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Abstract

This paper derives the general equilibrium effects of rational inattention (or RI; Sims 2003,

2010) in a model of incomplete income insurance (Huggett 1993, Wang 2003). We show that,

under the assumption of CARA utility with Gaussian shocks, the Permanent Income Hypothesis

(PIH) arises in equilibrium, as in models with full information-rational expectations, due to a bal-

ancing of precautionary savings and impatience. We then explore how RI affects the equilibrium

joint dynamics of consumption, income and wealth, and find that elastic attention can make the

model fit the data better. We finally show that the welfare costs of incomplete information are

even smaller due to general equilibrium adjustments in interest rates.
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1. Introduction

In intertemporal consumption-savings problems, households save today for three reasons: (i) they

anticipate future declines in income, (ii) they face uninsurable risk that generates precautionary

savings, and (iii) they are relatively patient compared to the interest rate. When only motive (i) is

operative then one obtains the “permanent income hypothesis (PIH)” of Friedman (1957), where

consumption is solely determined by permanent income and follows a random walk. The PIH has

some implications that are strongly inconsistent with the data. Two implications in particular are

discussed in Campbell and Deaton (1989), the excess sensitivity and excess smoothness puzzles.

Excess sensitivity occurs if consumption responds to predictable changes in income; under the PIH

those changes are part of permanent income and therefore have already had their effect on con-

sumption. Excess smoothness occurs if consumption responds less than one for one to permanent

changes in income (or equivalently less than one for one to changes in permanent income). The two

puzzles are actually manifestations of the same underlying economic forces, as shown in Campbell

and Deaton (1989), and their absence is profoundly rejected. Unfortunately, uninsurable income

risk seems to be pervasive in microeconomic data, and general equilibrium models with uninsur-

able risk tend to predict impatience of households (that is, they face “low interest rates”), so that the

basic PIH is violated.

Wang (2003), using a simple model with CARA utility and risk free assets in zero net supply,

shows that the PIH reemerges in general equilibrium – when decision rules are linear, the equilib-

rium interest rate exactly balances the forces of precautionary saving and dissaving due to impa-

tience, even in the presence of uninsurable risk. Due to the linearity of consumption as a function of

individual permanent income, Wang (2003) is able to analytically characterize the forces that oper-

ate in general equilibrium and show they cancel out, under some mild assumptions about the labor

income process.

Luo (2008) and Luo and Young (2010) introduce rational inattention into the basic partial equi-

librium PIH environment; RI implies that agents process signals slowly and therefore appear to

respond sluggishly to innovations in permanent income. This sluggish response appears to deliver

changes in consumption in response to anticipated income changes, because econometricians actu-

ally observe more than the agents do, and as a result also delivers smaller responses to permanent

income changes.

Our goal in this paper is to explore the general equilibrium implications of rational inattention in
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a model with precautionary savings and ask the same question from Wang (2003) – namely, does the

PIH reemerge in general equilibrium – in the presence of rational inattention. We study economies

with constant absolute risk aversion (CARA) preferences, as they simultaneously generate precau-

tionary savings and linear consumption rules, and characterize the forces that act on the general

equilibrium interest rate. We find that the PIH does describe equilibrium consumption behavior

in general equilibrium, with the appropriate substitution of actual permanent income by perceived

permanent income. Thus, the delicate canceling of precautionary and impatience forces found by

Wang (2003) carries over unmodified to models with incomplete information about the state.1

One key result in this paper is that there exists general equilibrium interest rates clearing the

asset market and they are significantly affected by the degree of RI. After obtaining the explicit ex-

pression for consumption dynamics, we examine how RI affects the stochastic properties of the joint

dynamics of consumption growth to income growth in both the fixed capacity and elastic capacity

cases. Specifically, we find that the effect of RI on consumption dynamics is attenuated by general

equilibrium adjustment in the interest rate – as processing capacity declines the interest rate also

declines, leading to lower consumption volatility. The implication is that the costs of incomplete in-

formation have likely been overestimated in the literature, despite being very tiny to start.2 Finally,

we compare rational inattention with habit formation, and show that although both hypotheses lead

to slow adjustment in consumption, they have opposte effects on the equilibrium interest rate and

the relative volatility of consumption growth to income growth.

This paper is organized as follows. Section 2 constructs a precautionary saving model with a

continuum of inattentive consumers who have the CARA utility and face uninsurable labor income.

Section 3 solves optimal consumption-saving rules under rational inattention and establishes the

general equilibrium of this economy. Section 4 examines how RI affects the interest rate and the

joint dynamics of consumption, income, and wealth quantitatively. Section 5 concludes.

1Luo and Young (2014) document a observational equivalence between rational inattention and signal extraction in
linear-quadratic-Gaussian models.

2For the welfare losses due to imperfect information about current income or permanent income calculated in the
partial equilibrium linear-quadratic (LQ) permanent income models, see Pischke (1995), Luo and Young (2010), and Luo,
Nie, and Young (2014). Maćkowiak and Wiederholt (2013) also find tiny welfare losses due to RI over business cycles in
a general equilibrium model.
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2. A Caballero-Huggett-Wang Economy with Rational Inattention

2.1. A Full-information Rational Expectations Model with Precautionary Savings

Following Caballero (1990) and Wang (2003), we formulate a full-information rational expectations

(FI-RE) model with precautionary savings as follows:

max
{ct}

U(c) = E0

[
∞

∑
t=0

(
1

1 + ρ

)t

u(ct)

]
, (1)

subject to the flow budget constraint

at+1 = (1 + r) at + yt − ct, (2)

where u(ct) = − exp (−αc) /α is a constant-absolute-risk-aversion utility with α > 0, ρ > 0 is

the agent’s subjective discount rate, r is a constant rate of interest, and labor income, yt, follows a

stationary AR(1) process with Gaussian innovations:

yt = φ0 + φ1yt−1 + wt, t ≥ 1, |φ1| < 1, (3)

where wt ∼ N
(
0, σ2

)
, φ0 = (1 − φ1) y, y is the mean of yt, and the initial levels of labor income y0

and asset a0 are given.3 Solving (1) subject to (2) and (3) yields the following optimal consumption

plan:

ct = r

{
at + ht +

1

αr2

[
ln

(
1 + ρ

1 + r

)
− ln Et [exp (−rαφwt+1)]

]}
, (4)

where

ht ≡
1

1 + r
Et

[
∞

∑
j=0

(
1

1 + r

)j

yt+j

]
, (5)

is human wealth defined as the discounted expected present value of current and future labor in-

come and is equal ht = φ (yt + φ0/r) after substituting (3) into (5), and φ = 1/ (1 + r − φ1).
4 This

consumption function is the same as that obtained in Wang (2003). In the last two terms in (4),

ln
(

1+ρ
1+r

)
/rα measures the relative importance of impatience and the interest rate in determining

current consumption, and ln Et [exp (−rαφwt+1)] /rα measures the amount of precautionary sav-

3It is worth noting that assuming that the individual income shock includes two components, one is permanent and
the other is transitory, does not change the main results in this paper. Here we follow Wang (2003) to adopt specification
(3). The detailed derivation of the model with the two-income shock specification is available from the corresponding
author by request. For the empirical studies on the income specification, see Attanasio and Pavoni (2007).

4See Appendix 6.1 for the derivation.
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ings determined by the interaction of risk aversion and income uncertainty.

In order to facilitate the introduction of rational inattention we follow Luo (2008) and Luo and

Young (2010) and reduce the multivariate model to a univariate model with iid innovations to per-

manent income. Letting permanent income, st = at + ht, be defined as a new state variable, we can

reformulate the PIH model as

v (st) = max
ct

{
u (ct) +

1

1 + ρ
Et [v (st+1)]

}
,

subject to

st+1 = (1 + r) st − ct + ζt+1, (6)

where the time (t + 1) innovation to permanent income can be written as

ζt+1 ≡ 1

1 + r

∞

∑
j=t+1

(
1

1 + r

)j−(t+1)

(Et+1 − Et)
[
yj

]
, (7)

which can be reduced to ζt+1 = φwt+1 when we use the income specification, (3), where v (st) is the

consumer’s value function under FI-RE.5

2.2. Incorporating Rational Inattention

In this section, we follow Sims (2003) and incorporate rational inattention (RI) due to finite information-

processing capacity into the above permanent income model with the CARA-Gaussian specifica-

tion. Under RI, consumers have only finite Shannon channel capacity to observe the state of the

world. Specifically, we use the concept of entropy from information theory to characterize the un-

certainty about a random variable; the reduction in entropy is thus a natural measure of information

flow.6 With finite capacity κ ∈ (0, ∞), a random variable {st} following a continuous distribution

cannot be observed without error and thus the information set at time t + 1, denoted It+1, is gen-

erated by the entire history of noisy signals
{

s∗j
}t+1

j=0
. Following the literature, we assume the noisy

signal takes the additive form

s∗t+1 = st+1 + ξt+1,

5See Appendix 6.1 for the derivation.
6Formally, entropy is defined as the expectation of the negative of the (natural) log of the density function,

−E [ln ( f (s))]. For example, the entropy of a discrete distribution with equal weight on two points is simply
E [ln2 ( f (s))] = −0.5 ln (0.5)− 0.5 ln (0.5) = 0.69, and the unit of information contained in this distribution is 0.69 “nats”.
(For alternative bases for the logarithm, the unit of information differs; with log base 2 the unit of information is the ’bit’
and with base 10 it is a ’dit’ or a ’hartley.’) In this case, an agent can remove all uncertainty about s if the capacity devoted
to monitoring s is κ = 0.69 nats.
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where ξt+1 is the endogenous noise caused by finite capacity.7 We further assume that ξt+1 is an iid

idiosyncratic shock and is independent of the fundamental shocks hitting the economy. The reason

that the RI-induced noise is idiosyncratic is that the endogenous noise arises from the consumer’s

own internal information-processing constraint. Agents with finite capacity will choose a new sig-

nal s∗t+1 ∈ I t+1 =
{

s∗1 , s∗2 , · · ·, s∗t+1

}
that reduces the uncertainty about the variable st+1 as much as

possible. Formally, this idea can be described by the information constraint

H (st+1|It)−H (st+1|It+1)≤ κ, (8)

where κ is the investor’s information channel capacity, H (st+1| I t) denotes the entropy of the state

prior to observing the new signal at t + 1, and H (st+1| I t+1) is the entropy after observing the new

signal. κ imposes an upper bound on the amount of information flow – that is, the change in the

entropy – that can be transmitted in any given period. Finally, following the literature, we suppose

that the prior distribution of st+1 is Gaussian.

Although we adopt the CARA-Gaussian setting in our model, we will assume the loss function

due to imperfect-state-observation is still quadratic. Using a quadratic loss function, Sims (2003)

shows that the true state under RI also follows a normal distribution st|It ∼ N (E [st|It] , Σt), where

Σt = Et

[
(st − ŝt)

2
]
. In addition, given that the noisy signal takes the additive form s∗t+1 = st+1 +

ξt+1, the noise ξt+1 will also be Gaussian. In this case, (8) reduces to

ln (|Ψt|)− ln (|Σt+1|) ≤ 2κ, (9)

where Σt+1 = vart+1 (st+1) and Ψt = vart (st+1) = (1 + r)2
Σt + vart (ζt+1) are the posterior and

prior variance of the state variable, st+1, respectively. In our univariate model, (9) fully determines

the value of the steady state conditional variance Σ:

Σ =
vart (ζt+1)

exp (2κ)− (1 + r)2
, (10)

which means that Σ is entirely determined by the variance of the exogenous shock (vart (ζt+1)) and

finite capacity (κ).8 Following the steps outlined in Luo and Young (2013), we can compute the

7For other types of imperfect information about state variables, see Pischke (1995) and Wang (2004). Pischke (1995)
assumes that consumers ignore the aggregate income component, and Wang (2004) assume that consumers cannot dis-
tinguish two individual components in the income process.

8Note that here we need to impose the restriction exp (2κ) − (1 + r)2
> 0. If this condition fails, the state is not

stabilizable and the unconditional variance diverges.
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Kalman gain in the steady state θ as

θ = 1 − 1/ exp (2κ) ; (11)

θ measures the fraction of uncertainty removed by a new signal in each period.9

The evolution of the estimated state ŝt is governed by the Kalman filtering equation

ŝt+1 = (1 − θ) ((1 + r) ŝt − ct) + θs∗t+1. (12)

Combining (6) with (12) yields

ŝt+1 = (1 + r) ŝt − ct + ζ̂t+1, (13)

where

ζ̂t+1 = θ (1 + r) (st − ŝt) + θ (ζt+1 + ξt+1) (14)

is the innovation to ŝt+1 and is independent of all the other terms on the RHS of (13). ζ̂t+1 is an

MA(∞) process with Et

[
ζ̂t+1

]
= 0 and

var
(

ζ̂t+1

)
= Γ (θ, r)ω2

ζ ,

where Γ (θ, r) = θ

1−(1−θ)(1+r)2 > 1 for θ < 1, and

st − ŝt =
(1 − θ) ζt

1 − (1 − θ) (1 + r) · L
− θξt

1 − (1 − θ) (1 + r) · L
(15)

is the estimation error with Et [st − ŝt] = 0 and var (st − ŝt) =
1−θ

1−(1−θ)(1+r)2 ω2
ζ .

3. General Equilibrium under RI

3.1. Optimal Consumption and Savings functions

Following the standard procedure in the literature, the consumption function and the value function

under RI can be obtained by solving the following stochastic Bellman equation:

v̂ (ŝt) = max
ct

{
−1

α
exp (−αct) +

1

1 + ρ
Et [v̂ (ŝt+1)]

}
, (16)

9One could instead model RI as having a fixed marginal cost of acquiring channel capacity; as discussed in Luo and
Young (2014) the two formulations are equivalent for the questions at hand here. See Section 3.3 for a detailed discussion
on this case.
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subject to (13)-(15). The following proposition summarizes the main results from the above precautionary-

savings model with RI:

Proposition 1. For a given Kalman gain, θ, the value function is

v̂ (ŝt) = − 1

rα
exp

(
−rα

{
ŝt −

1

rα
ln (1 + r) +

1

r2α

[
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−rαζ̂t+1

)]]})
, (17)

the consumption function is

c∗t = r

{
ŝt +

1

αr2

[
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−rαζ̂t+1

)]]}
, (18)

and the saving function is

d∗t = (1 − φ1) φ (yt − y) + r (st − ŝt) +
1

rα

[
ln Et

[
exp

(
−rαζ̂t+1

)]
− Ψ (r)

]
, (19)

where st − ŝt is an MA(∞) estimation error process given in (15) and Ψ (r) = ln
(

1+ρ
1+r

)
.

Proof. See Appendix 6.1.

Comparing (4) with (18), it is clear that the two consumption functions are identical except that

we replace st with ŝt and ζt+1 (≡ φwt+1) with ζ̂t+1, respectively. First, given that

ln Et [exp (−rαζt+1)] =
1

2
(rα)2 ω2

ζ ,

ln Et

[
exp

(
−rαζ̂t+1

)]
=

1

2
Γ (θ, r) (rα)2 ω2

ζ ,

it is straightforward to show that the precautionary saving premium due to limited attention is

Pri ≡
1

αr
ln Et

[
exp

(
−rαζ̂t+1

)
− exp (−rαζt+1)

]
=

1

2
(Γ (θ, r)− 1) rαω2

ζ , (20)

which is clearly decreasing with the degree of attention (θ), and is increasing with the coefficient of

absolute risk aversion (α) and the persistence and volatility of the income shock (φ and σ) for any

given θ. In other words, RI can amplify the impact of the interaction of risk aversion and income

uncertainty on increasing the amount of precautionary savings.
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To further explore the precautionary savings premium in (20), we isolate the effects of RI on

individual consumption and saving by rewriting (18) as

c∗t = rŝt +
1

rα



Ψ (r)−


 ln Et [exp (−rαθ (1 + r) (st − ŝt))] +

1
2

(
rαθωζ

)2
+

1
2 (1 − θ) Γ (θ, r)

(
rαωζ

)2





 , (21)

where Ψ (r) = ln
(

1+ρ
1+r

)
measures the relative importance of impatience to the interest rate in deter-

mining optimal consumption (it is greater than 0 if ρ > r),

1

αr
ln Et [exp (−αrθ (1 + r) (st − ŝt))] = rαθ (1 − θ) Γ (θ, r) (1 + r)2 ω2

ζ

is the precautionary savings premium due to the time t estimation error,
(
rαθωζ

)2
/2 is the precau-

tionary savings premium driven by the exogenous fundamental income shocks {wt}, and (1 − θ) Γ (θ)
(
rαωζ

)2
/2

captures the precautionary savings premium driven by the endogenous noise shocks, {ξt}.10 Note

that when θ converges to 1, the consumption function with RI, (18), reduces to that of the Wang

(2003) model, (4). From (18), for finite capacity (κ < ∞ or θ ∈ (0, 1)), the precautionary saving pre-

mium due to fundamental shocks is lower than that in the full-information case, i.e.,
(
rαθωζ

)2
/2 <

(
rαωζ

)2
/2 because of the incomplete adjustment of consumption to the fundamental shock, while

we have two new positive terms that increase the total savings more than the absolute value of

the reduced savings: (i) the premium due to the estimation error and (ii) the premium due to the

RI-induced endogenous noise.

Note that given the time t available information, the conditional mean of (19) can be written as:11

d̃t = ft +

(
1

2
rαΓ (θ, r)ω2

ζ −
1

rα
Ψ (r)

)
, (22)

where the first term ft = (1 − φ1) φ (yt − y) captures the consumer’s demand for savings “for a

rainy day”, and the second term, 1
2 rαΓ (θ, r)ω2

ζ , is the certainty equivalent of the innovation to the

perceived state, ŝt.

3.2. Existence of General Equilibrium

As in Wang (2003), we assume that the economy is populated by a continuum of ex ante identical,

but ex post heterogeneous agents, of total mass normalized to one, with each agent solving the

10This result is derived by using Equation (15) and the iid property of the processes
{

ζ̂t

}
, {ζt}, and {ξt}.

11Note that here we use the fact that Et [st − ŝt] = 0.

8



optimal consumption and savings problem with RI specified in (16). Similar to Huggett (1993), the

risk-free asset in our model is a pure-consumption loan and is in zero net supply. The initial cross-

sectional distribution of permanent income is assumed to be its stationary distribution Φ (·). By the

law of large numbers in Sun (2006), provided that the spaces of agents and the probability space

are constructed appropriately, aggregate permanent income and the cross-sectional distribution of

permanent income Φ (·) are constant over time.

Proposition 2. The total savings demand “for a rainy day” in the precautionary savings model with RI

equals zero for any positive interest rate. That is, Ft (r) =
´

yt
ft (r) dΦ (yt) = 0, for r > 0.

Proof. The proof uses the LLN and is the same as that in Wang (2003).

Proposition 2 states that the total savings “for a rainy day” is zero, at any positive interest rate.

Therefore, from (20), for r > 0, the expression for total savings under RI in the economy at time t is

D (θ, r) ≡ 1

rα
(Π (θ, r)− Ψ (r)) =

1

rα

[
1

2
(rα)2

Γ (θ, r)ω2
ζ − Ψ (r)

]
, (23)

where Π (θ, r) = 1
2 (rα)2

Γ (θ, r)ω2
ζ measures the amount of precautionary savings, and Ψ (r) cap-

tures the dissaving effects of impatience. Given (23), an equilibrium under RI is defined by an

interest rate r∗ satisfying

D (θ, r∗) = 0. (24)

The following proposition shows the existence of the equilibrium and the PIH holds in the RI gen-

eral equilibrium:

Proposition 3. There exists at least one equilibrium with an interest rate r∗ ∈ (0, ρ) in the precautionary-

savings model with RI. In any such equilibrium, each agent’s consumption is described by the PIH, in that

c∗t = r∗ ŝt, (25)

where ŝt = E [st|It] is the perceived value of permanent income. Furthermore, in this equilibrium, the

evolution equations of wealth and consumption are

∆a∗t+1 =
1 − φ1

1 + r∗ − φ1
(yt − y) + r∗ (st − ŝt) , (26)

∆c∗t+1 = r∗ ζ̂t+1, (27)

9



respectively, where ζ̂t+1 is specified in (14) with Et

[
ζ̂t+1

]
= 0, var

(
ζ̂t+1

)
= Γ (θ, r∗)ω2

ζ , and Γ (θ, r∗) =

θ

1−(1−θ)(1+r∗)2 .

Proof. If r > ρ, the two terms, Π (θ, r) and Ψ (r), in the expression for total savings D (θ, r∗), are

positive, which contradicts the equilibrium condition, D (θ, r∗) = 0. Since Π (θ, r)− Ψ (r) < 0 (> 0)

when r = 0 (r = ρ), the continuity of the expression for total savings implies that there exists at

least one interest rate r∗ ∈ (0, ρ) such that D (θ, r∗) = 0. From (18), we can obtain the individual’s

optimal consumption rule under RI in general equilibrium as c∗t = r∗ ŝt. Substituting (25) into (2)

yields (26). Using (13) and (25), we can obtain (27).

The intuition behind Proposition 3 is similar to that in Wang (2003). With an individual’s con-

stant total precautionary savings demand Π (θ, r), for any r > 0, the equilibrium interest rate r∗

must be at a level with the property that individual’s dissavings demand due to impatience is ex-

actly balanced by their total precautionary-savings demand, Π (θ, r∗) = Ψ (r∗). Figure 1 shows that

the aggregate saving function is increasing with the interest rate, and there exists a unique interest

rate r∗ for every given θ such that D (θ, r∗) = 0. Here we choose the parameter values as follows:

α = 2.5, φ1 = 0.88, σ = 0.29, and ρ = 0.04.12

Given (18) and (24), it is clear that even though the individual increases their total precautionary

savings for information frictions, the level of aggregate savings also equals zero. That is, RI does

not affect the aggregate wealth in the economy. In contrast, RI affects the equilibrium interest rate.

With lower Shannon channel capacity, the equilibrium interest rate is lower.

From the equilibrium condition,

1

2
(r∗α)2

Γ (θ, r∗)ω2
ζ − ln

(
1 + ρ

1 + r∗

)
= 0, (28)

it is straightforward to show that

dr∗

dθ
=

r∗ (2 + r∗)

θ
[
1 − (1 − θ) (1 + r∗)2

]





2(1−φ1)[1−(1−θ)(1+r∗)]+2r∗(1−θ)(1+r∗)
r∗(1+r∗−φ1)[1−(1−θ)(1+r∗)2]

+ 1

(1+r∗) ln( 1+ρ
1+r∗ )





−1

> 0, (29)

where 1 − (1 − θ) (1 + r∗)2
> 0 and ln

(
1+ρ
1+r∗

)
> 0. It is clear from this expression that r∗ is locally

12In Section 4.1, we will provide more details about how to estimate the income process using the U.S. data. The main
result here is robust to the choices of these parameter values.
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unique and decreasing in the degree of inattention 1 − θ. Figure 2 illustrates r∗ as a function of θ for

different values of α, and clearly shows that the general equilibrium interest rate is increasing with

the degree of attention, θ.13 The first row of Table 1 reports the general equilibrium interest rates

for different values of θ.14 We can see from the table that r∗ decreases as the degree of inattention

increases. For example, if θ is reduced from 1 to 0.2, r∗ is reduced from 2.95 percent to 2.77 percent.

One might ask what a reasonable value of θ is, and whether a drop from 1 to 0.2 is “large” in any

sense. Unfortunately, it is not straightforward to answer these questions, so we simply note that

0.2 is larger than the value needed to match portfolio holdings in Luo (2010) and is therefore not

obviously unreasonable.

3.3. Elastic Capacity

As argued in Sims (2010), instead of using fixed channel capacity to model finite information-

processing ability, one could assume that the marginal cost of information-processing (i.e., the

shadow price of information-processing capacity) is fixed. That is, the Lagrange multiplier on (9) is

constant. In the univariate case, the objective of the agent with finite capacity in the filtering prob-

lem is to minimize the discounted expected mean square error (MSE), Et

[
∑

∞
t=0 βt (st − s∗t )

2
]
, subject

to the information-processing constraint, or

min
{Σt}

{
∞

∑
t=0

βt

[
Σt + λ ln

(
R2Σt−1 + ω2

ζ

Σt

)]}
,

where Σt is the conditional variance at t, λ is the Lagrange multiplier corresponding to (9). Solving

this problem yields the optimal steady state conditional variance:

Σ =
R2 (1 − β) λ̃ − 1 +

√[
R2 (1 − β) λ̃ − 1

]2
+ 4λ̃R2

2R2
ω2

ζ , (30)

where λ̃ = λ/ω2
ζ is the normalized shadow price of information-processing capacity. It is straight-

forward to show that as λ goes to 0, Σ = 0; and as λ goes to ∞, Σ = ∞. Note that ∂ ln Σ

∂ ln ω2
ζ

< 1 if we

adopt the assumption that λ is fixed, while ∂ ln Σ

∂ ln ω2
ζ

= 1 in the fixed κ case. Comparing (30) with (10),

it is clear that the two RI modeling strategies are observationally equivalent in the sense that they

13Here we use the same parameter values as above. For different values of σ and φ1, we have the similar pattern of the
equilibrium interest rate as in the benchmark case.

14Here we also set γ = 2.5, φ1 = 0.88, σ = 0.29, and ρ = 0.04.
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lead to the same conditional variance if the following equality holds:

κ
(

R, λ̃
)
= ln R +

1

2
ln


1 +

2

R2 (1 − β) λ̃ − 1 +

√[
R2 (1 − β) λ̃ − 1

]2
+ 4λ̃R2


 . (31)

In this case, the Kalman gain is

θ
(

R, λ̃
)
= 1 − 1

R





1 +
2

R2 (1 − β) λ̃ − 1 +

√[
R2 (1 − β) λ̃ − 1

]2
+ 4λ̃R2





−1

. (32)

It is obvious that κ converges to its lower limit κ = ln (R) ≈ R − 1 as λ goes to ∞; and it converges

to ∞ as λ goes to 0. In other words, using this RI modeling strategy, the consumer is allowed to

adjust the optimal level of capacity in such a way that the marginal cost of information-processing

for the problem at hand remains constant. Note that this result is consistent with the concept of

‘elastic’ capacity proposed in Kahneman (1973).

Given this relationship between λ and θ (or κ), in the following analysis we just use the value

of θ to measure the degree of attention. It is worth noting that although the above two RI mod-

eling strategies, inelastic and elastic capacity, are observationally equivalent in the “static” sense,

they have distinct implications for the model’s propagation mechanism if the economy is experi-

encing regime switching (e.g., before and after the great moderation). With inelastic capacity, the

propagation mechanism governed by the Kalman gain is fixed regardless of changes in fundamen-

tal uncertainty, while with elastic capacity the propagation mechanism will change in response to

changes in fundamental uncertainty.

The key difference between the elastic capacity case and the fixed capacity case is that κ and θ

now depend on both the equilibrium interest rate and labor income uncertainty for a given λ. The

equilibrium interest rate is now determined implicitly by the following function:

D
(

θ
(

r∗, λ̃
)

, r∗
)
≡ 1

r∗α

[
1

2
(r∗α)2

Γ
(

θ
(

r∗, λ̃
)

, r∗
)

ω2
ζ − ln

(
1 + ρ

1 + r∗

)]
= 0. (33)

Figure 3 illustrates how r∗ varies with labor income uncertainty, σ, for fixed information-processing

cost, λ. It clearly shows that the aggregate saving function is increasing with the interest rate and

the general equilibrium interest rate is decreasing with labor income uncertainty. We can see from

12



Table 2 that when the economy becomes more volatile (i.e., larger σ), the Kalman gain (θ) increases

while the equilibrium interest rate (r∗) decreases. This result is different from that obtained in the

fixed capacity case in which θ and r∗ move in the same direction. (See Table 1.) The main reason

for this result is that income uncertainty affects the equilibrium interest rate via two channel: (i)

the direct channel which leads to higher aggregate savings (i.e., the ω2
ζ term in (33)) and (ii) the

indirect channel which leads to lower aggregate savings (i.e., the θ
(

r∗, λ̃
)

term in (33)), and the

direct channel dominates.

3.4. Comparison with Habit Formation

Habit formation (HF) has been widely used in economic models to study the consumption and sav-

ing behavior and asset pricing. It can be modelled directly as a structure of preferences in which

psychological factors make consumers prefer to gradual adjustment in consumption, thereby con-

sumption volatility is more painful than it would be in the absence of habit persistence. As shown

in Luo (2008) within a partial equilibrium PIH framework, the key difference between HF and RI is

that individual consumption under RI reacts not only to income shocks but also to its own endoge-

nous noises induced by finite capacity. In other words, although the two models lead to the same

response of consumption to income shocks, consumption growth under RI is more volatile than that

under habit formation at the individual level because the noise terms due to RI also contribute to

the relative volatility of consumption. In contrast, the effects of HF and RI on aggregate consump-

tion could be similar because aggregating across all individuals would weaken or even eliminate

the impacts of the endogenous noises on consumption growth.15

In this section, we compare the different implications of HF and RI in the general equilibrium

framework. Following Alessie and Lusardi (1997), we introduce HF into the FI-RE model specified

in Section 2.1 by assuming that the utility function takes the following form:

u (ct, ct−1) = −1

α
exp (−α (ct − γct−1)) . (34)

Using the same solution method used in Section 2.1, we can solve for the consumption function

15Reis (2006) showed that infrequent adjustments due to inattentiveness also leads to gradual responses of aggregate
consumption to income shocks, which matches the empirical evidence. See Luo (2008) for a discussion on Sims’ rational
inattention hypothess and Reis’ inattentiveness hypothesis.
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under HF as follows:16

ct =
r (1 + r − γ)

1 + r
st +

γ

1 + r
ct−1 +

1

rα

(
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−αr (1 + r − γ)

1 + r
ζt+1

)])
. (35)

The corresponding saving function can thus be written as:

dt = (1 − φ1) φ (yt − y)+
r2γ

r + 1

ζt

1 − γ · L
− 1

α (1 − γ)

(
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
− rα (1 + r − γ)

1 + r
ζt+1

)])
.

Following the same definition of general equilibrium in our benchmark model, it is straightfor-

ward to show that there exists an equilibrium interest rate r∗ such that:

ln

(
1 + ρ

1 + r∗

)
− 1

2
(r∗α)2

Γ̃ (γ, r∗)ω2
ζ = 0, (36)

where Γ̃ (γ, r∗) =
(

1+r∗−γ
1+r∗

)2
< 1, and

dr∗

dγ
< 0. (37)

That is, the stronger the habit persistence, the higher the equilibrium interest rate.17 In summary, we

can conclude that although both RI and HF can lead to slow adjustments in consumption, they have

opposte impacts on the equilibrium interest rate.18 RI has the potential to reduce the equilibrium

interest rate, while HF has the potential to increase it. The main reason for this result is that RI intro-

duces endogenous noises into the economy which creates an additinal demand for precautionary

savings and drives down the equilibrium interest rate.

4. Quantitative Results

4.1. Empirical Evidence

In order to measure the relative consumption dispersion in the data, sd(∆c)
sd(∆y)

, we construct a panel

data set which contains both consumption and income at the household level. We also use this

panel to estimate the household income process. As panel data for consumption generally are not

available, we first describe how we construct a consumption panel based on the Panel Study of

16See Appendix 6.2 for the derivation.
17In a partial equilibrium model, Alessie and Lusardi (1997) show that the stronger the habit, the less impact of income

uncertainty on the precautionary saving term.
18It is worth noting that the mechanisms of RI and HF to generate slow adjustment are distinct. Under RI, slow

adjustment is due to finite information processing capacity. In contrast, slow adjustment is optimal under FI because
consumers are assumed to prefer to smooth not only consumption but also consumption growth.
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Income Dynamics (PSID) and the Consumer Expenditure Survey (CEX).

Following Blundell, Pistaferri, and Preston (2008), we define the household income as total

household income (including wage, financial, and transfer income of head, wife, and all others

in household) minus financial income (defined as the sum of annual dividend income, interest in-

come, rental income, trust fund income, and income from royalties for the head of the household

only) minus the tax liability of nonfinancial income. This tax liability is defined as the total tax

liability multiplied by the nonfinancial share of total income. Tax liabilities after 1992 are not re-

ported in the PSID and so we estimate them using the TAXSIM program from the National Bureau

of Economic Research. Our final household income measure can be expressed as:

income measure = (total HH income−financial income)− taxes× total HH income − financial income

total HH income
.

The PSID does not include enough consumption expenditure data to create full picture of house-

hold nondurable consumption. Such detailed expenditures are found, though, in the CEX from the

Bureau of Labor Statistics. But households in this study are only interviewed for four consecutive

quarters and thus do not form a panel. To create a panel of consumption to match the PSID income

measures, we use an estimated demand function for imputing nondurable consumption created by

Guvenen and Smith (2014). Using an IV regression, they estimate a demand function for nondurable

consumption that fits the detailed data in the CEX. The demand function uses demographic infor-

mation and food consumption which can be found in both the CEX and PSID. Thus, we use this

demand function of food consumption and demographic information (including age, family size,

inflation measures, race, and education) to estimate nondurable consumption for PSID households,

creating a consumption panel.

Our household sample selection closely follows that of Blundell et al. (2008) as well.19 We ex-

clude households in the PSID low-income and Latino samples. We exclude household incomes in

years of family composition change, divorce or remarriage, and female headship. We also exclude

incomes in years where the head or wife is under 30 or over 65, or is missing education, region,

or income responses. We also exclude household incomes where non-financial income is less than

$1000, where year-over-year income change is greater than $90, 000, and where year-over-year con-

sumption change is greater than $50, 000. Our final panel contains 7, 220 unique households with

19They create a new panel series of consumption that combines information from PSID and CEX, focusing on the period
when some of the largest changes in income inequality occurred. For other explanations for observed consumption and
income inequality, see Krueger and Perri (2006) and Attanasio and Pavoni (2012).
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54, 901 yearly income responses and 50, 422 imputed nondurable consumption values.20

With this constructed panel of household income and consumption, Figure 5 shows the relative

dispersion of consumption, defined as the ratio of the standard deviation of the consumption change

to the standard deviation of the income change between 1980 and 2000. The basic pattern confirms

but extends the findings in Blundell et al. (2008). Basically, the relative consumption dispersion

declines in the 1980s. Based on our theoretic model, we are able to quantify the contribution of

rational inattention to this decline.

In order to estimate the income process, we narrow the sample period to the years 1980 − 1996,

due to the PSID survey changing to a biennial schedule after 1996. To further restrict the sample

to exclude households with dramatic year-over-year income and consumption changes, we elimi-

nate household observations in years where either income or consumption has increased more than

200% or decreased more than 80% from the previous year. Following Floden and Lindé (2001),

we normalize household income measures as ratios of the mean for that year. We then exclude all

household values in years in which the income is less than 10% of the mean for that year or more

than ten times the mean. To eliminate possible heteroskedasticity in the income measures, we follow

Floden and Lindé (2001) to regress each on a series of demographic variables to remove variation

caused by differences in age and education. We next subtract these fitted values from each measure

to create a panel of income residuals. We then use this panel to estimate the household income

process as specified by equation (3) by running panel regressions on lagged income. The estimated

values of φ1, φ2, and σ are 0.0006, 0.88, and 0.29, respectively.

4.2. Empirical Implications for the Dynamics of Consumption, Wealth, and Income

Luo (2008) examines how RI affects consumption volatility in a partial equilibrium version of the

PIH model presented above. In general equilibrium, since RI affects the equilibrium interest rate

via interacting with the coefficient of absolute risk aversion and income uncertainty, it will have an

additional effect on consumption dynamics. Using (26) and (27), we can obtain the key stochastic

properties of the joint dynamics of individual consumption, income, and saving. The following

proposition summarizes the implications of RI for the relative volatility of consumption to income

as well as the relative volatility of financial wealth to income:

20There are more household incomes than imputed consumption values because food consumption - the main input
variable in Guvenen and Smith’s nondurable demand function - is not reported in the PSID for the years 1987 and 1988.
Dividing the total income responses by unique households yields an average of 7 − 8 years of responses per household.
These years are not necessarily consecutive as our sample selection procedure allows households to be excluded in certain
years but return to the sample if they later meet the criteria once again.
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Proposition 4. Under RI, the relative volatility of individual consumption growth to income growth is

µcy ≡ sd (∆c∗t )
sd (∆yt)

= φr∗
√

(1 + φ1) Γ (θ, r∗)
2

, (38)

and the relative volatility of financial wealth to income is

µay ≡ sd (∆a∗t )
sd (∆yt)

=
1√

2 (1 + r∗ − φ1)

√√√√1 − φ1 +
(r∗)2 (1 − θ) (1 + φ1)

1 − (1 + r∗)2 (1 − θ)
+

2r∗ (1 − θ)
(
1 − φ2

1

)

1 − φ1(1 − θ) (1 + r∗)
. (39)

Proof. See Online Appendix.

Expression (38) shows that RI has two opposing effects on consumption volatility. The first effect

is direct through its presence in the expression of Γ (θ, r∗), whereas the second effect is through

the general equilibrium interest rate (r∗) and is thus indirect. Using the expression of Γ (θ, r∗), it

is straightforward to show that the direct effect of RI is to increase consumption volatility. The

intuition is very simple: the presence of the RI-induced noise dominates the slow adjustment of

consumption in determining consumption volatility at the individual level. In contrast, the indirect

effect of RI will reduce consumption volatility because it reduces the general equilibrium interest

rate and ∂Γ (θ, r∗) /∂r∗ > 0. Following the literature of precautionary savings and the estimated

income process in the preceding subsection, we set ρ = 0.04, α = 2.5, σ = 0.29, and φ1 = 0.88.

The second to fourth rows of Table 1 reports how the interest rate and the relative volatility of

consumption and wealth to income vary with θ in general equilibrium. It is clear from the second

row of Table 1 that RI can significantly affect the equilibrium interest rate. For example, when θ

decreasese from 100% to 10%, r∗ decreases from 2.95% to 2.51%. From the third row of Table 1, the

relative volatility of consumption growth to income growth increases with the degree of inattention.

For example, when θ decreasese from 100% to 10%, µcy increases from 0.191 to 0.227. That is, the

direct effect of inattention via the Γ (θ, r∗) term dominates its indirect general equilibrium effect via

r∗. We can get the same conclusion by shutting down the general equilibrium (GE) channel, see the

corresponding partial equilibrium (PE) results reported in the same table. Comparing the GE and

PE results in Table 1, we can see the values of µcy are slightly lower in the GE case if the interest

rate is fixed as θ decreases. In other words, the general equilibrium effect of RI tends to reduce the

volatility of individual consumption in this case.21

21We cannot examine the stochastic properties of aggregate consumption dynamics because all idiosyncratic shocks
(income shocks and RI-induced noise shocks) cancel out after aggregating aross consumers.
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Another important implication of RI in general equilibrium is that RI leads to more skewed

wealth inequality measured by µay, the relative volatility of financial wealth to labor income. From

the fourth row of Table 1, we can see that when θ is reduced from 1 to 0.1, µay increases from 1.639

to 2.145. From (26), it is clear that the main driving force behind this result is the presence of the

estimation error, st − ŝt because ∂ var (st − ŝt) /∂θ < 0. Note that although ∂r∗/∂θ > 0, the esti-

mation error channel dominates the general equilibrium channel and raises the wealth inequality.

Therefore, RI might have the potential to increase the theoretical wealth inequality, which makes

the model fit the data better.22

Table 2 reports how elastic Kalman gain, the general equilibrium interest rate, and the relative

volatility of consumption and wealth to income for different values of σ. It is clear from the second

row of Table 2 that the Kalman gain increases with income volatility. For example, if λ = 50, θ is

almost doubled when σ increases from 0.2 to 0.4. From the third row of Table 2, we can see that

RI has significant effects on the equilibrium interest rate. For example, r∗ decreases from 3.184%

to 2.402% when σ increases from 0.2 to 0.4. It is worth noting that in the elastic capacity case an

increase in income volatility affects the equilibrium interest rate via two channels: (i) the direct

channel (the ω2
ζ term in (33)) and (ii) the indirect channel (the elastic capacity θ term in (33)). The

second panel of Table 2 reports the results when we shut down the indirect channel and assume that

θ = 1. Comparing the third and sixth rows of Table 2, we can see that the indirect channel is more

important when σ is relatively low. For example, given that σ = 0.1, r∗ decreases from 3.811% to

3.528% when we switch from the FI economy to the RI economy. Furthermore, the relative volatility

of consumption growth to income growth decreases with the value of σ in general equilibrium.

That is, consumption becomes smoother when income becomes more volatile. For example, in the

equilibrium RI economy, µcy decreases from 0.243 to 0.171 when σ is doubled from 0.2 to 0.4.23 This

theoretical result can be used to explain the empirical evidence documented in Blundell, Pistaferri,

and Preston (2008) that income and consumption inequality diverged over the sampling period.

To further explore this issue in our model, we do the following exercise. First, we divide the

full sample into two sub-samples (1980 − 1986 and 1987 − 1996; or 1980 − 1987 and 1988 − 1996)

22The literature has typically found that simple models based on standard CRRA preferences and on uninsurable
shocks to labor income cannot account for the observed U.S. wealth distribution. For example, Aiyagari (1994) finds
considerably less wealth concentration in a model with only idiosyncratic labor earnings uncertainty. However, it is
worth noting that given the CARA-Gaussian setting, the model here is not suitable to address the issue like why the top
1% or 5% rich families hold a large fraction of financial wealth in the U.S. economy.

23It is not surprising that µcy is greater in the equilibrium RI economy than in the equilibrium FI economy because the
value of θ is less than 1 in the RI case. This result is the same as that we obtained in the fixed capacity case and reported
in Table 1.
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and apply the same estimation procedure to re-estimate σ and φ2. (See Table 3 for the estimation

results.) They show that household income becomes more volatile in late periods than earlier ones.

For example, the standard deviation of y is 0.47 in the sub-sample (1980 − 1986), while it is 0.59 in

the sub-sample (1987− 1996). The average values of µcy are 0.2447 and 0.1919 in the first and second

sub-samples, respectively. In the elastic capacity case, using the estimated income processes in the

first sub-sample, we first use µcy = 0.245 to calibrate that λ = 365. Using this calibrated value of λ,

we find that µcy = 0.196, which matches the empirical counterpart almost perfectly.24

4.3. Welfare Losses due to RI in Equilibrium

We now turn to the welfare cost of RI – how much utility does a consumer lose if the actual con-

sumption path he chooses under RI deviates from the first-best FI-RE path in which θ = 1? To

answer this question, we follow Barro (2007) and Luo and Young (2010) to compute the marginal

welfare cost due to RI. The following proposition summarizes the main result:

Proposition 5. Given the initial value of the state, ŝ0, the marginal welfare cost (mwc) due to RI is given by

mwc (θ) ≡ (∂v (ŝ0) /∂θ) θ

(∂v (ŝ0) /∂ŝ0) ŝ0
=

θ

r∗2α

[
r∗α +

1

(1 + r∗) ŝ0

]
dr∗

dθ
, (40)

where dr∗/dθ is given in (29) and v̂ (ŝ0) = − exp (−r∗αŝ0 + ln (1 + r∗)) / (r∗α). The monthly dollar loss

due to deviating from the FI-RE path (θ = 1) can be written as

$ loss (θ < 1) ≡ 1

12
r∗mwc (1) (1 − θ) ŝ0. (41)

Proof. See Appendix 6.3. Since we are interested in the deviation from the FI-RE path, θ = 1 is

considered as the starting point. When the household deviates from 1 to θ, the percentage change in

just (θ − 1). ŝ0 is the given total wealth at the starting point. Finally, we need to convert the change

in the ŝ0 term to monthly rates by multiplying by r∗/12.

Expression (40) gives the proportionate reduction in the initial level of the perceived state (ŝ0)

that compensates, at the margin, for a percentage decrease in θ (i.e., stronger degree of RI) — in the

sense of preserving the same effect on welfare for a given ŝ0. To do quantitative welfare analysis

we need to know the value of ŝ0. First, we set ŷ0 ≡ E [yt] = 1, φ1 = 0.88, and the ratio of the

initial level of financial wealth (â0) to mean income (ŷ0) equal to 5.25 Second, given that ŝ0 =

24Choosing another sub-samples (1980 − 1987 and 1988 − 1996) does not change our main result.
25This number varies largely for different individuals, from 2 to 20. 5 is the average wealth/income ratio in the Survey
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â0 + ŷ0/ (1 + r∗ − φ1) + ŷ0/r∗ = [5 + 1/ (1 + r∗ − φ1) + 1/r∗] ŷ0, we can calculate the values of the

monthly dollar loss ($ loss) for different values of θ and the corresponding values of the general

equilibrium interest rate. The fifth row of Table 1 reports the welfare losses for different degrees of

inattention. For example, when θ = 0.4, i.e., when the household deviate from the FI-RE path by

60%, the monthly dollar loss is 6.040 × 10−4 × ŷ0, whereas it decreases to 3.025 × 10−4 × ŷ0 when

θ = 0.8.26

Another implication of the welfare losses due to RI reported in Table 1 is that there is a general

equilibrium effect of RI on the welfare loss. For example, when r is set to be 2.95% in the PE case,

the monthly dollar loss is larger than that obtained in the GE case for low values of θ. For example,

when θ = 10%, the welfare loss in the GE case is 3.57% lower than that in the PE case. Thus, the

partial equilibrium results might overstate the welfare losses. These two results thus provide some

evidence that it is reasonable for consumers to learn the true state slowly due to finite capacity

because the welfare loss from deviating from the FI-RE case is trivial. In other words, although

consumers could devote much more capacity to processing economic information and thus improve

their consumption decisions, it may be rational for them not to do so even when information costs

are negligible.

5. Concluding Remarks

In this paper we have studied how rational inattention affects the interest rate and the joint dy-

namics of consumption and income in a Huggett-type general equilibrium model with the CARA-

Gaussian specification. Specifically, we explored how RI reduces general equilibrium interest rates

via increasing individual precautionary savings and compared the general equilibrium results with

the partial equilibrium results. The key implication of the model is that the general equilibrium

effect reduces the welfare cost of imperfect information substantially; given that those costs are al-

ready estimated to be small, our work shows that it may easily be optimal for households to operate

under substantial uncertainty even if the costs of information are negligible. Finally, in Appendix

6.4, we show that the main results obtained in the benchmark model hold when we incorporate

durable expenditures into the model.

of Consumer Finances 2001. We find that changing the value of this ratio only has minor effects on the welfare implication.
26The main conclusion here is robust to changes in the values of α, σ, and φ1.
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6. Appendix

6.1. Deriving the Consumption and Saving Functions in the Huggett-type Model with RI

Given the consumption function (4), the original budget constraint (2) can be rewritten as

at+1 + φyt+1 +
φφ0

r
= (1 + r) at + yt − ct + φ (φ0 + φ1yt + wt+1) +

φφ0

r

= (1 + r)

(
at + φyt +

φφ0

r

)
− ct + ζt+1,

where the (t + 1)-innovation ζt+1 = φwt+1 is Gaussian innovation process with mean zero and

variance φ2σ2. Denote st = at + φyt + φφ0/r, the new budget constraint and the consumption

function can be rewritten as

st+1 = (1 + r) st − ct + ζt+1,

ct = r

{
st +

1

r2α

[
ln

(
1 + ρ

1 + r

)
− ln Et [exp (−rαφwt+1)]

]}
.

Under RI, the first-order condition with respective to c and the Envelope Theorem give us

u′(ct) =
1

1 + ρ
Et

[
v̂′ (ŝt+1)

]
,

v̂′ (ŝt) =
1 + r

1 + ρ
Et

[
v̂′ (ŝt+1)

]
,

which imply that

u′(ct) =
1

1 + r
v̂′ (ŝt) . (42)

Conjecture that the value function takes the form

v̂ (ŝt) = − 1

rα
exp [−rα (ŝt + b)] . (43)

Combining the exponential utility, (42) and (43), the candidate optimal consumption is given by

c∗t = r

[
ŝt + b +

1

rα
ln (1 + r)

]
. (44)

21



Plugging (44) into the utility function gives

u (c∗t ) = −1

α
exp (−αc∗t ) = −1

α
exp

(
−αr

[
ŝt + b +

1

rα
ln (1 + r)

])
=

1

1 + r
v̂ (ŝt) . (45)

Substituting (45) into the Bellman Equation (43) leads to

v̂ (ŝt) =
1 + r

1 + ρ
Et [v̂ (ŝt+1)] . (46)

Using (43) and (12), (46) implies that

c∗t = r

{
ŝt +

1

r2α

[
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−rαζ̂t+1

)]]}
.

Matching coefficients in (44) and (18) gives

b = − 1

rα
ln (1 + r) +

1

r2α

{
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−rαζ̂t+1

)]}
.

By utilizing (4), (13) and (18), we can derive the savings function as follows:

d∗t = rat + yt − c∗t

= rat + yt − ct + (ct − c∗t )

= rat + yt − r

[
at + φyt +

φφ0

r
+

1

r2α

(
ln

(
1 + ρ

1 + r

)
− ln Et [exp (−rαφwt+1)]

)]
+





r
[

at + φyt + φ
φ0

r + 1
r2α

(
ln
(

1+ρ
1+r

)
− ln Et [exp (−rαφwt+1)]

)]

−r
[
ŝt +

1
r2α

(
ln
(

1+ρ
1+r

)
− ln Et

[
exp

(
−rαζ̂t+1

)])]





= (1 − φ1) φ (yt − y) + r (st − ŝt) +
1

rα

[
ln Et

[
exp

(
−rαζ̂t+1

)]
− ln

(
1 + ρ

1 + r

)]
.

6.2. Solving the Habit Formation Model

As in Alessie and Lusardi (1997), we model habit formation in the Caballero model by assuming

that the period utility is defined on ct − γct−1. The optimization problem for this habit formation

model can be specified as follows:

max
{ct}

U(c) = E0

{
∞

∑
t=0

(
1

1 + ρ

)t [
−1

α
exp (−α (ct − γct−1))

]}
, (47)
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subject to the budget constrait

st+1 = (1 + r) st − ct + ζt+1, (48)

where st ≡ at + φ
(

yt +
φ0

r

)
and ζt+1 ≡ φwt+1 = wt+1/ (1 + r − φ1), and γ > 0 . The Bellman

equation for this problem can be written as:

v (st, ct−1) = max
ct

{
−1

α
exp (−α (ct − γct−1)) +

1

1 + ρ
Et [v (st+1, ct)]

}
, (49)

where v (s, c) is the value function.

To solve this Bellman equation, we first conjecture that: v (st, ct−1) = − exp (−a0 (st + a1ct−1 + a2)) /a0,

where a0, a1, and a2 are undetermined coefficients. The FOC w.r.t. ct is

exp (−α (ct − γct−1)) =
1 − a1

1 + ρ
Et [exp (−a0 (st+1 + a1ct + a2))] . (50)

The Envelope theorem are:

exp (−a0 (st + a1ct−1 + a2)) =
1 + r

1 + ρ
Et [exp (−a0 (st+1 + a1ct + a2))] , (51)

− a1

γ
exp (−a0 (st + a1ct−1 + a2)) = exp (−α (ct − γct−1)) . (52)

Combining (50) and (51) yields

ct =
a0

α
st +

( a0a1

α
+ γ

)
ct−1 −

1

α

(
ln

1 − a1

1 + r
− a0a2

)
. (53)

Combining (50) and (52) yields

ct =
1

a0 (1 − a1)

[
a0rst − a0a1ct−1 + ln

(
− a1 (1 + ρ)

γ (1 − a1)

)
− ln Et (exp (−a0ζt+1))

]
. (54)

Comparing the two consumption functions, (53) and (54), we can determine the coefficients in the

conjectured value function:

a0 =
αr (1 + r − γ)

1 + r
,

a1 = − γ

1 + r − γ
,

a2 =
1 + r

r (1 + r − γ)

{
1

α
ln

(
1

1 + r − γ

)
+

1

αr

[
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−αr (1 + r − γ)

1 + r
ζt+1

)]]}
.
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Substituting these coefficients into (53) yields the consumption function in the main text.

Substituting the state transition equation into the consumption function yields:

ct − rst = γ (ct−1 − rst−1)−
rγ

r + 1
ζt +

1

rα

(
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
−αr (1 + r − γ)

1 + r
ζt+1

)])
.

(55)

Combining (55) with dt ≡ rat + yt − ct, we can rewrite the individual saving function as follows:

dt = rat + yt − ct

= (1 − r/ (1 + r − φ1)) yt + (1 − φ1) y/ (1 + r − φ1)− r


 − rγ

r+1
ζt

1−γ·L

+ 1
rα(1−γ)

(
ln
(

1+ρ
1+r

)
− ln Et

[
exp

(
− αr(1+r−γ)

1+r ζt+1

)])

= (1 − φ1) φ (yt − y) +
r2γ

r + 1

ζt

1 − γ · L
− 1

α (1 − γ)

(
ln

(
1 + ρ

1 + r

)
− ln Et

[
exp

(
− rα (1 + r − γ)

1 + r
ζt+1

)])
,

where we use the facts that φ0 = (1 − φ1) y and φ = 1/ (1 + r − φ1).

6.3. Computing the Welfare Loss due to RI

Given that the value function under RI in general equilibrium is

v̂(ŝ0) = − 1

r∗α
exp (−r∗αŝ0 + ln (1 + r∗)) , (56)

we can compute the following partial derivatives:

∂v̂(ŝ0)

∂θ
=

exp (−r∗αŝ0)

r∗2α
[1 + r∗αŝ0 (1 + r∗)]

dr∗

dθ
and

∂v̂(ŝ0)

∂ŝ0
= (1 + r∗) exp (−r∗αŝ0) .

The marginal welfare cost due to RI can thus be written as:

mwc ≡ (∂v (ŝ0) /∂θ) θ

(∂v (ŝ0) /∂ŝ0) ŝ0
=

θ

r∗2α

[
r∗α +

1

(1 + r∗) ŝ0

]
dr∗

dθ
,

where we use the facts that in general equilibrium (i.e., ln
(

1+ρ
1+r

)
= ln Et

[
exp

(
−r∗αζ̂t+1

)]
), and

dr∗/dθ is given in (29).

6.4. An Extension to Incorporate Durable Consumption

Following Bernanke (1985) and Gali (1993), we consider an FI-RE version of the PIH model which

includes both durable and nondurable consumption. The optimizing decisions of a representative
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consumer in the RE-PIH model with durables goods can be formulated as

max
{ct,kt+1}

E0

[
∞

∑
t=0

βtu (ct, kt)

]
, (57)

subject to the budget constraint

at+1 = (1 + r) at + yt − ct − et, (58)

and the accumulation equation for durables

kt+1 = (1 − δ) kt + et, (59)

where u (ct, kt) = − exp (−αcct) /αc − ̺ exp (−αkkt) /αk is the utility function, ct is consumption of

nondurables, kt is the stock of durables goods, et is the purchase of durable goods, β = 1/ (1 + ρ) is

the discount factor, R = 1 + r is the constant gross interest rate, δ is the depreciation rate of durable

goods, αc > 0, αk > 0, and ̺ > 0.

To incorporate RI, following the same procedure used in the our benchmark model and Luo,

Nie, and Young (2014), we define a new state variable (s) as:

st ≡ at +
1 − δ

R
kt +

1

R − φ1

(
φ0

R − 1
+ yt

)
, (60)

which is governed by the following evolution equation:

st+1 = Rst − ct −
R + δ − 1

R
kt+1 + ζt+1,

where ζt+1 = φwt+1 = 1
R−φ1

wt+1 is the innovation to st+1.

Following Luo, Nie, and Young (2014), we formulate the optimization problem for the typical

household under RI:

v (ŝt) = max
{ct,kt+1}

Et [u (ct, kt) + βv (ŝt+1)]

subject to

ŝt+1 = Rŝt − ct −
R + δ − 1

R
kt+1 + ζ̂t+1,

where ζ̂t+1 is defined in (14) and ŝ0 is given, The following proposition summarizes the results from

the above dynamic program:

25



Proposition 6. Under RI, the functions of nondurable consumption and the stock of durable accumulation

are:

ct = Hc ŝt + Ωc + Π̂c, (61)

kt+1 = Ω +
αc

αk
ct, (62)

respectively, where Hc = (R − 1)
(

1 + R+δ−1
R

αc
αk

)−1
, Ω = − 1

αk
ln
(

R+δ−1
̺

)
, Ωc = −

(
1 − 1−δ

R

) (
1 + R+δ−1

R
αc
αk

)−1
Ω,

Π̂c = −Π̂/ (R − 1), and

Π̂ ≡ 1

αc
ln (βR) +

αc

2

(
R − 1

R − φ1

)2 (
1 +

R + δ − 1

R

αc

αk

)−2

Γ (r, θ) φ2σ2. (63)

Proof. See Online Appendix.

Given the original budget constraint and the decision rules, the expression for individual saving,

dt (≡ (R − 1) at + yt − ct − [kt+1 − (1 − δ) kt]), can be written as:

dt =
R − 1

R − φ1

[
1 −

(
1 +

αc

αk

)(
1 +

R + δ − 1

R

αc

αk

)−1
]

ζ̂t + (R − 1) (st − ŝt) (64)

+

[
R

Hc
−
(

1 +
αc

αk

)]
Π̂ +

R − 1

R − φ1
(yt − y) ,

where st − ŝt is defined in (15), respectively.

After aggregating across all consumers using the same law of large number we applied in the

benchmark model, all the idiosyncratic shocks (including the fundamental income shocks and en-

dogenous shocks due to RI) are canceled out and we obtain the following expression for the per-

ceived aggregate saving:

D (θ, r) ≡
[

R

Hc
−
(

1 +
αc

αk

)]
Π̂, (65)

where Π̂ is defined in (63). The following proposition shows the existence of the general equilibrium

and the PIH holds in such an equilibrium:

Proposition 7. There exists at least one equilibrium with an interest rate r∗ ∈ (0, ρ) in the RI precautionary-

savings model with durables. In any such equilibrium, the aggregate saving is zero:

1

2
(αcr

∗)2
(

1 +
δ + r∗

1 + r∗
αc

αk

)−2

Γ (r∗, θ)ω2
ζ − ln

(
1 + ρ

1 + r∗

)
= 0.
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the PIH still holds since consumption follows

ct = Hc ŝt + Ωc.

Proof. The proof is the same as that in the benchmark model. Here we need to use the condition

that R
Hc

−
(

1 + αc
αk

)
6= 0.27

We now examine how rational inattention affects the equilibrium interest rate in the CARA-

Gaussian setting with durable consumption. Luo, Nie and Young (2014) show that if αc
αk

= R+δ−1
̺

holds, then the model here is observational equivalent to the LQ Gaussian model with durables.

Using the estimated parameters in Bernanke (1985) (δ = 0.025, and ̺ = 0.0286) and αc = 2 used

in Caballero (1991) and Wang (2000), we calibrate the CARA parameter on durable consumption:

αk = 1.63. Given the following parameter values: αc = 2, αk = 1.63, σ = 0.29, φ1 = 0.88, ρ = 0.04,

δ = 0.025, and ̺ = 0.0286, Figure 4 illustrates how r∗ varies with the value of θ. The figure also

clearly shows that the aggregate saving function is increasing with the interest rate and the general

equilibrium interest rate is decreasing with the degree of inattention, which is consistent with the

conclusion obtained in our benchmark model without durable goods.
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Table 1. Implications of RI for interest rates, Consumption, and Welfare

θ 0.1 0.2 0.4 0.6 0.8 1

GE r∗ 2. 51% 2.77% 2.88% 2.91% 2.93% 2.95%
µcy 0.227 0.206 0.196 0.193 0.192 0.191
µay 2.145 1.940 1.776 1.706 1.665 1.639

$loss/ŷ0 1.316 × 10−3 1.195 × 10−3 9.040 × 10−4 6.040 × 10−4 3.025 × 10−4 0

PE µcy 0.282 0.219 0.201 0.195 0.193 0.191
(r = 2.95%) µay 2.202 1.935 1.771 1.702 1.663 1.639

$loss/ŷ0 1.363 × 10−3 1.212 × 10−3 9.089 × 10−4 6.059 × 10−4 3.030 × 10−4 0

Table 2. Implications of RI in GE and PE (Elastic κ)

σ
(
σy

)
0.1 (0.21) 0.2 (0.42) 0.3 (0.63) 0.4 (0.84)

GE-RI (λ = 50) θ 0.100 0.177 0.251 0.322
r∗ 3. 528% 3. 184% 2. 771% 2. 402%
µcy 0.370 0.243 0.199 0.171
µay 2.318 1. 973 1.880 1.846

GE-FI (θ = 1) r∗ 3.811% 3.375% 2.899% 2.483%
µcy 0.234 0.213 0.189 0.166
µay 1.549 1.593 1.644 1.691

PE (r = 2. 771%, λ = 50) θ 0.098 0.178 0.251 0.317
µcy 0.262 0.211 0.199 0.194
µay 2.187 1.968 1.880 1.828

Table 3. Estimation of the Income Process with Sub-samples

Period 1 std (ǫit) φit std (yit) Period 2 std (ǫit) φit std (yit)

1980 − 1986 0.25 0.85 0.47 1987 − 1996 0.29 0.87 0.59

1980 − 1987 0.26 0.86 0.51 1988 − 1996 0.29 0.84 0.53
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