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Abstract

This paper estimates and forecasts U.S. business cycle turning points with state-
level data. The probabilities of recession are obtained from univariate and multivari-
ate regime-switching models based on a pairwise combination of national and state-
level data. We use two classes of combination schemes to summarize the information
from these models: Bayesian Model Averaging and Dynamic Model Averaging. In
addition, we suggest the use of combination schemes based on the past predictive
ability of a given model to estimate regimes. Both simulation and empirical exercises
underline the utility of such combination schemes. Moreover, our best specification
provides timely updates of the U.S. business cycles. In particular, the estimated
turning points from this specification largely precede the announcements of business
cycle turning points from the NBER business cycle dating committee, and compare
favorably with competing models.
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1 Introduction

Assessing the current state of the economy represents a key input for policy makers and
investors in their decision-making process. However, current economic conditions are typ-
ically subject to substantial uncertainty owing to the publication delay of macroeconomic
variables and data revisions that become available long after the initial estimates have been
released. Likewise, detecting business cycle turning points in real-time proves to be very
challenging. As a result, economists have developed tools to provide early assessments of
business cycle turning points. In particular, regime switching models have long been used
to date and predict turning points. An important aspect of this type of models is that
regime changes are endogenously estimated in a purely data driven way.

Since the seminal work of Hamilton (1989), a number of extensions to regime-switching
models have been proposed to estimate turning points for the U.S. economy. In this con-
text, dynamic factor models subject to regime changes are one of the most successful
approaches. Relevant contributions include Kim (1994), Kim and Yooa (1995) and Kim
and Nelson (1998). Also, Chauvet (1998) finds that this type of models perform well to date
business cycle turning points in an out-of-sample experiment. Kholodilin and Yao (2005)
use leading indicators in a dynamic factor model to predict turning points. Recent works
have focused on analyzing the performance of regime switching models to forecast turning
points using real-time data (Chauvet and Hamilton (2006) and Chauvet and Piger (2008))
and allowing for mixed frequency data (Camacho et al. (2012), Guérin and Marcellino
(2013) and Camacho et al. (2014)).

Alternative approaches used to infer turning points rely on vector autoregressive (VAR)
models with regime switching parameters. Relevant works include Hamilton and Perez-
Quiros (1996) and Cakmakli et al. (2013) who use information on leading economic indexes
to predict cycles for Gross National Product and Industrial Production, respectively. Nale-
waik (2012) emphasizes the predictive content of gross domestic income (GDI) to forecast
U.S. recessions in real-time. Finally, Hamilton (2011) provides a comprehensive survey of
the literature on predicting turning points in real-time.

In a forecasting context, it is standard practise to rely on a combination of models to deal
with model uncertainty and parameter instability. In fact, as discussed in Timmermann
(2006), forecast combinations have frequently been found to produce better forecasts on
average than methods based on the ex ante best individual forecasting model. An approach
increasingly used in empirical studies is Bayesian Model Averaging (BMA), proposed by
Raftery et al. (1998) and Hoeting et al. (1999) for linear models, which produces weights
for each model that are constant over time.

Recently, Raftery et al. (2010) proposed a Dynamic Model Averaging (DMA) approach,
where the models’ weights are allowed to evolve over time. DMA has been applied to a
variety of contexts. In detail, to Time-Varying Parameter (TVP) regression models to
forecast inflation (Koop and Korobilis (2012), Chan et al. (2012) and Belmonte and Koop
(2014)), the European Carbon market (Koop and Tole (2013)), and major monthly US
macroeconomic variables using information from Google searches (Koop and Onorante
(2013)). In a multivariate context, DMA has been applied to linear VAR models (Koop
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(2014) and Koop and Onorante (2012)), large TVP-VAR models (Koop and Korobilis
(2013)) to forecast inflation, real output and interest rates as well as factor models (Koop
and Korobilis (2011)) to forecast growth and inflation in the U.K. Other approaches were
put forward by Elliott and Timmermann (2005) to allow the weights to be governed by
Markov chains. Geweke and Amisano (2011) instead focus on constructing optimal weights
by considering linear pools where the objective is to maximize the historical log of predictive
score. Del Negro et al. (2013) provides a dynamic version of the linear pools approach.

Despite the growing literature related to model averaging used to formulate continuous
forecasts, little has been done regarding the study of averaging schemes in the context of
discrete forecasts. To the best of our knowledge, there are very few related works in this
research area. For example, Billio et al. (2012) compare the performance of combination
schemes for linear and regime switching models, while Billio et al. (2013) propose a time-
varying combination approach for multivariate predictive densities. Moreover, Berge (2013)
compares model selection schemes that rely on boosting algorithms with a Bayesian model
averaging weighting scheme for predicting U.S. recessions based on logistic regressions using
a set of economic and financial indicators. He finds that the results are comparable across
the different weighting schemes.

The purpose of this paper is to contribute to this literature by evaluating different
model averaging approaches for Markov-switching models to nowcast and forecast business
cycle turning points in real-time. Specifically, we compare the forecasting performance
of averaging schemes using constant weights (BMA) with those based on time-varying
weights (DMA), adapting the DMA approach of Raftery et al. (2010) to (univariate and
multivariate) Markov-switching models. Moreover, a key contribution of this paper is to
propose another criterion to estimate the models’ weights, which relies on the ability of each
model to fit business cycle turning points. It therefore differs from the standard approach
that is only based on the likelihood associated with each model to determine the weights.

In a Monte Carlo experiment, we study the relevance of these different weighting
schemes. We do find evidence in favor of weighting schemes based on past predictive
performance to classify regimes in that such combination schemes yield lower quadratic
probability score (our evaluation metric to evaluate how well a model estimates regimes).
This holds true for both BMA and DMA weighting schemes.

The empirical application concentrates on predicting U.S. national recessions using
state-level data. In this context, it is natural to think of the best way to combine in-
formation from the different U.S. states to predict a national aggregate. Another reason
for focusing on this application is to contribute to the literature on the relationship be-
tween regional and national macroeconomic developments. Owyang et al. (2005), Hamilton
and Owyang (2012) and Leiva-Leon (2014) use state-level data to study the synchroniza-
tion of business cycles across U.S. states, finding that despite the significant heterogeneity
in cyclical fluctuations, states have become more synchronized since the mid-90s. Also,
Owyang et al. (2014) use state-level data to forecast U.S. recessions from probit models,
showing that enlarging a set of preselected national variables with state-level data on em-
ployment growth substantially improves nowcasts and short-term forecasts of the business
cycle phases. We follow Owyang et al. (2014) in that we also use state-level employment
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data to predict national U.S. recessions. However, we focus on regime switching models
rather than probit models that include the NBER datation of business cycle regimes as
a dependent variable, which is problematic in a forecasting context given the substantial
publication delay in the announcements of the NBER business cycle turning points.

The main results can be summarized as follows. First, we find that it is relevant to
take into account the models’ ability to estimate regimes when calculating models’ weights
if one is interested in regime classification. Indeed, our combination schemes based on
the quadratic probability score typically outperform combination schemes based on the
likelihood only. This is especially true in an out-of-sample context. Second, the use of
regional data improves the forecasting performance of the models compared with models
using exclusively national data. Third, the best forecasting model in the out-of-sample
exercise outperforms the anxious index from the Survey of Professional Forecasters at
short-forecasting horizons, which emphasizes the relevance of our framework. In addition,
in a purely real-time environment, we also find that our best specifications provide timely
estimates of the latest U.S. recession.

The paper is organized as follows. Section 2 describes the models we use, and Section
3 the different combination schemes we implement, and present the changes we make to
the standard combination schemes. In Section 4, a small-sample Monte Carlo experiment
is conducted to evaluate in a controlled experiment the combination schemes outlined in
the previous section. Section 5 introduces the data, and details the results. Section 6
concludes.

2 Econometric Framework

2.1 Univariate model

We first consider a univariate regime-switching model defined as follows:

yt = µk
0 + µk

1S
k
t + βkxkt + vkt (1)

where yt is a U.S. national indicator, xkt is total (non-farm) employment data for state
k, and vkt is the regression error term (it is assumed to be normally distributed, that is,
vkt ∼ N(0, σ2

k)). S
k
t is a standard Markov-chain defined by the following constant transition

probability:
pkij = P (Sk

t+1 = j|Sk
t = i), (2)

M
∑

j=1

pkij = 1∀i, jǫ{1, ...,M} (3)

where M is the number of regimes.
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Note that this specification differs from the baseline specification in Owyang et al. (2005)
in that equation (1) mixes national data (i.e., yt) with state-level data (i.e, the xkt ’s). In
contrast, Owyang et al. (2005) estimate univariate regime-switching model on state-level
data only to study the synchronization of economic activity across U.S. states. Moreover,
Hamilton and Owyang (2012) examine the synchronization of U.S. states’ business cycles
using a panel data model under the assumption that a small number of clusters can explain
the dynamics of U.S. states’ business cycles. It is also worth mentioning the work of
Owyang et al. (2014) that estimate a probit model to forecast U.S. recessions using a
large number of covariates, including both national and state-level data. These authors
then use Bayesian model averaging to select the most relevant predictors for forecasting
U.S. recessions. Finally, a common feature of these works is to strive for parsimonious
specifications to study business cycle dynamics, which is even more relevant in a forecasting
context. This is guiding our modeling choice in equation (1) to study the relevance of state-
level data to predict U.S. recessions.

In addition, we also use as a benchmark model a univariate regime-switching model
with no exogenous predictor defined as:

yt = µ0 + µ1St + ut (4)

where ut ∼ N(0, σ2)

2.2 Multivariate model

We then move on to consider a bivariate model where both the state-level data and the
national data are stacked in the vector of dependent variables:

zt = Γ(Sy
t , S

k
t ) + ǫkt (5)

where zt = (yt, x
k
t )

′, and Γ(Sy
t , S

k
t ) = (µy

0 + µy
1S

y
t , µ

k
0 + µk

1(S
k
t ))

′. yt is the U.S. national
indicator, and xkt is the total (non-farm) employment data for state k. ǫkt is normally
distributed, and Sy

t and Sk
t are two independent Markov chains.

A few additional comments are required. First, we use a different Markov-chain (Sy
t

and Sk
t ) for each equation of the VAR, assuming that they are independently generated.

This implies that regime changes at the national and state-level do not necessarily coincide,
feature that allows for the presence of the jobless recovery phenomenon in employment data.
Second, we do not include autoregressive dynamics in the model, which is often found to
be important for continuous forecasts of economic activity (e.g., GDP growth), since we
are interested in estimating business cycle turning points where modeling persistence in
the data is likely to deteriorate the ability of the model to detect regime switches. In that
respect, we follow for example Granger and Terasvirta (1999).
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3 Combination schemes

In the empirical application, univariate and bivariate specifications each generate 50
estimates for the probability of recession (i.e., one for each U.S. state). This information is
summarized using two different classes of combination schemes: Bayesian model averaging
and dynamic model averaging.

3.1 Bayesian model averaging

3.1.1 Likelihood approach

Bayesian model averaging consists in averaging over a set of K models. Given the
observed data yt, the posterior probability that model k is true - p(Mk|yt) - is updated as
follows:

p(Mk|yt) =
P (yt|Mk)P (Mk)

∑K

j=1 P (yt|Mj)P (Mj)
(6)

where P (Mk) is the prior probability that model k is true and P (yt|Mk) is the marginal
likelihood for model k. Following Newton and Raftery (1994), the marginal likelihood is cal-
culated from the harmonic mean estimator, which is a simulation-consistent estimate that
uses samples from the posterior density.1 The harmonic mean estimator of the marginal
likelihood is:

P (yt|Mk) =

(

1

M

K
∑

j=1

1

P (yt|M
(m)
j )

)−1

(7)

where P (yt|M
(m)
k ) is the posterior density available from replication m, and M is the total

number of simulations. Initially, one could assume that all models are equally likely, that
is P (Mk) =

1
K
. Alternatively, one could use the employment share of each U.S. state to set

the prior probability for each model. In the case of equal prior probability for each model,
the weights for model k are simply given as:

p(Mk|yt) =
P (yt|Mk)

∑K

j=1 P (yt|Mj)
(8)

1Note that alternative approaches could be used to calculate the marginal likelihood (see, e.g., Chib
(1995) or Fruhwirth-Schnatter (2004)). However, these alternative methods are typically computationally
demanding in that they require a substantial increase in the number of simulations, which is not suitable in
our empirical application, since we have to estimate many models in a recursive out-of-sample forecasting
experiment.
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3.1.2 QPS approach

Given that our models are designed to predict NBER recessions rather than predicting
the national activity indicator yt, we propose a weighting scheme where the weights depend
on the model’s ability to fit business cycle phases, i.e., the inverse quadratic probability
score (QPS), instead of the likelihood:

p(Mk|yt) =
p(Mk)QPS

−1
k

∑K

j=1 p(Mj)QPS
−1
j

, (9)

One could use the U.S. employment share of each state as prior probability for each model
or equal prior weights. In the case of equal prior probability for each model, the posterior
probability is given by the normalized inverse QPS.

p(Mk|yt) =
QPS−1

k
∑K

j=1QPS
−1
j

. (10)

where QPS is defined as follows:

QPS =
2

T

T
∑

t=1

(P (St = 0)−NBERt)
2 (11)

where P (St) = 0 is the probability of being in the recession regime and NBERt is a dummy
variable that takes on a value of 1 if the U.S. economy is in recession at time t according
to the NBER business cycle dating committee and 0 otherwise. QPS is bounded between
0 and 2, and perfect predictions yield a QPS of 0. Hence, the lower the QPS, the better
the ability of the model to fit the U.S. business cycle is.

3.1.3 Combined approach

Given that the marginal likelihood is positively related with the model’s ability to fit
the data, whereas QPS is negatively related with the models’ ability to fit business cycle
regimes, a natural way of incorporating both types of information is to use the ratio between
these two variables. Therefore, we also explore the performance of a combined approach
where we use both the marginal likelihood and the QPS to obtain the posterior probability
for each model. In this case, the models’ weights are given by:

p(Mk|yt) =
p(yt|Mk)p(Mk)QPS

−1
k

∑K

j=1 p(yt|Mj)p(Mj)QPS
−1
j

. (12)

In the case of equal prior probability for each model, the posterior probability reads as:

p(Mk|yt) =
ηk

∑K

j=1 ηj
, (13)

where

ηk =
p(yt|Mk)

QPSk

(14)
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3.2 Dynamic model averaging

3.2.1 Raftery’s approach

Dynamic model averaging originates from the work of Raftery et al. (2010), and has been
first implemented in econometrics by Koop and Korobilis (2012) and Koop and Korobilis
(2013).

To compute weights that vary over time associated to model k, we only need the pre-
dictive density at time t of the corresponding model, pk(yt|y

t−1), and a coefficient called
forgetting factor, α. Denote πt−1|t−1,k the predicted probability that model k is the most
appropriate for forecasting at time t− 1 given information up to time t− 1. Raftery et al.
(2010) argue that predictions of πt−1|t−1,k can be done by using a so called forgetting factor,
as follows:

πt|t−1,k =
πα
t−1|t−1,k

∑K

l=1 π
α
t−1|t−1,l

(15)

where 0 < α < 1 is set to a fixed value slightly less than one and is the coefficient that
governs the amount of persistence in the models’ weights. The higher the α, the higher
the weight attached to past predictive performance is. Following Raftery et al. (2010), we
first set α = 0.99, which implies that forecasting performance from two years ago receives
about 78.5 per cent weight compared with last period’s forecasting performance. We also
report results with α = 0.95 so as to give lower weights to past forecasting performance
(in this case, information from two years ago receives about 29 per cent weight compared
with last period’s information).

Once yt is observed, πt|t−1,k, can be updated by using the predictive density, as follows:

πt|t,k =
πt|t−1,kpk(yt|y

t−1)
∑K

l=1 πt|t−1,lpl(yt|yt−1)
(16)

The last two equations are repeated consecutively for each t, starting with equal weight for
each model at t = 1.

Dynamic model averaging differs from Bayesian model averaging in that no simulation
is required to calculate the models’ weights, and the weights vary over time (t={1,...,T}).
A detailed explanation about the algorithm used to perform DMA schemes in Markov-
switching models is presented in Appendix B.

3.2.2 QPS approach

Again, since we are interested in predicting business cycle phases instead of forecasting
the national activity variable, we modify Raftery et al. (2010) approach. Specifically, in
the updating equation, we replace the marginal likelihood, which measures how well the
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model fits the data, with a measure of goodness-of-fit for business cycle regimes. Hence,
the updating equation reads as:

πt|t,k =
πt|t−1,kQ

−1
t|t,k

∑K

l=1 πt|t−1,lQ
−1
t|t,l

, (17)

where Qt|t,k is the cumulative QPS at time t for model k defined as:

Qt|t =
2

t
(

t
∑

τ=1

P (Sτ = 0)−NBERτ )
2. (18)

The model prediction equation remains the same as in equation (15).

3.2.3 Combined approach

In line with Section 3.1.3, we also allow for the possibility that both, the marginal
likelihood and the cumulative QPS, could inform about the model’s ability to predict
business cycle phases. Therefore, the updating equation reads as:

πt|t,k =
πt|t−1,kηt|t−1

∑K

l=1 πt|t−1,lηt|t−1

, (19)

where

ηt|t−1 =
pk(yt|y

t−1)

Qt|t,k

, (20)

The model prediction equation remains the same as in equation (15).

4 Simulation Study

We conduct a Monte Carlo experiment to study in a controlled set-up the validity
of the different model averaging schemes detailed in the previous section. In doing so, we
choose a data generating process that closely mimics the empirical application of the paper.
Equations (21) to (23) detail the data generating process. First, the dependent variable yt
is generated according to the following equation:

yt = µy
0 + µy

1St + εyt , (21)

where εyt ∼ N(0, σ2
y), and (µy

0, µ
y
1) = (−1, 2).

The xk,t’s variables are instead generated from the following equation:

xk,t = µk
0 + µk

1St + σkε
k
t , for k = {1, ..., K}. (22)
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where εkt ∼ N(0, σ2
k).

2

The intercepts for the xk,t’s variables are given by:

µk
j = µy

j + µy
j ǫk,j, for j = {0, 1}. (23)

where ǫk ∼ U(−1, 1), so that the intercepts for the xt’s variables are closely related to the
intercepts of the variable yt.

While the intercepts’ values µy
0 and µy

1 are kept constant, we use four different values
for the variance of the innovations (σ2 = {0.5, 1, 1.5, 2}). Moreover, St is a standard
first-order Markov chain with two regimes and constant transition probabilities given by:
(p00, p11)=(0.8, 0.9). In this way, the first regime is associated with a negative growth rate
and it is less persistent than the second regime, a common feature of business cycle series
that typically exhibit different regimes’ duration. Finally, the series are generated with
length T = 200 and the number of xt variables is set to K = 20. The total number of
replications is set to 1000. For each replication, the total number of simulations to estimate
the model’s parameters is 3000, discarding the first 1000 simulations to account for start-up
effects.

Table 1 reports, for the different model-averaging schemes and under the different sce-
narios considered (i.e., BMA, DMA and an equal-weight scheme), the average in-sample
QPS obtained across the 1000 replications.3 For ease of computations, we also assume that
a single Markov chain St drives the changes for both the yt and xt’s variables.

4

The results show that, first, in both univariate and bivariate cases, the lowest QPS’
are obtained when using the QPS-based model averaging scheme. This holds true for both
DMA and BMA in the univariate case, and the differences are the most noticeable in the
BMA context. Second, in the context of DMA, the combined weighting scheme that relies
on both the QPS and the marginal likelihood is a very close second best weighting scheme,
which further emphasizes the value of the QPS to calculate models’ weights. Third, as
the volatility of the series increases (i.e., for higher values of σ), the differences in terms
of QPS across the weighting schemes tend to soften. This is relatively intuitive in that,
given the DGP’s we consider, as the volatility of the series increases, regimes shifts in
the series become less apparent, and it is therefore more difficult to infer regimes, which
translates into higher QPS, and lower value added resulting from weighting schemes based
on QPS. Overall, this simulation exercise underlines the relevance of our model-averaged
scheme based on past predictive performance to classify the regimes (i.e., QPS-based).
The next section evaluates the relevance of this framework from an empirical point of view,
forecasting national U.S. recessions based on a set of regional indicators.

2Note that the variance of the innovations is the same for both the yt and the xt’s (i.e., σx = σy) so as
to avoid large differences in volatility across series.

3We only consider in-sample Monte-Carlo experiments owing to the too demanding computational task
that would be required for a fully recursive out-of-sample exercise.

4This is not too detrimental since our primary objective is to estimate turning points at the national
or aggregate level, hence we do not loose much in assuming a single Markov-chain driving the parameter
changes in the bivariate case.
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Table 1: Monte Carlo simulation results

σ 0.5 1 1.5 2

Panel A: Univariate model

Dynamic Model Likelihood-based 0.447 0.360 0.351 0.358
Averaging QPS-based 0.027 0.161 0.257 0.311

Combined 0.027 0.164 0.261 0.314

Bayesian Model Likelihood-based 0.131 0.347 0.370 0.376
Averaging QPS-based 0.055 0.223 0.297 0.335

Combined 0.114 0.340 0.368 0.374

Equal weight 0.443 0.433 0.458 0.476

Panel B: Bivariate model

Dynamic Model Likelihood-based 0.034 0.164 0.268 0.325
Averaging QPS-based 0.016 0.137 0.248 0.310

Combined 0.016 0.144 0.252 0.314

Bayesian Model Likelihood-based 0.016 0.147 0.266 0.324
Averaging QPS-based 0.016 0.160 0.273 0.329

Combined 0.016 0.147 0.266 0.324

Equal weight 0.271 0.366 0.442 0.472

Note: This table reports the QPS averaged over 1000 replications using the different combination schemes outlined in Section

3. Bold entries in each panel indicate the lowest QPS for a selected DGP. See text for full details about the design of the

Monte Carlo experiment.
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5 Empirical Results

5.1 Data

We use alternatively industrial production and employment data as a measure of na-
tional economic activity. These two indicators are available on a monthly basis, and are
frequently considered as important measures of economic activity in the U.S. The state-
level data we use are the employees on non-farm payrolls data series published at a monthly
frequency for each U.S. state by the U.S. Bureau of Labor Statistics. These data are avail-
able on a not seasonally adjusted basis since at least January 1960 for all U.S. states. In
contrast, data on a seasonally adjusted basis are available since January 1990, and real-time
data vintages are only available since June 2007 from the ”Alfred” real-time database of
the Federal Reserve Bank of St. Louis.5 All data are taken as 100 times the change in
the log-level of the series to obtain monthly percent changes. The full estimation sample
extends from February 1960 to April 2014. To facilitate inference on the regimes, and
obtain a long enough evaluation sample to assess the accuracy of the forecasts, we use data
starting from 1960, and the data are appropriately seasonally adjusted.

5.2 In-sample results

The in-sample results are based on the latest data vintage available to us at the time we
wrote this paper (i.e., data vintage from May 2014 with last observation for April 2014).
For brevity, we only report the results for the models with national employment data as
a dependent variable.6 All models are estimated discarding the first 2000 replications to
account for start-up effects, running 5000 additional simulations to calculate the posterior
distribution of parameters (see Appendix 1 for additional details). To assess the ability
of regime-switching models to predict U.S. recessions, we use the in-sample Quadratic
Probability Score (QPSIS) defined as:

QPSIS =
2

T

T
∑

t=1

(Prob(St = 0)−NBERt)
2 (24)

where T is the size of the full sample, Prob(St = 0) is the probability of being in a low
mean regime (i.e., the recession regime), and NBERt is a dummy variable that takes on a
value of 1 if the U.S. economy is in recession according to the NBER business cycle dating
committee and 0 otherwise.

Table 2 reports the in-sample parameter estimates for all individual models in the
univariate case, as well as their quadratic probability scores. First, all univariate models

5Data are available on http://alfred.stlouisfed.org/, and are typically available with a roughly
three-week delay for the state-level data, about a 1-week delay for the national employment, and a 2-week
delay for industrial production.

6The main conclusions are relatively unchanged when using industrial production as a dependent vari-
able. Detailed results are available upon request.
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exhibit a classical cycle for employment in that average growth in the low mean regime
(i.e., µ0) is always negative, whereas average growth in the high mean regime (i.e., µ0+µ1)
is always positive. There are also little differences for the intercept estimates across all
models. However, differences are noticeable for the slope parameter β. For example,
perhaps unsurprisingly, the lowest slope parameter is for the model using employment data
for Alaska. In contrast, the highest slope parameter is for the model with employment
data for the state of Ohio. In addition, models with employment data for the states of New
York, Pennsylvania, New Jersey or California also yield large slope parameters, suggesting
the importance of the employment data from these states to explain the national U.S.
employment data. Finally, the model with employment data for the state of Virginia
yields the lowest (in-sample) QPS, whereas the model with the highest QPS is the one
using employment data for the state of Ohio. This suggests that the most relevant model
for explaining aggregate U.S. employment growth is not necessarily the most relevant for
estimating U.S. business cycle regimes.

Table 3 and Table 4 report the results for the bivariate models. First, as expected, the
intercepts for the equation on U.S. employment vary little across models and are roughly
in line with the parameter estimates from the univariate models. Second, for four states
(Alaska, Arizona, North Dakota, and New Mexico), the intercepts for the state employment
growth are positive in both regimes, that is the bivariate model estimates growth cycle
rather than classical cycle for the dynamics of state employment. Third, the lowest in-
sample QPS is obtained from the model using New Jersey employment data, followed by
the model with Maryland employment data.

Table 5 reports the in-sample QPS with the different combination schemes outlined
in Section 3 using alternatively employment and industrial production data as a measure
of national economic activity. First, models with industrial production yield lower QPS
compared with models with employment data. Second, in the univariate case, the best
specification is obtained by the MS-AR model with industrial production followed by the
models with industrial production and weights obtained from DMA using a combination
of predictive likelihood and QPS. Third, for multivariate models, models with industrial
production also tend to yield lower QPS. In detail, the equal weight specification produced
the lowest QPS followed by the DMA combination scheme that relies on the QPS. Fourth,
for DMA combination schemes, a lower value for the forgetting factor α tends to yield
lower QPS. Figure 1 reports the probability of recession from selected models, which shows
that these models can track very well the recessions defined by the NBER business cycle
dating committee. One can also see that models using employment data as a measure
of national economic activity identified the last three recessions as being longer than the
NBER recession estimates. This is not surprising given that these recessions were associated
with a jobless recovery.

To better understand the results from Table 5, Figures 2, 3 and 4 show the weights
attached to each individual model with the dynamic model averaging (DMA) scheme in
the univariate case. Figure 2 reports the results from the standard dynamic model averaging
scheme where the weights are based exclusively on the predictive likelihood. In the case
of employment as a dependent variable (Panel A of Figure 1), Ohio gets a probability of
inclusion close to one for nearly the entire sample, except in the 1990’s where the states

13



of New Jersey and New York also exhibit a non-negligible probability of inclusion (and
also Florida at the end of the sample). In the case of industrial production, the weights
given to individual models are more even across the different models, except at the end of
the sample where the states of Virginia and Florida get a predominant weight. Figure 3
(i.e., where the DMA weights are based exclusively on past QPS) and Figure 4 (i.e., where
the weights are based on a combination of past QPS and predictive likelihood) show a
substantial time variation in the weights attached to individual models. In both Figure 3
and Figure 4, the weight attached to the model using Maryland employment data is high
in the early part of the sample, whereas it is the model using data for the state of Virginia
that gets the highest weight at the end of the sample (or the state of Idaho when using
industrial production as a dependent variable, see panel B). Figure 5 reports the weights
obtained from Bayesian model averaging (BMA) schemes in the univariate case. Panel A
of Figure 5 shows that the model with Ohio employment data gets a weight of one with
standard Bayesian model averaging, which is not surprising given that Table 1 showed that
the model with Ohio employment data exhibited the highest correlation with the national
employment data.7 When explaining national industrial production, it is the employment
data from the state of Michigan that gets a weight near 1 (see panel B). In contrast, BMA
weights based on QPS yield larger weights to heavily populated states (e.g., California or
New York).

7The fact that BMA tends to give a weight of 1 to a single model is not very surprising. Geweke
and Amisano (2011) suggest to use the historical log predictive score to mitigate this issue. We also
implemented this approach, but obtained results relatively close to BMA in that a single model obtained
the largest weight with only few other models obtaining a non-negligible weight.

14



Table 2: In-sample parameter estimates - Univariate models

State µ0 µ1 β QPS µ0 µ1 β QPS

Alabama -0.099 0.266 0.263 0.191 Montana -0.149 0.352 0.082 0.179
[-0.119,-0.079] [0.244,0.287] [0.241,0.285] [-0.170,-0.128] [0.330,0.374] [0.065,0.098]

Alaska -0.152 0.370 0.000 0.169 Nebraska -0.145 0.324 0.209 0.167
[-0.175,-0.128] [0.346,0.393] [-0.011,0.010] [-0.168,-0.122] [0.300,0.347] [0.183,0.235]

Arizona -0.140 0.282 0.181 0.169 Nevada -0.152 0.325 0.090 0.160
[-0.162,-0.117] [0.258,0.307] [0.174,0.201] [-0.175,-0.129] [0.301,0.350] [0.073,0.106]

Arkansas -0.138 0.310 0.193 0.190 New Hampshire -0.137 0.300 0.215 0.172
[-0.158,-0.118] [0.290,0.332] [0.174,0.211] [-0.169,-0.112] [0.275,0.328] [0.193,0.238]

California -0.111 0.240 0.349 0.145 New Jersey -0.145 0.300 0.364 0.127
[-0.135,-0.087] [0.213,0.266] [0.317,0.380] [-0.170,-0.124] [0.279,0.324] [0.339,0.388]

Colorado -0.177 0.324 0.223 0.124 New Mexico -0.141 0.322 0.166 0.179
[-0.202,-0.150] [0.299,0.349] [0.199,0.248] [-0.164,-0.118] [0.297,0.345] [0.143,0.191]

Connecticut -0.124 0.306 0.222 0.126 New York -0.098 0.270 0.418 0.202
[-0.157,-0.095] [0.276,0.335] [0.198,0.245] [-0.131,-0.071] [0.246,0.300] [0.383,0.452]

Delaware -0.137 0.339 0.073 0.171 North Carolina -0.115 0.243 0.325 0.154
[-0.161,-0.113] [0.315,0.363] [0.061,0.085] [-0.139,-0.090] [0.218,0.267] [0.300,0.349]

Florida -0.124 0.243 0.290 0.215 North Dakota -0.149 0.353 0.071 0.176
[-0.146,-0.103] [0.222,0.265] [0.267,0.313] [-0.171,-0.126] [0.330,0.376] [0.049,0.093]

Georgia -0.112 0.234 0.290 0.152 Ohio -0.023 0.168 0.452 0.247
[-0.143,-0.087] [0.210,0.262] [0.295,0.341] [-0.042,-0.004] [0.150,0.187] [0.430,0.472]

Hawaii -0.150 0.352 0.078 0.165 Oklahoma -0.134 0.324 0.144 0.166
[-0.173,-0.127] [0.329,0.375] [0.060,0.095] [-0.162,-0.109] [0.299,0.350] [0.122,0.168]

Idaho -0.145 0.335 0.100 0.179 Oregon -0.119 0.293 0.159 0.177
[-0.166,-0.123] [0.313,0.357] [0.083,0.118] [-0.142,-0.095] [0.268,0.318] [0.136,0.182]

Illinois -0.064 0.238 0.335 0.200 Pennsylvania -0.072 0.246 0.384 0.218
[-0.087,-0.043] [0.217,0.261] [0.309,0.360] [-0.092,-0.054] [0.227,0.267] [0.357,0.411]

Indiana -0.073 0.237 0.287 0.220 Rhode Island -0.113 0.307 0.172 0.177
[-0.092,-0.055] [0.217,0.257] [0.269,0.306] [-0.137,-0.090] [0.284,0.330] [0.153,0.191]

Iowa -0.122 0.301 0.222 0.175 South Carolina -0.109 0.266 0.230 0.177
[-0.142,-0.102] [0.280,0.322] [0.199,0.245] [-0.131,-0.087] [0.242,0.288] [0.209,0.252]

Kansas -0.130 0.325 0.123 0.172 South Dakota -0.150 0.344 0.123 0.179
[-0.152,-0.108] [0.303,0.347] [0.105,0.141] [-0.171,-0.128] [0.323,0.366] [0.102,0.144]

Kentucky -0.129 0.306 0.184 0.166 Tennessee -0.109 0.261 0.274 0.198
[-0.147,-0.109] [0.286,0.326] [0.168,0.200] [-0.131,-0.089] [0.241,0.283] [0.255,0.293]

Louisiana -0.138 0.342 0.087 0.180 Texas -0.124 0.257 0.315 0.187
[-0.161,-0.115] [0.319,0.365] [0.069,0.104] [-0.152,-0.098] [0.232,0.284] [0.284,0.345]

Maine -0.129 0.317 0.164 0.165 Utah -0.143 0.316 0.148 0.167
[-0.155,-0.104] [0.292,0.342] [0.141,0.186] [-0.167,-0.120] [0.291,0.340] [0.125,0.171]

Maryland -0.159 0.329 0.206 0.131 Vermont -0.135 0.323 0.134 0.172
[-0.181,-0.136] [0.305,0.351] [0.184,0.227] [-0.158,-0.112] [0.299,0.346] [0.115,0.154]

Massachusetts -0.134 0.305 0.268 0.121 Virginia -0.171 0.301 0.309 0.097
[-0.189,-0.087] [0.267,0.351] [0.234,0.298] [-0.207,-0.137] [0.272,0.330] [0.282,0.337]

Michigan -0.103 0.300 0.131 0.201 Washington -0.128 0.295 0.190 0.176
[-0.121,-0.083] [0.279,0.319] [0.120,0.142] [-0.150,-0.108] [0.272,0.317] [0.166,0.215]

Minnesota -0.107 0.256 0.305 0.179 Wisconsin -0.112 0.278 0.258 0.183
[-0.126,-0.088] [0.236,0.277] [0.280,0.329] [-0.133,-0.090] [0.255,0.301] [0.232,0.282]

Mississippi -0.121 0.288 0.223 0.185 West Virginia -0.142 0.358 0.035 0.176
[-0.142,-0.100] [0.266,0.310] [0.204,0.242] [-0.165,-0.119] [0.335,0.381] [0.027,0.043]

Missouri -0.120 0.299 0.230 0.187 Wyoming -0.145 0.355 0.048 0.176
[-0.138,-0.101] [0.280,0.319] [0.209,0.251] [-0.168,-0.122] [0.332,0.319] [0.034,0.061]

Note: µ0 is the mean growth rate in recession for aggregate U.S. employment, µ0 +µ1 is the mean growth rate in expansions for aggregate U.S.

employment, β is the parameter entering before the state-level employment data in equation (1). The parameter estimates are reported as the

median over 5000 replications. The estimation sample extends from February 1960 to April 2014. QPS is the Quadratic Probability Score for

individual models as defined in equation (24), and the 90 per cent coverage intervals are reported in brackets.

15



Table 3: In-sample Parameter estimates - Multivariate models

State µ0 µ1 QPS µ0 µ1 QPS

Alabama -0.097 0.306 0.192 Montana -0.134 0.349 0.178
[-0.128,-0.059] [0.262,0.340] [-0.155,-0.112] [0.327,0.371]

-0.128 0.317 -1.870 2.040
[-0.911,-0.042] [0.228,1.055] [-2.234,-1.541] [1.711,2.403]

Alaska -0.150 0.368 0.169 Nebraska -0.114 0.326 0.161
[-0.173,-0.125] [0.344,0.392] [-0.143,-0.089] [0.301,0.354]

0.161 2.115 -0.838 0.995
[0.125,0.197] [1.933,2.302] [-1.178,-0.017] [0.209,1.330]

Arizona -0.101 0.308 0.189 Nevada -0.134 0.349 0.178
[-0.126,-0.077] [0.284,0.334] [-0.158,-0.111] [0.325,0.373]

0.133 0.403 -0.125 0.640
[0.085,0.176] [0.356,0.449] [-0.261,-0.016] [0.543,0.756]

Arkansas -0.104 0.310 0.186 New Hampshire -0.131 0.340 0.182
[-0.126,-0.082] [0.288,0.332] [-0.157,-0.103] [0.311,0.369]

-1.641 1.829 -0.227 0.479
[-1.975,-1.214] [1.394,2.164] [-0.330,-0.142] [0.400,0.568]

California -0.118 0.326 0.181 New Jersey -0.096 0.289 0.129
[-0.144,-0.090] [0.299,0.353] [-0.124,-0.070] [0.264,0.319]

-0.099 0.362 -0.795 0.908
[-0.133,-0.066] [0.326,0.396] [-0.966,-0.296] [0.434,1.076]

Colorado -0.121 0.332 0.179 New Mexico -0.122 0.334 0.168
[-0.145,-0.097] [0.309,0.356] [-0.146,-0.096] [0.310,0.359]

-0.056 0.374 0.096 0.232
[-0.100,-0.015] [0.333,0.418] [0.018,0.140] [0.186,0.280]

Connecticut -0.125 0.337 0.169 New York -0.112 0.314 0.178
[-0.153,-0.097] [0.309,0.365] [-0.147,-0.077] [0.281,0.347]

-0.184 0.341 -0.113 0.220
[-0.239,-0.130] [0.286,0.397] [-0.163,-0.073] [0.180,0.268]

Delaware -0.127 0.341 0.167 North Carolina -0.136 0.341 0.185
[-0.153,-0.102] [0.317,0.366] [-0.161,-0.110] [0.313,0.366]

-1.910 2.088 -0.231 0.484
[-2.405,-1.485] [1.665,2.581] [-0.280,-0.179] [0.430,0.535]

Florida -0.087 0.304 0.238 North Dakota -0.133 0.352 0.182
[-0.119,-0.060] [0.277,0.334] [-0.157,-0.110] [0.329,0.376]

-0.064 0.436 0.121 0.563
[-0.111,-0.020] [0.390,0.483] [0.100,0.142] [0.481,0.640]

Georgia -0.117 0.322 0.203 Ohio 0.013 0.166 0.252
[-0.142,-0.091] [0.295,0.348] [-0.008,0.034] [0.147,0.185]

-0.172 0.448 -1.473 1.552
[-0.226,-0.119] [0.393,0.504] [-1.734,-1.203] [1.284,1.814]

Hawaii -0.135 0.351 0.163 Oklahoma -0.133 0.348 0.167
[-0.159,-0.110] [0.327,0.375] [-0.160,-0.105] [0.321,0.373]

-2.015 2.209 -0.218 0.453
[-2.521,-1.575] [1.770,2.709] [-0.273,-0.161] [0.397,0.510]

Idaho -0.143 0.359 0.171 Oregon -0.155 0.368 0.162
[-0.165,-0.120] [0.335,0.382] [-0.181,-0.130] [0.343,0.394]

-0.316 0.598 -0.316 0.598
[-0.465,-0.165] [0.481,0.753] [-0.386,-0.255] [0.536,0.666]

Note: This table reports results from the estimation of equation (5). µ0 is the mean growth rate in recession, µ0 +µ1 is the mean growth rate in

expansions. For each state, the first row indicates the results for employment at the state-level, whereas the second row indicates results for the

aggregate U.S. data. The parameter estimates are reported as the median over 5000 replications. The estimation sample extends from February

1960 to April 2014. QPS is the Quadratic Probability Score for individual models as defined in equation (24), and 90 per cent coverage intervals

are reported in brackets.
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Table 4: In-sample Parameter estimates - Multivariate models (cont’d)

State µ0 µ1 QPS µ0 µ1 QPS

Illinois -0.106 0.317 0.196 Pennsylvania -0.095 0.301 0.191
[-0.132,-0.081] [0.291,0.344] [-0.125,-0.066] [0.269,0.332]

-0.156 0.304 -0.156 0.263
[-0.196,-0.116] [0.263,0.346] [-0.237,-0.106] [0.212,0.328]

Indiana -0.050 0.249 0.206 Rhode Island -0.108 0.315 0.175
[-0.078,-0.027] [0.226,0.278] [-0.131,-0.084] [0.291,0.339]

-0.508 0.640 -1.101 1.199
[-0.755,-0.342] [0.485,0.880] [-1.509,-0.836] [0.941,1.601]

Iowa -0.086 0.289 0.166 South Carolina -0.136 0.348 0.183
[-0.108,-0.064] [0.268,0.311] [-0.159,-0.113] [0.323,0.371]

-1.353 1.494 -0.237 0.499
[-1.539,-1.184] [1.322,1.679] [-0.318,-0.175] [0.434,0.576]

Kansas -0.108 0.318 0.166 South Dakota -0.135 0.352 0.178
[-0.132,-0.084] [0.295,0.342] [-0.159,-0.112] [0.328,0.375]

-3.517 3.661 -0.017 0.248
[-3.976,-3.045] [3.191,4.119] [-0.125,0.066] [0.175,0.341]

Kentucky -0.088 0.292 0.162 Tennessee -0.108 0.317 0.166
[-0.108,-0.067] [0.271,0.313] [-0.133,-0.084] [0.291,0.344]

-1.178 1.359 -0.105 0.334
[-1.438,-0.969] [1.153,1.615] [-0.164,-0.048] [0.274,0.394]

Louisiana -0.117 0.332 0.180 Texas -0.112 0.329 0.201
[-0.142,-0.093] [0.309,0.356] [-0.138,-0.086] [0.304,0.354]

-4.004 4.157 -0.050 0.365
[-4.342,-3.664] [3.816,4.495] [-0.086,-0.014] [0.330,0.401]

Maine -0.108 0.316 0.163 Utah -0.139 0.353 0.167
[-0.135,-0.082] [0.291,0.342] [-0.163,-0.114] [0.328,0.377]

-2.373 2.498 -0.127 0.459
[-2.787,-1.934] [2.057,2.913] [-0.189,-0.068] [0.404,0.517]

Maryland -0.126 0.330 0.137 Vermont -0.111 0.320 0.174
[-0.150,-0.102] [0.307,0.356] [-0.134,-0.086] [0.296,0.385]

-0.959 1.135 -1.623 1.791
[-1.278,-0.191] [0.387,1.452] [-2.087,-1.178] [1.344,2.253]

Massachusetts -0.107 0.319 0.194 Virginia -0.119 0.330 0.184
[-0.135,-0.080] [0.293,0.347] [-0.144,-0.094] [0.303,0.356]

-0.264 0.410 -0.039 0.295
[-0.317,-0.213] [0.359,0.463] [-0.098,0.017] [0.240,0.350]

Michigan -0.086 0.292 0.197 Washington -0.132 0.345 0.167
[-0.107,-0.065] [0.270,0.313] [-0.157,-0.108] [0.321,0.369]

-3.291 3.403 -0.112 0.412
[-3.666,-2.895] [3.007,3.773] [-0.162,-0.064] [0.364,0.461]

Minnesota -0.114 0.324 0.186 Wisconsin -0.133 0.345 0.186
[-0.138,-0.088] [0.300,0.350] [-0.158,-0.109] [0.320,0.371]

-0.096 0.325 -0.178 0.371
[-0.140,-0.053] [0.280,0.371] [-0.230,-0.127] [0.318,0.425]

Mississippi -0.077 0.313 0.188 West Virginia -0.133 0.351 0.177
[-0.136,-0.077] [0.279,0.345] [-0.158,-0.109] [0.320,0.371]

-0.068 0.304 -6.175 6.286
[-1.692,0.044] [0.225,1.856] [-6.708,-5.640] [5.748,6.815]

Missouri -0.095 0.299 0.178 Wyoming -0.143 0.360 0.171
[-0.116,-0.074] [0.277,0.321] [-0.167,-0.117] [0.336,0.385]

-1.038 1.160 -0.751 0.981
[-1.347,-0.866] [0.991,1.466] [-0.958,0.574] [0.811,1.183]

Note: See Table 3.
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Table 5: In-sample Quadratic Probability Score

QPS
Univariate Multivariate
model model

Employment data

Dynamic Model Likelihood-based 0.226 0.226
Averaging QPS-based 0.159 0.174
(α = 0.99) Combined 0.136 0.173

Dynamic Model Likelihood-based 0.154 0.187
Averaging QPS-based 0.139 0.166
(α = 0.95) Combined 0.122 0.182

Bayesian Model Likelihood-based 0.236 0.178
Averaging QPS-based 0.134 0.168

Combined 0.236 0.178

MS-AR model 0.170

Equal-weight 0.155 0.155

Industrial Production

Dynamic Model Likelihood-based 0.102 0.182
Averaging QPS-based 0.101 0.104
(α = 0.99) Combined 0.099 0.126

Dynamic Model Likelihood-based 0.120 0.172
Averaging QPS-based 0.100 0.098
(α = 0.95) Combined 0.095 0.119

Bayesian Model Likelihood-based 0.121 0.194
Averaging QPS-based 0.099 0.104

Combined 0.121 0.194

MS-AR model 0.073

Equal-weight 0.119 0.062

Note: This table reports the in-sample Quadratic Probability Score (QPS) for estimating U.S. business

cycle turning points from univariate and multivariate models using different model-averaging schemes. α

is the value of the forgetting factor when using dynamic model averaging schemes. The full estimation

sample extends from February 1960 to April 2014. We discarded the first 2000 replications to account for

start-up effects, and used the last 5000 replications to calculate all statistics.
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5.3 Out-of-sample results

5.3.1 Full evaluation sample

The first estimation sample extends from February 1960 to December 1978, and it is
recursively expanded until September 2013, that is the evaluation sample covers the period
ranging from January 1979 to March 2014 (i.e., the last forecast six-month ahead refers to
the month of March 2014). As such, our evaluation sample includes five recessions that
covers 13.2 per cent of the sample. Such a long evaluation permits to mitigate the risks of
spurious forecasting results. The models are re-estimated every month as new information
becomes available.

We formulate forecasts for horizon h = {0, 1, 2, 3, 6}, that is from the current month
(h = 0) up to six-month ahead (h = 6). We use the quadratic probability score (QPS) to
evaluate the accuracy in predicting turning points. The out-of-sample QPS (QPSOOS) is
defined as follows:

QPSOOS =
2

T − T0 + 1

T
∑

t=T0

(P (St+h = 0)−NBERt+h)
2

where T − T0 + 1 is the size of the evaluation sample, P (St+h = 1) is the probability
of being in the first regime (i.e., the recession regime) in period t + h, and NBERt+h is
a dummy variable that takes on a value of 1 if the U.S. economy is in recession in period
t+ h and 0 otherwise.

In comparing models, we also report results obtained from using the anxious index from
the Survey of Professional Forecasters (SPF) of the Philadelphia Federal Reserve Bank.
This index corresponds to the probability of a decline in real GDP. It is only available on a
quarterly basis, but we disaggregate it at the monthly frequency assuming that its monthly
value is constant over the three months of the quarter. Moreover, we also evaluate the
statistical significance of our results using the Diebold-Mariano-West test to test for equal
out-of-sample predictive accuracy (see Diebold and Mariano (1995) and West (1996)), using
the likelihood-based weighting scheme as a benchmark model. In this way, we can evaluate
from a statistical point of view the relevance of our weighting scheme based on the QPS
compared with the traditional approach that relies exclusively on the likelihood.

Table 6 reports the results for the univariate models and Table 7 displays the results
for the multivariate models. First, for univariate models, the combination scheme with
industrial production using DMA weights based on the QPS obtains the best forecasting
results for forecast horizons h = {0, 1, 2}, and the SPF anxious index obtained the best
results for forecast horizons h = {3, 6}. Second, for multivariate models, the best results
are obtained by the model using industrial production and DMA weights based on the
QPS for forecast horizons h = {0, 1, 2}, and a combination of the predictive likelihood and
QPS for forecast horizons h = {3, 6}. Third, the QPS-based combination schemes nearly
always outperforms the combination schemes based on the likelihood only, and typically in
a statistically significant way.
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Figure 6 reports the one-month-ahead predicted probability of being in a recession from
selected specifications. It shows that QPS-based DMA combination schemes perform well
in that they capture very well all U.S. recessions. However, an important caveat of the
out-of-sample analysis so far is that we only used revised data. In the next sub-section, we
move to a real-time forecasting setting, concentrating on the prediction of the 2008-2009
recession.

5.3.2 A closer look at the Great Recession

Revisions to macroeconomic data are substantial (see e.g. Croushore and Stark (2001)).
Using data as available at the time the forecasts are made is therefore critical to evaluate
realistically the models’ forecasting ability. Real-time employment data are available for all
50 states starting from the June 2007 vintage with last observation for May 2007. Hence,
our first estimation sample extends from February 1960 to May 2007, and it is recursively
expanded until August 2013. As a result, the evaluation sample extends from May 2007
to August 2013, that is 76 months. In this case, since our evaluation sample only covers
a limited period of time and only one recession, we do not calculate QPS statistics, but
instead report the probability of being in a recession - defined as the last estimate available
for the probability of being in a recession (i.e., P (St = 0) where t is the last observation in
the estimation sample) - and compare it with a number of alternatives.

Figure 7 reports the results for selected specifications using the QPS-based weighting
scheme along with the probability of recession derived from the SPF Anxious index. In
detail, this figure shows that the model using the employment data as a measure of national
economic activity provides a timely update of the beginning of the recession in that the
probability of recession is above 0.5 as early as April 2008. However, this model detects
only with a substantial lag the end of the recession owing to the very slow recovery in the
labor market. In contrast, the model using industrial production as a measure of national
economic activity provides an accurate signal for the end of recession, but provides a late
call for the beginning of the recession. Interestingly, the performance of the SPF anxious
index is somewhat inferior to these two models despite the fact that the SPF uses a much
larger information set than our model-based estimates. In particular, the anxious index
provides a call of recession later than the model using national employment data and detects
the end of the recession later than the model using national industrial production data.
Overall, this suggests that employment data are very helpful to detect the beginning of
recessions, whereas industrial production data rather provide valuable information about
the end of recessions.
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Table 6: Out-of-sample Quadratic Probability Score - Univariate models

Employment

Forecast horizon (months) 0 1 2 3 6

Dynamic Model Likelihood-based 0.315 0.307 0.302 0.300 0.292
Averaging QPS-based 0.184*** 0.197*** 0.214*** 0.227*** 0.252**
α = 0.99 Combined 0.192*** 0.207*** 0.222*** 0.233*** 0.251**

Dynamic Model Likelihood-based 0.222 0.236 0.246 0.252 0.259
Averaging QPS-based 0.176 0.193* 0.210* 0.223 0.247
α = 0.95 Combined 0.185*** 0.206*** 0.222** 0.231** 0.248

Bayesian Model Likelihood-based 0.374 0.359 0.348 0.340 0.321
Averaging QPS-based 0.196*** 0.213*** 0.229*** 0.240*** 0.256***

Combined 0.374 0.359 0.348 0.340 0.321

Equal weight 0.209*** 0.223*** 0.237*** 0.248*** 0.263***

Industrial Production

Dynamic Model Likelihood-based 0.239 0.240 0.243 0.248 0.252
Averaging QPS-based 0.108*** 0.136*** 0.165** 0.188** 0.227
α = 0.99 Combined 0.108*** 0.135*** 0.165** 0.187** 0.227

Dynamic Model Likelihood-based 0.216 0.221 0.228 0.235 0.243
Averaging QPS-based 0.101*** 0.133*** 0.164** 0.187* 0.227
α = 0.95 Combined 0.110*** 0.138*** 0.166** 0.189** 0.227

Bayesian Model Likelihood-based 0.209 0.219 0.230 0.236 0.247
Averaging QPS-based 0.148*** 0.171** 0.193** 0.209** 0.231

Combined 0.208* 0.218* 0.230 0.236 0.247

Equal weight 0.131*** 0.158*** 0.182** 0.201** 0.229

SPF Anxious Index 0.141 0.161 0.180 0.186 0.226

MS-AR (Employment) 0.210 0.222 0.237 0.249 0.268

MS-AR (IP) 0.102 0.138 0.169 0.193 0.231

Note: This table reports the Quadratic Probability Score (QPS) for estimating U.S. business cycle turning

points from univariate models using different combination schemes (Bayesian model averaging (BMA),

dynamic model averaging (DMA), and an equal-weight scheme for the univariate and bivariate models

described in sections 2.1 and 2.2). The first estimation sample extends from February 1960 to December

1978, and it is recursively expanded until the end of the sample is reached (September 2013). Boldface

indicates the model with the lowest QPS for a given horizon. Statistically significant reductions in QPS

according to the Diebold-Mariano-West test are marked using ***(1% significance level), **(5% significance

level) and *(10% significance level).
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Table 7: Out-of-sample Quadratic Probability Score - Multivariate models

Employment

Forecast horizon (months) 0 1 2 3 6

Dynamic Model Likelihood-based 0.317 0.323 0.329 0.330 0.320
Averaging QPS-based 0.202*** 0.214*** 0.231*** 0.245*** 0.269***
alpha=0.99 Combined 0.256** 0.264** 0.271** 0.277** 0.279**

Dynamic Model Likelihood-based 0.289 0.299 0.309 0.316 0.312
Averaging QPS-based 0.210*** 0.222*** 0.237*** 0.251*** 0.272***
alpha=0.95 Combined 0.240** 0.251** 0.263** 0.271*** 0.280***

Bayesian Model Likelihood-based 0.260 0.265 0.269 0.271 0.267
Averaging QPS-based 0.231 0.244 0.257 0.269 0.281

Combined 0.260 0.265 0.269 0.271 0.267

Equal weight 0.224 0.237 0.251 0.264 0.279

Industrial Production

Dynamic Model Likelihood-based 0.150 0.176 0.201 0.219 0.237
Averaging QPS-based 0.092** 0.129** 0.162* 0.188 0.227
alpha=0.99 Combined 0.096** 0.133** 0.164** 0.187* 0.224

Dynamic Model Likelihood-based 0.152 0.178 0.202 0.218 0.236
Averaging QPS-based 0.092** 0.130** 0.163* 0.188 0.227
alpha=0.95 Combined 0.099** 0.136** 0.167* 0.191 0.225

Bayesian Model Likelihood-based 0.114 0.149 0.180 0.201 0.229
Averaging QPS-based 0.115 0.150 0.180 0.202 0.230

Combined 0.113** 0.148* 0.179** 0.200** 0.229

Equal weight 0.109 0.144 0.175 0.198 0.228

Note: This table reports the Quadratic Probability Score (QPS) for estimating U.S. business cycle turning

points from multivariate models using different combination schemes (Bayesian model averaging (BMA),

dynamic model averaging (DMA), and an equal-weight scheme for the univariate and bivariate models

described in sections 2.1 and 2.2. The first estimation sample extends from February 1960 to December

1978, and it is recursively expanded until the end of the sample is reached (September 2013). Boldface

indicates the model with the lowest QPS for a given horizon. Statistically significant reductions in QPS

according to the Diebold-Mariano-West test are marked using ***(1% significance level), **(5% significance

level) and *(10% significance level).
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6 Conclusions

This paper provides an extension to the literature on model averaging when one is
interested in regime classification. In detail, we modify the standard Bayesian model aver-
aging (BMA) and dynamic model averaging (DMA) combination schemes so as to make the
weights depend on past performance to detect regime changes using the quadratic probabil-
ity score (QPS) to measure the models’ ability to classify regimes. The intuition for doing
so is relatively straightforward: a model that performs well for continuous forecasts may
not necessarily do so for discrete forecasts. Therefore, standard weighting schemes based
only on the models’ likelihood may not be appropriate in a context of regime classifications.

In an empirical application to forecasting U.S. recessions using state-level employment
data, we show the relevance of this framework. In particular, the out-of-sample exercise
suggests that weighting schemes based on the QPS outperform weighting schemes based
exclusively on the likelihood. In addition, we find that weighting schemes based on the QPS
provide timely updates of the U.S. business cycle regimes, in that they typically precede the
NBER announcements of business cycle peaks and troughs, and compare favorably with
competing models. Also, in both our simulation experiment and empirical application,
DMA tends to outperform BMA, suggesting that it is important to allow for time variation
in the models’ weights.

There are a number of possible extensions of our analysis. First, one could use a broader
set of variables in the empirical analysis using for example quarterly GDP growth as a
target variable and a broader set of covariates. Mixed-frequency data models could then
be used to tackle the mismatch of frequency between the target variable and the covariates.
However, doing so would raise complications in terms of computational time since more
demanding Bayesian methods would be needed for the estimation of the models. This is
likely to prove intractable in a forecasting exercise with a long enough evaluation sample.
Second, Wright (2013) emphasizes the importance of seasonal adjustment methods when
analyzing U.S. employment data. This is certainly a very important avenue for further
work, however it remains unclear the way seasonal adjustment should be performed. We
therefore abstracted from this issue, and concentrated our analysis based on the traditional
approach of using pre-seasonally adjusted data before estimating models.
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7 Appendix

A Bayesian Parameter Estimation

We follow the multi-move Gibbs-sampling procedure in Kim and Nelson (1999) to esti-
mate the parameters and produce the inference on regimes for the univariate and bivariate
Markov-switching models. For brevity we only illustrate the case of the bivariate model,
the univariate case being already fully described in Kim and Nelson (1999).

A.1 Priors

For the mean and variance parameters, the Independent Normal-Wishart prior distri-
bution is used8

p(µ,Σ−1) = p(µ)p(Σ−1),

where
µ ∼ N(µ, V µ), Σ−1 ∼ W (S−1, υ),

and the associated hyperparameters are µ = (−1, 2− 1, 2)′, V µ = I, S−1 = I, υ = 0.

For the transition probabilities, Beta distributions are used as conjugate priors:

pk,00 ∼ Beta(uk,11, uk,10), pk,11 ∼ Beta(uk,00, uk,01), for k = a, b

with hyperparameters uk,01 = 2, uk,00 = 8, uk,10 = 1 and uk,11 = 9 for k = a, b.

A.2 Drawing S̃a,T and S̃b,T given µ, Σ, pa,00, pa,11, pb,00, pb,11, and ỹT .

To make inference on the dynamics of the state variable S̃k,T , for k = a, b, we need to
compute draws from the conditional distributions:

g(S̃k,T |θ, ỹT ) = g(Sk,T |ỹT )
T
∏

t=1

g(Sk,t|Sk,t+1, ỹt).

To obtain the two terms in the right hand side of the equation above, the following two
steps are employed:

Step 1: Run the Hamilton filter to obtain g(Sk,t|ỹt) for t = 1, 2, . . . , T , and save them.
The last iteration, i.e. for t = T , provides the first term of the equation.

Step 2: The product in the second term can be obtained for t = T − 1, T − 2, . . . , 1,
with the following result:

g(Sk,t|ỹt, Sk,t+1) =
g(Sk,t, Sk,t+1|ỹt)

g(Sk,t+1|ỹt)

∝ g(Sk,t+1|Sk,t)g(Sk,t|ỹt),

8In the case of the univariate model, we use the Normal-Gamma prior distribution.
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where g(Sk,t+1|Sk,t) corresponds to the transition probabilities of Sk,t and g(Sk,t|ỹt) were
saved in Step 1. Then, it is possible to compute

Pr[Sk,t = 1|Sk,t+1, ỹt] =
g(Sk,t+1|Sk,t = 1)g(Sk,t = 1|ỹt)

∑1
j=0 g(Sk,t+1|Sk,t = j)g(Sk,t = j|ỹt)

,

and generate a random number from a U [0, 1] distribution. If that number is less than or
equal to Pr[Sk,t = 1|Sk,t+1, ỹt], then Sk,t = 1, otherwise Sk,t = 0.

A.3 Drawing pa,00, pa,11, pb,00 and pb,11 given S̃a,T and S̃b,T .

The likelihood function of pk,00, pk,11, for k = a, b, is given by:

L(pk,00, pk,11|S̃k,T ) = pn00
k,00(1− pn01

k,00)p
n11
k,11(1− pn10

k,11),

where nk,ij refers to the transitions from state i to j, accounted for in S̃k,T . Combining the
corresponding prior distribution with the likelihood, the posterior distribution reads as

p(pk,00, pk,11|S̃k,T ) ∝ p
uk,00+nk,00−1

k,00 (1− pk,00)
uk,01+nk,01−1p

uk,11+nk,11−1

k,11 (1− pk,11)
uk,10+nk,10−1

which indicates that draws of the transition probabilities will be taken from

pk,00|S̃k,T ∼ Be(uk,00 + nk,00, uk,01 + nk,01), pk,11|S̃k,T ∼ Be(uk,11 + nk,11, uk,10 + nk,10).

A.4 Drawing µ given, Σ, S̃a,T , S̃b,T , and ỹT .

The bivariate Markov-switching model can be compactly expressed as

[

ya,t
yb,t

]

=

[

1
0

Sa,t

0
0
1

0
Sb,t

]









µa,0

µa,1

µb,0

µb,1









+

[

εa,t
εb,t

]

,

[

εa,t
εb,t

]

∼ N

([

0
0

]

,

[

σ2
a

σab

σab
σ2
b

])

yt = S̄tµ+ ξt, ξt ∼ N(0,Σ),

stacking as:

y =











y1
y2
...
yT











, S̄ =











S̄1

S̄2
...
S̄T











, and ξ =











ξ1
ξ2
...
ξT











,

the model remains written as a normal linear regression with an error covariance matrix of
a particular form:

y = Sµ+ ξ, ξ ∼ N(0, I ⊗ Σ)
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Using the corresponding likelihood function, the conditional posterior distribution for
the intercepts reads as:

µ|S̃a,T , S̃b,T ,Σ
−1, ỹT ∼ N(µ, V µ),

where

V µ =

(

V −1
µ +

T
∑

t=1

S̄ ′
tΣ

−1S̄t

)−1

µ = V µ

(

V −1
µ µ+

T
∑

t=1

S̄ ′
tΣ

−1yt

)

.

When drawing µ = (µa,0, µa,1, µb,0, µb,1)
′, we impose the constraint that µa,1 > 0 and µb,1 > 0

to ensure identification of the regimes in the model.

A.5 Drawing Σ given µ, S̃a,T , S̃b,T , and ỹT .

Conditional on the mean, state variables and the data, the conditional posterior distri-
bution for the variance-covariance matrix parameters reads as:

Σ−1|S̃a,T , S̃b,T , µ, ỹT ∼ W (S
−1
, υ),

υ = T + υ

S = S +
T
∑

t=1

(

yt − S̄tµ
) (

yt − S̄tµ
)′
,

after Σ−1 is generated, the elements in Σ are recovered.

The above steps are iterated 7000 times, discarding the first 2000 iterations to mitigate
the effect of the initial conditions.
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B Dynamic Model Averaging in Markov-Switching Mod-

els

To compute the time-varying weights associated to each Markov-switching model, we
follow an algorithm that combines the Hamilton filter with the prediction and updating
equations used in the dynamic model averaging approach in Raftery et al. (2010).

At any given period t, we compute the following steps for all the models under consid-
eration:

• Step 1: Using the corresponding transition probabilities p(Sk
t |S

k
t−1), compute the

predicted regime probabilities for any given model k, p(Sk
t |Lt = k, ψt−1).

9

p(Sk
t , S

k
t−1|ψt−1) = p(Sk

t |S
k
t−1)p(S

k
t−1|ψt−1) (25)

p(Sk
t |Lt = k, ψt−1) =

∑

Sk
t−1

p(Sk
t , S

k
t−1|ψt−1). (26)

Then, the marginal likelihood is calculated from the predicted probabilities:

fk(yt|ψt−1) =
∑

Sk
t

∑

Sk
t−1

fk(yt|S
k
t , S

k
t−1, ψt−1)p(S

k
t , S

k
t−1|ψt−1) (27)

• Step 2: Let πt|t−1,k = p(Lt = k|ψt−1) be the predictive probability associated with the
k-th Markov-switching model at time t given the information up to t−1. Starting with
an equal weight initial model probability p(L0), we consider three different approaches
to compute the model updated probability:

A) Likelihood-based approach: we follow the updating criterion of Raftery et al.
(2010), which uses the marginal likelihood:

πt|t,k =
πt|t−1,kfk(yt|ψt−1)

∑K

l=1 πt|t−1,lfl(yt|ψt−1)
. (28)

B) QPS-based approach: we propose to use the inverse of the cumulative QPS instead
of the likelihood, since the former focuses on ability of models to detect regime
shifts:

πt|t,k =
πt|t−1,kQ

−1
k,t|t−r

∑K

l=1 πt|t−1,lQ
−1
k,t|t−r

, (29)

where Qk,t|t =
2
t
(
∑t

τ=1 p(S
k
τ = 0|Lt = k, ψt−1)−NBERτ )

2.

C) Combined approach: we also propose to use both types of information, i.e. the
inverses cumulative QPS and the marginal likelihood:

πt|t,k =
πt|t−1,kfk(yt|ψt−1)/Qk,t|t−r

∑K

l=1 πt|t−1,lfl(yt|ψt−1)/Qk,t|t−r

, (30)

9The Hamilton filter is initialized with the ergodic probabilities p(S0).
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• Step 3: Use the marginal likelihood, fk(yt|ψt−1), to compute the updated regime
probabilities for any given model k, p(Sk

t |Lt = k, ψt), as follows:

p(Sk
t , S

k
t−1|ψt) =

fk(yt, S
k
t , S

k
t−1|ψt−1)

fk(yt|ψt−1)

=
fk(yt|S

k
t , S

k
t−1, ψt−1)p(S

k
t , S

k
t−1|ψt−1)

fk(yt|ψt−1)
(31)

p(Sk
t |Lt = k, ψt) =

∑

Sk
t−1

p(Sk
t , S

k
t−1|ψt), (32)

which are used in Step 1 of the next iteration .

• Step 4: Compute the predicted probability associated to the k-th model, πt+1|t,k, by
relying on Raftery et al. (2010) and using the forgetting factor α, as follows:

πt+1|t,k =
πα
t|t,k

∑K

l=1 π
α
t|t,l

, (33)

which are used in Step 2 of the next iteration .

We repeat the steps above for each model at each period of time t = 1, ..., T . The output
of the algorithm consists of the regimes probabilities for each model, p(Sk

t |Lt = k, ψt), and
the model probabilities for each time period, πt|t,k = p(Lt = k|ψt). Therefore, we compute
the expected regime probabilities by averaging them across models:

p(St|ψt) =
K
∑

k=1

p(Sk
t |Lt = k, ψt)p(Lt = k|ψt). (34)

The aggregated probability from equation the above equation is used to assess the perfor-
mance of all models using the dynamic model averaging approach.
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Figure 1: In-sample Probability of Recession
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Figure 5: In-sample model weights from Bayesian model averaging
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Note: This figure reports the weights obtained when averaging the results from univariate models using

BMA weights based on the QPS and marginal likelihood. Panel A shows the results when using employment

as a measure of national economic activity and panel B when using industrial production as a measure of

national economic activity.
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Figure 6: Predicted probability of a U.S. recession (1-month-ahead forecast)
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Figure 7: Real-time probability of a U.S. recession
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