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Abstract

This paper presents a linear multi-sector equilibrium model with taxation, which in-

cludes two types of consumers (i.e. laborers and capitalists). In the model capitalists exploit

laborers by levying taxes. Hence, the issues of the income distribution between laborers and

capitalists can be studied in the form of tax issues. This model covers the two types of sim-

ple reproduction models as its special cases, that is, the simple reproduction model wherein

agents exchange commodities by labor values (i.e. the surplus value model), and the sim-

ple reproduction model wherein agents exchange commodities by production prices (i.e.

the profit-price model). Hence this is a more general framework for the analyzing of the

simple reproduction. After the development of the model, the effects of levying the wage

tax, value-added tax and the turnover tax are discussed. And the possible efficiency loss of

levying the turnover tax is also illustrated.

Keywords: Tax, Linear Model, General Equilibrium, Marxian Economics

1 Introduction

Linear multi-sector models adopting Leontief-type production functions and utility functions

have relative simple mathematical structures and quite abundant economic implications, which

are convenient to be analyzed with the matrix theory and can be used to explain and study a va-

riety of economic issues. Hence such models were widely applied and studied not only by early

classical economists, e.g. Marx’s reproduction model (Marx, 1956), but also by contemporary

economists, e.g. Leontief (1936, 1941), Dorfman, Samuleson and Solow (1958), Sraffa (1960),

Gale (1960) and in other voluminous works of the input-output analysis.

Marx (1956) and Sraffa (1960) investigated linear multi-sector simple reproduction models

without joint production, and such type of models may also be referred to as zero-growth linear

multi-sector models without joint production. They analyzed two types of simple reproduction

models. The first type of the models assumes that capitalists yield equal profit from each unit of

labor, and in this case the equilibrium price of each commodity equals the labor value it contains

when the wage rate is set equal to unity. The second type of model assumes that capitalists yield

equal profit from each unit of capital, and in this case the equilibrium price of each commodity

equals its production price. Samuelson (1971) pointed out that the profit in the two cases can be

regarded as distinct types of tax. The profit in the first case can be regarded as the value-added

tax, and the profit in the second case can be regarded as the turnover tax. However, Samuelson

didn’t develop the idea into a mathematical model. And this idea appears to receive little further

attention after Samuelson (1971).
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Almost at the same time as Samuelson (1971), Metcalfe and Steedman (1971) analyzed the

effects of taxation in the Sraffian linear price-profit model. Their model contains two produc-

er sectors. Later Semmler (1983) extended the work of Metcalfe and Steedman (1971), and

discussed the effects of wage taxes, profits taxes and indirect taxes in a more general linear

price-profit model. Then Gehrke and Lager (1995) applied the linear price-profit model to s-

tudying the effects of environmental taxes on relative prices and on the choice of technique.

These researches on the linear taxation models and the effects of taxation are mainly based on

the Sraffian framework, that is, the price-profit framework, and the surplus model is ignored at

large. This paper will try to attach more attention to the surplus value model and develop the

idea of Samuelson (1971) further by building a linear tax model, and the model will cover the

two types of simple reproduction models as its special cases.

The following notations and terminologies will be used. 1 denotes the vector (1,1, . . . ,1)T
.

A vector x is called positive (or nonnegative) and we write x ≫ 0 (or x ≥ 0) if all its components

are positive (or nonnegative). x is called semipositive and we write x > 0 if x ≥ 0 and x 6= 0.

For vectors x and y, we write x ≫ y, x > y and x ≥ y analogously. Such notations and terms are

also used for matrices. (x;y) denotes

[

x

y

]

.

2 The Model

Let’s consider an n-sector, n-commodity economy. The n-th commodity is labor and is supplied

by the laborer sector (i.e. the n-th sector). The other n− 1 commodities are producible goods

and supplied respectively by the n− 1 producer sectors. All producers possess Leontief-type

production functions. The laborer sector consists of homogeneous ω(> 0) laborers, and each

laborer supplies one unit of labor. A laborer has no income other than wage, which is paid before

production. Suppose there is another type of consumer (i.e. capitalists) in the economy besides

laborers, whose income comes from taxation (i.e. transfer payment). Because the number of

capitalists is insignificant for the analysis in this paper, let’s suppose there is only one capitalist

for simplicity. Laborers and the capitalist expend all their income on consumption. Suppose la-

borers and the capitalist have constant demand structures, that is, they have Leontief-type utility

functions. Hence the commodity bundle purchased by each laborer can be represented by uLdL,

wherein the exogenous semipositive vector dL satisfying 1T dL = 1 indicates the consumption

structures of each laborer, and the nonnegative real number uL represents the consumption level

(i.e. the utility level) of each laborer. The commodity bundle purchased by the capitalist is

uCdC. Similarly, the exogenous semipositive vector dC satisfying 1T dC = 1 indicates the de-

mand structure of the capitalist, and the nonnegative real number uC represents the consumption

level of the capitalist.

The technology coefficient of n− 1 producer sectors and the consumption bundle of each

laborer constitute an input coefficient matrix with a parameter uL as follows:

A(uL) =

[

Ā uLdL

l̄ 0

]

wherein Ā is the (n−1)× (n−1) intermediate input coefficient matrix, and l̄ is the labor input

coefficient vector. The consumption level uL(> 0) of each laborer is a parameter of the input

coefficient matrix. In this paper we make the following assumptions for the input coefficient

matrix.

Assumption 1 The labor input coefficient vector is positive, i.e. l̄ ≫ 0.

Assumption 2 uL > 0, and A(uL) is an indecomposable nonnegative matrix.

Assumption 3 The spectrum radius of Ā is smaller than 1.

Assumption 3 is the productivity assumption, which is widely-used in various linear eco-

nomic models. By the properties of the M-matrix in the matrix theory (Horn, Johnson, 1990;
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Bapat, Raghavan, 1997), the following lemma holds.

Lemma 1 Given a positive real number s and a nonnegative square matrix Ā, the follow-

ing statements are equivalent:

(i) The spectrum radius of Ā is smaller than s;

(ii) There exists x > 0 such that Āx ≪ sx holds;

(iii) There exists x > 0 such that xĀ ≪ sx holds;

(iv) There exists x ≥ 0 such that Āx ≪ sx holds;

(v) There exists x ≥ 0 such that xĀ ≪ sx holds;

(vi) sI− Ā is nonsingular;

(vii) (sI− Ā)
−1

exists and is a semipositive matrix;

(viii) (sI− Ā)
−1

exists and is equal to
(

I+∑
∞
k=1

(

Ā/s
)k
)

/s.

Let the wage rate (i.e. the price of a unit of labor) be 1. Thus the income of each labor-

er equals 1. Let the n-dimensional semipositive vector p = (p̄,1) represent the prices of all

commodities. The (n−1)-dimensional semipositive row vector p̄ represents the prices of n−1

products, and is referred to as the product price vector. When the consumption level uL of each

laborer, the input coefficient matrix A(uL) and the price vector p are given, the vector pA(uL)
is the unit cost vector excluding tax. The i-th (i = 1,2, · · · ,n− 1) component of pA(uL) indi-

cates the tax-exclusive cost of sector i for producing a unit of product, and the n-th component

indicates the tax-exclusive living cost (i.e. the consumption expenditure) of a laborer.

Here let’s suppose the capitalist obtains profit or surplus value by levying tax on production

sectors and/or laborers, and all tax are expended by capitalist on his consumption. Suppose the

tax system can be represented by a linear tax function τpT. Here τ ≥ 0 is the exogenous tax

rate. T is an exogenous n× n semipositive matrix, which indicates the methods of levying tax

and is referred to as the tax structure matrix. In a more general model, the tax function can be

a non-linear function τt(p), or adopts an even more complex form (e.g. τt(p,uL)). However, in

this paper we restrict our focus to the above-mentioned linear tax function.

Hence, the tax-inclusive unit cost vector of each agent is pA(uL)+ τpT. In a zero growth

equilibrium, the revenue of each producer obtained by selling one unit of commodity equals the

tax-inclusive unit cost, and the consumption expenditure plus tax of each laborer is equal to his

wage. Thus we have the following price equilibrium equation (i.e. the cost-revenue equation):

pA(uL)+ τpT = p (1)

Now let’s turn to the quantity aspect of the equilibrium.

Let y :=(ȳ;ω) stand for the n-dimensional semipositive supply vector, which is also referred

to as the output vector. The (n− 1)-dimensional semipositive row vector ȳ denotes the supply

amounts (i.e. the output amounts) of n−1 types of products, and yn = ω denotes the exogenous

supply amount of labor.

When the consumption level uL of each laborer, the input coefficient matrix A(uL) and the

output vector y are given, the vector A(uL)y is the demand vector (and the input vector as

well). The i-th component of A(uL)y indicates the input amount of commodity i required by the

production processes of producers and the consumption processes of laborers under the given

conditions. In the tax-inclusive case, a part of the output is consumed by capitalist, and the

remainder is used for production and laborers’ consumption. In a zero-growth economic equi-

librium, the sum of the input vector A(uL)y and the consumption bundle uCdC of the capitalist

equals the output vector. That is, in equilibrium the demand for each commodity is equal to

its supply. Hence we have the following quantity equilibrium equation (i.e. the demand-supply

equation):

A(uL)y+uCdC = y (2)

Formula (1) and (2) constitute a tax-inclusive linear multi-sector zero-growth equilibrium model,

wherein uL, uC, p and y are unknown variables. By Formula (1) and (2), we can solve the
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equilibrium price vector, the equilibrium output vector and the equilibrium consumption levels

of laborers and the capitalist.

By right multiplying both sides of Formula (1) with y, and left multiplying both sides of

Formula (2) with p, we see that τpTy= puCdC holds. That is, the total tax amount in equilibrium

is equal to the consumption expenditure of the capitalist.

3 Equilibrium without Taxation

3.1 Equilibrium Equations without Taxation

When the tax rate equals 0, all net outputs are consumed by laborers and there is no exploitation.

In such a case the equilibrium equations (1) and (2) become as follows:

pA(uL) = p (3)

A(uL)y = y (4)

The price equation (3) can be written as

p̄(I− Ā) = l̄ (5a)

uL = 1/(p̄dL) (5b)

The quantity equation (4) can be written as

(I− Ā)ȳ = ωuLdL (6a)

l̄ȳ = ω (6b)

By Formulas (3)-(6), the existence and uniqueness of equilibrium can be analyzed conveniently

by utilizing the properties of the nonnegative square matrix and the Perron-Frobenius theorem

in the matrix theory.

By Lemma 1 and Assumption 1 ( i.e. l̄ is a positive vector), there exists nonnegative vector

p̄ satisfying the price equation (5) if and only if the spectrum radius of the nonnegative matrix

Ā is smaller than 1. Let λ := l̄(I− Ā)
−1

, which is the labor value vector (Fujimori, 1982). By

Lemma 1, λ is a positive vector. Furthermore, by Lemma 1 and Formula (6) we see that the

equilibrium product price vector, denoted by p̄∗, is equal to λ, and there is no other nonnegative

vector p̄ satisfying the price equation (5). Hence we know that there exists the unique positive

vector p̄∗ = λ and the unique uL∗ = 1/(λdL)> 0 satisfying the price equilibrium equation (5).

Recall that A(uL) is assumed to be indecomposable when uL > 0 holds. By Formula (3) and

the Perron-Frobenius theorem the P-F (i.e. Perron-Frobenius) eigenvalue of A(uL∗) equals 1,

and p∗ = (p̄∗,1) is a left P-F eigenvector of A(uL∗).

Furthermore, by the Perron-Frobenius theorem there exists a unique positive vector y∗ satis-

fying Formula (4), i.e. y∗ = (ȳ∗;ω) = (ω(I− Ā)
−1

uL∗dL;ω), and there is no other nonnegative

output vector satisfying Formula (4). Since ȳ∗ is positive, (I− Ā)
−1

dL is also positive. The

above discussion can be summarized as the following proposition.

Proposition 1 Under Assumption 1-3, the positive real number uL∗ = 1/(λdL), the positive

vectors p∗ = (λ,1) and y∗ = (ω(I− Ā)
−1

uL∗dL;ω) satisfy the price equilibrium equation (3)

and the quantity equilibrium equation (4). Moreover, there is no other nonnegative real number

uL, semipositive vector p = (p1, · · · , pn−1,1) and semipositive vector y = (y1, · · · ,yn−1,ω)T

satisfying Formula (3) and Formula (4).
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3.2 Optimality of the Equilibrium without Taxation

In the equilibrium without taxation, all net outputs in the economy are consumed by laborers

and there is no exploitation. This is the most favorable case for laborers. In other words, there

is no other simple reproduction method to raise the consumption level of laborers. Or more

formally, the following proposition holds.

Proposition 2 There are no nonnegative vector y′ = (ȳ′,ω) and real number uL′ satisfying

A(uL′)y′ = y′ and uL′ > uL∗ = 1/(λdL).
Proof Proof by contradiction. Suppose there exist a nonnegative vector y′ = (ȳ′,ω) and a

real number uL′ satisfy A(uL′)y′ = y′ and uL′ > uL∗ = 1/(λdL), then by the Perron-Frobenius

theorem y′ is positive. Hence A(uL∗)y′ < y′ holds. Let p∗ be a left P-F eigenvector of A(uL∗),
then by Proposition 1 p∗ is positive. Hence we have p∗A(uL∗)y′ < p∗y′, that is, p∗y′ < p∗y′.

There is a contradiction. Thus the proposition holds. �

The above proposition can be regarded as a special case of the first welfare theorem.

3.3 Comparative Statics of Equilibrium without Taxation

When the exogenous values of Ā and l̄ in the input coefficient matrix A(uL∗) changes, the equi-

librium consumption level uL∗ of laborers will change accordingly. By Assumption 2, A(uL∗)
is an indecomposable nonnegative square matrix, and the P-F eigenvalue of an indecomposable

nonnegative square matrix has the following properties (Horn, Johnson, 1990).

Lemma 2 Let M be an indecomposable nonnegative square matrix, and ρ(M) denotes

its P-F eigenvalue. When ρ(M) is regarded as a function of all elements of M, ρ(M) is a

continuous, strictly increasing function (i.e. M < M′ implies ρ(M)< ρ(M′)). Moreover, when

an element of M approaches infinity and the other elements keep constant, ρ(M) will approach

infinity.

Since the P-F eigenvalue of the input coefficient matrix A(uL∗) is always 1, by Lemma 2

uL∗ is a strictly decreasing functions of elements of Ā and l̄. Moreover, when a component of l̄

approaches infinity, uL∗ will approach 0. That is to say, if the labor amount required by a sector

to produce a unit of product approaches infinity, the equilibrium consumption level of laborers

will approach 0.

When the greatest element of l̄ approaches 0, the greatest component of λdL will also ap-

proach 0, and uL∗ = 1/(λdL) will approach infinity. That is to say, when the labor amount

required to produce a unit of product approaches 0, the equilibrium consumption level of labor-

ers will approach infinity.

4 Equilibrium with Taxation

4.1 Analysis of the Price Equilibrium Equation

The price equilibrium equation (1) can be written as

p
(

A(uL)+ τT
)

= p (7)

By Assumption 2, if uL > 0 then A(uL) is indecomposable. Thus Formula (7) implies the P-F

eigenvalue (i.e. the spectrum radius) of A(uL)+ τT equals 1.

By Lemma 2, when a semipositive tax structure matrix T is given, if the tax rate τ is high

enough, then it’s possible that the spectrum radius of A(uL) + τT is greater than 1 for any

positive uL. In such a case there is no semipositive vector p satisfying Formula (7), i.e. there is

no equilibrium. In other words, a high tax rate may lead to the nonexistence of equilibrium.

Note that there exists equilibrium when the tax rate equals 0. Therefore when the tax-

exclusive equilibrium consumption level uL∗ of laborers decreases, say, to uL∗/2 , by Lemma 2

the P-F eigenvalue of A(uL∗/2) is smaller than 1. Hence we can increase the tax rate τ such that
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the P-F eigenvalue of A(uL∗/2)+τT equals 1. That is to say there exists a positive tax rate such

that there exists equilibrium and the equilibrium consumption level of laborers equals u*L/2. A

tax rate under which there exists equilibrium is called a feasible tax rate. Hence we see that there

must be some positive feasible tax rates. And the following proposition shows that all feasible

tax rates constitute an interval.

Proposition 3 If a tax rate τ̄(> 0) is feasible, then each τ ∈ (0, τ̄) is also a feasible tax

rate.

Proof Let uL∗′ and uL∗′′ denote the equilibrium consumption levels of laborers under tax

rates τ̄ and 0 respectively. By Formula (7) we see that ρ
(

A(uL∗′)+ τ̄T
)

= 1 and ρ
(

A(uL∗′′)
)

=

1 hold. Hence ρ
(

A(uL∗′)+ τT
)

< 1 and ρ
(

A(uL∗′′)+ τT
)

> 1 hold for each τ ∈ (0, τ̄). By

Lemma 2, ρ(A(uL)+ τT) is a continuous function of uL, hence there exists uL∗(uL∗′ < uL∗ <
uL∗′′) such that ρ

(

A(uL∗)+ τT
)

= 1 holds. �

If we regard the laborer equilibrium consumption level uL∗ as a function of tax rate, then by

Lemma 2 uL∗(τ) is a strictly decreasing function defined on a convex set.

When we partition the matrix T as T ≡

[

T̄

t̄
¯̄t

]

, the price equilibrium equation (1) can be

written as

p̄
(

I− (Ā+ τT̄)
)

= l̄+ τ t̄ (8a)

uL =
1− τp¯̄t

p̄dL
(8b)

Because (8a) implies p̄(Ā + τT̄) ≪ p̄, by Lemma 1 we see that (8a) has a solution if

and only if the spectrum radius of the matrix Ā + τT̄ is smaller than 1, and the solution is

(l̄+ τ t̄)
(

I− (Ā+ τT̄)
)−1

. And if the solution can make the equilibrium consumption level of

laborers be positive, then it’s an equilibrium product price vector.

By Lemma 1 we know that the solution is a positive vector, and each component of that is an

increasing function of the tax rate τ . That is, when the wage rate equals 1, the production price

of each product is no less than its labor value, and we have (l̄+τ t̄)
(

I− (Ā+ τT̄)
)−1

≥ λ holds.

Hence by Formula (8) it’s clear that the equilibrium product price vector p̄∗ and the equilibrium

consumption level uL∗ of laborers satisfy uL∗
λdL ≤ uL∗p̄∗dL ≤ 1.

4.2 Analysis of the Quantitative Equilibrium Equation

The quantitative equilibrium equation (2) can be written as

ωuLdL +uCdC = (I− Ā)ȳ (9a)

l̄ȳ = ω (9b)

Hence we have

ȳ = (I− Ā)
−1
(ωuLdL +uCdC) (10)

By Formula (9) and (10) we have

λ(ωuLdL +uCdC) = ω (11)

and

uC =
ω −ωuL

λdL

λdC
(12)

Formula (11) and Formula (12) indicate that the labor value amount of the total consumption

bundle is ω , and there is a tradeoff between uL and uC. After finding the equilibrium consump-

tion level uL∗ of laborers by Formula (8), the equilibrium consumption level uC∗ of the capitalist
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can be solved by Formula (12). Then by Formula (10) we can solve the equilibrium output

vector. Because (I− Ā)
−1

dL is positive, by Formula (10) it’s clear that the equilibrium output

vector is also positive.

Since the equilibrium consumption level uL∗ of laborers is a strictly decreasing function of

the tax rate τ , the equilibrium consumption level uC∗ of the capitalist is a strictly increasing

function of the tax rate τ . But the numerical example in Section 8 will show that this point

may not hold if a producer sector has more than one technology (i.e. it has a non-Leontief-type

production function).

5 Equilibrium Prices under Three Types of Taxes

The equilibrium prices may change with the tax system and the tax rate. Here we will focus

mainly on three types of taxes as follows:

(i) Income tax levied on laborers, which is referred to as payroll tax in Metcalfe and

Steedman (1971) and will be referred to as the wage tax hereafter in this paper;

(ii) Value-added tax levied on producer sectors;

(iii) Turnover tax levied on production sectors.

5.1 The Wage Tax

When τ(0 ≤ τ < 1) dollar tax is levied on each dollar of wage of laborers, the price equilibrium

equation can be written as

pA(uL)+ τp

[

0 0

0 1

]

= p (13)

wherein the tax structure matrix is T=

[

0 0

0 1

]

. By Formula (13) and (8) we find the equilibrium

price vector is p∗ = (λ,1) and the equilibrium consumption level of laborers is uL∗ = (1 −

τ)/(λdL).

Labor is a primary production factor whose supply amount is assumed to be exogenous.

Levying tax directly on the income of a primary production factor is equivalent to a redistribution

of ownership of the primary production factor. By the first welfare theorem, a redistribution of

ownership (i.e. a transfer payment) won’t lead to a loss of economic efficiency (Mas-Colell,

Whinston, Green, 1995). Hence the equilibrium with a wage tax is also Pareto optimal. And an

equilibrium price vector in this case is referred to as an optimal price vector. In this model an

optimal price vector can be written as ξ (λ,1),ξ > 0.

Since laborers spend all income on consumption, levying tax on their income has the same

effect with levying tax on their consumption expenditure (i.e. levying consumption tax). When

levying τ ′(≥ 0) dollar of tax on one dollar of expenditure, the price equilibrium equation is

pA(uL)+ τ ′p

[

0 uLdL

0 0

]

= p

And we have p∗ = (λ,1) and uL∗ = 1
(1+τ ′)λdL . Hence it’s clear that when τ ′ = τ

1−τ holds, levying

wage tax is equivalent to levying consumption tax.

5.2 The Value-added Tax

In the model of this paper, levying value-added tax means levying tax on the labor used in the

production since there is no other primary production factor. In the simple reproduction model

with a uniform rate of surplus value of Marx (1956), the surplus value can be regarded as the tax

levied on labor. Producer sectors pay the same amount of tax for inputting a unit of labor, that
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is, a unit of labor used in different sectors will contribute the same amount of surplus value. Let

l := (l̄,0). Since the wage rate is assumed to be 1, now the price equilibrium equation is

pA(uL)+ τl = p (14)

Now the tax structure matrix is T =

[

0

l

]

. Formula (14) can also be written as

p

[

Ā uLdL

(1+ τ)l̄ 0

]

= p (15)

The equilibrium price vector and the equilibrium consumption level of laborers are comput-

ed to be

p∗ = ((1+ τ)λ,1) (16a)

uL∗ =
1

(1+ τ)λdL
(16b)

That is, the current equilibrium consumption level of laborers is (1+ τ)−1
times of the

equilibrium consumption level of laborers in the zero-tax case.

From Formula (15) we see that in this model the tax-inclusive cost for sectors to use a unit

of labor is 1+ τ . Hence in equilibrium a producer sector faces the tax-inclusive price vector

(1+ τ)(λ,1) when calculating the cost, and the tax-inclusive price vector for a sector takes the

distortionary effects of a tax into account.

Recall the optimal price vectors are ξ (λ,1),ξ > 0, here the tax-inclusive price vector is still

an optimal price vector.

Since in this case the relative prices won’t change with the tax rate, it’s clear that even

though a producer sector has more than one technology, in an equilibrium the producer sector

won’t change its technology in use when the value-added tax rate changes. That is to say, in that

case there won’t be any loss of economic efficiency. Since both levying value-added tax and

levying wage tax won’t lead to any loss of economic efficiency, those two tax systems will have

the same economic effect when proper tax rates are chosen. In other words, the two types of tax

are equivalent in our model. Hence hereafter we will only investigate the value-added tax and

omit the wage tax.

5.3 The Turnover Tax

In this case, τ(≥ 0) dollar tax is levied on each dollar of expenditure of each producer sector,

That is, equal tax will be levied on each dollar of capital. Now the tax structure matrix is

T =

[

Ā 0

l̄ 0

]

. The price equilibrium equation can be written as

(1+ τ)
(

p̄Ā+ l̄
)

= p̄ (17a)

uL = 1/(p̄dL) (17b)

And (17a) is the Sraffian equilibrium price equation (Sraffa, 1960), which also can be written as

p̄
(

(1+ τ)−1
I− Ā

)

= l̄ (18)

Because Formula (18) implies p̄Ā ≪ (1+ τ)−1
p̄, by Lemma 1 we know Formula (18) has a

nonnegative solution if and only if the spectrum radius of Ā (i.e. ρ(Ā) is smaller than (1+ τ)−1
.

That is, the feasible tax rate interval is
(

0,1/ρ(Ā)−1
)

. Under a feasible tax rate, the equilibri-

um price vector is

p∗ =

(

l̄
(

(1+ τ)−1
I− Ā

)−1

,1

)
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And l̄
(

(1+ τ)−1
I− Ā

)−1

is the production price vector.

Moreover, the turnover tax can also be levied in another way, that is, to levy τ ′(0 ≤ τ ′ <
1) dollar tax on each dollar of sales revenue of each producer sector. In an equilibrium it’s

equivalent to levy τ ′pi dollar of tax on each unit of product of each producer sector. That is, the

tax structure matrix is T′ =

[

I 0

0 0

]

. The price equilibrium equation can be written as

1

1− τ ′
(p̄Ā+ l̄) = p̄ (19a)

uL = 1/(p̄dL) (19b)

Comparing Formula (19) with (17), we see that when τ ′ = τ
1+τ holds the two methods of

levying tax have the same effect.

Moreover, by Formula (17) we see that each producer sector faces the tax-inclusive price

vector (1+ τ)(p̄,1), which is

(1+ τ)p∗ = (1+ τ)

(

l̄
(

(1+ τ)−1
I− Ā

)−1

,1

)

in equilibrium. That price vector may not be an optimal price vector. Therefore, if a producer

sector has more than one technology, the choice of the producer sector may differ from that one

in a Pareto optimal case. That is, in such a case levying turnover tax may result in a loss of

economic efficiency. This point will be illustrated by a numerical example in Section 8.

6 Marx’s Numerical Example

Marx (1956) supposed that each unit of labor contributes equal profit in his simple reproduction

model in Chapter 20, Volume 2 of Capital. And in Volume 3 Marx supposed each dollar of

capital contributes equal profit, which is the same assumption as of Sraffa (1960).

Here let’s investigate the numerical example of Marx in Chapter 20, Volume 2 of Capital

with the new model. There are three kinds of commodities in that example, i.e.:

(i) Means of production (i.e. capital goods), which is represented by iron hereafter;

(ii) Articles of consumption (i.e. consumption goods), which is represented by wheat

hereafter;

(iii) Labor.

Laborers and capitalists consume only wheat. The number of laborers is assumed to be

3000, i.e. the supply amount of labor is 3000 units. The input coefficient matrix is

A(uL) =





2/3 2/3 0

0 0 uL

1/3 1/3 0





wherein dL = (0,1,0)T
. And the labor value vector is computed to be λ= (1,1).

6.1 Equilibrium without Taxation

When the tax rate equals zero (i.e. τ = 0), the equilibrium price vector and supply vector are

computed to be p∗ = (1,1,1) and y∗ = (6000,3000,3000)T
respectively. And the equilibrium

consumption level of laborers and the capitalist are uL∗ = 1 and uC∗ = 0 respectively. The

equilibrium production and consumption processes are shown in Table 1.
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Table 1. Equilibrium Input-Output Processes without Taxation

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 4000 2000 0 0 6000

Wheat Input 0 0 3000 0 3000

Labor Input 2000 1000 0 0 3000

Tax 0 0 0 0 0

Output 6000 1000 3000 0

6.2 Equilibrium with the Value-added Tax

In the example of Marx, the tax rate of the value-added tax (i.e. the surplus value rate) is τ = 1.

By Formula (16) the equilibrium price vector is computed to be p∗ = (2,2,1)T
. The equilibrium

supply vector is y∗ = (6000,3000,3000)T
. And the equilibrium consumption level of laborers

and the capitalist are uL∗ = 0.5 and uC∗
= 1500 respectively. The equilibrium production and

consumption processes are shown in Table 2 and Table 3.

Table 2. Equilibrium Input-Output Processes with Taxation

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 4000 2000 0 0 6000

Wheat Input 0 0 1500 1500 3000

Labor Input 2000 1000 0 0 3000

Tax 2000 1000 0 0 3000

Output 6000 3000 3000 0

Table 3. Price-measured Equilibrium Input-Output Processes with Taxation

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 8000 4000 0 0 12000

Wheat Input 0 0 3000 3000 6000

Labor Input 2000 1000 0 0 3000

Tax 2000 1000 0 0 3000

Output 12000 6000 3000 0

6.3 Equilibrium with the Turnover Tax

First let’s compute the tax rate of the turnover tax which will lead to the same result of distri-

bution as the previous subsection. By Formula (19) we find p∗2 = 2. Further, the tax rate of the

turnover tax (i.e. the profit rate) is computed to be τ = 1/5, and the equilibrium price of iron is

p∗1 = 2.

Hence the equilibrium price vector is p∗ = (2,2,1). The equilibrium supply vector and the

consumption levels keep unchanged. It’s clear that in the example of Marx the equilibrium

price vectors under the value-added tax and the turnover tax are the same. And the equilibrium

input-output processes are still as shown in Table 2 and Table 3.

7 A Numerical Example with Distinct Organic Compositions

Producer sectors in the numerical example of Marx have the uniform organic composition, and

consequently the equilibrium price vectors under the value-added tax and the turnover tax are

the same. In this section, we modify the input coefficient matrix in the numerical example of

Marx as

A(uL) =





1/5 2/3 0

0 0 uL

4/5 1/3 0




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so that the two producer sectors have distinct organic compositions.

And we still assume that the number of laborers (i.e. the amount of the labor supply) is

3000.

7.1 Equilibrium without Taxation

When the tax rate equals zero (i.e. τ = 0 ), the labor value vector is computed to be λ =
(1, 1). And the equilibrium price vector and the equilibrium supply vector are p∗ = (1,1,1) and

y∗ = (2500,3000,3000)T
respectively. The equilibrium consumption levels of laborers and the

capitalist are uL∗ = 1 and uC∗ = 0 respectively. The equilibrium production and consumption

processes are shown in Table 4.

Table 4. Equilibrium Input-Output Processes without Taxation

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 500 2000 0 0 2500

Wheat Input 0 0 3000 0 3000

Labor Input 2000 1000 0 0 3000

Tax 0 0 0 0 0

Output 2500 3000 3000 0

7.2 Equilibrium with the Value-added Tax

Let the tax rate (i.e. the surplus value rate) be τ = 1. By Formula (18) we compute the equilibri-

um price vector to be p∗=(2, 2, 1). The equilibrium supply vector is y∗=(2500, 3000, 3000)T
.

The equilibrium consumption levels of laborers and the capitalist are uL∗ = 0.5 and uC∗ = 1500

respectively. The equilibrium production and consumption processes are shown in Table 5 and

Table 6.

Table 5. Equilibrium Input-Output Processes with the Value-added Tax

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 500 2000 0 0 2500

Wheat Input 0 0 1500 1500 3000

Labor Input 2000 1000 0 0 3000

Tax 2000 1000 0 0 3000

Output 2500 3000 3000 0

Table 6. Price-measured Equilibrium Input-Output Processes with the Value-added Tax

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 1000 4000 0 0 5000

Wheat Input 0 0 3000 3000 6000

Labor Input 2000 1000 0 0 3000

Tax 2000 1000 0 0 3000

Output 5000 6000 3000 0

7.3 Equilibrium with the Turnover Tax

First let’s compute the tax rate of the turnover tax which will produce the same effect of distri-

bution as the previous subsection. By Formula (19) we know the equilibrium price of wheat is

p∗2 = 2. Furthermore, the rate of the turnover tax (i.e. the profit rate) is solved to be τ = 3/7 and

the equilibrium price of iron is p∗1 = 1.6. That is, the equilibrium price vector is p∗ = (1.6,2,1).
The equilibrium supply vector and the consumption levels (i.e. utility levels) are unchanged.

The price-measured equilibrium production and consumption processes are shown in Table 7.
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Table 7. Price-measured Equilibrium Input-Output Processes with the Turnover Tax

Iron Producer Wheat Producer Laborer Capitalist Total Input

Iron Input 800 3200 0 0 4000

Wheat Input 0 0 3000 3000 6000

Labor Input 2000 1000 0 0 3000

Tax 1200 1800 0 0 3000

Output 4000 6000 3000 0

8 An Example of Efficiency Losses under the Turnover Tax

In the model discussed above both the production function of each producer and the utility func-

tion of each consumer are Leontief-type, which means the demand structure of both producers

and consumers won’t change with prices. Thus in this case, when the consumption level of

laborers is given, the consumption level of the capitalist is unique and has nothing to do with the

tax system. Hence it’s clear that the tax system will affect prices but won’t lead to any efficiency

loss. However, if we extend the model to allow that a producer sector possesses more than one

technology, levying turnover tax may result in efficiency loss. Next we will illustrate this point

by a simple example.

Suppose there are two types of commodities in the economy, i.e. wheat and labor. And the

pretax wage rate is assumed to be 1. There are a wheat producer, a laborer and a capitalist in

the economy. The wheat producer has a Leontief-type production function, and the laborer and

capitalist consume only wheat. The input coefficient matrix is A(uL) =

[

α uL

1 0

]

wherein α is

assumed to satisfy 0 < α < 2
3
.

8.1 Equilibrium with the Value-added Tax

When the value-added tax is levied, the tax-inclusive unit cost of the wheat producer is α p1 +
1+ τ . Because α p1 +1+ τ = p1 holds in equilibrium, the equilibrium price of wheat (i.e. the

equilibrium unit cost of wheat) is p∗1 =
1+τ
1−α . The equilibrium consumption level of the laborer

is 1
p∗1

= 1−α
1+τ , and the equilibrium consumption level of the capitalist is

τ(1−α)
1+τ . The equilibrium

production and consumption processes are shown in Table 8.

Table 8. Equilibrium Input-Output Processes with the Value-added Tax

Wheat Producer Laborer Capitalist Total Input

Wheat Input α 1−α
1+τ

τ(1−α)
1+τ 1

Labor Input 1 0 0 1

Tax τ 0 0 τ
Output 1 1 0

When the tax rate τ approaches infinity, the consumption levels of the laborer and the capi-

talist approach 0 and 1−α respectively. The labor values in the wheat consumed by the laborer

and the capitalist are 1
1+τ and τ

1+τ respectively.

If the wheat producer has another technology (0.5α,2), that is, it can produce a unit of

wheat by inputting 0.5α unit of wheat and 2 units of labor, then under the current tax-inclusive

equilibrium prices the unit cost of this technology is 0.5α 1+τ
1−α + 2(1+ τ) = (2−1.5α)(1+τ)

1−α . Re-

call the assumption 0 < α < 2
3
, we have

(2−1.5α)(1+τ)
1−α > 1+τ

1−α . Hence this technology won’t be

utilized.
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8.2 Equilibrium with the Turnover Tax

When the turnover tax is levied, the tax-inclusive unit cost of the wheat producer is (1+ τ)(α p1+
1). The equilibrium price of wheat is p∗1 = 1+τ

1−α−ατ . Obviously a feasible tax rate τ satisfies

0 ≤ τ < 1
α −1.

The consumption level of the laborer is 1
p∗1
= 1−α−ατ

1+τ . The consumption level of the capitalist

is
τ(α p∗1+1)

p∗1
, i.e. τ

1+τ . The equilibrium production and consumption processes are shown in Table

9.

Table 9. Equilibrium Input-Output Processes with the Turnover Tax

Wheat Producer Laborer Capitalist Total Input

Wheat Input α 1−α−ατ
1+τ

τ
1+τ 1

Labor Input 1 0 0 1

Tax τ
1−α−ατ 0 0 τ

1−α−ατ
Output 1 1 0

When the tax rate τ approaches 1
α − 1, the consumption levels of the laborer and the capi-

talist approach 0 and 1−α respectively. In the equilibrium with turnover tax, the tax-inclusive

price vector for the wheat producer is
(

(1+τ)2

1−α−ατ ,1+ τ
)

, which is not one of those optimal price

vectors
(

ξ
1−α ,ξ

)

, ξ > 0 for any τ > 0.

Therefore, when the wheat producer has more than one technology, in equilibrium it may

use a technology which won’t be used in a Pareto optimal state. Hence a loss of the economy

efficiency may follow. The following numerical example may illustrate this point.

Suppose the wheat firm has another technology (0.5α,2). The unit cost under the current

equilibrium prices is (1+ τ)
(

0.5α(1+τ)
1−α−ατ +2

)

. We can find that when 2
3α −1 < τ < 1

α −1 holds

that value is smaller than 1+τ
1−α−ατ , that is, this technology costs less and will be utilized.

The unit cost of the firm using the second technology is (1+ τ)(0.5α p1 + 2). Obvious-

ly the corresponding equilibrium price of wheat is
4(1+τ)

2−α−ατ . Now the tax rate can be as high

as 2
α − 1. When 2

3α − 1 < τ < 2
α − 1 holds the unit cost of using technology(0.5α,2) un-

der that price is
4(1+τ)

2−α−ατ , which is smaller than the unit cost of using technology (α,1) (i.e.

(1+ τ)
(

4(1+τ)
2−α−ατ α +1

)

= (2+3α(1+τ))(1+τ)
2−α−ατ ). Now the consumption level of the laborer is 2−α−ατ

4(1+τ) .

The equilibrium production and consumption processes are shown in Table 10.

Table 10. Equilibrium Input-Output Processes with the Turnover Tax

Wheat Producer Laborer Capitalist Total Input

Wheat Input 0.25α 2−α−ατ
4(1+τ)

τ
2(1+τ) 0.5

Labor Input 1 0 0 1

Tax 2τ
2−α−ατ 0 0 2τ

2−α−ατ
Output 0.5 1 0

When the tax rate τ approaches 2
α − 1, the consumption level of the laborer approaches 0,

and the consumption level of the capitalist approaches 0.5−0.25α .

In this case the total amount of wheat consumed by the laborer and the capitalist is 0.5−
0.25α , which contains 0.5−0.25α

1−α labor value. Because the total amount of labor utilized in the

production is 1, it’s clear that the loss of the labor value as a result of levying tax is 1− 0.5−0.25α
1−α ,

i.e. 0.5−0.75α
1−α , which indicates the amount of efficiency loss in this economy as a result of levying

the turnover tax.

When the turnover tax is levied, there may exist an optimal tax rate (i.e. an optimal profit

rate) for the capitalist. In this example, the wheat producer will use the first technology only

if the tax rate satisfies τ ≤ 2
3α − 1. And in such a case when the tax rate equals 2

3α − 1 the
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consumption level of the capitalist reaches the greatest value 1− 1.5α . When the tax rate sat-

isfies 2
3α − 1 < τ < 2

α − 1, the second technology will be used, and in such a case when the

tax rate approaches 2
α −1 the consumption level of the capitalist approaches the greatest value

0.5−0.25α . It’s easy to know if 0 < α < 0.4, then we have 1−1.5α > 0.5−0.25α . That is to

say, if 0 < α < 0.4 holds the optimal tax rate for the capitalist is 2
3α −1.

9 Concluding Remarks

In this paper we build a linear multi-sector equilibrium model with taxation, which contains

only one kind of primary production factor (i.e. homogeneous labor). The tax in this model

may stand for profit and surplus value. In the reality the capitalists yield profit and surplus value

mainly by the market mechanism. However, from the viewpoint of theoretical research the

profit and surplus value obtained by the market mechanism can always be obtained by levying

tax instead. That is to say, the tax mechanism is a more general method of distribution than the

market mechanism. Therefore, an issue of distribution can be transformed into an issue of tax

to be analyzed.

In the model of this paper, when no tax is levied, the equilibrium price vector of products

(with labor as numeraire) equals the labor value vector. The equilibrium with a wage tax and

the equilibrium with the value-added tax are Pareto optimal. That is, levying wage tax or value-

added tax is merely a redistribution process and won’t lead to any loss of economy efficiency.

Even if the model of this paper is extended to allow that a producer sector has more than one

technology, this point will still hold. And when capitalists yield equal profit (i.e. surplus value)

from each unit of labor input of producer sectors, it’s equivalent to levy value-added tax on

producer sectors.

However, in reality capitalists usually yield equal profit from each unit of capital input of

producer sectors, which is equivalent to levy turnover tax on producer sectors. In such a case the

exogenous profit rate (i.e. the turnover tax rate) can be interpreted as the natural interest rate.

When a producer sector with more than one technologies is levied turnover tax, the equilibrium

may not be Pareto optimal. That is to say, if there exists a positive natural interest rate in the

economy and in equilibrium the profit rates of all producer sectors equals that natural interest

rate, the equilibrium may not be Pareto optimal.
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