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Abstract

This paper investigates efficient estimation of heterogeneous coefficients in panel

data models with common shocks, which have been a particular focus of recent theo-

retical and empirical literature. We propose a new two-step method to estimate the

heterogeneous coefficients. In the first step, the maximum likelihood (ML) method is

first conducted to estimate the loadings and idiosyncratic variances. The second step

estimates the heterogeneous coefficients by using the structural relations implied by the

model and replacing the unknown parameters with their ML estimates. We establish

the asymptotic theory of our estimator, including consistency, asymptotic representa-

tion, and limiting distribution. The two-step estimator is asymptotically efficient in

the sense that it has the same limiting distribution as the infeasible generalized least

squares (GLS) estimator. Intensive Monte Carlo simulations show that the proposed

estimator performs robustly in a variety of data setups.
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1 Introduction

It has been long recognized and well documented in the literature that a small number

of factors can explain a large fraction of the comovement of financial, macroeconomic and

sectorial variables, for example, Ross (1976), Sargent and Sims (1977), Geweke (1977)

and Stock and Watson (1998). Based on this fact, recent econometric literature places

particular focus on panel data models with common shocks. These models specify that

the dependent variable and explanatory variables both have a factor structure. A typical

example can be written as

yit = αi + x′
itβi + λ′

ift + ǫit,

xit = νi + γ′
ift + vit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T.

(1.1)

where yit denotes the dependent variable; xit denotes a k×1 vector of explanatory variables;

and ft is an r × 1 vector of unknown factors, which represents the unobserved economic

shocks. The factor loadings γi and λi capture the heterogeneous responses to the shocks.

A salient feature of this paper is that the coefficients of xit are assumed to be individual-

dependent. Throughout the paper, we assume that the number of factors is fixed. For the

case where the number of factors can increase when the sample size increases, see Li, Li

and Shi (2014).

Due to the presence of factor ft, the error term of the y equation (i.e., λ′
ift + ǫit) is

correlated with the explanatory variables. The usual estimation methods, such as ordinary

least squares method, are not applicable. The instrumental variables (IV) method appears

to be an intuitive way to address this issue, but the validity of IV is difficult to justify in

practice. A remarkable result from recent studies is that, even without IV, model (1.1) can

still be consistently estimated. The related literature includes Pesaran (2006), Bai (2009),

Moon and Weidner (2012), Bai and Li (2014), Su, Jin and Zhang (2014) and Song (2013),

among others.

Bai (2009) proposes the iterated principal components (PC) method to estimate a

model with homogeneous coefficients. His analysis has been reexamined and extended by

the perturbation theory in Moon and Weidner (2012). Su, Jin and Zhang (2014) propose a

statistic to test the linearity specification of the model. The three studies find that a bias

arises from cross-sectional heteroscedasticity. Bai and Li (2014) therefore consider the quasi

maximum likelihood method to eliminate this bias from the estimator. All these studies

are based on the assumption of homogeneous coefficient. If the underlying coefficients are

heterogeneous, misspecification of homogeneity would lead to inconsistent estimation (see

the simulation of Kapetanios, Pesaran and Yamagata (2011)).

There are several studies on the estimation of heterogeneous coefficients. Pesaran (2006)

proposes the common correlated effect (CCE) estimation method to estimate the hetero-

geneous coefficients (1.1). The intuition of his method is approximating the unknown

projection space of the factors ft by the space spanned by the cross-sectional average of

the observations (yit, x
′
it)

′. To this end, some rank condition is needed. Song (2013) alter-

natively considers the iterated principal components method, which extends the analysis

of Bai (2009) to the case of heterogeneous coefficients. In this paper, we propose a new

method to estimate (1.1). Our estimation method is motivated by both Pesaran’s and
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Song’s methods having their limitations in estimating the heterogeneous coefficients for

some particular data setups. The CCE estimator has a reputation for computational sim-

plicity and excellent finite sample properties. However, we note that in some cases rank

condition alone is not enough for a good approximation. When good approximation breaks

down, the CCE estimator would perform poorly. With Song’s method, although his theory

is beautiful, the minimizer of the objective function is not easily obtained, especially for

the data with heavy cross-sectional heteroscedasticity. As far as we know, there is no good

way to address this issue. The limitations of the CCE method and the iterated principal

components method are manifested by simulations in Section 6.

Our estimation method is a two-step method. In the first step, we use the maximum

likelihood (ML) method to estimate a pure factor model. Next, the heterogeneous coeffi-

cients are estimated by using relations implied by the model and replacing the parameters

with their ML estimates. The proposed estimation method aims to strike a balance between

efficiency and computational economy. We note that in model (1.1) the computational bur-

den cannot be ignored due to a great number of βs being estimated, especially when N

is large. This problem is made worse because we can only compute βi (i = 1, 2, . . . , N)

sequentially, instead of all βi simultaneously by matrix algebra. As a result, the iterated

computation method, which requires updating βi one by one in each iteration, may not be

attractive because of the heavy computational burden. Our estimation method overcomes

this problem by using the iterated computation method to estimate a pure factor model,

delaying the estimation of βi to the second step. Nevertheless, as we will show, the two-step

estimators are asymptotically efficient.

The rest of the paper is organized as follows. Section 2 illustrates the idea of our

estimation. Section 3 presents some theoretical results of the factor models, in which

the covariance matrix of idiosyncratic errors are block-diagonal. These results are very

useful for the subsequent analysis. Section 4 presents the asymptotic properties of the

proposed estimator. Section 5 extends our method to the case with zero restrictions on

the loadings in the y equation. We show that when zero restrictions are present, the

loadings contain information for β. We propose a minimum distance estimator to achieve

the efficiency. Section 6 extends the model to nonzero restrictions. Section 7 conducts

extensive simulations to investigate the finite sample properties of the proposed estimator

and provides some comparisons with the competitors. Section 8 concludes. Throughout

the paper, the norm of a vector or matrix is that of Frobenius; that is, ‖A‖ = [tr(A′A)]1/2

for matrix A. In addition, we use v̇t to denote vt − 1
T

∑T
s=1 vs for any column vector vt and

Mwv to denote 1
T

∑T
t=1 ẇtv̇

′
t for any vectors wt and vt.

2 Key idea of the estimation

To illustrate the idea of our estimation, first substitute the second equation of model (1.1)

into the first one. Then
[

yit

xit

]

=

[

αi

νi

]

+

[

β′
iγ

′
i + λ′

i

γ′
i

]

ft +

[

β′
ivit + ǫit
vit

]

.
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Let zit = (yit, x
′
it)

′, µi = (αi, ν
′
i)

′, uit = (β′
ivit +ǫit, v

′
it)

′ and Λ′
i be the factor loadings matrix

before ft in the above equation. Now we have

zit = µi + Λ′
ift + uit. (2.1)

Let Ωi be the covariance matrix of vit and σ2
ǫi the variance of ǫit. Throughout the paper,

we assume that ǫit is independent of vjs for all i, j, t, s. This assumption is crucial to the

models with common shocks and is maintained by all the related studies; for example, Bai

(2009), Bai and Li (2014), Pesaran (2006), and Moon and Weidner (2012). The covariance

of uit, denoted by Σii, now is

Σii =

[

Σi,11 Σi,12

Σi,21 Σi,22

]

=

[

β′
iΩiβi + σ2

ǫi β′
iΩi

Ωiβi Ωi

]

. (2.2)

This leads to

Σi,22βi = Σi,21. (2.3)

Suppose that we have obtained a consistent estimator of Σii, βi is then estimated by

β̂i = Σ̂−1
i,22Σ̂i,21 (2.4)

We call the above estimator CoVariance estimator, denoted by β̂CV
i since the estimation

for βi only involves the covariance of uit.

The remaining problem is to consistently estimate Σii. A striking feature of the model

(2.1) is that the variance matrix of its idiosyncratic errors is block-diagonal. So we need

to extend the usual factor analysis to accommodate this feature.

3 Factor models

Let i = 1, 2, . . . , N, t = 1, 2, . . . , T . Consider the following factor models

zit = µi + Λ′
ift + uit, (3.1)

where zit is a K̄×1 vector of observations with K̄ = k+1; uit is a K̄×1 vector of error terms;

Λi is an r×K̄ loading matrix; and ft is an r×1 vector of factors. Let zt = (z′
1t, z

′
2t, . . . , z

′
Nt)

′,

µ = (µ′
1, µ

′
2, . . . , µ

′
N )′, Λ = (Λ1,Λ2, . . . ,ΛN )′ and ut = (u′

1t, u
′
2t, . . . , u

′
Nt)

′, then we can

rewrite (3.1) as

zt = µ+ Λft + ut. (3.2)

Without loss of generality, we assume that f̄ = T−1 ∑T
t=1 ft = 0 throughout the paper

since the model can be rewritten as zt = µ + Λf̄ + Λ(ft − f̄) + ut = µ∗ + Λf∗
t + ut with

µ∗ = µ+ Λf̄ and f∗
t = ft − f̄ . To analyze (3.2), we make the following assumptions:

Assumption A: The factor ft is a sequence of constants. Let Mff = T−1 ∑T
t=1 ḟtḟ

′
t

with ḟt = ft − T−1 ∑T
t=1 ft. We assume that Mff = lim

T →∞
Mff is a strictly positive definite

matrix.

Assumption B: The idiosyncratic error term uit is assumed such that
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B.1 uit is independent and identically distributed (i.i.d) over t and uncorrelated over i

with E(uit) = 0 and E(‖u4
it‖) ≤ ∞ for all i = 1, · · · , N and t = 1, · · · , T . Let Σii be

the variance of uit and Ψ = diag(Σ11,Σ22, . . . ,ΣNN ) be the variance of ut.

B.2 ft is independent of ujs for all (j, t, s).

Assumption C: There exists a positive constant C sufficiently large such that

C.1 ‖Λi‖ ≤ C for all i = 1, · · · , N .

C.2 C−1 ≤ τmin(Σii) ≤ τmax(Σii) ≤ C for all i = 1, · · · , N , where τmin(·) and τmax(·)
denote the smallest and largest eigenvalues of its argument, respectively.

C.3 There exists an r × r positive matrix Q such that Q = lim
N→∞

N−1Λ′Ψ−1Λ, where

Λ = (Λ1,Λ2, . . . ,ΛN )′ and Ψ is the variance of ut = (u′
1t, u

′
2t, . . . , u

′
Nt)

′.

Assumption D: The variances Σii for all i are estimated in a compact set; that is, all

the eigenvalues of Σ̂ii are in an interval [C−1, C] for sufficiently large constant C.

Assumptions A-D are usually made in the context of factor analysis; for example, Bai

and Li (2012a, 2014). Readers are referred to Bai and Li (2012a) for the related discussions

on these assumptions.

3.1 Estimation

The objective function used to estimate (3.2) is

lnL (θ) = − 1

2N
ln |Σzz| − 1

2N
tr[MzzΣ−1

zz ] (3.3)

where θ = (Λ,Ψ,Mff ) and Σzz = ΛMff Λ′ +Ψ; Mzz = 1
T

∑T
t=1 żtż

′
t is the data matrix where

żt = zt − 1
T

∑T
s=1 zs. Suppose that ft is random and follows N(0,Mff ), the above objective

function is the corresponding likelihood function after concentrating out the intercept µ.

Although the factors ft are assumed to be fixed constants, we still use the above objective

function and call the maximizer θ̂ = (Λ̂, Ψ̂, M̂ff ), defined by

θ̂ = argmax
θ∈Θ

lnL (θ),

the quasi maximum likelihood estimator, or the MLE, where Θ is the parameter space

specified by Assumption D.

It is known in factor analysis that the loadings and factors can only be identified

up to a rotation. To see this, let θ̂ = (Λ̂, Ψ̂, M̂ff ) be the maximizer of (3.3), then θ̂† =

(Λ̂M̂
1/2
ff , Ψ̂, Ir) is also a qualified maximizer. From this perspective, it is no loss of generality

to normalize that

Mff =
1

T

T
∑

t=1

ftf
′
t = Ir.

Under this normalization, Σzz is simplified as Σzz = ΛΛ′ + Ψ.

Maximizing the objective function (3.3) with respect to Λ and Ψ gives the following

two first order conditions.

Λ̂′Ψ̂−1(Mzz − Σ̂zz) = 0 (3.4)
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Bdiag(Mzz − Σ̂zz) = 0 (3.5)

where Bdiag(·) is the block-diagonal operator, which puts the element of its argument to

zero if the counterpart of Ψ is nonzero, otherwise unspecified. Λ̂ and Ψ̂ denote the MLE

and Σ̂zz = Λ̂Λ̂′ + Ψ̂.

3.2 Asymptotic properties of the MLE

This section presents the asymptotic results of the MLE for (3.3). Since we only impose

Mff = Ir in (3.2), the loadings and factors still cannot be fully identified. We adopt the

treatment of Bai (2003), in which the rotational matrix appears in the asymptotic repre-

sentation. This treatment has two advantages in the present context. First, it simplifies

our analysis. Second, it clarifies that the estimation and inferential theory of β is invari-

ant to the rotational matrix. Alternatively, we can impose some additional restrictions to

uniquely fix the rotational matrix; see Bai and Li (2012a) for full identification strategies.

The following theorem, which serves as the base for the subsequent analysis, gives the

asymptotic representations of the MLE.

Theorem 3.1 Under Assumptions A-D, as N,T → ∞, we have

Λ̂i −R′Λi = R′ 1

T

T
∑

t=1

ftu
′
jt + op(T−1/2)

Σ̂ii − Σii =
1

T

T
∑

t=1

(uitu
′
it − Σii) + op(T−1/2)

where R = Λ′Ψ̂−1Λ̂(Λ̂′Ψ̂−1Λ̂)−1.

Remark 3.1 Notice that the rotational matrix R only enters in the asymptotic representa-

tion of Λ̂i. This is consistent with only loadings and factors having rotational indeterminacy

and idiosyncratic errors not having such a problem.

Remark 3.2 By the above theorem, we immediately have Λ̂i − R′Λi = Op(T−1/2) and

Σ̂ii − Σii = Op(T−1/2). These two results continue to hold when N is fixed since the model

falls within the scope of traditional factor analysis. But the asymptotic representations will

be more complicated when N is finite. An implication of this result is that the covariance

estimator β̂CV
i is consistent even when N is finite.

4 Asymptotic results for the covariance estimator

Now we use the results in Theorem 3.1 to derive the asymptotic representation of β̂CV
i .

Notice β̂CV
i = (Σ̂i,22)−1Σ̂i,21 and βi = (Σi,22)−1Σi,21. Given Σ̂ii = Σii + op(1) by Theorem

3.1, the consistency of β̂i is immediately obtained by the continuous mapping theorem.

Furthermore, by Theorem 3.1,

Σ̂ii − Σii =
1

T

T
∑

t=1

(uitu
′
it − Σii) +Op(T−1).
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Then it follows

Σ̂i,21 − Σi,21 =
1

T

T
∑

t=1

[vit(ǫit + v′
itβi) − Ωiβi] +Op(T−1); (4.1)

Σ̂i,22 − Σi,22 =
1

T

T
∑

t=1

[vitv
′
it − Ωi] +Op(T−1). (4.2)

Notice that

β̂i − βi = (Σ̂i,22)−1Σ̂i,21 − Σ−1
i,22Σi,21

= (Σ̂i,22)−1
[

(Σ̂i,21 − Σi,21) − (Σ̂i,22 − Σi,22)Σ−1
i,22Σi,21

] (4.3)

Substituting (4.1) and (4.2) into (4.3) and noting that Σ̂i,22
p−→ Ωi and βi = Σ−1

i,22Σi,21, we

have the following theorem on β̂CV
i .

Theorem 4.1 Under Assumptions A-D, when N,T → ∞, we have

√
T (β̂CV

i − βi) = Ω−1
i

( 1√
T

T
∑

t=1

vitǫit

)

+ op(1) (4.4)

Remark 4.1 The above asymptotic result implies that our estimator is asymptotically

efficient. To see this, suppose that the factors ft are observed, then the GLS estimator has

the asymptotic representation:

√
T (β̂GLS

i − βi) = Ω−1
i

( 1√
T

T
∑

t=1

vitǫit

)

+ op(1), (4.5)

which is the same as that of Theorem 4.1, implying the asymptotic efficiency of the CV

estimator.

Remark 4.2 Although the asymptotic result of β̂CV
i is derived under Assumption B,

we point out that the proposed method works in a very general setup given the results

of Bai and Li (2012b), which show that the quasi maximum likelihood method can be

used to estimate approximate factor models (Chamberlain and Rothschild, 1983). More

specifically, let Σii,t be the variance of uit, where the covariance matrix has an additional

superscript t to indicate that it is time-varying. Partition Σii,t as

Σii,t =

[

Σii,t,11 Σii,t,12

Σii,t,21 Σii,t,22

]

.

Under the assumption that ǫit is independent of vit, we have Σii,t,22βi = Σii,t,21 for all t,

which implies that
( 1

T

T
∑

t=1

Σii,t,22

)

βi =
1

T

T
∑

t=1

Σii,t,21.

To consistently estimate βi, it suffices to consistently estimate 1
T

∑T
t=1 Σii,t. As shown in

Bai and Li (2012b), if the underlying covariance is time-varying but misspecified to be

time-invariant in the estimation, the resulting estimator of the covariance is a consistent

estimator for the average underlying covariance over time, that is, 1
T

∑T
t=1 Σii,t happens to

be estimated by the MLE.
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Remark 4.3 For the basic model, the CCE estimator of Pesaran (2006) and the iterated

PC estimator of Song (2013) have the same asymptotic representations as in Theorem

4.1 and hence are asymptotically efficient. However, different methods require different

conditions for the asymptotic theory. Except for the rank condition, the CCE estimator

potentially requires N be large, otherwise the average error over the cross section cannot

be negligible. The PC estimator is derived under the cross-sectional homoscedasticity.

If heteroscedasticity is present, a large N is needed to ensure the consistency. For the

CV estimator, the consistency can be maintained for a fixed N even in the presence of

the cross-sectional heteroscedasticity. So the CV estimator requires the least restrictive

condition for the consistency.

Remark 4.4 With slight modification, our method can be used to estimate the homoge-

neous coefficient. Suppose βi ≡ β for all i. Now we have Σi,22β = Σi,21 for all i, which

leads to
(

N
∑

i=1

Σi,22

)

β =
N

∑

i=1

Σi,21.

So a consistent estimator for β is

β̂ =
(

N
∑

i=1

Σ̂i,22
)−1(

N
∑

i=1

Σ̂i,21
)

. (4.6)

The asymptotic properties of β̂ will not be pursued in this paper. In section 6, we conduct

a small simulation to examine its finite sample performance.

Corollary 4.1 Under the assumptions of Theorem 4.1, we have

√
T (β̂CV

i − βi)
d−→ N

(

0, σ2
ǫiΩ

−1
i

)

,

where σ2
ǫi is the variance of ǫit and Ωi is the variance of vit. The variance σ2

ǫiΩ
−1
i can be

consistently estimated by σ̂2
ǫiΣ̂

−1
i,22, where σ̂2

ǫi = Σ̂i,11 − β̂CV ′
i Σ̂i,22β̂

CV
i .

5 Models with zero restrictions

In this section, we consider the following restricted model:

yit = αi + x′
itβi + ψ′

igt + ǫit

xit = νi + γ
g′
i gt + γh′

i ht + vit

(5.1)

where the dimensions of gt and ht are r1 × 1 and r2 × 1, respectively. A salient feature of

model (5.1) is that the explanatory variables include more factors than the error of the y

equation. This specification aims to accommodate that both endogenous and exogenous

shocks exist in the economic system. Endogenous shocks such as unexpected monetary

supply would directly affect all economic variables. Exogenous shocks such as oil prices

would first affect the energy-related industries and then gradually affect other economic
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variables. In model (5.1), gt denotes the endogenous shocks that directly affect y and x,

and ht denotes the exogenous shocks that affect first x then y①.

The y equation of (5.1) can be written as

yit = αi + x′
itβi + ψ′

igt + φ′
iht + ǫit

with φi = 0 for all i. Let ft = (g′
t, h

′
t)

′, λi = (ψ′
i, φ

′
i)

′ and γi = (γg′
i , γ

h′
i )′, we have the same

representation as (1.1). From this perspective, model (5.1) can be viewed as a restricted

version of model (1.1). This implies that the two-step method proposed in Section 4 is

applicable to (5.1). However, this estimation method is not efficient. Consider the ideal

case that gt is observable. To eliminate the endogenous ingredient ψ′
igt, we post-multiply

MG = I−G(G′G)−1G′ on both sides of the y equation. The remaining part of xit includes

vit and γh′
i (ht − H ′G(G′G)−1gt), which both provide the information for β. However, as

shown in Theorem 4.1, only the variations of vit are used to signal βi in β̂CV
i . Therefore,

partial information is discarded and the two-step method in Section 4 is inefficient.

The preceding discussion provides some insights on the improvement of efficiency. To

efficiently estimate model (5.1), we need to use information contained in the common

components of xit. Rewrite model (5.1) as
[

yit

xit

]

=

[

αi

νi

]

+

[

β′
iγ

g′
i + ψ′

i β′
iγ

h′
i

γ
g′
i γh′

i

] [

gt

ht

]

+

[

β′
ivit + ǫit
vit

]

(5.2)

We use Λ′
i to denote the loadings matrix before ft = (g′

t, h
′
t)

′. The symbols µi, zit and uit

are defined the same as in the previous section. We then have the same equation as (2.1).

Further partition the loadings matrix Λi into four blocks,

Λi =

[

Λi,11 Λi,12

Λi,21 Λi,22

]

=

[

ψi + γ
g
i βi γ

g
i

γh
i βi γh

i

]

. (5.3)

So we have Λi,22βi = Λi,21. This result together with (2.3) leads to
[

Λi,22

Σi,22

]

βi =

[

Λi,21

Σi,21

]

(5.4)

Given the above structural relationship, a routine to estimate βi is replacing Λi,22,Λi,21,Σi,22

and Σi,21 with their MLE and minimizing the distance on the both sides of the equation

with some weighting matrix. While this method is intuitive, it is not correct since Λ̂i,22

and Λ̂i,21 are not consistent estimators of Λi,22 and Λi,21, as shown in Theorem 3.1. Let

Λ∗
i = R′Λi represent the underlying parameters that the MLE corresponds to, where R is

the rotation matrix defined in Theorem 3.1. Then

Λ∗′
i =

[

Λ∗′
i,11 Λ∗′

i,21

Λ∗′
i,12 Λ∗′

i,22

]

= Λ′
iR =

[

Λ′
i,11 Λ′

i,21

Λ′
i,12 Λ′

i,22

] [

R11 R12

R21 R22

]

=

[

β′
iγ

g′
i + ψ′

i β′
iγ

h′
i

γ
g′
i γh′

i

] [

R11 R12

R21 R22

]

①Another way to see this point is as follows. Notice that the x equation can always be written as

xit = νi + (γg′
i + γ

h′
i H

′
G(G′

G)−1)gt + γ
h′
i (ht − H

′
G(G′

G)−1
gt) + vit = νi + γ

∗g′
i gt + γ

h′
i h

∗
t + vit.

In the last equation, gt is uncorrelated with h∗
t . Given this expression, it is no loss of generality to assume

that ht is uncorrelated with gt. Now we see that gt causes the endogeneity problem but ht does not. So
we say that gt represents endogenous shocks and ht represents exogenous shocks.
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implying

Λ∗
i,21 = (R′

12γ
g
i +R′

22γ
h
i )βi +R′

12ψi (5.5)

Λ∗
i,22 = R′

12γ
g
i +R′

22γ
h
i (5.6)

From (5.5) and (5.6), we see that unless ψi = 0, Λ∗
i,22βi = Λ∗

i,21 does not hold. But

when ψi = 0, we see from (5.1) that the model is free of the endogeneity problem and

the ordinary least squares method is applicable. The preceding analysis indicates that the

existence of the rotational indeterminacy for loadings impedes the use of the underlying

relation Λi,22βi = Λi,21 in the estimation of βi.

Although this result is a little disappointing, we now show that with some transforma-

tion, Λi,22βi = Λi,21 can still be used to estimate βi. First by Λ∗′
i = Λ′

iR,

Λ∗
i,11 = (R′

11γ
g
i +R′

21γ
h
i )βi +R′

11ψi (5.7)

Λ∗
i,12 = R′

11γ
g
i +R′

21γ
h
i (5.8)

By the expressions (5.5)-(5.8), we have the following equation:

(Λ∗
i,21 − Λ∗

i,22βi) = R′
12R

′−1
11 (Λ∗

i,11 − Λ∗
i,12βi) = V (Λ∗

i,11 − Λ∗
i,12βi) (5.9)

where V = R′
12R

′−1
11 , an r2 × r1 rotational matrix. The preceding equation can be written

as

(Λ∗
i,22 − V Λ∗

i,12)βi = Λ∗
i,21 − V Λ∗

i,11 (5.10)

Given the above result, together with (2.3), we have
[

Λ∗
i,22 − V Λ∗

i,12

Σi,22

]

βi =

[

Λ∗
i,21 − V Λ∗

i,11

Σi,21

]

(5.11)

If V is known, then we can replace Λ∗
i,11,Λ

∗
i,12,Λ

∗
i,21,Λ

∗
i,22 with the corresponding estimates,

and βi is efficiently estimated. Although V is unknown, it can be consistently estimated

by (5.9) since βi can be consistently (albeit not efficiently) estimated by β̂CV
i = Σ̂−1

i,22Σ̂i,21.

Given the above analysis, we propose the following estimation procedure:

1. Use the maximum likelihood method to obtain the estimates Σ̂ii, Λ̂i, f̂t for all i and t.

2. Calculate β̂CV
i = Σ̂−1

i,22Σ̂i,21 and

V̂ =
[

N
∑

i=1

(Λ̂i,21−Λ̂i,22β̂
CV
i )(Λ̂i,11−Λ̂i,12β̂

CV
i )′

][

N
∑

i=1

(Λ̂i,11−Λ̂i,12β̂
CV
i )(Λ̂i,11−Λ̂i,12β̂

CV
i )′

]−1
.

3. Calculate β̂i = (∆̂′
iW

−1
i ∆̂i)

−1∆̂′
iW

−1
i δ̂i, where Wi is a predetermined weighting ma-

trix that is specified below, and

∆̂i =

[

Λ̂i,22 − V̂ Λ̂i,12

Σ̂i,22

]

, δ̂i =

[

Λ̂i,21 − V̂ Λ̂i,11

Σ̂i,21

]

(5.12)

where we call the resulting estimator the Loading-coVariance estimators, denoted by

β̂LV
i .
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Remark 5.1 We can iterate the second and third steps by using the updated estimator

of βi to calculate V̂ . We call the estimator resulting from this iterating procedure the

Iterated-LV estimator, denoted by β̂ILV
i . The iterated estimator has the same asymptotic

representation as the LV estimator, but better finite sample performance; see the simulation

results in Section 6.

5.1 The optimal weighting matrix

To carry out the estimation procedure, we need to specify the weighting matrix Wi. It can

be shown that the theoretically optimal weighting matrix is

W
opt
i =

[

R′
22·1M

−1
hh·gR22·1 0r2×k

0k×r2
Σi,22

]

,

where R22·1 = R22 −R21R
−1
11 R12 and Mhh·g = Mhh −MhgM

−1
gg Mgh. This weighting matrix

can be consistently estimated by

Ŵi =





[

(

1
T

∑T
t=1 ĥtĥ

′
t

)

−
(

1
T

∑T
t=1 ĥtη̂

′
t

)(

1
T

∑T
t=1 η̂tη̂

′
t

)−1(

1
T

∑T
t=1 η̂tĥ

′
t

)

]−1
0r2×k

0k×r2
Σ̂i,22



 (5.13)

with η̂t = ĝt + V̂ ′ĥt, where ĝt and ĥt are given by

[

ĝt

ĥt

]

=
(

N
∑

i=1

Λ̂iΣ̂
−1
ii Λ̂′

i

)−1(

N
∑

i=1

Λ̂iΣ̂
−1
ii zit

)

.

5.2 The asymptotic result

The following theorem gives the asymptotic representation of the LV estimator with some

remarks following.

Theorem 5.1 Under Assumptions A-D, when N,T → ∞, we have

√
T (β̂LV

i − βi) =
(

γh′
i (Mhh −MhgM

−1
gg Mgh)γh

i + Ωi
)−1

× 1√
T

T
∑

t=1

[

γh′
i

(

ḣt −MhgM
−1
gg ġt

)

+ vit

]

ǫit + op(1)

Given Theorem 5.1, we have the following corollary:

Corollary 5.1 Under the assumptions of Theorem 5.1, we have

√
T (β̂LV

i − βi)
d−→ N

(

0, σ2
ǫi(γ

h′
i Mhh·gγ

h
i + Ωi)

−1)

.

where Mhh·g = plim
T →∞

(Mhh − MhgM
−1
gg Mgh). The above asymptotic result can be presented

alternatively as √
T (β̂LV

i − βi)
d−→ N

(

0, σ2
ǫi

[

plim
T →∞

1

T
X ′

iMGXi
]−1)

.

with G = (1T , G), where 1T is a T -dimensional vector with all the elements equal to 1.
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Remark 5.2 Consider the “y” equation, which can be written as

Yi = αi1T +Xiβi +Gψi + Ei (5.14)

where Yi = (yi1, yi2, . . . , yiT )′, Xi = (xi1, xi2, . . . , xiT )′, and Ei is defined similarly as Yi. If

the factors gt are observable, the infeasible GLS estimator for βi is

β̂GLS
i = (X ′

iMGXi)
−1(X ′

iMGYi).

By (5.14), we have

β̂GLS
i − βi = (X ′

iMGXi)
−1(X ′

iMGEi).

Notice var(Ei) = σ2
ǫiIT . Thus the limiting distribution of β̂GLS

i − βi conditional on Xi is

√
T (β̂GLS

i − βi)
d−→ N

(

0, σ2
ǫi

[

plim
T →∞

1

T
X ′

iMGXi
]−1)

.

the same as that of Corollary (5.1). This means that the LV estimator β̂LV
i is asymptotically

efficient.

Remark 5.3 Consider the following model, in which zero restrictions exist in both the x

equation and the y equation:

yit = αi + x′
itβi + ψ′

igt + ǫit

xit = νi + γh′
i ht + vit

(5.15)

where gt and ht are assumed to be correlated. Model (5.15) is a special case of (5.1)

in view that γg
i is restricted to zero. So the loading-covariance two-step method can be

directly applied to (5.15). We note that the LV estimator is efficient even in the presence

of additional zero restrictions γg
i = 0. To see this point, notice that Λi in model (5.15) is

Λi =

[

Λi,11 Λi,12

Λi,21 Λi,22

]

=

[

ψi 0
γh

i βi γh
i

]

.

The coefficient βi can only be estimated by the relations of Λi,21 and Λi,22, which is the

same as Model (5.1). By the same arguments, we conclude that the model

yit = αi + x′
itβi + ψ′

igt + φ′
iht + ǫit,

xit = νi + γh′
i ht + vit.

is efficiently estimated by the CV method.

Remark 5.4 If the underlying coefficients are identical, we can also use the information

contained in the loadings to improve the efficiency. Let

ĝi(V, β) =

[

Λ̂i,22 − V Λ̂i,12

Σ̂i,22

]

β −
[

Λ̂i,21 − V Λ̂i,11

Σ̂i,21

]

.

Given equation (5.11) (notice that now βi ≡ β for all i) we can consistently estimate β by

(β̂LV , V̂ ) = argmin
β,V

N
∑

i=1

ĝi(V, β)′Ŵ−1
i ĝi(V, β). (5.16)
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where Ŵi is defined in (5.13). Notice that if Λ is identified, we can estimate β by (5.4),

replacing the unknown parameters with their estimates. So the additional estimation of

V can be regarded as the cost we pay for the rotational indeterminacy. The finite sample

properties of the above LV estimator will be investigated in Section 7.

6 Discussions on models with time-invariant regressors

In some applications, it is of interest to include some time-invariant variables, such as

gender, race, education, and so forth. In this section, we address this concern. Consider

the following model with time-invariant variables:

yit = αi + x′
itβi + ψ′

igt + φ′
iht + ǫit

xit = νi + γ
g′
i gt + γh′

i ht + vit

(6.1)

where φi’s are observable and represent the time-invariant regressors. Model (6.1) specifies

that the coefficients of φi are time-varying. We believe that this is a sensible way to make

the model flexible enough. Now we show that our estimation idea can be used to estimate

(6.1). As in the previous section, rewrite model (6.1) as
[

yit

xit

]

=

[

αi

νi

]

+

[

β′
iγ

g′
i + ψ′

i β′
iγ

h′
i + φ′

i

γ
g′
i γh′

i

] [

gt

ht

]

+

[

β′
ivit + ǫit
vit

]

(6.2)

Let Λ′
i be the loadings matrix before ft = (g′

t, h
′
t)

′ and partition it into four blocks, we have

Λi =

[

Λi,11 Λi,12

Λi,21 Λi,22

]

=

[

ψi + γ
g
i βi γ

g
i

φi + γh
i βi γh

i

]

(6.3)

Let Λ∗
i = R′Λi be the underlying parameters that the estimators correspond to. So we

have

Λ∗′
i =

[

Λ∗′
i,11 Λ∗′

i,21

Λ∗′
i,12 Λ∗′

i,22

]

= Λ′
iR =

[

Λ′
i,11 Λ′

i,21

Λ′
i,12 Λ′

i,22

] [

R11 R12

R21 R22

]

This leads to

Λ∗
i,11 = (R′

11γ
g
i +R′

21γ
h
i )βi +R′

11ψi +R′
21φi, Λ∗

i,12 = R′
11γ

g
i +R′

21γ
h
i (6.4)

Λ∗
i,21 = (R′

12γ
g
i +R′

22γ
h
i )βi +R′

12ψi +R′
22φi, Λ∗

i,22 = R′
12γ

g
i +R′

22γ
h
i (6.5)

From (6.4)−(6.5), we have

R′
12R

′−1
11 (Λ∗

i,11 − Λ∗
i,12βi) +R′

22·1φi = (Λ∗
i,21 − Λ∗

i,22βi) (6.6)

where R22·1 = R22 −R21R
−1
11 R12. Given (6.6) together with Σi,22βi = Σi,21, we have

[

Λ∗
i,22 − V Λ∗

i,12

Σi,22

]

βi =

[

Λ∗
i,21 − V Λ∗

i,11 −R′
22·1φi

Σi,21

]

(6.7)

where V = R′
12R

′−1
11 . If V and R22·1 are known, we can use (6.7) to efficiently estimate βi.

Similarly as in the previous section, we can use β̂CV
i to get a preliminary estimators for V

and R22·1. This leads to the following estimation procedures:

13



1. Use the maximum likelihood method to obtain the estimates Σ̂ii, Λ̂i and f̂t for all i

and t.

2. Calculate β̂CV
i = Σ̂−1

i,22Σ̂i,21 and V̂ and R̂22·1 by

[V̂ , R̂′
22·1] =

[

N
∑

i=1

(Λ̂i,21 − Λ̂i,22β̂
CV
i )Ξi

][

N
∑

i=1

ΞiΞ
′
i

]−1

where Ξi = [(Λ̂i,11 − Λ̂i,12β̂
CV
i )′, φ′

i]
′.

3. Calculate β̂LV
i = (∆̂′

iŴ
−1
i ∆̂i)

−1∆̂′
iŴ

−1
i γ̂i, where

∆̂i =

[

Λ̂i,22 − V̂ Λ̂i,12

Σ̂i,22

]

, γ̂i =

[

Λ̂i,21 − V̂ Λ̂i,11 − R̂′
22·1φi

Σ̂i,21

]

and Ŵi is the predetermined weighting matrix, which is the same as (5.13).

Similarly we can iterate Steps 2 and 3 by replacing β̂CV
i with the updated LV estimator.

This leads to the iterated LV estimator. Under the same conditions of Theorem (5.1), we

can show
√
T (β̂LV

i − βi) =
(

γh′
i (Mhh −MhgM

−1
gg Mgh)γh

i + Ωi
)−1

× 1√
T

T
∑

t=1

[

γh′
i

(

ḣt −MhgM
−1
gg ġt

)

+ vit

]

ǫit + op(1)

The above asymptotic result can be interpreted in a similar way as in Remark 5.2. So the

LV estimator is asymptotically efficient.

7 Finite sample properties

In this section, we run Monte Carlo simulations to investigate the finite sample proper-

ties of the proposed estimators. The model considered in the simulation consists of one

explanatory variable (K = 1) and two factors (r = 2), which can be presented as

yit = αi + xitβi + ψigt + φiht + ǫit,

xit = νi + γ
g
i gt + γh

i ht + vit,
(7.1)

where gt and ht are both scalars. We consider the following different specifications on the

models (M), loadings (L), errors (E) and coefficients(C):

M1: ψi and φi are random variables for all i;

M2: φi is zero for all i and ψi is a random variable.

L1: ψi and φi (if not zero) are generated according to ψi = 2 + N(0, 1) and φi =

1 +N(0, 1); similarly γg
i and γh

i are generated by γg
i = 1 +N(0, 1) and γh

i = 2 +N(0, 1).

L2: ψi and φi (if not zero) are generated from N(0, 1); γg
i and γh

i are generated

according to γg
i = ψi +N(0, 1) and γh

i = φi +N(0, 1).

E1: Let Ξ be a N(K + 1) dimensional vector with all its elements being 1. Let

Υ = diag(Υ1,Υ2, . . . ,ΥN ) be an N(K + 1) × N(K + 1) block diagonal matrix, where
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Υi = diag(1, (M ′
iMi)

−1/2Mi) with Mi being a K × K standard normal random matrix.

Let ςit = (ǫit, vit)
′ and ςt = (ς ′

1t, ς
′
2t, . . . , ς

′
Nt)

′. Then ςt is generated according to ςt =
√

diag(Ξ)Υεt, where εt is an N(K+ 1) × 1 vector with all its elements generated i.i.d from

N(0, 1).

E2: Let

Li =

[

ψi φi

γ
g
i γh

i

]

, i = 1, 2, . . . , N

and L = (L′
1, L

′
2, . . . , L

′
N )′ an N(K + 1) × 2 matrix. ςt is generated as in E1 except that

Ξi = 0.1 +
ηi

1 − ηi
ι′iιi, i = 1, 2, · · · , N(K + 1)

where ι′i is the ith row of L, and ηi is drawn independently from U [u, 1 − u] with u = 0.1.

C1: βi = 1 +N(0, 0.04) for all i.

C2: βi = 1 for all i.

Remark 7.1 Two specifications in M denotes the two models considered in the paper.

M1 corresponds to the basic model, and M2 corresponds to the model with zero restric-

tions. We consider two different sets of loadings, L1 and L2. Both specifications give rise

to the endogeneity problem in the y equation, but as will be seen below, the CCE esti-

mator performs quite differently in the two setups. We also consider the cross-sectional

homoscedasticity and heteroscedasticity in the simulation, which correspond to E1 and E2,

respectively. When generating heteroscedasticity, we add 0.1 to the expression, avoiding

the variance being too close to zero. Our approach to generating the idiosyncratic errors is

similar to Doz, Giannone and Reichlin (2012) and Bai and Li (2014). We also consider two

specifications for the coefficients. While we mainly focus on the performance of the esti-

mation of heterogeneous coefficients, we also use simulations to examine the finite sample

properties of the two estimators proposed in Remarks 4.4 and 5.4.

The other parameters including gt, ht, αi, νi are all generated independently fromN(0, 1).

To evaluate the performance of estimators, we use the average of the root mean square

error (RMSE) to measure the goodness-of-fit, which is calculated by

√

√

√

√

1

NS
S

∑

s=1

N
∑

i=1

(β̂
(s)
i − βi)2,

where β̂
(s)
i is the estimator of the ith unit in the sth experiment, and βi is the underlying

true value. S is the number of repetitions, which is set to 1000 in the simulation.

7.1 Determining the number of factors

We now discuss the determination of the number of factors, which is a relevant issue in

the factor-analysis-based method. In the basic model, determining the number of factors

is relatively easier. In the first step, we estimate a pure factor model. So the existing

determination methods, such as Bai and Ng (2002), Onatski (2009) and Ahn and Horenstein

(2013), can be used. Although these methods do work well in the present setup, to be
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consistent with the theory established in Section 3, we instead consider the following MLE-

based information criterion in the simulation

r̂ = argmin
0≤m≤rmax

IC(m) (7.2)

where

IC(m) =
1

NK̄
ln |Λ̂mΛ̂m′ + Ψ̂m| +m

NK̄ + T

NTK̄
ln min(NK̄, T ).

where Λ̂m and Ψ̂m are the respective estimators of Λ and Ψ when the number of factors

is set to m and K̄ = K + 1. For the model with zero restrictions, we need to determine

the factor numbers in the y equation and the x equation, respectively. Following Bai and

Li (2014), we consider a two-step method to determine them. First, we use (7.2) to obtain

the total number r = r1 + r2, denoted by r̂, and the associated CV estimator β̂r̂
i ; we then

use (7.2) again to determine the factor number of the residual matrix R = (Rit) with

Rit = ẏit − ẋ′
itβ̂

r̂
i , which we use r̂1 to denote. Then r̂2 = r̂ − r̂1. In the simulation, we set

rmax = 3.

In practice, the basic model and the model with zero restrictions cannot be differenti-

ated. We therefore suggest estimating the two models in a unified way. More specifically,

for a given data set, we calculate r and r1. If r̂ = r̂1, we turn to the basic model; if r̂ > r̂1,

we turn to the model with zero restrictions.

Table 1 reports the percentages that the number of factors is correctly estimated by

(7.2) based on 1000 repetitions. From the table, we see that the number of factors can be

correctly estimated with very high probability. This result is robust to all combinations of

listed specifications on loadings, errors and models.

Table 1: The percentage of correctly estimating the number of factors

M1 M2

T 50 100 150 200 50 100 150 200

L1+E1 L1+E1

N
50 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

L1+E2 L1+E2

N
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

L2+E1 L2+E1

N
50 99.8 100.0 100.0 100.0 99.9 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

L2+E2 L2+E2

N
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

16



7.2 Finite sample properties of several estimators

In this section, we examine the performance of the CV and LV estimators. For the purpose

of comparison, we also calculate Pesaran’s CCE estimator, Song’s PC estimator, and the

infeasible GLS estimator. The infeasible GLS estimator, which is calculated by assuming

that the factors are observed, serves as the benchmark for comparison. Since the previous

subsection has confirmed that the number of factors can be correctly estimated with high

probability, we assume that the number of factors is known in this subsection.

Tables 2-3 report the performance of the CCE, PC, CV and infeasible GLS (denoted by

INF) estimators under different loading and error choices in the basic model. In summary,

we see that the CCE estimator performs well under L1, but poorly under L2; the PC

estimator performs well under E1, but poorly under E2; the CV estimator performs well

under all setups.

First consider the different loading choices. Under L1, the performance of the CCE

estimator is considerably good and very close to that of the CV estimator. The performance

of these two estimators is only slightly inferior to the infeasible GLS estimator regardless

of homoscedasticity or heteroscedasticity. However, under L2 the performance of the CCE

estimator is poor. Not only does it have a large average RMSE, but it also exhibits a slowly

decreasing rate for the average RMSE. In contrast, the CV estimator performs closely with

the infeasible GLS estimator. The average RMSE of the CV estimator decreases almost at

the same speed with that of the infeasible estimator.

Table 2: The performance of the four estimators in the basic model

L1+E1 L2+E1

N T CCE PC CV INF CCE PC CV INF

50 50 0.1517 0.1596 0.1537 0.1501 0.3980 0.1603 0.1533 0.1492
100 50 0.1499 0.1538 0.1512 0.1494 0.3985 0.1543 0.1508 0.1489
150 50 0.1491 0.1519 0.1500 0.1489 0.3961 0.1526 0.1503 0.1492

50 100 0.1052 0.1087 0.1049 0.1024 0.3868 0.1095 0.1051 0.1026
100 100 0.1034 0.1058 0.1040 0.1029 0.3855 0.1060 0.1037 0.1025
150 100 0.1029 0.1046 0.1033 0.1025 0.3863 0.1049 0.1034 0.1026

50 150 0.0857 0.0878 0.0848 0.0830 0.3819 0.0883 0.0847 0.0828
100 150 0.0839 0.0855 0.0841 0.0832 0.3826 0.0858 0.0841 0.0832
150 150 0.0834 0.0846 0.0836 0.0831 0.3819 0.0848 0.0836 0.0830

50 200 0.0749 0.0760 0.0733 0.0717 0.3832 0.0763 0.0732 0.0716
100 200 0.0723 0.0737 0.0723 0.0715 0.3815 0.0741 0.0726 0.0718
150 200 0.0719 0.0729 0.0720 0.0716 0.3813 0.0731 0.0722 0.0717

The reason for the different performance of the CCE estimator under different loading

sets is that the space spanned by z̃t = 1
N

∑N
i=1 żit with żit = (ẏit, ẋ

′
it)

′ provides a good

approximation to the space spanned by ft under L1, but a poor approximation under L2.

To see this point more clearly, consider (2.1), which can be written as żit = Λ′
ift + u̇it.

Taking the average over i, we have z̃t = Λ̃′ft + ũt, where Λ̃ and ũt are defined similarly to

z̃t. With some transformation, we have ft = (Λ̃Λ̃′)−1Λ̃(z̃t − ũt). So a good approximation

requires two conditions. First, z̃t dominates ũt so that ũt is negligible. Second, Λ̃Λ̃′ is
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invertible when N goes to infinity②. The loadings in L1 satisfy these two conditions, but

the loadings in L2 violate the first one. In fact, the terms Λ̃′ft and ũt are of the same

magnitude under L2. So a good approximation fails. There are cases in which the second

condition breaks down. For example, if all rows of Λ share the same mean, then Λ̃ is of

rank one asymptotically, which in turn leads to Λ̃′Λ̃ being singular asymptotically. The

simulation results confirm that the CCE estimator performs poorly in this case.

Consider then the different choices of the errors. Table 3 shows that the PC estimator

performs poorly in the presence of cross-sectional heteroscedasticity (E2). In addition,

we find that the performance of the PC estimator is improved marginally under E1, but

significantly under E2, when N becomes larger. According to the theory of Song (2013), the

PC estimate is
√
T -consistent, implying that the performance of the PC estimator should

be closely related to T and loosely related to N . This theoretical result is supported

by Table 2 but contradicted in Table 3. We think that the underlying reason is due to

the computation problem of the minimizer of the objective function in the iterated PC

method, as mentioned in Section 1. The extent of this problem depends on the strength of

heteroscedasticity. In our simulation, we generate heavy heteroscedasticity, which magnifies

the computational problem of the iterated PC method. ③

Table 3: The performance of the four estimators in the basic model

L1+E2 L2+E2

N T CCE PC CV INF CCE PC CV INF

50 50 0.3505 3.4677 0.3667 0.3581 0.4079 2.2194 0.2456 0.2377
100 50 0.3426 2.7550 0.3592 0.3545 0.4084 1.6894 0.2390 0.2362
150 50 0.3470 2.6504 0.3569 0.3543 0.4128 1.2141 0.2382 0.2363

50 100 0.2515 2.8863 0.2494 0.2427 0.3870 2.0866 0.1672 0.1630
100 100 0.2380 2.5816 0.2430 0.2399 0.3856 1.5579 0.1630 0.1616
150 100 0.2417 2.6489 0.2447 0.2430 0.3864 0.9734 0.1644 0.1630

50 150 0.2141 2.9851 0.2008 0.1956 0.3773 1.9264 0.1333 0.1302
100 150 0.2029 2.7919 0.1996 0.1977 0.3804 1.4195 0.1340 0.1326
150 150 0.1973 2.4904 0.1988 0.1973 0.3791 1.0475 0.1319 0.1310

50 200 0.1944 3.5289 0.1763 0.1718 0.3769 1.8067 0.1168 0.1141
100 200 0.1781 3.0194 0.1715 0.1694 0.3787 1.1939 0.1142 0.1131
150 200 0.1726 2.4151 0.1717 0.1705 0.3771 0.8777 0.1128 0.1122

Tables 4-7 report the simulation results for the models with zero restrictions and het-

erogeneous coefficients. Overall, these tables reaffirm the result that the CCE estimator

performs poorly under L2, and the PC estimator performs poorly under E2. Besides this re-

sult, there are several additional points worth noting. First, the CCE and CV estimators are

②The rank condition in Pesaran (2006) is a necessary but not sufficient condition for invertibility of Λ̃Λ̃′.
③In the case of a homogeneous coefficient, this computational problem does not exist. First, as shown in

the next subsection, the PC estimator generally has a better convergence under a homogeneous coefficient.
Second, as pointed out in Moon and Weidner (2012), the objective function of the PC method can be
written into a trace form, which only depends on β. So we can first use the method suggested by Bai
(2009) to obtain a preliminary estimator, and then turn to the Newton-Raphson algorithm to get a better
estimator.
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inefficient. Under the L1+E1 setup, even when N and T are large, say N = 150, T = 200,

the average RMSEs of these two estimators are considerably larger than the remaining four

estimators. This is not surprising since the two estimation methods do not use the infor-

mation contained in the zero restrictions; see the discussion in Section 5. Second, several

iterations over the LV estimator indeed improve the finite sample performance, especially

when N and T are small or moderate. In all combinations of N and T , the ILV estimator

outperforms the LV one. Third, under homoscedasticity, the PC, LV and ILV estimators

are seen to be efficient since their performance is very close to that of the infeasible GLS

estimator, especially when N and T are large.

Table 4: The performance of the six estimators under M2+L1+E1

N T CCE PC CV LV ILV INF

50 50 0.1486 0.0811 0.1527 0.0891 0.0822 0.0790
100 50 0.1483 0.0797 0.1503 0.0868 0.0808 0.0787
150 50 0.1488 0.0792 0.1501 0.0862 0.0803 0.0785

50 100 0.1023 0.0560 0.1046 0.0588 0.0564 0.0546
100 100 0.1026 0.0552 0.1039 0.0575 0.0555 0.0545
150 100 0.1024 0.0549 0.1032 0.0571 0.0552 0.0545

50 150 0.0831 0.0454 0.0849 0.0470 0.0456 0.0443
100 150 0.0831 0.0449 0.0840 0.0463 0.0450 0.0443
150 150 0.0828 0.0445 0.0834 0.0457 0.0447 0.0442

50 200 0.0718 0.0391 0.0732 0.0404 0.0392 0.0382
100 200 0.0717 0.0387 0.0725 0.0396 0.0388 0.0382
150 200 0.0715 0.0384 0.0720 0.0392 0.0385 0.0381

Table 5: The performance of the six estimators under M2+L2+E1

N T CCE PC CV LV ILV INF

50 50 0.2716 0.1231 0.1533 0.1215 0.1210 0.1193
100 50 0.2673 0.1218 0.1512 0.1210 0.1209 0.1200
150 50 0.2674 0.1205 0.1504 0.1201 0.1200 0.1194

50 100 0.2532 0.0849 0.1047 0.0838 0.0836 0.0825
100 100 0.2563 0.0835 0.1034 0.0830 0.0829 0.0823
150 100 0.2562 0.0833 0.1033 0.0829 0.0829 0.0825

50 150 0.2469 0.0691 0.0849 0.0681 0.0680 0.0672
100 150 0.2500 0.0683 0.0845 0.0679 0.0678 0.0674
150 150 0.2476 0.0676 0.0836 0.0673 0.0673 0.0670

50 200 0.2475 0.0595 0.0732 0.0588 0.0587 0.0580
100 200 0.2474 0.0586 0.0725 0.0582 0.0582 0.0578
150 200 0.2476 0.0584 0.0720 0.0581 0.0581 0.0579
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Table 6: The performance of the six estimators under under M2+L1+E2

N T CCE PC CV LV ILV INF

50 50 0.2794 0.7402 0.3002 0.2293 0.2172 0.2103
100 50 0.2905 0.2507 0.3020 0.2223 0.2130 0.2081
150 50 0.2980 0.3511 0.3053 0.2282 0.2201 0.2159

50 100 0.2017 0.5204 0.2100 0.1531 0.1495 0.1462
100 100 0.1993 0.1610 0.2081 0.1517 0.1487 0.1468
150 100 0.2057 0.1871 0.2112 0.1524 0.1496 0.1481

50 150 0.1665 0.4558 0.1727 0.1220 0.1198 0.1170
100 150 0.1645 0.3249 0.1675 0.1196 0.1180 0.1166
150 150 0.1641 0.1282 0.1669 0.1202 0.1184 0.1174

50 200 0.1463 0.3222 0.1461 0.1064 0.1048 0.1027
100 200 0.1462 0.1510 0.1484 0.1050 0.1039 0.1027
150 200 0.1447 0.1128 0.1472 0.1043 0.1032 0.1023

Table 7: The performance of the six estimators under under M2+L2+E2

N T CCE PC CV LV ILV INF

50 50 0.2891 1.2307 0.1940 0.1606 0.1600 0.1554
100 50 0.2913 0.7183 0.1910 0.1570 0.1567 0.1545
150 50 0.2894 0.4762 0.1879 0.1567 0.1567 0.1557

50 100 0.2710 0.9264 0.1310 0.1091 0.1080 0.1062
100 100 0.2748 0.6029 0.1306 0.1097 0.1097 0.1086
150 100 0.2720 0.4254 0.1297 0.1079 0.1078 0.1070

50 150 0.2567 0.7998 0.1057 0.0895 0.0882 0.0865
100 150 0.2615 0.5410 0.1061 0.0894 0.0890 0.0880
150 150 0.2654 0.3370 0.1057 0.0887 0.0887 0.0881

50 200 0.2593 0.7218 0.0900 0.0754 0.0748 0.0734
100 200 0.2603 0.5082 0.0901 0.0766 0.0766 0.0759
150 200 0.2566 0.3009 0.0898 0.0749 0.0749 0.0742

7.3 Homogeneous coefficient

In this subsection, we investigate the finite sample properties of the CV and LV estimators

suggested in (4.6) and (5.16). We also compute the iterated PC estimator of Bai (2009)

and the ML estimator of Bai and Li (2014) for comparison. For simplicity, only the setup

“L2+E2” is considered. Table 8 presents the simulation results. Overall, we see that the

CV (LV) estimation method gives a consistent estimation for the homogeneous coefficient.

Additionally, we see that the performance of the CV(LV) estimator is superior to that of the

iterated PC estimator, but inferior to that of the ML estimator. This result is consistent

with the ways that the three methods deal with the cross-sectional heteroscedasticity. The

two-step method partially takes the cross-sectional heteroscedasticity into account, while

the iterated PC method does not take it into account and the ML method fully takes it

into account.
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Table 8: The performance of the CV(LV), PC and ML estimators

under L2+E2+C2

CV(LV) PC ML

N T Bias RMSE Bias RMSE Bias RMSE

M1

50 50 0.0004 0.0216 -0.0002 0.0259 -0.0004 0.0102
100 50 0.0004 0.0151 0.0000 0.0159 0.0002 0.0066
150 50 0.0007 0.0118 0.0008 0.0121 0.0004 0.0052

50 100 0.0006 0.0146 0.0005 0.0194 -0.0000 0.0071
100 100 0.0000 0.0108 -0.0000 0.0117 0.0002 0.0047
150 100 -0.0003 0.0081 -0.0003 0.0086 -0.0002 0.0036

50 150 -0.0000 0.0122 0.0005 0.0181 -0.0000 0.0052
100 150 0.0004 0.0084 0.0002 0.0101 0.0001 0.0037
150 150 -0.0000 0.0067 -0.0002 0.0072 0.0000 0.0031

50 200 0.0008 0.0105 0.0006 0.0173 -0.0001 0.0047
100 200 0.0001 0.0073 0.0002 0.0089 0.0000 0.0033
150 200 0.0000 0.0060 0.0001 0.0065 0.0000 0.0025

M2

50 50 0.0003 0.0140 0.0088 0.0224 -0.0001 0.0053
100 50 -0.0002 0.0097 0.0023 0.0111 0.0000 0.0037
150 50 -0.0000 0.0080 0.0012 0.0085 0.0000 0.0030

50 100 0.0003 0.0098 0.0077 0.0185 -0.0001 0.0043
100 100 -0.0001 0.0068 0.0022 0.0086 -0.0001 0.0026
150 100 -0.0001 0.0057 0.0008 0.0063 0.0000 0.0022

50 150 0.0001 0.0075 0.0071 0.0172 0.0002 0.0029
100 150 0.0002 0.0053 0.0025 0.0079 0.0000 0.0021
150 150 0.0000 0.0044 0.0010 0.0052 -0.0001 0.0017

50 200 0.0001 0.0066 0.0075 0.0166 0.0000 0.0026
100 200 0.0001 0.0047 0.0023 0.0071 -0.0000 0.0018
150 200 0.0001 0.0039 0.0010 0.0046 0.0000 0.0015

8 Conclusion

This paper considers the estimation of heterogeneous coefficients in panel data models with

common shocks. We propose a two-step method to estimate heterogeneous coefficients, in

which the ML method is first used to estimate the loadings and variances of the idiosyn-

cratic errors in a pure factor model, and heterogeneous coefficients are then estimated

based on the estimates and structural relations implied by the model. Asymptotic prop-

erties of the proposed estimators including the asymptotic representations and limiting

distributions are investigated and provided.

In addition, we extend our method to the models with zero restrictions on the partial

loadings in the y equation. We point out that efficiency can be gained by using the infor-

mation contained in the loadings. The asymptotic representation and limiting distribution

of the new two-step estimator are studied. We also consider the model with time-invariant

regressors.
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The proposed estimators are asymptotically efficient in the sense that they have the

same limiting distributions as the infeasible GLS estimators. Monte Carlo simulations

confirm our theoretical results and show encouraging evidence that the two-step estimators

perform robustly in all data setups.
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Appendix A: Proof of Theorem 3.1

Throughout the appendix, we use C to denote a generic finite constant large enough, which

need not to be the same at each appearance. In addition, we introduce following notations

for ease of exposition.

H = (Λ′Ψ−1Λ)−1; Ĥ = (Λ̂′Ψ̂−1Λ̂)−1; R = Mff Λ′Ψ̂−1Λ̂(Λ̂′Ψ̂−1Λ̂)−1.

We first show that R = Op(1). The following lemma is useful.

Lemma A.1 Under Assumptions A-D,

(a) R = ‖N1/2Ĥ1/2‖ ·Op(1)

(b) R′M−1
ff

1

T

T
∑

t=1

ftu
′
tΨ̂

−1Λ̂Ĥ = ‖N1/2Ĥ1/2‖2 ·Op(T−1/2)

(c) ĤΛ̂′Ψ̂−1
[ 1

T

T
∑

t=1

(utu
′
t − Ψ)

]

Ψ̂−1Λ̂Ĥ = ‖N1/2Ĥ1/2‖2 ·Op(T−1/2)

(d) ĤΛ̂′Ψ̂−1(Ψ̂ − Ψ)Ψ̂−1Λ̂Ĥ = ‖N1/2Ĥ1/2‖2 · op

(

[ 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2]1/2
)

Proof of Lemma A.1: Consider (a). By the definition of R and Ĥ, we have

R = Mff Λ′Ψ̂−1Λ̂(Λ̂′Ψ̂−1Λ̂)−1 = Mff (Λ′Ψ̂−1Λ̂Ĥ1/2)Ĥ1/2

By the Cauchy-Schwarz inequality,

∥

∥Λ′Ψ̂−1Λ̂Ĥ1/2
∥

∥ =
∥

∥

N
∑

i=1

ΛiΣ̂
−1
ii Λ̂′

iĤ
1/2

∥

∥ ≤
(

N
∑

i=1

∥

∥ΛiΣ̂
−1/2
ii ‖2

)1/2(

N
∑

i=1

‖Σ̂
−1/2
ii Λ̂′

iĤ
1/2‖2

)1/2

However,

N
∑

i=1

‖Σ̂
−1/2
ii Λ̂′

iĤ
1/2‖2 = tr

[

N
∑

i=1

Ĥ1/2Λ̂iΣ̂
−1
ii Λ̂′

iĤ
1/2]

= tr
[

Ĥ1/2Ĥ−1Ĥ1/2]

= r (A.1)

Given (A.1), together with the boundedness of Σ̂
−1/2
ii and Λi, we have

∥

∥Λ′Ψ̂−1Λ̂Ĥ1/2
∥

∥ = Op(N1/2)

Then (a) follows.

Consider (b). We first show

1

T

T
∑

t=1

u′
tΨ̂

−1Λ̂Ĥ =
1

T

N
∑

i=1

T
∑

t=1

ftu
′
itΣ̂

−1
ii Λ̂′

iĤ = ‖N1/2Ĥ1/2‖ ·Op(T−1/2) (A.2)

By the Cauchy-Schwarz inequality,

1

T

N
∑

i=1

T
∑

t=1

ftu
′
itΣ̂

−1
ii Λ̂′

iĤ ≤ C
( 1

N

N
∑

i=1

∥

∥

1

T

T
∑

t=1

ftu
′
it

∥

∥

2
)1/2

×
(

N
∑

i=1

‖Σ̂
−1/2
ii Λ̂′

iĤ
1/2‖2

)1/2
‖N1/2Ĥ1/2‖
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So (A.2) follows by (A.1). Given (A.2) together with result (a), we have (b).

Consider (c), which is equal to

Ĥ
N

∑

i=1

N
∑

j=1

Λ̂iΣ̂
−1
ii

( 1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

)

Σ̂−1
jj Λ̂′

jĤ.

The above expression is bounded in norm by

‖N1/2Ĥ1/2‖2(

N
∑

i=1

‖Σ̂
−1/2
ii Λ̂′

iĤ
1/2‖2)

( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2
)1/2

which is ‖N1/2Ĥ1/2‖2 ·Op(T−1/2) by (A.1). Then (c) follows.

Consider (d), which is equal to

Ĥ
N

∑

i=1

Λ̂iΣ̂
−1
ii (Σ̂ii − Σii)Σ̂

−1
ii Λ̂′

iĤ.

The above epression is bounded in norm by

‖N1/2Ĥ1/2‖2 1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 · ‖Σ̂

−1/2
ii (Σ̂ii − Σii)Σ̂

−1/2
ii ‖

By (A.1), we have
∑N

i=1 ‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 = r, which means ‖Ĥ1/2Λ̂iΣ̂

−1/2
ii ‖ ≤ √

r for all i.

Given this result, together with the boundedness of Σ̂−1
ii , we have that the above expression

is bounded by

C
√
r‖N1/2Ĥ1/2‖2 1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖ · ‖Σ̂ii − Σii‖

which is further bounded by

C
√
r‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖ĤΛ̂iΣ̂
−1/2
ii ‖2)1/2( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2)1/2
,

implying (d). �

Proposition A.1 Under Assumptions A-D,

‖N1/2Ĥ1/2‖ = Op(1), R = Op(1).

Proof of Proposition A.1: By (3.4), we have Λ̂′Ψ̂−1(Mzz − Σ̂zz)Ψ̂−1Λ̂ = 0. By

Mzz = ΛMff Λ′ + Λ
1

T

T
∑

t=1

ftu
′
t +

1

T

T
∑

t=1

utf
′
tΛ

′ +
1

T

T
∑

t=1

(utu
′
t − Ψ) + Ψ

and Σ̂zz = Λ̂Λ̂′ + Ψ̂, we have

Ir = R′M−1
ff R+R′M−1

ff

1

T

T
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′
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−1Λ̂Ĥ + ĤΛ̂′Ψ̂−1 1
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+ĤΛ̂′Ψ̂−1
[ 1

T

T
∑

t=1

(utu
′
t − Ψ)

]

Ψ̂−1Λ̂Ĥ − ĤΛ̂′Ψ̂−1(Ψ̂ − Ψ)Ψ̂−1Λ̂Ĥ (A.3)

Consider the right hand side of (A.3). By Lemma A.1, the first term is ‖N1/2Ĥ1/2‖2 ·Op(1)

and the 2nd-4th terms are all ‖N1/2Ĥ1/2‖2 ·Op(T−1/2). The last term is equivalent to

Ĥ1/2
(

N
∑
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Ĥ1/2Λ̂iΣ̂
−1/2
ii

(

Σ̂
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ii (Σ̂ii − Σii)Σ̂
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ii
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1/2
)
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which is bounded by

1
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ii (Σ̂ii − Σii)Σ̂
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ii ‖
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which is ‖N1/2Ĥ1/2‖2 ·Op(N−1) by ‖Σ̂
−1/2
ii (Σ̂ii −Σii)Σ̂

−1/2
ii ‖ = Op(1) and (A.1). So the last

term is ‖N1/2Ĥ1/2‖2 · Op(N−1). However, by the equation (A.10) of Bai and Li (2012a),

we have

‖N1/2Ĥ1/2‖2 = tr(NĤ) = tr
[

R′M−1
ff

( 1

N
Λ′Ψ−1Λ

)−1
M−1

ff R
]

+ op(1).

Given these results, we have that the first term dominates the remaining four terms. If R

is stochastically unbounded, the right hand side of (A.3) will also be unbounded. However,

the left hand side is an identity matrix. A contradiction is obtained. So R = Op(1), which

means ‖N1/2Ĥ1/2 = Op(1)‖ by Lemma A.1(a). This completes the proof. �

Lemma A.2 Under Assumptions A-D with ‖N1/2Ĥ1/2‖ = Op(1), we have

(a)
1

N

N
∑

j=1

∥

∥

∥ĤΛ̂′Ψ̂−1Λ
1

T

T
∑

t=1

ftu
′
jt

∥

∥

∥

2
= Op(T−1)

(b)
1

N

N
∑

j=1

∥

∥

∥ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
tΛj

∥

∥

∥

2
= Op(T−1)

(c)
1

N

N
∑

j=1

∥

∥

∥ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

[utu
′
jt − E(utu

′
jt)]

∥

∥

∥

2
= Op(T−1)

(d)
1

N

N
∑

j=1

∥

∥

∥ĤΛ̂jΣ̂−1
jj (Σ̂jj − Σjj)

∥

∥

∥

2
= op

( 1

N

N
∑

j=1

‖Σ̂jj − Σjj‖2
)

Proof of Lemma A.2. Consider (a), which is bounded by

‖ĤΛ̂′Ψ̂−1Λ‖ · 1

N

N
∑

j=1

∥

∥

∥

1

T

T
∑

t=1

ftu
′
jt

∥

∥

∥

2

By Lemma A.1(a) and Proposition A.1, we have ‖ĤΛ̂′Ψ̂−1Λ‖ = Op(1). So we have (a).

Consider (b), which is bounded by

∥

∥ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
t

∥

∥

2( 1

N

N
∑

j=1

‖Λj‖2)
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which is Op(T−1) by (A.2). Then (b) follows.

Consider (c). The left hand side of (c) is bounded in norm by

C‖N1/2Ĥ1/2‖2(

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2)

( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2
)

which is Op(T−1) by Proposition A.1. Then (c) follows.

Consider (d). The left hand side of (d) is bounded by

C‖Ĥ1/2‖2 1

N

N
∑

j=1

(

‖Ĥ1/2Λ̂jΣ̂
1/2
jj ‖2 · ‖Σ̂jj − Σjj‖2

)

Since
∑N

j=1 ‖Ĥ1/2Λ̂jΣ̂
−1/2
jj ‖2 = r, the above expression is bounded by

Cr‖N1/2Ĥ1/2‖2 1

N2

N
∑

j=1

(

‖Σ̂jj − Σjj‖2
)

which is 1
N

∑N
j=1 ‖Σ̂jj − Σjj‖2 ·Op(N−1) by Proposition A.1. Thus we have (d). �

Proposition A.2 Under Assumptions A-D, we have

1

N

N
∑

j=1

‖Λ̂j −R′Λj‖2 = Op(T−1),
1

N

N
∑

j=1

‖Σ̂jj − Σjj‖2 = Op(T−1).

Proof of Proposition A.2: Consider (3.4), which is equivalent to

(Λ̂′Ψ̂−1Λ̂)Λ̂j = (Λ̂Ψ̂−1Λ)Mff Λj + (Λ̂′Ψ̂−1Λ)
1

T

T
∑

t=1

ftu
′
jt (A.4)

+Λ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
tΛj + Λ̂′Ψ̂−1 1

T

T
∑

t=1

[utu
′
jt − E(utu

′
jt)] − Λ̂jΣ̂−1

jj (Σ̂jj − Σjj)

So we have

Λ̂j −R′Λj = R′M−1
ff

1

T

T
∑

t=1

ftu
′
jt + ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
tΛj (A.5)

+ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

[utu
′
jt − E(utu

′
jt)] − ĤΛ̂jΣ̂−1

jj (Σ̂jj − Σjj)

where R′ = (Λ̂′Ψ̂−1Λ̂)−1(Λ̂′Ψ̂−1Λ)Mff and Ĥ = (Λ̂′Ψ̂−1Λ̂)−1. We use aj1, aj2, aj3 and aj4

to denote the right hand side of (A.5). By triangular inequality,

‖Λ̂j −R′Λj‖ ≤ ‖aj1‖ + ‖aj2‖ + ‖aj3‖ + ‖aj4‖

Then we have

1

N

N
∑

j=1

‖Λ̂j −R′Λj‖2 ≤ 4
1

N

N
∑

j=1

(

‖aj1‖2 + · · · + ‖aj4‖2
)
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Using the results in Lemma A.2, we have

1

N

N
∑

j=1

‖Λ̂j −R′Λj‖2 = Op(T−1) + op

( 1

N

N
∑

j=1

‖Σ̂jj − Σjj‖2
)

(A.6)

Consider (3.5), which can be written as

Σ̂ii − Σii =
1

T

T
∑

t=1

(uitu
′
it − Σii) + Λ′

i

( 1

T

T
∑

t=1

ftu
′
it

)

+
( 1

T

T
∑

t=1

uitf
′
t

)

Λi (A.7)

−Λ′
iR(Λ̂i −R′Λi) − (Λ̂i −R′Λi)

′R′Λi − (Λ̂i −R′Λi)
′(Λ̂i −R′Λi) − Λ′

i(RR
′ −Mff )Λi

We use bi1, bi2, . . . , bi7 to denote the seven terms on the right hand side. By the Cauchy-

Schwarz inequality, we have

1

N

N
∑

i=1

‖Σ̂ii − Σii‖2 ≤ 7
1

N

N
∑

i=1

(

‖bi1‖2 + · · · + ‖bi7‖2
)

(A.8)

The first three terms are all Op(T−1). Consider the fourth term, which is bounded in norm

by

C‖R‖2 1

N

N
∑

j=1

‖Λ̂j −R′Λj‖2 = Op(T−1) + op

( 1

N

N
∑

j=1

‖Σ̂jj − Σjj‖2
)

by R = Op(1) and (A.6). The fifth is just the transpose of the fourth. The sixth is

Op(T−2)+op
(

1
N

∑N
j=1 ‖Σ̂jj −Σjj‖2

)

, which can be verified by substituting (A.5) in it. Con-

sider the last term. Since the last term is bounded in norm by ‖RR′−Mff ‖2 1
N

∑N
i=1 ‖Λi‖4, it

suffices to consider the termRR′−Mff , which we will show to beOp(T−1/2)+op([ 1
N

∑N
i=1 ‖Σ̂ii−

Σii‖2]1/2). For ease of exposition, we use S to denote the last fourth terms of (A.3). By

Lemma A.1 together with ‖N1/2Ĥ1/2‖ = Op(1), we have

S = Op(T−1/2) + op
([ 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2]1/2)

.

Now equation (A.3) can be written as Ir = R′M−1
ff R+S, which is equivalent to RR′−Mff =

−RSR−1Mff . Since R = Op(1), if R 6= op(1), then R−1 = Op(1). However, R is impossible

to be op(1) since Ir = R′M−1
ff R+ op(1). So we have

RR′ −Mff = Op(T−1/2) + op([
1

N

N
∑

i=1

‖Σ̂ii − Σii‖2]1/2), (A.9)

implying that the last term is Op(T−1)+op( 1
N

∑N
i=1 ‖Σ̂ii −Σii‖2). Given the above results,

we have
1

N

N
∑

i=1

‖Σ̂ii − Σii‖2 = Op(T−1) + op
( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2)

which implies 1
N

∑N
i=1 ‖Σ̂ii − Σii‖2 = Op(T−1). Substituting this result into (A.6), we have

the remaining result of the proposition. This completes the proof of this proposition. �

To prove Theorem 3.1, we further need the following two lemmas.
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Lemma A.3 Under Assumptions A-D,

(a) ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
t = Op(N−1/2T−1/2) +Op(T−1)

(b) ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

[utu
′
jt − E(utu

′
jt)] = Op(N−1/2T−1/2) +Op(T−1)

(c) ĤΛ̂jΣ̂−1
jj (Σ̂jj − Σjj) = Op(N−1T−1/2) +Op(T−1) + ‖Λ̂j −R′Λj‖ · op(1)

(d) ĤΛ̂′Ψ̂−1
[ 1

T

T
∑

t=1

(utu
′
t − Ψ)

]

Ψ̂−1Λ̂Ĥ = Op(N−1T−1/2) +Op(T−1)

(e) ĤΛ̂′Ψ̂−1(Ψ̂ − Ψ)Ψ̂−1Λ̂Ĥ = Op(N−1/2T−1/2)

Proof of Lemma A.3: Consider (a). The left hand side of (a) is equal to

Ĥ
N

∑

i=1

(Λ̂i −R′Λi)Σ̂
−1
ii

1

T

T
∑

t=1

uitf
′
t + ĤR′

N
∑

i=1

Λi(Σ̂
−1
ii − Σ−1

ii )
1

T

T
∑

t=1

uitf
′
t

+ ĤR′
N

∑

i=1

ΛiΣ
−1
ii

1

T

T
∑

t=1

uitf
′
t

The first term is bounded in norm by

C‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2)1/2( 1

N

N
∑

i=1

∥

∥

1

T

T
∑

t=1

uitf
′
t

∥

∥

2)1/2

which is Op(T−1) by Proposition A.1 and A.2. The second term is bounded in norm by

C3‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2)1/2( 1

N

N
∑

i=1

∥

∥

1

T

T
∑

t=1

uitf
′
t

∥

∥

2)1/2

which is also Op(T−1) by Proposition A.1 and A.2. The third term is Op(N−1/2T−1/2) by

Proposition A.1. So we have (a).

Consider (b). The left hand side (b) is equal to

Ĥ
N

∑

i=1

(Λ̂i −R′Λi)Σ̂
−1
ii

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

+ĤR′
N

∑

i=1

Λi(Σ̂
−1
ii − Σ−1

ii )
1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

+ĤR′
N

∑

i=1

ΛiΣ
−1
ii

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)].

The first term is bounded in norm by

C‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2)1/2( 1

N

N
∑

i=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2)1/2
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which is Op(T−1) by Proposition A.1 and A.2. The second term is bounded in norm by

C3‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2)1/2( 1

N

N
∑

i=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2)1/2

which is also Op(T−1) by Proposition A.1 and A.2. The third term is Op(T−1/2T−1/2) by

Proposition A.1. Given these results, we have (b).

Consider (c). The left hand side of (a) is equal to

Ĥ(Λ̂j −R′Λj)Σ̂−1
jj (Σ̂jj − Σjj) + ĤR′ΛjΣ̂−1

jj (Σ̂jj − Σjj) (A.10)

By the boundedness of Σ̂jj ,Σjj and Ĥ = Op(N−1) (since ‖N1/2Ĥ1/2‖ = Op(1)), we have

the first term is ‖Λ̂j − R′Λj‖ · op(1). Consider the second term of (A.10). Substituting

(A.7) into the second term, we obtain an expression consisting of 7 terms. The first three

terms are all Op(N−1T−1/2) by the boundedness of Σ̂ii and Ĥ = Op(N−1). The fourth

and fifth terms are both ‖Λ̂j −RΛj‖ · op(1). The sixth term is equal to

ĤR′ΛjΣ̂−1
jj (Λ̂j −R′Λj)′(Λ̂j −R′Λj)

which is bounded by

‖N1/2Ĥ1/2‖ · ‖R‖ · ‖Σ̂−1
jj ‖ · 1

N

N
∑

j=1

‖Λ̂j −R′Λj‖2

By Propositions A.1 and A.2 and the boundedness of Σ̂ii, the above expression is Op(T−1).

The seventh term is Op(N−1T−1/2) since S = Op(T−1/2). Given these results, we have the

second term of (A.10) is Op(N−1T−1/2) +Op(T−1) + ‖Λ̂j −R′Λj‖ · op(1). Then (c) follows.

Consider (d). The left hand side of (d) is equal to

Ĥ
N

∑

i=1

N
∑

j=1

Λ̂iΣ̂
−1
ii

1

T

T
∑

t=1

[uitujt − E(uitu
′
jt)]Σ̂

−1
jj Λ̂′

jĤ

which is equivalent to

Ĥ
N

∑

i=1

N
∑

j=1

(Λ̂i −R′Λi)Σ̂
−1
ii

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]Σ̂

−1
jj Λ̂′

jĤ

ĤR′
N

∑

i=1

N
∑

j=1

ΛiΣ̂
−1
ii

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]Σ̂

−1
jj (Λ̂j −R′Λj)′Ĥ

ĤR′
N

∑

i=1

N
∑

j=1

Λi(Σ̂
−1
ii − Σ−1

ii )
1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]Σ̂

−1
jj Λ′

jRĤ (A.11)

ĤR′
N

∑

i=1

N
∑

j=1

ΛiΣ
−1
ii

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)](Σ̂

−1
jj − Σ−1

jj )Λ′
jRĤ

ĤR′
N

∑

i=1

N
∑

j=1

ΛiΣ
−1
ii

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]Σ

−1
jj Λ′

jRĤ
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The first term is bounded in norm by

C · ‖N1/2Ĥ1/2‖3 ·
( 1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2)1/2(

N
∑

j=1

‖Σ̂
−1/2
jj Λ̂jĤ

1/2‖2)1/2

×
( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2)1/2
= Op(T−1)

by Proposition A.1 and (A.1). The second term is bounded in norm by

C · ‖N1/2Ĥ1/2‖4·‖R‖ ·
( 1

N

N
∑

i=1

‖Λi‖2)1/2( 1

N

N
∑

j=1

‖Λ̂j −R′Λj‖2)1/2

×
( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2)1/2
= Op(T−1)

by Propositions A.1 and A.2. The third and fourth terms are both bounded in norm by

C · ‖N1/2Ĥ1/2|4·‖R‖2 ·
( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2)1/2( 1

N

N
∑

j=1

‖Λj‖2)1/2

×
( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

1

T

T
∑

t=1

[uitu
′
jt − E(uitu

′
jt)]

∥

∥

2)1/2
= Op(T−1)

by Propositions A.1 and A.2. The last term is Op(N−1T−1/2). Given these results, we

have (d).

Consider (e). The left hand side of (c) is equal to

Ĥ1/2(

N
∑

i=1

Ĥ1/2Λ̂iΣ̂
−1
ii (Σ̂ii − Σii)Σ̂

−1
ii Λ̂′

iĤ
1/2)

Ĥ1/2.

The above expression is bounded in norm by

C‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2‖Σ̂ii − Σii‖

)

.

Since
∑N

i=1 ‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 = r, then ‖Ĥ1/2Λ̂iΣ̂

−1/2
ii ‖ ≤ √

r uniformly in i. So the above

expression is further bounded by

C
√
r‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖‖Σ̂ii − Σii‖

)

.

By the Cauchy-Schwarz inequality, the preceding expression is bounded by

C
√
r‖N1/2Ĥ1/2‖2( 1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2)1/2( 1

N
‖Σ̂ii − Σii‖2)1/2

,

which is Op(N−1/2T−1/2) by Propositions A.1 and A.2 and (A.1). Then (e) follows. �
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Lemma A.4 Under Assumptions A-D, we have

RR′ −Mff = Op(N−1/2T−1/2) +Op(T−1)

Proof of Lemma A.4. Consider (A.3). Given the results in Lemma A.3, we have

R′M−1
ff R = Ir +Op(N−1/2T−1/2) +Op(T−1)

Taking inverse on the both sides yields

R−1MffR
−1′ = Ir +Op(N−1/2T−1/2) +Op(T−1)

Pre-multiplying R and post-multiplying R′, together with R = Op(1), we have Lemma A.4.

�

Proof of Theorem 3.1: Consider (A.5). The last three terms of the right hand side

of (A.5) are summarized in Lemma A.3(a)-(c). So we have

Λ̂j −R′Λj = R′M−1
ff

1

T

T
∑

t=1

ftu
′
jt + ‖Λ̂j −R′Λj‖ · op(1) + op(T−1/2). (A.12)

The first term of the right hand side is Op(T−1/2). The second term is of smaller order

term than the left hand side and hence negligible. Given this result, we have

Λ̂j −R′Λj = Op(T−1/2). (A.13)

Substituting (A.13) into (A.12), we have

Λ̂j −R′Λj = R′M−1
ff

1

T

T
∑

t=1

ftu
′
jt + op(T−1/2).

Now consider (A.7). Substituting (A.5) into (A.7), we have

Σ̂ii − Σii =
1

T

T
∑

t=1

(uitu
′
it − Σii) − (Λ̂i −R′Λi)

′(Λ̂i −R′Λi) − Λ′
i(RR

′ −Mff )Λi

− 1

T

T
∑

t=1

uitf
′
tM

−1
ff (RR′ −Mff )Λi − Λ′

i(RR
′ −Mff )M−1

ff

1

T

T
∑

t=1

ftu
′
it

−Λ′
iRĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
tΛi − Λ′

iRĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

[utu
′
it − E(utu

′
it)] (A.14)

−Λ′
i

1

T

T
∑

t=1

ftu
′
tΨ̂

−1Λ̂ĤR′Λi − 1

T

T
∑

t=1

[uitu
′
t − E(uitu

′
t)]Ψ̂

−1Λ̂ĤR′Λi

+Λ′
iRĤΛ̂iΣ̂

−1
ii (Σ̂ii − Σii) + (Σ̂ii − Σii)Σ̂

−1
ii Λ̂′

iĤR
′Λi

The second term is Op(T−1) by (A.13). The third term is Op(N−1/2T−1/2) +Op(T−1) by

Lemma A.4. The fourth and fifth terms are both Op(N−1/2T−1) + Op(T−3/2) by Lemma

A.4. The sixth and eighth terms are both Op(N−1/2T−1/2) +Op(T−1) by Lemma A.3(a).
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The seventh and ninth terms are also Op(N−1/2T−1/2) +Op(T−1) by Lemma A.3(b). The

last two terms are of smaller order terms than the left hand side and hence negligible.

Given these results, we have

Σ̂ii − Σii =
1

T

T
∑

t=1

(uitu
′
it − Σii) + op(T−1/2)

This completes the proof of Theorem 3.1. �

Appendix B: Proofs of the results in Section 4

Lemma B.1 Under Assumptions A-D, we have

1

N

N
∑

i=1

‖β̂CV
i − βi‖ = Op(T−1).

Proof of Lemma B.1. Notice

β̂CV
i − βi = Σ̂−1

i,22Σ̂i,21 − Σ−1
i,22Σi,21

= Σ̂−1
i,22

[

(Σ̂i,21 − Σi,21) − (Σ̂i,22 − Σi,22)Σ−1
i,22Σi,21

]

By the boundedness of Σ̂ii,Σii, we have ‖Σ̂−1
i,22‖ < C, ‖Σ−1

i,22Σi,21‖ < C. Then

‖β̂CV
i − βi‖2 ≤ C‖Σ̂i,21 − Σi,21‖2 + C‖Σ̂i,22 − Σi,22‖2 ≤ 2C‖Σ̂ii − Σii‖2

So 1
N

∑N
i=1 ‖β̂CV

i − βi‖ = Op(T−1) by 1
N

∑N
i=1 ‖Σ̂ii − Σii‖2 = Op(T−1). �

Lemma B.2 Under Assumptions A-D, we have

(a)
1

N

N
∑

i=1

(Λ̂i,21Λ̂′
i,11 − Λ∗

i,21Λ∗′
i,11) = Op(N−1/2T−1/2) +Op(T−1)

(b)
1

N

N
∑

i=1

(Λ̂i,22β̂
CV
i Λ̂′

i,11 − Λ∗
i,22βiΛ

∗′
i,11) = Op(N−1/2T−1/2) +Op(T−1)

(c)
1

N

N
∑

i=1

(Λ̂i,21β̂
CV ′
i Λ̂′

i,12 − Λ∗
i,21β

′
iΛ

∗′
i,12) = Op(N−1/2T−1/2) +Op(T−1)

(d)
1

N

N
∑

i=1

(Λ̂i,22β̂
CV
i β̂CV ′

i Λ̂′
i,12 − Λ∗

i,22βiβ
′
iΛ

∗′
i,12) = Op(N−1/2T−1/2) +Op(T−1)

where Λ∗
j = R′Λj and Λ∗

i,pq is defined similarly as Λi,pq.

Proof of Lemma B.2. By (A.5), we have

Λ̂i,11 − Λ∗
i,11 = v1R

′M−1
ff

1

T

T
∑

t=1

fteit + v1ĤΛ̂Ψ̂−1
( 1

T

T
∑

t=1

utf
′
tΛiw1

)

+ v1ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

[uteit − E(uteit)] − v1ĤΛ̂iΣ̂
−1
ii (Σ̂ii − Σii)w1

(B.1)
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Λ̂i,21 − Λ∗
i,21 = v2R

′M−1
ff

1

T

T
∑

t=1

fteit + v2ĤΛ̂Ψ̂−1
( 1

T

T
∑

t=1

utf
′
tΛiw1

)

+ v2ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

[uteit − E(uteit)] − v2ĤΛ̂iΣ̂
−1
ii (Σ̂ii − Σii)w1

(B.2)

Λ̂i,12 − Λ∗
i,12 = v1R

′M−1
ff

1

T

T
∑

t=1

ftv
′
it + v1ĤΛ̂Ψ̂−1

( 1

T

T
∑

t=1

utf
′
tΛiw2

)

+ v1ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

[utv
′
it − E(utv

′
it)] − v1ĤΛ̂iΣ̂

−1
ii (Σ̂ii − Σii)w2

(B.3)

Λ̂i,22 − Λ∗
i,22 = v2R

′M−1
ff

1

T

T
∑

t=1

ftv
′
it + v2ĤΛ̂Ψ̂−1

( 1

T

T
∑

t=1

utf
′
tΛiw2

)

+ v2ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

[utv
′
it − E(utv

′
it)] − v2ĤΛ̂iΣ̂

−1
ii (Σ̂ii − Σii)w2

(B.4)

where v1 and v2 are defined as Ir = [v1,v2] with v1 an r × r1 matrix and v2 an r × r2

matrix, respectively. w1 and w2 are defined as IK+1 = [w1,w2] with w1 an (K + 1) × 1

vector and w2 an (K + 1) ×K matrix. In addition, eit = ǫit + v′
itβi.

Consider (a). The left hand side of (a) is equivalent to

1

N

N
∑

i=1

(Λ̂i,21 − Λ∗
i,21)Λ∗′

i,11 +
1

N

N
∑

i=1

Λ∗
i,21(Λ̂i,11 − Λ∗

i,11)′

+
1

N

N
∑

i=1

(Λ̂i,21 − Λ∗
i,21)(Λ̂i,11 − Λ∗

i,11)′ = ii1 + ii2 + ii3 say

Consider ii1. By (B.2), we have

ii1 = v2R
′M−1

ff

1

NT

N
∑

i=1

T
∑

t=1

fteitΛ
∗′
i,11 + v2ĤΛ̂Ψ̂−1 1

NT

N
∑

i=1

T
∑

t=1

[uteit − E(uteit)]Λ
∗′
i,11

+ v2ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

utf
′
t

( 1

N

N
∑

i=1

Λiw1Λ∗′
i,11

)

− v2
1

N

N
∑

i=1

ĤΛ̂iΣ̂
−1
ii (Σ̂ii − Σii)w1Λ∗′

i,11

= iii1 + iii2 + iii3 − iii4

Consider iii1. By Λ∗′
i,11 = Λ′

i,11R11 + Λ′
i,21R21, we have

iii1 = v2R
′M−1

ff

( 1

NT

N
∑

i=1

T
∑

t=1

fteitΛ
′
i,11

)

R11 + v2R
′M−1

ff

( 1

NT

N
∑

i=1

T
∑

t=1

fteitΛ
′
i,21

)

R21

which is Op(N−1/2T−1/2) by R = Op(1). Consider iii2, which is equivalent to

v2Ĥ
N

∑

i=1

N
∑

j=1

Λ̂iΣ̂
−1
ii

1

T

T
∑

t=1

[uite
′
jt − E(uitejt)]Λ

∗′
j,11

which is bounded in norm by

C‖N1/2Ĥ1/2‖ ·
[

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2

]−1/2[ 1

N

N
∑

i=1

∥

∥

1

NT

N
∑

j=1

T
∑

t=1

[uite
′
jt −E(uite

′
jt)]Λ

∗′
j,11

∥

∥

2
]1/2
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By Λ∗′
j,11 = Λ′

j,11R11 + Λ′
j,21R21, we have

1

NT

N
∑

j=1

T
∑

t=1

[uitejt − E(uitejt)]Λ
∗′
j,11 =

1

NT

N
∑

j=1

T
∑

t=1

[uitejt − E(uitejt)]Λ
′
j,11R11

+
1

NT

N
∑

j=1

T
∑

t=1

[uitejt − E(uitejt)]Λ
′
j,21R21 = Op(N−1/2T−1/2).

Given this result, together with ‖N1/2Ĥ1/2‖ = Op(1) and (A.1), we have iii2 = Op(N−1/2T−1/2).

Consider iii3. Notice that

1

N

N
∑

i=1

Λiw1Λ∗′
i,11 =

( 1

N

N
∑

i=1

Λiw1Λ′
i,11

)

R11 +
( 1

N

N
∑

i=1

Λiw1Λ′
i,21

)

R21 = Op(1).

Given the above result, together with Lemma A.3(a), we obtain iii3 = Op(N−1/2T−1/2) +

Op(T−1).

Consider iii4, which is equal to

[ 1

N

N
∑

i=1

v2ĤΛ̂iΣ̂
−1
ii (Σ̂ii−Σii)w1Λ′

i,11

]

R11+
[ 1

N

N
∑

i=1

v2ĤΛ̂iΣ̂
−1
ii (Σ̂ii−Σii)w1Λ′

i,21

]

R21. (B.5)

Consider the first term of the above expression. Ignore R11 and v2, the expression in the

bracket is bounded in norm by

1

N
‖Ĥ1/2‖

N
∑

i=1

(

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖ · ‖Σ̂

−1/2
ii ‖ · ‖w1Λ′

i,11‖ · ‖Σ̂ii − Σii‖
)

which is further bounded by

1

N
‖N1/2Ĥ1/2‖

(

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 · ‖Σ̂

−1/2
ii ‖2 · ‖w1Λ′

i,11‖2
)1/2( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2
)1/2

The above expression is Op(N−1T−1/2) by ‖Σ̂
−1/2
ii ‖ < C, ‖w1Λ′

i,11‖ < C and Propositions

A.1 and A.2 as well as (A.1). Given this result, together with R = Op(1), we have the

first term of (B.5) is Op(N−1T−1/2). The second term can be proved to be Op(N−1T−1/2)

similarly as the first term. So we have iii4 = Op(N−1T−1/2). Summarizing all the results,

we have ii1 = Op(N−1/2T−1/2) +Op(T−1).

Term ii2 can be proved to be Op(N−1/2T−1/2)+Op(T−1) similarly as ii1 and the details

are omitted. For term ii3, notice that it is bounded in norm by

( 1

N

N
∑

i=1

‖Λ̂i,21 − Λ∗
i,21‖2

)1/2( 1

N

N
∑

i=1

‖Λ̂i,11 − Λ∗
i,11‖2

)1/2

However, we have ‖Λ̂i,21−Λ∗
i,21‖ ≤ ‖Λ̂i−Λ∗

i ‖ = ‖Λ̂i−R′Λi‖ and ‖Λ̂i,11−Λ∗
i,11‖ ≤ ‖Λ̂i−Λ∗

i ‖ =

‖Λ̂i −R′Λi‖. Given this result, the preceding expression is bounded by

1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2 = Op(T−1)
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by Proposition A.2. Summarizing the results on ii1, ii2 and ii3, we obtain (a).

Consider (b). The left hand side of (b) can be written as

( 1

N

N
∑

i=1

Λ̂i,22β̂
CV
i Λ̂′

i,11 − 1

N

N
∑

i=1

Λ∗
i,22β̂

CV
i Λ∗′

i,11

)

+
( 1

N

N
∑

i=1

Λ∗
i,22β̂

CV
i Λ∗′

i,11 − 1

N

N
∑

i=1

Λ∗
i,22βiΛ

∗′
i,11

)

= ii4 + ii5, say

Consider ii4, which is equal to

1

N

N
∑

i=1

(Λ̂i,22 − Λ∗
i,22)β̂CV

i Λ∗′
i,11 +

1

N

N
∑

i=1

Λ∗
i,22β̂

CV
i (Λ̂i,11 − Λ∗

i,11)′

+
1

N

N
∑

i=1

(Λ̂i,22 − Λ∗
i,22)β̂CV

i (Λ̂i,11 − Λ∗
i,11)′ = iii5 + iii6 + iii7, say

Consider iii5. By (B.4), we have

iii5 = v2R
′M−1

ff

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
itβ̂

CV
i Λ∗′

i,11 + v2ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

utf
′
t

( 1

N

N
∑

i=1

Λiw2β̂
CV
i Λ∗′

i,11

)

+v2ĤΛ̂Ψ̂−1 1

NT

N
∑

i=1

T
∑

t=1

[utv
′
it − E(utv

′
it)]β̂

CV
i Λ∗′

i,11

−v2Ĥ
1

N

N
∑

i=1

Λ̂iΣ̂
−1
ii (Σ̂ii − Σii)w2β̂

CV
i Λ∗′

i,11 (B.6)

Consider the first term of (B.6), which can be written as

v2R
′M−1

ff

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
itβiΛ

∗′
i,11 + v2R

′M−1
ff

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
it(β̂

CV
i − βi)Λ

∗′
i,11. (B.7)

Treating v′
itβi as a new eit, the first term of the above expression can be proved to be

Op(N−1/2T−1/2) similarly as the iii1. By Λ∗′
i,11 = Λ′

i,11R11 + Λ′
i,21R21, the second term is

equal to

v2R
′M−1

ff

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
it(β̂

CV
i −βi)Λ

′
i,11R11+v2R

′M−1
ff

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
it(β̂

CV
i −βi)Λ

′
i,21R21.

The first term of the above expression is bounded in norm by

‖v2R
′‖ · ‖M−1

ff ‖ · ‖Λi,11‖ · ‖R11‖ ·
( 1

N

N
∑

i=1

‖β̂CV
i − βi‖2

)1/2( 1

N

N
∑

i=1

∥

∥

1

T

T
∑

t=1

ftv
′
it

∥

∥

2
)1/2

,

which is Op(T−1) by Lemma B.1 and R = Op(1). The second term can be proved similarly

as the first term. Given these results, we have the expression of (B.7) is Op(N−1/2T−1/2)+

Op(T−1). So the first term of (B.6) is Op(N−1/2T−1/2) +Op(T−1).

Consider the second term. First note that

‖β̂CV
i ‖ < C, ∀ i ≤ N (B.8)
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The above result is due to the boundedness of Σ̂ii and β̂CV
i = Σ̂−1

i,22Σ̂i,21. Given this result,

we have
1

N

N
∑

i=1

Λiw2β̂
CV
i Λ∗′

i,11 = Op(1).

Given the above result, together with Lemma A.3(a), we have the second term of (B.6) is

Op(N−1/2T−1/2) +Op(T−1).

Consider the third term, which is equal to

v2
1

NT
Ĥ

N
∑

i=1

N
∑

j=1

Λ̂iΣ̂
−1
ii

T
∑

t=1

[uitv
′
jt − E(uitv

′
jt)]β̂

CV ′
j Λ∗′

j,11 (B.9)

Ignore v2, The above expression can be rewritten as

1

NT
Ĥ

N
∑

i=1

N
∑

j=1

(Λ̂i −R′Λi)Σ̂
−1
ii

T
∑

t=1

[uitv
′
jt − E(uitv

′
jt)]β̂

CV ′
j Λ∗′

j,11

1

NT
ĤR′

N
∑

i=1

N
∑

j=1

Λi(Σ̂
−1
ii − Σ−1

ii )
T

∑

t=1

[uitv
′
jt − E(uitv

′
jt)]β̂

CV ′
j Λ∗′

j,11

1

NT
ĤR′

N
∑

i=1

N
∑

j=1

ΛiΣ
−1
ii

T
∑

t=1

[uitv
′
jt − E(uitv

′
jt)]β̂

CV ′
j Λ∗′

j,11

The first term is bounded in norm by

C‖N1/2Ĥ1/2‖2 ·
( 1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2
)1/2( 1

N

N
∑

j=1

‖β̂CV ′
j Λ∗′

j,11‖2
)1/2

×
( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

∥

1

T

T
∑

t=1

[uitv
′
jt − E(uitv

′
jt)]

∥

∥

∥

2)1/2
,

By the boundedness of β̂CV
i and Λ∗′

i,11 = Λ′
i,11R11 + Λ′

i,21R21,

1

N

N
∑

j=1

‖β̂CV ′
j Λ∗′

j,11‖2 ≤ C
1

N

N
∑

j=1

‖Λ∗′
j,11‖2

≤ 2C
(

‖R11‖2 1

N

N
∑

j=1

‖Λj,11‖2 + ‖R21‖2 1

N

N
∑

j=1

‖Λj,21‖2)

Given this result, we have that the first term is Op(T−1) by Propositions A.1 and (A.2).

The second term is bounded in norm by

C‖N1/2Ĥ1/2‖2 · ‖R‖ ·
( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2
)1/2( 1

N

N
∑

j=1

‖β̂CV ′
j Λ∗′

j,11‖2
)1/2

×
( 1

N2

N
∑

i=1

N
∑

j=1

∥

∥

∥

1

T

T
∑

t=1

[uitv
′
jt − E(uitv

′
jt)]

∥

∥

∥

2)1/2
,
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which is Op(T−1) by the same arguments. The last term is bounded in norm by

‖N1/2Ĥ1/2‖2 · ‖R‖ ·
( 1

N

N
∑

j=1

‖β̂CV ′
j Λ∗′

j,11‖2)1/2

×
( 1

N

N
∑

j=1

∥

∥

1

NT

N
∑

i=1

T
∑

t=1

ΛiΣ
−1
ii [uitv

′
jt − E(uitv

′
jt)]

∥

∥

2)1/2

which isOp(N−1/2T−1/2). Given these results, we have the third term of (B.6) isOp(N−1/2T−1/2)+

Op(T−1).

Consider the fourth term. Ignore v2, this term is bounded in norm by

C‖Ĥ1/2‖
( 1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 · ‖Σ̂ii − Σii‖2

)1/2( 1

N

N
∑

i=1

‖β̂CV
i Λ∗′

i,11‖2
)1/2

Notice
∑N

i=1 ‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 = r. So ‖Ĥ1/2Λ̂iΣ̂

−1/2
ii ‖2 ≤ r for all i. This leads to

1

N

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2 · ‖Σ̂ii − Σii‖2 ≤ r

1

N

N
∑

i=1

‖Σ̂ii − Σii‖2.

Given the above result, together with Ĥ = Op(N−1), we have the fourth term isOp(N−1/2T−1/2).

Summarizing all the results, we have iii5 = Op(N−1/2T−1/2) +Op(T−1).

Term iii6 can be proved to be Op(N−1/2T−1/2) + Op(T−1) similarly as iii5 and the

details are omitted. Consider iii7, which is bounded in norm by

( 1

N

N
∑

i=1

‖Λ̂i,22 − Λ∗
i,22‖2

)1/2( 1

N

N
∑

i=1

‖β̂CV
i ‖2 · ‖Λ̂i,11 − Λ∗

i,11‖2
)1/2

By the boundedness of β̂CV
i , together with ‖Λ̂i,22 − Λ∗

i,22‖ ≤ ‖Λ̂i − Λ∗
i ‖ = ‖Λ̂i − R′Λi‖

and ‖Λ̂i,11 − Λ∗
i,11‖ ≤ ‖Λ̂i − Λ∗

i ‖ = ‖Λ̂i − R′Λi‖, we have that the preceding expression is

bounded by

C
1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2 = Op(T−1)

by Proposition A.2. Summarizing the results on iii5, iii6 and iii7, we have

ii4 = Op(N−1/2T−1/2) +Op(T−1).

We proceed to consider ii5, which is equal to

1

N

N
∑

i=1

Λ∗
i,22(β̂CV

i − βi)Λ
∗′
i,11.

By Λ∗
i,22 = R′

12Λi,12 + R′
22Λi,22 and Λ∗′

i,11 = Λ′
i,11R11 + Λ′

i,21R21, the above expression can

be written as

R′
12

( 1

N

N
∑

i=1

Λi,12(β̂CV
i − βi)Λ

′
i,11

)

R11 +R′
12

( 1

N

N
∑

i=1

Λi,12(β̂CV
i − βi)Λ

′
i,21

)

R21
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R′
22

( 1

N

N
∑

i=1

Λi,22(β̂CV
i − βi)Λ

′
i,11

)

R11 + +R′
22

( 1

N

N
∑

i=1

Λi,22(β̂CV
i − βi)Λ

′
i,21

)

R21

The derivations on the above four terms are almost the same. So we only choose the first

one to illustrate. Ignore R′
12 and R11. By

β̂CV
i − βi = Σ̂−1

i,22[(Σ̂i,21 − Σi,21) − (Σ̂i,22 − Σi,22)βi],

we can rewrite the expression in the bracket as

1

N

N
∑

i=1

Λi,12Σ̂−1
i,22(Σ̂i,21 − Σi,21)Λ′

i,11 − 1

N

N
∑

i=1

Λi,12Σ̂−1
i,22(Σ̂i,22 − Σi,22)βiΛ

′
i,11.

Again, the derivations on the above two terms are almost the same. So we only choose the

first term to illustrate. This term is equal to

1

N

N
∑

i=1

Λi,12(Σ̂−1
i,22 − Σ−1

i,22)(Σ̂i,21 − Σi,21)Λ′
i,11 +

1

N

N
∑

i=1

Λi,12Σ−1
i,22(Σ̂i,21 − Σi,21)Λ′

i,11. (B.10)

The first term of the above expression is

− 1

N

N
∑

i=1

Λi,12Σ̂−1
i,22(Σ̂i,22 − Σi,22)Σ−1

i,22(Σ̂i,21 − Σi,21)Λ′
i,11,

which is bounded in norm by C 1
N

∑N
i=1 ‖Σ̂ii − Σii‖2 = Op(T−1) by ‖Λi,21‖ < C, ‖Λi,11‖ <

C, ‖Σ̂−1
i,22‖ < C, ‖Σ−1

i,22‖ < C as well as ‖Σ̂i,22 − Σi,22‖ ≤ ‖Σ̂ii − Σii‖ and ‖Σ̂i,21 − Σi,21‖ ≤
‖Σ̂ii − Σii‖. So the first term of (B.10) is Op(T−1). Consider the second term, which, by

(A.14), be be written as

1

NT

N
∑

i=1

T
∑

t=1

Λi,12Σ−1
i,22[viteit − E(viteit)]Λ

′
i,11

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2(Λ̂i −R′Λi)
′(Λ̂i −R′Λi)w1Λ′

i,11

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2Λ′
i(RR

′ −Mff )Λiw1Λ′
i,11

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22

( 1

T

T
∑

t=1

vitf
′
t

)

M−1
ff (RR′ −Mff )Λiw1Λ′

i,11

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2Λ′
i(RR

′ −Mff )M−1
ff

( 1

T

T
∑

t=1

fteit

)

Λ′
i,11

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2Λ′
iR

(

ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
t

)

Λiw1Λ′
i,11 (B.11)

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2Λ′
iRĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

[uteit − E(uteit)]Λ
′
i,11
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− 1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2Λ′
i

( 1

T

T
∑

t=1

ftu
′
tΨ̂

−1Λ̂Ĥ
)

R′Λiw1Λ′
i,11

− 1

N

N
∑

i=1

Λi,12Σ−1
i,22

1

T

T
∑

t=1

[vitu
′
t − E(vitu

′
t)]Ψ̂

−1Λ̂ĤR′Λiw1Λ′
i,11

+
1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2Λ′
iRĤΛ̂iΣ̂

−1
ii (Σ̂ii − Σii)w1Λ′

i,11

+
1

N

N
∑

i=1

Λi,12Σ−1
i,22w′

2(Σ̂ii − Σii)Σ̂
−1
ii Λ̂′

iĤR
′Λiw1Λ′

i,11.

where w1 and w2 are defined as IK+1 = [w1,w2] where w1 and w2 are (K + 1) × 1 and

(K+ 1) ×K, respectively. The first term is Op(N−1/2T−1/2). The second term is bounded

in norm by C 1
N

∑N
i=1 ‖Λ̂i − R′Λi‖2 = Op(T−1) by Proposition A.2. The third term is

C‖RR′ − Mff ‖ which is Op(N−1/2T−1/2) + Op(T−1) by Lemma A.4. The fourth term is

bounded in norm by

( 1

N

N
∑

i=1

‖Λi,12Σ−1
i,22‖ ·

∥

∥

1

T

T
∑

t=1

vitf
′
t

∥

∥ · ‖Λiw1Λ′
i,11‖

)

· ‖M−1
ff ‖ · ‖RR′ −Mff ‖,

which is Op(N−1/2T−1) +Op(T−3/2) by Lemma A.4. The fifth term is also Op(N−1/2T−1)

+Op(T−3/2) by the similar arguments in the fourth. The sixth and eighth terms are both

bounded in norm by

C‖R‖ ·
∥

∥

∥ĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

utf
′
t

∥

∥

∥

which is Op(N−1/2T−1/2) + Op(T−1) by Lemma A.3(a). For the seventh term, we tem-

porarily use Li to denote Λi,12Σ−1
i,22w′

2Λ′
i. Notice the left hand side of the seventh term is

an r1 × r1 matrix. So it suffices to show its the (p, q)th element (p, q = 1, 2 . . . , r1), which

is equal to

1

N

N
∑

i=1

Li,pRĤΛ̂′Ψ̂−1 1

T

T
∑

t=1

[uteit − E(uteit)]Λi,11,q

where Li,p is the pth row of Li and Λi,11,q is the qth element of Λi,11. The above expression

can be rewritten as

tr
[

RĤΛ̂′Ψ̂−1
( 1

NT

N
∑

i=1

T
∑

t=1

[uteit − E(uteit)]Λi,11,qLi,p

)]

.

The expression in the trace operator is bounded in norm by

C · ‖N1/2Ĥ1/2‖ · ‖R‖ ·
(

N
∑

j=1

‖Σ̂
−1/2
jj Λ̂jĤ

1/2‖2
)1/2

×
( 1

N

N
∑

j=1

∥

∥

∥

1

NT

N
∑

i=1

T
∑

t=1

[ujteit − E(ujteit)]Λi,11,qLi,p

∥

∥

∥

2)1/2
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which is Op(N−1/2T−1/2). So the seventh term is Op(N−1/2T−1/2). The ninth term can

be proved to be Op(N−1/2T−1/2) similarly as the seventh. Consider the tenth term, which

is bounded in norm by

CN−1/2‖Ĥ1/2‖ · ‖R‖ ·
(

N
∑

i=1

‖ĤΛ̂iΣ̂
−1/2
ii ‖2

)1/2( 1

N

N
∑

i=1

‖Σ̂ii − Σii‖2
)1/2

,

which is Op(N−1T−1/2). So the tenth term is Op(N−1T−1/2) + Op(N−1/2T−1). The

eleventh term can be proved to be Op(N−1T−1/2) +Op(N−1/2T−1) similarly as the tenth.

Summarizing all the results, we have the second term of (B.10) is Op(N−1/2T−1/2) +

Op(T−1). This leads to ii5 = Op(N−1/2T−1/2) +Op(T−1).

Given the results on ii4 and ii5, we have (b).

Result (c) can be proved similarly as (b) and the details are omitted.β, β

Consider (d). The left hand side of (d) can be written as

( 1

N

N
∑

i=1

Λ̂i,22β̂
CV
i β̂CV ′

i Λ̂′
i,12 − 1

N

N
∑

i=1

Λ∗
i,22β̂

CV
i β̂CV ′

i Λ∗′
i,12

)

+
( 1

N

N
∑

i=1

Λ∗
i,22β̂

CV
i β̂CV ′

i Λ∗′
i,12 − 1

N

N
∑

i=1

Λ∗
i,22βiβ

′
iΛ

∗′
i,12

)

= ii6 + ii7 say

We first consider ii6, which is equal to

1

N

N
∑

i=1

(Λ̂i,22 − Λ∗
i,22)β̂CV

i β̂CV ′
i Λ∗′

i,12 +
1

N

N
∑

i=1

Λ∗
i,22β̂

CV
i β̂CV ′

i (Λ̂i,12 − Λ∗
i,12)′

+
1

N

N
∑

i=1

(Λ̂i,22 − Λ∗
i,22)β̂CV

i β̂CV ′
i (Λ̂i,12 − Λ∗

i,12)′ = iii8 + iii9 + iii10 say

Consider iii8, which is equal to

iii8 = v2R
′M−1

ff

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
itβ̂

CV
i β̂CV ′

i Λ∗′
i,12

+v2ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

utf
′
t

( 1

N

N
∑

i=1

Λiw2β̂
CV
i β̂CV ′

i Λ∗′
i,12

)

+v2ĤΛ̂Ψ̂−1 1

NT

N
∑

i=1

T
∑

t=1

[utv
′
it − E(utv

′
it)]β̂

CV
i β̂CV ′

i Λ∗′
i,12

−v2Ĥ
1

N

N
∑

i=1

Λ̂iΣ̂
−1
ii (Σ̂ii − Σii)w

−
1 β̂

CV
i β̂CV ′

i Λ∗′
i,12 (B.12)

Consider the first term. Ignore v2R
′M−1

ff , the remaining expression can be written as

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
it(β̂

CV
i − βi)(β̂

CV
i − βi)

′Λ∗′
i,12 +

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
itβiβ

′
iΛ

∗′
i,12

+
1

NT

N
∑

i=1

T
∑

t=1

ftv
′
it(β̂

CV
i − βi)β

′
iΛ

∗′
i,12 +

1

NT

N
∑

i=1

T
∑

t=1

ftv
′
itβi(β̂

CV
i − βi)

′Λ∗′
i,12.
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The first term is bounded in norm by

C
( 1

N

N
∑

i=1

‖β̂CV
i − βi‖4

)1/2( 1

N

N
∑

i=1

∥

∥

∥

1

T

T
∑

t=1

ftv
′
it

∥

∥

∥

2)1/2

However, by the boundedness of β̂CV
i and βi ( β̂CV

i is bounded due to the boundedness of

Σ̂ii and β̂CV
i = Σ̂−1

i,22Σ̂i,21), we have

1

N

N
∑

i=1

‖β̂CV
i − βi‖4 ≤ C

1

N

N
∑

i=1

‖β̂CV
i − βi‖2

Given the above result, we have the first term isOp(T−1). The second term isOp(N−1/2T−1/2).

The third and fourth terms are both bounded in norm by

C
( 1

N

N
∑

i=1

‖β̂CV
i − βi‖2

)1/2( 1

N

N
∑

i=1

∥

∥

∥

1

T

T
∑

t=1

ftv
′
it

∥

∥

∥

2)1/2
‖R‖ = Op(T−1).

Given these results, we have the first term of (B.12) is Op(N−1/2T−1/2) + Op(T−1). The

second term is also Op(N−1/2T−1/2) +Op(T−1) by Lemma A.3(a) and the fact

1

N

N
∑

i=1

Λiw2β̂
CV
i β̂CV ′

i Λ∗′
i,12 = Op(1).

The third term can be proved to be Op(N−1/2T−1/2) + Op(T−1) similarly as proving

(B.9) by replacing β̂CV
i Λ∗′

i,11 with β̂CV
i β̂CV ′

i Λ∗′
i,12 . The last term of (B.12) can be proved

to be Op(N−1/2T−1/2) similarly as the last one of (B.6). Given these results, we have

iii8 = Op(N−1/2T−1/2) + Op(T−1). Term iii9 is also Op(N−1/2T−1/2) + Op(T−1), which

can be proved by the same arguments in deriving iii8. Term iii10 can be shown to

be Op(T−1) similarly as iii7. Summarizing the results on iii8, iii9 and iii10, we have

ii6 = Op(N−1/2T−1/2) +Op(T−1).

Consider ii7, which is equal to

1

N

N
∑

i=1

Λ∗
i,22(β̂CV

i − βi)β
′
iΛ

∗′
i,12 +

1

N

N
∑

i=1

Λ∗
i,22βi(β̂

CV
i − βi)

′Λ∗′
i,12

+
1

N

N
∑

i=1

Λ∗
i,22(β̂CV

i − βi)(β̂
CV
i − βi)

′Λ∗′
i,12

Treating β′
iΛ

∗′
i,12 as a new Λ∗′

i,11, the first term can be proved to be Op(N−1/2T−1/2) +

Op(T−1) similarly as ii5. The second term is also Op(N−1/2T−1/2) +Op(T−1) by the same

arguments. The third term is bounded in norm by

C‖R‖2 1

N

N
∑

i=1

‖β̂CV
i − βi‖2 = Op(T−1).

Given the above results, we have ii7 = Op(N−1/2T−1/2) + Op(T−1). Summarizing the

results on ii6 and ii7, we have (d).

This completes the proof of Lemma B.2. �
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Lemma B.3 Under Assumptions A-D, we have

(a)
1

N

N
∑

i=1

(Λ̂i,11Λ̂′
i,11 − Λ∗

i,11Λ∗′
i,11) = Op(N−1/2T−1/2) +Op(T−1)

(b)
1

N

N
∑

i=1

(Λ̂i,12β̂
CV
i Λ̂′

i,11 − Λ∗
i,12βiΛ

∗′
i,11) = Op(N−1/2T−1/2) +Op(T−1)

(c)
1

N

N
∑

i=1

(Λ̂i,11β̂
CV ′
i Λ̂′

i,12 − Λ∗
i,11β

′
iΛ

∗′
i,12) = Op(N−1/2T−1/2) +Op(T−1)

(d)
1

N

N
∑

i=1

(Λ̂i,12β̂
CV
i β̂CV ′

i Λ̂′
i,12 − Λ∗

i,12βiβ
′
iΛ

∗′
i,12) = Op(N−1/2T−1/2) +Op(T−1)

Proof of Lemma B.3. The proof of Lemma B.3 is quite similar as the one of Lemma

B.2. So we omit it. �

Lemma B.4 Under Assumptions A-D, we have

V̂ − V = Op(N−1/2T−1/2) +Op(T−1)

Proof of Lemma B.4. By the definitions of V̂ and V , i.e.,

V̂ =
[

N
∑

i=1

(Λ̂i,21 − Λ̂i,22β̂
CV
i )(Λ̂i,11 − Λ̂i,12β̂

CV
i )′

][

N
∑

i=1

(Λ̂i,11 − Λ̂i,12β̂
CV
i )(Λ̂i,11 − Λ̂i,12β̂

CV
i )′

]−1

and

V =
[

N
∑

i=1

(Λ∗
i,21 − Λ∗

i,22βi)(Λ
∗
i,11 − Λ∗

i,12βi)
′
][

N
∑

i=1

(Λ∗
i,11 − Λ∗

i,12βi)(Λ
∗
i,11 − Λ∗

i,12βi)
′
]−1

,

together with the fact that ÂB̂−1 −AB−1 =
(

(Â−A) −AB−1(B̂ −B)
)

B̂−1, we have

V̂ − V = (J1 − V J2)
[ 1

N

N
∑

i=1

(Λ̂i,11 − Λ̂i,12β̂
CV
i )(Λ̂i,11 − Λ̂i,12β̂

CV
i )′

]−1
,

where

J1 =
1

N

N
∑

i=1

(Λ̂i,21 − Λ̂i,22β̂
CV
i )(Λ̂i,11 − Λ̂i,12β̂

CV
i )′ − 1

N

N
∑

i=1

(Λ∗
i,21 − Λ∗

i,22βi)(Λ
∗
i,11 − Λ∗

i,12βi)
′

J2 =
1

N

N
∑

i=1

(Λ̂i,11 − Λ̂i,12β̂
CV
i )(Λ̂i,11 − Λ̂i,12β̂

CV
i )′ − 1

N

N
∑

i=1

(Λ∗
i,11 − Λ∗

i,12βi)(Λ
∗
i,11 − Λ∗

i,12βi)
′

Consider J1, which is equal to

1

N

N
∑

i=1

(Λ̂i,21Λ̂′
i,11 − Λ∗

i,21Λ∗′
i,11) − 1

N

N
∑

i=1

(Λ̂i,22β̂
CV
i Λ̂′

i,11 − Λ∗
i,22βiΛ

∗′
i,11)
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− 1

N

N
∑

i=1

(Λ̂i,21β̂
CV ′
i Λ̂′

i,12 − Λ∗
i,21β

′
iΛ

∗′
i,12) +

1

N

N
∑

i=1

(Λ̂i,22β̂
CV
i β̂CV ′

i Λ̂′
i,12 − Λ∗

i,22βiβ
′
iΛ

∗′
i,12).

By Lemma B.2, we have J1 = Op(N−1/2T−1/2) +Op(T−1). Consider J2, which is equal to

1

N

N
∑

i=1

(Λ̂i,11Λ̂′
i,11 − Λ∗

i,11Λ∗′
i,11) − 1

N

N
∑

i=1

(Λ̂i,12β̂
CV
i Λ̂′

i,11 − Λ∗
i,12βiΛ

∗′
i,11)

− 1

N

N
∑

i=1

(Λ̂i,11β̂
CV ′
i Λ̂′

i,12 − Λ∗
i,11β

′
iΛ

∗′
i,12) +

1

N

N
∑

i=1

(Λ̂i,12β̂
CV
i β̂CV ′

i Λ̂′
i,12 − Λ∗

i,12βiβ
′
iΛ

∗′
i,12).

By Lemma B.3, we have J2 = Op(N−1/2T−1/2) +Op(T−1). Given J1 = Op(N−1/2T−1/2) +

Op(T−1) and J2 = Op(N−1/2T−1/2)+Op(T−1), together with V = Op(1), we have V̂ −V =

Op(N−1/2T−1/2) +Op(T−1). �

Lemma B.5 Under Assumptions A-D, we have

(a) Λ̂i,22 − V̂ Λ̂i,12 − (Λ∗
i,22 − V Λ∗

i,12) = R′
22·1

1

T

T
∑

t=1

h⋆
t v

′
it + op(T−1/2)

(b) Λ̂i,21 − V̂ Λ̂i,11 − (Λ∗
i,21 − V Λ∗

i,11) = R′
22·1

1

T

T
∑

t=1

h⋆
t eit + op(T−1/2)

where R22·1 = R22 −R21R
−1
11 R12, f⋆

t = M−1
ff ft ≡ [g⋆′

t , h
⋆′
t ]′ and eit = ǫit + β′

ivit.

Proof of Lemma B.5. The left hand side of (a) is equal to

(Λ̂i,22 − Λ∗
i,22) − V (Λ̂i,12 − Λ∗

i,12) − (V̂ − V )Λ̂i,12 (B.13)

The last term is Op(N−1/2T−1/2) + Op(T−1) by Λ̂i,12 = Λ∗
i,12 + op(1) and Lemma B.4.

Substituting (B.3) and (B.4) into (B.13), we can rewrite the first two term of (B.13)

(denoted by i1) as

i1 = (v2 − V v1)R′M−1
ff

1

T

T
∑

t=1

ftv
′
it + (v2 − V v1)ĤΛ̂Ψ̂−1

( 1

T

T
∑

t=1

utf
′
tΛiw2

)

+ (v2 − V v1)ĤΛ̂Ψ̂−1 1

T

T
∑

t=1

[utv
′
it − E(utv

′
it)] − (v2 − V v1)ĤΛ̂iΣ̂

−1
ii (Σ̂ii − Σii)w2

By Lemma A.3, the last three terms are Op(N−1/2T−1/2) +Op(T−1). However,

(v2 − V v1)R′ = [0r2×r1
, R′

22·1].

So we have

i1 = [0r2×r1
, R′

22·1]M−1
ff

1

T

T
∑

t=1

ftv
′
it +Op(N−1/2T−1/2) +Op(T−1)

implies (a).

Result (b) can be proved similarly as (a). The details are omitted. �
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Lemma B.6 Under Assumptions A-D, we have, for all i,

Ŵi = Wi + op(1).

Proof of Lemma B.6. Let

Ŵi,11 =

{

[ 1

T

T
∑

t=1

ĥtĥ
′
t

]

−
[ 1

T

T
∑

t=1

ĥtη̂
′
t

][ 1

T

T
∑

t=1

η̂tη̂
′
t

]−1[ 1

T

T
∑

t=1

η̂tĥ
′
t

]

}−1

We first show that

Ŵi,11 = Wi,11 + op(1) (B.14)

where

Wi,11 = R′
22·1M

⋆
hhR22·1 = R′

22·1

(

T−1
T

∑

t=1

h⋆
th

⋆′
t

)

R22·1 = R′
22·1(Mhh −MhgM

−1
gg Mgh)−1R22·1

with R22·1 = R22 − R21R
−1
11 R12. The last equation of the above expression is due to the

definition of f⋆
t , i.e., f⋆

t ≡ (g⋆′
t , h

⋆′
t )′ = M−1

ff ft.

Let f∗
t = [g∗′

t , h
∗′
t ]′ = R−1ft and η∗

t = g∗
t + V ′h∗

t . By f∗
t = R−1ft, we have

g∗
t = (R−1

11 +R−1
11 R12R

−1
22·1R21R

−1
11 )gt −R−1

11 R12R
−1
22·1ht (B.15)

h∗
t = −R−1

22·1R21R
−1
11 gt +R−1

22·1ht (B.16)

From (B.15) and (B.16), together with V = R−1
11 R12, we have

η∗
t = g∗

t + V ′h∗
t = R−1

11 gt. (B.17)

Thus,

{

[ 1

T

T
∑

t=1

h∗
th

∗′
t

]

−
[ 1

T

T
∑

t=1

h∗
t η

∗′
t

][ 1

T

T
∑

t=1

η∗
t η

∗′
t

]−1[ 1

T

T
∑

t=1

η∗
t h

∗′
t

]

}−1

(B.18)

=
{

R−1
22·1(Mhh −MhgM

−1
gg Mgh)R−1′

22·1

}−1
= R′

22·1(Mhh −MhgM
−1
gg Mgh)−1R22·1 = Wi,11

So to prove (B.14), it suffices to prove

1

T

T
∑

t=1

ĥtĥ
′
t − 1

T

T
∑

t=1

h∗
th

∗′
t = op(1), (B.19)

1

T

T
∑

t=1

ĥtη̂
′
t − 1

T

T
∑

t=1

h∗
t η

∗′
t = op(1), (B.20)

1

T

T
∑

t=1

η̂tη̂
′
t − 1

T

T
∑

t=1

η∗
t η

∗′
t = op(1). (B.21)

Notice that

f̂t =
(

N
∑

i=1

Λ̂iΣ̂
−1
ii Λ̂′

i

)−1(

N
∑

i=1

Λ̂iΣ̂
−1
ii zit

)

.
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Then we have

f̂t − f∗
t = −

(

N
∑

i=1

Λ̂iΣ̂
−1
ii Λ̂′

i

)−1(

N
∑

i=1

Λ̂iΣ̂
−1
ii (Λ̂i −R′Λi)

′
)

f∗
t

+
(

N
∑

i=1

Λ̂iΣ̂
−1
ii Λ̂′

i

)−1(

N
∑

i=1

Λ̂iΣ̂
−1
ii uit

)

.

(B.22)

where f∗
t = R−1ft. Equation (B.22) leads to

1

T

T
∑

t=1

(f̂t − f∗
t )f∗′

t = op(1), (B.23)

1

T

T
∑

t=1

(f̂t − f∗
t )(f̂t − f∗

t )′ = op(1). (B.24)

To see this, notice the left hand side of (B.23) is equal to

−Ĥ
N

∑

i=1

Λ̂iΣ̂
−1
ii (Λ̂i −R′Λi)

′
( 1

T

T
∑

t=1

f∗
t f

∗′
t

)

+ Ĥ
( 1

T

N
∑

i=1

T
∑

t=1

Λ̂iΣ̂
−1
ii uitf

∗′
t

)

,

where Ĥ = (
∑N

i=1 Λ̂iΣ̂
−1
ii Λ̂′

i)
−1. The second term is Op(N−1/2T−1/2) +Op(T−1) by Lemma

A.3(a). The first term is bounded in norm by

C‖N1/2Ĥ1/2‖
(

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2)1/2( 1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2)1/2∥

∥

1

T

T
∑

t=1

f∗
t f

∗′
t

∥

∥

which is Op(T−1/2) by Proposition A.2. So we obtain (B.23).

Proceed to consider (B.24). The left hand side of (B.24) is bounded in norm by

2
∥

∥Ĥ
N

∑

i=1

Λ̂iΣ̂
−1
ii (Λ̂i −R′Λi)

′
∥

∥

2( 1

T

T
∑

t=1

‖f∗
t ‖2)

+ 2
1

T

T
∑

T =1

∥

∥Ĥ
N

∑

i=1

Λ̂iΣ̂
−1
ii uit

∥

∥

2
.

The first term is Op(T−1/2) since

∥

∥

∥Ĥ
N

∑

i=1

Λ̂iΣ̂
−1
ii (Λ̂i −R′Λi)

′
∥

∥

∥ ≤C‖N1/2Ĥ1/2‖ ·
(

N
∑

i=1

‖Ĥ1/2Λ̂iΣ̂
−1/2
ii ‖2)1/2

×
( 1

N

N
∑

i=1

‖Λ̂i −R′Λi‖2)1/2

which is Op(T−1/2). Ignore 2, the second term is equal to

tr
[

Ĥ
N

∑

i=1

N
∑

j=1

Λ̂iΣ̂
−1
ii

1

T

T
∑

t=1

[uitu
′
jt −E(uitu

′
jt)]Σ̂

−1
jj Λ̂′

jĤ
]

+ tr
[

Ĥ
N

∑

i=1

Λ̂iΣ̂
−1
ii (Σ̂ii − Σii)Σ̂

−1
ii Λ̂iĤ

]

which is Op(N−1/2T−1/2) +Op(T−1) by Lemma A.3(d) and (e). So we have (B.24).

Given (B.23) and (B.24), we have

1

T

T
∑

t=1

f̂tf̂
′
t − 1

T

T
∑

t=1

f∗
t f

∗′
t = op(1) (B.25)
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From (B.25), we immediately obtain (B.19). Now consider (B.20). By the definition of η̂t,

1

T

T
∑

t=1

ĥtη̂
′
t =

1

T

T
∑

t=1

ĥt(ĝt + V̂ ′ĥt)
′ =

1

T

T
∑

t=1

ĥtĝ
′
t +

( 1

T

T
∑

t=1

ĥtĥ
′
t

)

V̂

=
1

T

T
∑

t=1

ĥtĝ
′
t +

( 1

T

T
∑

t=1

ĥtĥ
′
t

)

V +
( 1

T

T
∑

t=1

ĥtĥ
′
t

)

(V̂ − V )

From (B.25), we have

1

T

T
∑

t=1

ĥtĝ
′
t =

1

T

T
∑

t=1

h∗
t g

∗′
t + op(1)

Given the above result, together with (B.19) and Lemma B.4, we have

1

T

T
∑

t=1

ĥtη̂
′
t =

1

T

T
∑

t=1

h∗
t g

∗′
t +

( 1

T

T
∑

t=1

h∗
th

∗′
t

)

V + op(1) =
1

T

T
∑

t=1

h∗
t η

∗′
t + op(1).

Equation (B.21) can be proved similarly as (B.20) and the proof is omitted. Given (B.19),

(B.20) and (B.21), we have (B.14).

Given (B.14), in combination with Σ̂i,22 = Σi,22 +op(1), we have Ŵi = Wi +op(1). This

completes the proof. �

Proof of Theorem 5.1. The consistency of β̂LV
i is implied by the asymptotic ex-

pression. So we only focus on the derivation of the asymptotic expression. Notice that

β̂LV
i is defined by

β̂LV
i = (∆̂′

iŴ
−1
i ∆̂i)

−1(∆̂′
iŴ

−1
i δ̂i).

By ∆iβi = δi, we also have

βi = (∆′
iŴ

−1
i ∆i)

−1(∆′
iŴ

−1
i δi),

From the two preceding equations, we have

β̂LV
i − βi = (∆̂′

iŴ
−1
i ∆̂i)

−1[

(∆̂′
iŴ

−1
i δ̂i − ∆′

iŴ
−1
i δi) − (∆̂′

iŴ
−1
i ∆̂i − ∆′

iŴ
−1
i ∆i)βi

]

=
{

(∆̂′
iŴ

−1
i ∆̂i)

−1[

∆′
iŴ

−1
i (δ̂i − δi) − ∆′

iŴ
−1
i (∆̂i − ∆i)βi

]

}

(B.26)

+
{

(∆̂′
iŴ

−1
i ∆̂i)

−1[

(∆̂i − ∆i)Ŵ
−1
i (δ̂i − δi) − (∆̂i − ∆i)Ŵ

−1
i (∆̂i − ∆i)βi

]

}

By Lemma B.5 and Theorem 3.1, we have

∆̂i − ∆i =

[

R′
22·1 0
0 IK

]

1

T

T
∑

t=1

[

h⋆
t v

′
it

vitv
′
it − E(vitv

′
it)

]

+ op(T−1/2) (B.27)

and

δ̂i − δi =

[

R′
22·1 0
0 IK

]

1

T

T
∑

t=1

[

h⋆
t eit

viteit − E(viteit)

]

+ op(T−1/2) (B.28)

where eit = ǫit +β′
ivit. Equations (B.27) and (B.28) implies that ∆̂i = ∆i +Op(T−1/2) and

δ̂i = δi +Op(T−1/2). Given these results, together with Lemma B.6, we have

∆̂′
iŴ

−1
i ∆̂i − ∆′

iW
−1
i ∆i = op(1), ∆̂′

iŴ
−1
i − ∆′

iW
−1
i = op(1),
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(∆̂i − ∆i)Ŵ
−1
i (δ̂i − δi) = Op(T−1), (∆̂i − ∆i)Ŵ

−1
i (∆̂i − ∆i) = Op(T−1)

Then we can simplify the expression of β̂LV
i − βi as

β̂LV
i − βi = (∆′

iW
−1
i ∆i)

−1∆′
iW

−1
i

[

R′
22·1 0
0 IK

]

1

T

T
∑

t=1

[

h⋆
t

vit

]

ǫit + op(T−1/2) (B.29)

By definition of Wi, together with

∆i =

[

Λ∗
i,22 − V Λ∗

i,12

Σi,22

]

=

[

R′
22·1Λi,22

Σi,22

]

=

[

R′
22·1γ

h
i

Σi,22

]

we have
√
T (β̂LV

i − βi) =
(

γh′
i (Mhh −MhgM

−1
gg Mgh)γh

i + Ωi
)−1

× 1√
T

T
∑

t=1

[

γh′
i

(

ht −MhgM
−1
gg gt

)

+ vit

]

ǫit + op(1)

This completes the proof of Theorem 5.1. �
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