seconds as input to the electro-thermal
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transformer model simulation. The final result of this simulation (Figure 4.5) is

the hot-spot temperature of the distribution transformer, which is the maximum

temperature observed from each hour of the simulated day.

Figure 4.5.: Simulated high/low voltage side winding temperature

In both scenarios the high voltage winding currents are significantly smaller in

amplitude then the low voltage winding currents; as shown in Figure 4.3. The next

step in the transformer impact simulation is to compute the hot-spot winding tem-

perature for both scenarios (“BC” and “EV”). The hot spot temperature (T̃) is the

maximum winding temperature(T) in a given hour. Based on the winding temper-

atures in Figure 4.5, the windings hot-spot temperatures is obtained and shown in

Figure 4.6.
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Figure 4.6.: Hot-spot temperatures

4.5 Transformer Loss-of-Life Computation

The fourth step in the distribution system impact analysis is the transformer loss-

of-life calculation. The process of insulation degradation, for oil filled transformer,

is a function of three phenomena (1) temperature, (2) moisture, and (3) oxygen

content [10, 38]. The later two consist of water and oxygen contamination of the oil

inside the transformer and can be controlled through “oil preservation systems” and

thus are not considered in the analysis. The method described in [10, 38] is used to

calculate the transformer loss-of-life.

The transformer hot-spot temperature (T̃ ◦ C) is used to calculated the aging ac-

celeration factor θu. The aging acceleration factor is used to translate the transformer

temperature to insulation degradation. The formula for calculating θu at time u is as

follows:

θu = exp{
B

383
−

B

(T̃u + 273)
}, (4.1)
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where, B is the aging rate constant in Kelvins [10]. 273 is added to T̃u to convert it to

Kelvins[K], and 383K is the boiling point of water [10]. θu is further used in obtaining

the equivalent life EL of the transformer. The equivalent life is percieved as the loss-

of-life of the transformer. For a typical day, the equivalent life is the summation of

the hourly aging acceleration factor.

EL =
U∑

u=1

(θu ∗∆tu) (4.2)

where, ∆tu is 1 hour and U is 24. The loss-of-life, PL[%], is a function of the equivalent

life, EL, and the normal insulation life, NL [10,38].The formulation of the loss of life,

PL, is as follows:

PL =
EL ∗ 100

NL

, (4.3)

The loss-of-life calculation variables EL and θu are computed for each hour of the

simulated day based on the simulated hot-spot temperature T̃u in that hour (the

maximum simulated transformer winding temperature for a given hour). The loss-of-

life constants NL and B are selected based on the values used in [10,38].

Using the described method, the loss-of-life is computed for each simulated day

for both scenarios, without EV charging (base case) and with EV charging. The

simulation is performed for a whole year. Figures 4.7 and 4.8 show the daily loss-

of-life distribution for an entire year. By the law of large number, the mean of the

results will be the mathematical expectation. For the EV case, the mean loss of life

was 7.9237E-05 and for the base case the mean loss of life was 7.06938E-05. Therefore,

by having one EV in the system the loss of life of transformers increase by 12.08%

4.4.

[1− (
7.9237E − 05

7.06938E − 05
) ∗ 100] = 12.08%, (4.4)
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Figure 4.7.: EV loss-of-life histogram-(PL)

Figure 4.8.: Base Case loss-of-life histogram-(PL)
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5. CONCLUSIONS AND FUTURE WORK

Electric vehicle technology is on the cusp of widespread acceptance. These electric

vehicles draw energy from the power grid. As a result, utility companies have an

opportunity to increase their revenue by selling more energy. However, utility com-

panies must ensure that the current distribution systems are able to serve the new

increased demand. This thesis has elaborated on a detailed modeling mechanism to

serve this purpose.

Electric vehicle charging may be controllable (using advanced control mechanisms)

or uncontrollable. In either case, there would be an apparent increase in load. As

identified in the study, there are three constituent systems: transportation system,

residential electricity demand and distribution system (transformers). Earlier studies

have concentrated on one or two of the constituent systems [3–9]. To the author’s

knowledge, no other study had done a detailed modeling of each of the constituent

systems. In addition, this study is very practical; the data for traffic analysis is

available with most metropolitan transport planning organizations. Other data are

obtained from government websites. The work also provides a method which used

available data to identify zones that are more likely to be affected first. Utility

companies could initially concentrate on the more affluent zones.

The focus of this study has been the relative increase in loss-of-life of transformers

due to an electric vehicle. For the given zone, the results show that the increase in

loss of life to be around 12%. This value is very similar to the result observed in AP

Meliopolous et al. [10]. If the utility company had installed a distribution transformer

expecting it to last for 10 years, the life would be reduced to 8.8 years with one electric

vehicle in the households connected to that distribution transformer. Charging more

electric vehicles would substantially reduce the life of the distribution transformers.
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The utility companies could use this study to evaluate the need to upgrade their

distribution transformers. Utility companies can either decide to restrict the number

of electric vehicles charged from a distribution transformer or install transformer with

higher kVA ratings.

The work presented in this thesis is an initial attempt to model the interactions

in the electricity system. It has several possible and promising extensions, which

could be effectively applied to real world analysis. Firstly, certain analyses can be

performed to obtain definite conclusions without modifications to the current model.

The residential demand simulation can be run for a long period of time (for example,

5 years or more) to obtain the electric vehicle energy sales. This can be used to

calculate the rate of return on tranformer investments. As an extension, different

electricity pricing schemes (flat-rate, time-of-use etc.) for electric vehicle charging

could be analysed. Similarly, the impact on transformers due to different charging

schemes (“instant charging”, “as late as possible (ALAP) charging” etc. [9]) could be

studied.

Secondly, detailed distribution system studies could be performed. Some of the

distribution system impacts that could be studied are: thermal loading, voltage reg-

ulation, unbalanced load and losses [8]. Most devices in the distribution system are

designed for a particular rating. It is usually designed to withstand short periods of

heavy loading (emergency rating). But, prolonged and frequent heavy loading could

potentially damage the devices. Thermal loading analysis can be used to measure

the strain on the devices and thereby aid in choosing the correct rating of the de-

vices. In a distribution network, the energy consuming devices are expected to be

using power at a constant voltage (120V or 240V). This is not the case always. Most

devices consume power at varying voltage levels. Because EVs are a major load, the

varying voltage levels of EV power consumption could affect the system stability. De-

tailed analysis could help in distribution system voltage regulation. The three-phase

electricity system is built on the premise that the load at each of the phases will be

the same. If all the EVs in a distribution system are connected to the same phase,
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there would serious imbalance in the system. The effects of such an occurance can

be analysed. In electricity networks, losses (ohmic) are propotional to square of cur-

rent flow. For a constant voltage, higher power rating would require more current

flow, and thereby more losses. Since EVs have high power rating, having it in the

distribution system would increase the losses. It would be very beneficial to analyse

the increase in losses. These analyses would require a thorough understanding of the

GridLAB-DTM power-system module.

Finally, the model could be expanded to a larger area. For example, the distribu-

tion transformer study could be expanded to include the entire distribution network.

Sub-station level analysis would be very interesting as large-scale distributed genera-

tors are connected to the sub-stations. Also, the potential of using distributed gener-

ation to relieve localized effects on tranformers, sub-station, etc. could be studied. In

electricity markets, the possibilities and opportunities for change and improvement

are great. Detailed modeling and analysis would help in building a stronger and

resilient electricity system.
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