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Abstract

In this paper we analyze the consistency of financial investment ordering based on mean-
variance and stochastic dominance (SD) approaches in the context of an emerging financial
market. We take 47 Chilean mutual funds and compute Sharpe index and the algorithms to
verify first (FSD), second (SSD), and third degree (TSD) stochastic dominance relationships.
We find evidence that both approaches generate similar sets of efficient investments. However,
there are important dissimilarities between the rankings elaborated according to mean-variance
and TSD criteria. TSD criterion presents itself as a complete method for evaluating the risk
profile of an investment, as it takes into consideration risk-relevant characteristics of the return
probability distribution that are not visible in mean-variance indicators.
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1. Introduction

Since its appearance, the stochastic dominance (SD) concept has been an attractive theoretical

framework in financial performance analysis and risk evaluation. The above statement is based

on the idea that the method considers the structure and behavior of the whole investment return

distribution, and not only the first two moments, (i.e., mean and variance) like traditional financial

indexes. Nevertheless, the practical use of this framework in financial analysis both academic and

industrial has been very limited, due probably to the lack of simplicity of its interpretations and

also the complexities of calculations.

On the other side, investment return mean-variance criteria, based on the efficient portfolio the-

ory (Markowitz, 1952), are widely used in the construction of easy-to-read performance indicators.

This approach, however, have been criticized for the assumptions imposed on the investor’s utility

function or the expected returns distribution. According to Tobin (cited by Hanoch and Levy,

1969), the mean-variance analysis of investment returns is valid only when the utility function is

quadratic and the probability distribution of returns belongs to a “two-parameter family” (i.e.,

normal, log-normal). Aumann and Serrano (2008), in their new risk index proposal, criticize the

mean-standard deviation indexes because they do not accomplish the monotonicity assumption

(regarding to first-degree stochastic dominance) and are restricted to the normal games order.

The aim of this paper is compare the two traditional investment evaluation criteria. Specifically,

the mean-variance approach and the stochastic dominance approach. We intend to determine if

there are any differences between the efficient sets of investments provided by both approaches and

if there are dissimilarities in the investment rankings. We also explore an explanation for these

dissimilarities based on empirical findings.

The structure of the paper is as follows. Section II discusses the different views for risk evaluation

and investment performance. Section III describes the methodology used in the empirical study.

Section IV shows the results regarding the efficient sets obtained both from mean variance and

stochastic dominance approaches. Section V discusses the dissimilarities in the investments rankings

derived under both approaches. Finally, section VI concludes.
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2. Criteria for risk evaluation and investment performance

Investment performance requires introducing the investment portfolio concept, a topic that has

been covered by finance literature since the 1950’s. Markowitz (1952) formulates the portfolio

decision as a problem to be solved by an investor, who has to optimally allocate its resources in

order to maximize the expected return of its portfolio subject to a particular risk, or minimize

the portfolio risk subject to a given expected return. The solution of this problem determines

the efficient frontier, which is a theoretical construct that includes every portfolio representing an

optimal choice of return and risk (i.e., those that maximize the agent’s profits).

This theoretical mean-variance approach characterizes the returns distribution based on its first

two moments. Also, it considers the co-movements between several assets that conform the optimal

portfolio. Moreover, the mean-variance approach gave birth to the so-called “index models”, such

as the one proposed by Sharpe (1963). In this kind of models, the asset return reacts to market

fluctuations, which sensitivity is captured by the beta coefficient and has to be estimated from

financial time series.1

After modeling a portfolio based on economic rationality criteria, the next step was evaluating

its performance. This topic was widely developed in the 1960’s, a prolific decade in proposals about

criteria and techniques that facilitate such evaluation. In this field, we can remark Sharpe (1966)

index, Treynor (1965) ratio, and Jensen (1968)’s alpha, a toolkit that is still used today by financial

brokers.

In the 1960’s, a new tool for performance evaluation was proposed by Treynor and Mazuy

(1966). Under their methodological approach, the investor has to move between two characteristic

lines2 (a low volatility line and a high volatility line) in order to anticipate the market return, to

adjust its portfolio, and to obtain an extraordinary revenue. However, the authors were unable to

find evidence pointing to the investor’s ability to anticipate market returns.

Another remarkable aspect in risky investment analysis is the possibility that investors might

predict future returns. In that case, we can expect to find persistence in the asset performance.

That would imply we are not observing an efficient asset market3 (i.e., performance is not a random

time variable). The search for persistence has encouraged the use of more sophisticated and robust

techniques to evaluate asset performance.4

1Moreover, the mean-variance approach addresses the investor’s problem as a one-period problem, which may
seem unrealistic. Thus, theoretical developments proposed by Fama and French (1989), or Campbell and Shiller
(1988), in the 1980’s helped to define the analysis as multi-period, assuming that financial returns are period-
by-period independent. However, it emerges the time dependency problem for asset returns and their variance
(Elton and Gruber, 1997).

2The characteristic line of an asset is obtained plotting the set of ordered pairs conformed by the asset and market
returns, which can be measured by some stock index, and then drawing a line between these points that represents
the best fit. If the resulting line has some curvature, then we are observing an investor that has some knowledge
about market timing.

3See Malkiel (2003) for a review of the main approaches on market efficiency.
4See Grinblatt and Titman (1989) for a discussion on the traditional methodologies developed in the 1970’s that
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During the 1970’s, stochastic dominance (SD) appears as a new tool to evaluate investment

performance. In simple words, stochastic dominance enables ordering two assets based on their

financial return probability distribution. An asset A dominates an asset B if and only if the

probability that asset A reports a return that is equal or less than x per cent is lower than the

probability that asset B does it. Then, asset A is more attractive for the investor than asset B.5

Following this line of thought, Hanoch and Levy (1969) are the first to propose algorithms for

checking the existence of stochastic dominance relationships in its first (FSD) and second degree

(SSD); Levy (1973) expands the investment horizon and evaluates a set of efficient portfolios under

a multi-period approach. The empirical test for these new approaches and their predecessors was

performed by Porter and Gaumnitz (1972). They used monthly data of 140 shares for the period

1960-1963, and concluded that there were not significant differences between the mean-variance

and SSD approaches when an investor constructs an efficient portfolio.

On the other hand, given the interest of private risk managers, new techniques for performance

evaluation were proposed. Riskmetrics (Morgan and Reuters, 1996) introduced the concept of value

at risk (VaR). Essentially, this technique requires calibrating the set of parameters included in a

GARCH model in order to determine the maximum loss of an asset, conditional to its expected

return. See Christoffersen et al. (2001) for a comparison of several VaR measures.

Finally, a number of empirical studies, mainly focusing on US financial markets, assessed the

above techniques, such as Jensen (1968), Grinblatt et al. (1995), Chen and Knez (1996), Meyer et al.

(2005).

The branch of the literature looking at Chilean financial market data has also addressed the

evaluation of financial performance. However, this literature has mainly addressed mean-variance

indicators (Maturana and Walker, 1999; Quezada et al., 2007), the use of VaR (Johnson, 2005),

and the detection of persistence in financial returns (Umaña et al., 2008). Zurita and Jara (1999)

mention stochastic dominance as an evaluation approach, but they do not apply it when evaluating

the Chilean pension funds management companies (known as AFP) during the period 1987-1998.

were used to evaluate asset performance.
5See Levy (2006, Ch. 3) for more details about stochastic dominance degree.
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3. Material and methods

In order to assess possible discrepancies between the mean-variance and stochastic dominance

approaches and compare them in terms of the guidance they give to investors, we elaborated two

performance rankings for a set of Chilean mutual funds (CMF) using a different criterion for each

one.

The selection of mutual funds was based on a variety of diversification policies, foreign invest-

ment markets, and portfolio composition, which enabled us to capture the different aspects that

determine its behavior. Thus, it is possible to maximize the comparison chances between several

evaluation methods for this emerging market.

In order to protect data integrity, we selected only those mutual funds that exhibit a share

quote for a large period. Therefore, out of a total 452 registered mutual funds, we chose only 47.6

The sample period used in this empirical approach spans between June 2004 and March 2011.

Monthly real return series were constructed using the nominal return of each CMF, adju sted

by the Chilean consumer price index (CPI) variation. 30-day yield from Chile’s Central Bank

bonds (known as PDBC) were included as a proxy risk-free asset return. The mutual funds were

numbered from 1 to 47 and their ID are described in Appendix A.

The mean-variance criterion considered in the analysis is the Sharpe index (SI), which is com-

puted for each CMF according to the following expression:

(1) SIi =
E[ri − rf ]

σi

Where SIi is the Sharpe index for CMF i, E[·] the expected value operator, ri the monthly

real return of investment i, rf the monthly real return of the proxy risk free asset, and σi the risk

associated to investment i which is measured by its standard deviation.

The stochastic dominance criteria in their first (FSD), second (SSD), and third (TSD) degree

were applied using the statistics already computed for each CMF real return (i.e., mean and vari-

ance). The results do not imply a complete ordering but a partial one (i.e., by groups), since the

criteria may not deliver a categorical SD relationship between two assets (Zurita and Jara, 1999).

Hence, we verified FSD, SSD, and TSD relationships between each possible pair of assets following

the algorithms proposed by Levy (2006), which are described as follows.7

Let x and y be vectors of real returns, which probability density functions are F and G, respec-

tively. Each vector has n elements, which are ordered from the lowest to the highest value in the

6The mutual funds data was extracted from the Chilean Securities and Insurance Superintendency (SVS) web site
(http://www.svs.cl).

7Furthermore, see Meyer et al. (2005) and Porter et al. (1973)
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following manner:

x ǫ F : x1 ≤ x2 ≤ . . . ≤ xn

y ǫ G : y1 ≤ y2 ≤ . . . ≤ yn

Then, assume that every asset return has a uniform distribution. Thus, every element of x

(or y) has a probability of occurrence equal to 1/n. In order to verify if distribution F dominates

distribution G by FSD we have to jointly check the following conditions:

FSD condition 1: xi ≥ yi ∀i = 1, 2, . . . , n, and exists at least one strict inequality xm > ym for

some m = 1, 2, . . . , n.

FSD condition 2: x1 ≥ y1 (left-tail condition).

In order to verify if distribution F dominates distribution G by SSD we have to jointly check

the following conditions:

SSD condition 1: Xi ≥ Yi ∀i = 1, 2, . . . , n, and exists at least one strict inequality Xm > Ym for

some m = 1, 2, . . . , n. Where Xi =
∑i

k=1
xk and Yi =

∑i
k=1

yk.

SSD condition 2: X1 ≥ Y1 (left-tail condition).

In order to verify the TSD criterion, let z be a vector that unifies the elements from x and y.

Therefore, z = z1, z2, . . . , zn−1, zn, zn+1, . . . , z2n, where zk = xi for some i = 1, 2, . . . , n, or, zk = yj

for some j = 1, 2, . . . , n. Finally, it is necessary to build the following piecewise functions for each

pair of assets considering their respective cumulative density function:

(2) F2(x) =

∫ x

−∞

F (u)du =








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(3) F3(x) =
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...

F3(xk) +
k
2n
(x2 − x2k)−

1

n

(
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i=1

xi

)

(x− xk) xk ≤ x ≤ xk+1

...

F3(xn) +
1

2
(x2 − x2n)−

1

n
(
∑n

i=1
xi) (x− xn) x ≥ xn
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Using the above expressions we have to compute F2(xi) and G2(yi) for i = 1, 2, . . . , n, jointly

with F3(zk) and G3(zk) for k = 1, 2, . . . , 2n. Once done, it is possible to verify if distribution F

dominates distribution G by TSD just checking the following conditions:

TSD condition 1: To verify if min(F ) ≥ min(G)

TSD condition 2: To compute H(zk) = G3(zk) − F3(zk) for all k = 1, 2, . . . , 2n and verify if

H(zk) ≥ 0 for all k.

Finally, we note that the degree of stochastic dominance between F and G (or x and y) do

not alter the results obtained in the immediately previous degree. That is, if F dominates G by

FSD, then it will also dominates by SSD and TSD. However, when the SD degree is increased, it

is possible that appears a new SD relationship, which was not identified in the previous degree.

Therefore, we present only the results related to the third-degree stochastic dominance criterion.
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4. Efficient portfolios according to mean-variance and TSD crite-

ria

An efficient set of portfolios can be seen as a number of investments upon which no other investment

is preferred according to certain criterion. Two efficient sets were constructed for both mean-

variance (Markowitz, 1952) and stochastic dominance (SD) criteria, considering first (FSD), second

(SSD), and third degree (TSD).

In order to see this mean-variance “efficient frontier” we plot all the points of mean-standard

deviation combinations for the 47 mutual funds (CMF) in our sample, along with the risk free

proxy investment (PDBC) (see figure 1).

The plot shows several CMF investment options falling below the zero-return line (i.e., av-

erage/expected returns are negative), therefore, their SI values will also be negative. Rankings

based on negative values of Sharpe index should be assessed carefully, especially when prices show

high volatility (Meyer et al., 2005). This has been the case in this particular sample period, when

investments were shocked by international financial turbulences following the global financial crisis

in 2008.

Starting from the return-volatility plot, we chose a few “efficient” portfolios among those se-

curities showing the best return for each significant volatility level (the upper contour of the plot

showed in figure 1). Every linear combination of these investments (i.e., a portfolio containing

them) will have an expected return equal or greater than the expected return of any single security

for each possible volatility level for the portfolio. The result is an efficient subset of four dominant

CMF which are listed in table 1.

Table 1: Investments included in efficient set according to mean-variance criterion

No. CMF Mean Sd. Deviation Sharpe index SI ranking SI percentile

37 8100I 0.063% 0.627 0.074 15th 68.1%
34 8141A 0.119% 0.878 0.117 10th 78.7%
4 8076EJ 0.961% 4.569 0.207 1st 97.9%
26 8098B 1.436% 7.213 0.197 2nd 95.7%

Note that the proxy risk free asset (PDBC) is not included in this group, although it is in

the region of the plot where is expected to be (low volatility, expected return close to zero).

Nevertheless, apparently is dominated by other securities with the same low volatility but higher

expected/average returns.

The efficient set according to third degree stochastic dominance criterion (TSD) has been se-

lected once the SD algorithms described in the previous sub-section have been run for every pair

of securities in the sample. The result is a matrix that shows the found/not-found third order

stochastic dominance relation for each pair of investments. From this matrix we selected those
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Figure 1: Standard deviation and mean return for the CMF included in the sample
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securities that are not TSD dominated by another security. The set is shown in table 2.

Comparing both mean-variance and TSD criteria depicted in tables 1 and 2, we note they

generate a very similar set of “efficient” investments, including in their sets funds number 4, 34

y 37. This result suggests consistency between the approaches. However, we also note that fund

number 26 is present in mean-variance efficient set, but is not in TSD’s. Fund 26 is the security

with the highest volatility and expected return of the mean-variance efficient set.

Table 2: Investments included in efficient set according to third degree stochastic dominance crite-
rion

No. CMF ND+ TSD ND- TSD TSD ranking

37 8100I 45 0 1st

34 8141A 36 0 2nd

4 8076EJ 28 0 3rd

ND+: No. of investments dominated by the security

ND-: No. of investments that dominate the security
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5. Investments rankings according to mean-variance and TSD cri-

teria.

As stated earlier, empirical analysis in this article consists on contrasting performance measures

for the Chilean mutual fund market, both from the mean-variance and stochastic dominance per-

spective. In order to do this, we constructed rankings based upon performance indicators.

For the mean-variance approach, we used the Sharpe index (SI). Securities were ranked accord-

ing to their SI value, in strict magnitude order. The bigger the SI value, the upper its (ordinal)

position in the ranking. Table 3 shows the top 20 securities in the SI ranking.

Table 3: Sharpe index ranking

No. CMF SI SI ranking No. CMF SI SI ranking

4 8076EJ 0.207 1st 45 8245A 0.110 11th

26 8098B 0.197 2nd 3 8030A 0.109 12th

27 8160EJ 0.171 3rd 18 8247A 0.098 13th

14 8206A 0.157 4th 29 8119A 0.096 14th

15 8086A 0.154 5th 37 8100I 0.074 15th

25 8098A 0.150 6th 42 8032A 0.060 16th

1 8278A 0.137 7th 22 8054A 0.059 17th

23 8136A 0.134 8th 2 8290A 0.055 18th

24 8133A 0.122 9th 33 8287PE 0.050 19th

34 8141A 0.117 10th 7 8252C 0.048 20th

As for the case of stochastic dominance approach, the ranking was constructed following a

two-step ordering procedure. First, we ordered investments according to the number of funds that

dominate that particular investment (ND-). The lower this number the higher is the position of

the investment in the ranking (see table 4). In the case that ND− is the same for a group of assets

then we order them according to the number of investments dominated by each asset (ND+).

In order to compare the resulting SI and TSD rankings, we analyzed the percentile distribution

for each fund in both rankings, extracting a number of securities with strikingly different positions.

Table 5 shows statistics and indicators for those securities. The last two columns show the relative

position for each investment according to mean-variance (SI) and stochastic dominance (TSD)

criteria. This table also include risk free asset investment No. 48.8

Note that investments 14, 15, 25, 26 and 27 are in high (ordinal) position in SI ranking (re-

spectively 4th, 5th, 6th, 2nd and 3rd) and low (ordinal) position in TSD ranking (27th, 30th, 31st,

25th and 41st). It is particularly striking the case of fund No. 27, third place of the Sharpe index

and 41st in TSD. Similarly, we can identify another group composed of funds No. 29, 34, 35, 37

and 48 that are in high positions in TSD ranking (8th, 2nd, 10th, 1st and 5th, respectively) and

8See Appendix B for the SI and TSD relationships computed for the whole sample.
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Table 4: Third degree stochastic dominance ranking

No. ND+ TSD ND- TSD TSD ranking No. ND+ TSD ND- TSD TSD ranking

37 45 0 1st 41 31 6 11th

34 36 0 2nd 31 35 7 12th

4 28 0 3rd 30 34 7 13th

36 41 1 4th 33 34 10 14th

48 39 1 5th 45 33 12 15th

40 38 1 6th 2 31 14 16th

38 40 2 7th 42 31 14 16th

29 35 2 8th 1 28 15 18th

39 37 3 9th 6 28 16 19th

35 38 4 10th 7 24 17 20th

low (ordinal) positions in Sharpe Index (14th, 10th, 37th, 15th and 31st). We call the first group

(high in SI and low in TSD) group A, and the second (low in SI, and high in TSD) as group B.

Table 5: Statistics and indicators for those CMF with dissimilar position in TSD and SI rankings

No. CMF Mean Sd. deviation SI ND+ ND- TSD ranking SI ranking

4 8076EJ 0.9609 4.5686 0.207 28 0 3rd 1st

14 8206A 1.1100 6.9590 0.157 9 22 27th 4th

15 8086A 1.1125 7.1336 0.154 6 24 30th 5th

25 8098A 1.0965 7.1922 0.150 5 25 31st 6th

26 8098B 1.4356 7.2132 0.197 9 17 25th 2nd

27 8160EJ 1.3039 7.5415 0.171 1 23 41st 3rd

29 8119A 0.1288 1.1756 0.096 35 2 8th 14th

34 8141A 0.1191 0.8780 0.117 36 0 2nd 10th

35 8187A -0.0091 0.5877 -0.043 38 4 10th 37th

37 8100I 0.0625 0.6269 0.074 45 0 1st 15th

45 8245A 0.2025 1.7010 0.110 33 12 15th 11th

48 PDBC30 0.0161 0.6014 0.000 39 1 5th 31st

In order to illustrate only these two groups we show in figure 2 the scatter plot for their mean

return and standard deviation (volatility). We can see that group A is located in the area of high

volatility and high expected return. On the contrary, group B is located in the area of low volatility

and low expected return. We can also note from table 5 that each of the investments in group B

dominates under TSD criterion the investments in group A. This domination can be illustrated in

figure 3, which shows the cumulative distribution function for each fund of these two groups.

In order to characterize both groups of investments, we decomposed the first four moments of the

return distribution for each fund. The information is compiled and shown in table 6. Additionally,

figure 4 presents histograms for the investment returns for dissimilar groups A and B.

Clearly, group A outperforms group B in terms of expected return. On the other side, group

B presents lower return variability. Taking both moments jointly, as in the Sharpe index or the
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Figure 2: Mean return and standard deviation for groups of investments with dissimilar position
in SI and TSD rankings
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Table 6: First four sample moments for discrepant investments

Group A: High SI, low TSD Group B: Low SI, high TSD

No. CMF µi σi Ski κi No. CMF µi σi Ski κi

14 8206A 1,1100 6,9590 -0,2576 0,1880 29 8119A 0,1288 1,1756 1,7028 8,0682
15 8086A 1,1125 7,1336 -0,2369 0,0976 34 8141A 0,1191 0,8780 0,8227 3,8005
25 8098A 1,0965 7,1922 -0,2224 0,2176 35 8187A -0,0091 0,5877 0,7342 1,0540
26 8098B 1,4356 7,2132 -0,2203 0,2178 37 8100I 0,0625 0,6269 0,9503 1,7176
27 8160EJ 1,3039 7,5415 -0,2686 0,3551 48 PDBC30 0,0161 0,6014 0,8745 1,2364

µi: Mean σi: Sd. deviation Ski: Skewness κi: Kurtosis

coefficient of variation, Group A outperforms B due to its lower relative dispersion. Nevertheless,

when we include higher moments of distribution, we observe new elements for comparison between

both groups (see table 6). Firstly, in terms of asymmetry, we observe that return distribution for

group A has a negative coefficient of asymmetry around -0.24 (bias to the left towards the negative

return zone). And secondly, investments in group B present positive asymmetry coefficient of
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around 1.02, i.e., a right-hand bias towards positive return zone.

Figure 3: Cumulative distribution function (F (x)) for discrepant investments
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As for the forth moment, return distribution for group A has a kurtosis coefficient significantly

lower than that of group B (ten times lower or more). This indicates a greater density in the tails

of the distribution. If we evaluate jointly these third and fourth moments, group A investments

are even riskier than what suggested by its volatility, or by the Sharpe index. In addition to its

high volatility, the distribution is biased towards losses and the tails are bigger. Empirically, TSD

appears to be capturing better the aspects of the return distribution associated with risk that are

not present in the two-moments-only approach, and that is why group A does not perform well in

TSD.
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Figure 4: Histograms for discrepant investments
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6. Concluding remarks

The empirical facts presented in this paper are focused on contrasting two different approaches

for analysis, measurement and ordering of risk and investments performance in an emerging mar-

ket context. Mean-variance approach, originated in the classic portfolio optimization theory, has

generated popular indicators that use first and second moment statistics for the returns proba-

bility distribution. On the other side, stochastic dominance approach compares whole probability

distributions between a pair of investments. From this comparison we can extract the following

conclusions.

Both mean-variance and stochastic dominance generate a similar set of efficient investments.

However, third order stochastic dominance criterion does not include high volatility investments in

this category.

There exist important dissimilarities in the ordering position for some investments in rankings

elaborated under mean-variance and those elaborated under TSD (third order stochastic domi-

nance). Therefore, the two approaches do not generate a consistent criterion for evaluating and

ordering investments profiles. The analysis of this dissimilarity suggests that TSD penalizes invest-

ments with high return volatility that also present negative asymmetry and low kurtosis.

TSD criterion presents itself as a complete method for evaluating the risk profile of an invest-

ment, as it takes into consideration risk relevant characteristics of the return probability distribution

that are not visible in mean-variance indicators.

Finally, we see new topics for further research, pointing mainly to perfecting the methods for

generating more precise quantitative indicators of risk that comprise more features of the returns

probability distribution, just as the TSD criterion does.
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A Mutual funds sample used in the empirical analysis.

No. Manager Mutual fund name Code

1 Euroamerica Ventaja Local 8278A

2 Itaú Itaú Mix 8290A

3 Corpcapital Corp Acciones 8030A

4 Santander Acciones Chilenas 8076EJ

5 Corpcapital Corp USA 8233A

6 Cruz del Sur Diversificacion 8298AF

7 Principal Lifetime 2030 8252C

8 Banchile Europe Fund 8129A

9 Santander Santander Europeo 8158NOEJ

10 Santander Global Desarrollado 8090EJ

11 Itaú Itaú World Equity 8237A

12 Banchile USA Accionario 8189A

13 BICE Best Asia 8178A

14 Celfin Acc. Latinoamericana 8206A

15 Banchile Latina Accionario 8086A

16 Principal USA 8113C

17 Larrain Vial (ex Consorcio) Emerging Equity 8198A

18 Euroamerica Euroamerica Capital 8247A

19 Santander Multinac. Emergente 8058UNEJ

20 Santander Asiático 8158EJ

21 Santander Asiatico 8159APV

22 Banchile Emerging Fund 8054A

23 Banchile Latin America Fund 8136A

24 Corpcapital Emerging Markets 8133A

25 Principal Andes 8098A

26 Principal Andes 8098B

27 Santander Latinoamericano 8160EJ

28 BBVA Renta Mixta 50 8116A

29 Corpcapital Más Futuro 8119A

30 BICE BICE Beneficio 8029A

31 BBVA BBVA Familia 8106A

32 BBVA BBVA Familia 8106E

33 Santander Bonos y Letras 8287PE

34 BICE BICE Extra 8141A

35 Scotia Proximidad 8187A

36 BICE BICE Manager 8100A

37 BICE BICE Manager 8100I

38 Scotia Prioridad 8255A

39 Scotia Prioridad 8255B

40 Banchile Liquidez 2000 8115U

41 Banchile Euro Money Market 8272U

42 BICE Target 8032A

43 LarrainVial Multi Estrategico 8303A

44 LarrainVial Multi Estrategico 8303E

45 LarrainVial Portfolio Lider 8245A

46 LarrainVial Global Equity 8173A

47 LarrainVial Global Equity 8173E
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B Sharpe index and third-degree stochastic dominance relation-

ships by asset included in the sample.

No. Mutual fund code SI Times dominated by TSD Times that dominates by TSD

1 8278A 0,137 15 28

2 8290A 0,055 14 31

3 8030A 0,109 19 24

4 8076EJ 0,207 0 28

5 8233A -0,141 27 2

6 8298AF -0,003 16 28

7 8252C 0,048 17 24

8 8129A -0,098 31 1

9 8158NOEJ -0,022 24 7

10 8090EJ -0,081 24 10

11 8237A -0,094 25 4

12 8189A -0,162 24 4

13 8178A -0,015 30 1

14 8206A 0,157 22 9

15 8086A 0,154 24 6

16 8113C -0,092 23 14

17 8198A 0,035 31 1

18 8247A 0,098 25 3

19 8058UNEJ 0,028 46 0

20 8158EJ 0,022 27 2

21 8159APV 0,033 25 3

22 8054A 0,059 32 1

23 8136A 0,134 27 1

24 8133A 0,122 27 2

25 8098A 0,150 25 5

26 8098B 0,197 17 9

27 8160EJ 0,171 23 1

28 8116A -0,154 25 2

29 8119A 0,096 2 35

30 8029A -0,013 7 34

31 8106A 0,019 7 35

32 8106E -0,107 30 0

33 8287PE 0,050 10 34

34 8141A 0,117 0 36

35 8187A -0,043 4 38

36 8100A 0,027 1 41

37 8100I 0,074 0 45

38 8255A 0,017 2 40

39 8255B 0,023 3 7

40 8115U 0,022 1 38

41 8272U -0,361 6 31

42 8032A 0,060 14 31

43 8303A 0,005 20 20

44 8303E 0,040 19 24

45 8245A 0,110 12 33

46 8173A -0,130 24 3

47 8173E -0,113 23 6

48 PDBC30 0,000 1 39
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