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Abstract

This paper analyzes asymmetrically informed litigants’ incentives to settle when

they anticipate the possibility of appeals. It identifies a strategic effect, which

induces a litigant to negotiate pretrial so as to optimize her posttrial bargaining

position, and an information effect, which means that litigants will take into account

pretrial how the information revealed by the trial court’s verdict will translate into

posttrial equilibrium payoffs. The paper’s main contribution is twofold: First, it

establishes a workhorse model of settlement and litigation in the shadow of appeals

which may be used in future research to analyze specific issues of litigation and

legal reform. Second, the importance of including the possibility of appeals in the

litigation model is highlighted by an example in which some results contradict the

immediate intuition: It is shown that (i) more accurate trial courts may actually

attract less cases and (ii) cases may go to trial court with a larger ex-ante probability

for higher legal costs in the appeals stage.

JEL Classification: K41; K13; D82

1 Introduction

Litigants often settle out of court in order to save on legal costs. However, informational

asymmetries may result in a breakdown of settlement negotiations: If a litigant has

private information which makes her confident to have a strong case, she will only settle

out of court if this yields her a high payoff, whereas a lower payoff is required if she is

∗I am grateful for discussions with and suggestions by Eberhard Feess, Daniel Göller, Michael Hewer,

Thomas Kittsteiner, Elisabeth Schulte, Urs Schweizer, Petros Sekeris and participants of the research

seminar in Aachen and of the annual meetings of Verein für Socialpolitik, Association Française de

Science Economique and the German Law & Economics Association.
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pessimistic regarding the strength of her case. Hence, the opposing party may find it

worthwhile not to settle if that litigant is optimistic in order to be able to settle at more

favorable terms with a less confident litigant.1

This basic tradeoff exists at any stage of a legal dispute. However, the terms at which

litigants negotiate for out-of-court settlement will change in the course of the litigation

process: Information revealed in court may remove the informational asymmetry to pave

the way for agreement, which some litigants reach as late as while the jury comes back

to the courtroom to announce its verdict. Similarly, litigants may use the very fact that

the opposing party rejected previous settlement offers to update their assessment of the

strength of their case.

Of course, rational litigants will take into account these changes in the bargaining

environment when making decisions at earlier stages. In general, the better informed

litigant will avoid to settle early if, given his private information, he anticipates his

bargaining position to improve over time. Furthermore, the less informed litigant will seek

to settle early with the opposing party if the latter appears to have observed information

which makes him unprofitable to negotiate with at later stages.

This is the first paper to analyze how anticipating future stages of appeal and set-

tlement negotiation influences litigants’ decisions at earlier stages of the legal process.

In particular, a model is considered in which a plaintiff may make a take-it-or-leave-it

settlement demand to a privately informed defendant. If the defendant rejects, the case

goes to trial court. If appeal is filed for the trial court’s verdict, the plaintiff may make

another take-it-or-leave-it settlement demand, the rejection of which will bring the case

to the appeals court, which is assumed to be the final stage of the litigation process.

Two main effects are identified which drive litigants’ decisions in equilibrium: First,

the plaintiff will anticipate that her posttrial equilibrium payoff will depend on the pri-

vate information that a defendant who has rejected the pretrial settlement demand may

have. When choosing the pretrial settlement demand, the plaintiff will therefore take

into account for which private information the defendant will reject or accept it, and how

this affects posttrial payoffs. In other words, the plaintiff will choose the pretrial settle-

ment demand so as to optimize the strategic environment in which posttrial settlement

negotiations take place. I shall label this effect the ’strategic effect’.

For instance, if the trial court’s decision is purely random, it depends on the ex-ante

probability distribution of which private information the defendant observes whether the

equilibrium probability that settlement ever occurs with two levels of jurisdiction is higher

or lower than with just one level. Specifically, the threshold private information beyond

which a defendant will refuse to settle both pretrial and posttrial is shifted towards lower

1See Bebchuk (1984), Nalebuff (1987) and the literature following these papers.
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densities of this distribution: A lower density of the marginal ’type’ of defendant implies

that the plaintiff has a lower marginal benefit of settling with a higher probability, which

induces her to make a higher posttrial settlement demand.

The second effect is that reducing the probability of settlement by making a tougher

pretrial settlement demand will improve the plaintiff’s average case that actually goes to

trial and thus increase the plaintiff’s probability of winning in trial. Hence, the plaintiff

will prefer a higher pretrial settlement demand if the difference in her equilibrium payoff

after winning and losing in trial court is higher. In other words, litigants will take into

account pretrial how the information revealed by the trial court’s verdict will translate

into posttrial equilibrium payoffs. Hence, this effect will be referred to as the ’information

effect’. A typical feature of the information effect is that the plaintiff’s basic cost-benefit

tradeoff in posttrial settlement negotiation is less sensitive to the settlement demand if

she has lost in trial court. Hence, parameter changes that increase the plaintiff’s posttrial

payoffs will reduce the difference in her posttrial payoffs after winning and losing in trial

court and, therefore, increase the plaintiff’s incentives to settle pretrial.

If the information effect dominates, it will thus result in counter-intuitive comparative

statics. For instance, in the example discussed in Subsection 6.2, higher legal costs in

the appeals stage will increase the ex-ante probability that a case goes to trial court in

equilibrium. Furthermore, a trial court that predicts the appeal court’s eventual judgment

more accurately may be used with lower probability, as the defendant anticipates to earn

a lower information rent posttrial and will, thus, tend to accept higher pretrial settlement

demands.

The existing economic literature on appeals has mainly focused on how the possibility

of an appeal affects judges’ incentives, especially when they have career concerns.2 The

basic idea of this literature is that judges, and decision makers in general, prefer their

decisions not to be reversed by an appeals instance. Hence, in Shavell (2006, 2007) and

Iossa and Palumbo (2007) the threat of appeals serves as a disciplining device prevent-

ing opportunistic judges from deviating too much from the socially preferred outcome.3

Daughety and Reinganum (2000) and Levy (2005) analyze Bayesian updating of imper-

fectly informed judges which seek to avoid reversal of their judgment in the first, and to

impress an imperfectly informed expert in the second paper.

2Notable exceptions are Shavell (1995, 2010), in which social costs and benefits of having more or less

levels of jurisdiction, of the accuracy of these levels and of discretionary review versus direct appeals are

analyzed. Bütler and Hauser (2000) analyze settlement incentives of symmetrically informed litigants

under the specific rules of the WTO dispute settlement system.
3In a similar vein, Spitzer and Talley (2000) analyze a game of judicial review when judges at both

levels care about the distance of the final decision from their personal political position and about legal

cost.
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While none of these papers consider settlement incentives of asymmetrically informed

litigants, I take a different approach by focusing on exactly this aspect and treating courts

as stochastic dummy players. As a consequence, litigants in my model only care about

how the appeals court will eventually judge, and the information that the trial court’s

verdict and the better informed litigant’s actions reveal regarding this issue.

Another line of related literature deals with settlement in dynamic contexts. Robson

and Skaperdas (2008) discuss the case of litigants fighting over an initially undefined prop-

erty right. Since information is symmetric in that paper, the two main effects identified

in the present paper cannot occur. However, posttrial bargaining will occur in equilib-

rium although the trial court defines binding property rights, because either litigant’s

individually most preferred choice of how to use the property is different than the joint

surplus maximizing choice, whereas in my paper litigants just bargain for a joint-welfare

neutral transfer. Although confined to pretrial settlement, Spier (1992) is closely related

to the present paper as she also allows for multiple rounds of negotiation between asym-

metrically informed litigants. Indeed, her two-period case with c > 0 is equivalent to the

analysis of the purely strategic effect in Section 5 of this paper. However, as the focus of

her paper is on the timing of settlement when there are multiple stages, she confines that

basic analysis of the two-period case to deriving the result that there will be settlement

with some positive probability in each period. By contrast, my focus is on the impact of

the second stage and, in the more general part of the paper, of the information revealed

by the trial court’s verdict on the ex-ante settlement probability.

Last, the signalling argument that a privately informed player may delay a mutually

beneficial agreement in the hope for an even better offer is well-known from the literature

on sequential bargaining with asymmetric information. While incentives for delaying

agreement are wiped out as offers can be made more frequently,4 delay does occur in

equilibrium whenever the time between offers is substantial, as it is the case in the

present paper. For instance, Hart (1989) shows in such a setting the intuitively plausible

result that higher cost of delay increase incentives to agree early. The present paper’s

contribution to this literature is to introduce the possibility that players observe an

informative public signal between the rounds of negotiation, and to show that the well-

known relationship between cost of delay and timing of agreement may reverse in such a

model.

The remainder of the paper will be organized as follows: The timing and payoffs

in the model will be presented in Section 2. Section 3 discusses assumptions regarding

the stochastic relationship among the defendant’s private information and the trial and

appeals courts’ verdicts in detail. Section 4 consists of a general analysis of the sub-

4See, for instance, Gul, Sonnenschein, and Wilson (1986)
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game after the plaintiff has made her pretrial settlement demand. When analyzing the

full game, I will first discuss in Section 5 the case in which the trial court’s verdict is

completely unrelated to how the appeals court will eventually judge, which allows me

to isolate the pure strategic effect. Section 6 then deals with strictly informative trial

courts. After presenting some general results, I will consider a specific class of signal

technologies, which allows me to derive clear-cut comparative static results. Section 7

concludes and discusses qualifications and potential extensions of the model.

2 The Model

Consider a case in which a plaintiff sues a defendant for damages of an undisputed size

D.5 After filing suit, the plaintiff may make a take-it-or-leave-it settlement demand

ST , which I will refer to as pretrial settlement demand. The defendant then observes

some private information x which allows him to update the probability that the appeals

court will eventually judge in favor of the plaintiff, and chooses whether to accept the

demand. To be more specific on the informational structure, let us assume that the

private signal x is distributed with a full-range distribution function F (x) with density

f(x) and monotonically increasing hazard rate f(x)
1−F (x)

.

If the defendant accepts the pretrial settlement demand, he pays ST to the plaintiff,

and the game ends. If the defendant rejects the settlement demand, the case goes to trial

court, which imposes litigation costs c
p
T on the plaintiff and cdT on the defendant.6 The

trial court awards damages equal to D or zero. Let lT ∈ {0, 1} denote the trial court’s

decision, where lT = 1 means that damages D are awarded.

The defendant decides whether to appeal. If he does not appeal, the plaintiff may

appeal.7 If any of the litigants has appealed, the plaintiff may make another settlement

demand SA, which I refer to as posttrial settlement demand, and which the defendant

may accept or reject. If he rejects, the case goes to the appeals court, which imposes

additional litigation costs c
p
A on the plaintiff and cdA on the defendant. The damages

awarded by the appeals court, if any, are again D.

5For instance, in an accident case, the size of the victim’s harm and the injurer’s negligence may

be undisputed, and the case is about finding out whether the plaintiff’s negligence was causal for the

accident.
6In reality, the plaintiff may choose whether to indeed go to trial or to back down if her demand has

been rejected. This raises credibility issues of settlement demands discussed in Nalebuff (1987), which

are known to result in an upper bound to settlement demands. In order to avoid the case distinctions

associated with the possible boundary solutions, we make this simplifying assumption.
7Note that this timing of the right to appeal is wlog, as it will turn out that the losing party will file

appeal anyway.
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How the appeals court will eventually judge is unknown to litigants, but the defen-

dant’s private information and the trial court’s decision are potentially informative signals

thereon. I will explain the specific assumptions on the litigants’ prior information and

the signal technology in Section 3. Summing up, the timing of the game is as follows:

(i) Plaintiff makes a settlement demand ST .

(ii) Defendant privately observes x and decides whether to accept or reject the demand.

(iii) If the defendant has rejected the demand, the case goes to the trial court, and the

trial court’s verdict lT ∈ {0, 1} is announced.

(iv) Defendant may appeal.

(v) If defendant has not appealed, Plaintiff may appeal.

(vi) Upon appeal, plaintiff may make posttrial settlement demand SA.

(vii) Defendant decides whether to accept the demand.

(viii) If the defendant has rejected the demand, the case goes to the appeals court, and

the appeals court’s verdict lA ∈ {0, 1} is announced.

The equilibrium concept used throughout is perfect Bayesian, and I will focus on pure-

strategy equilibria. More specifically, note that the game has a proper subgame beginning

after the plaintiff has made the pretrial settlement demand ST . For every given ST , we

can characterize pure-strategy perfect Bayesian equilibria of the subsequent subgame by

means of (i) the set of realizations of x for which the defendant rejects ST , (ii) both

litigants’ appeals decisions should they have lost in trial court, (iii) the plaintiff’s beliefs

on what the defendant has observed given the trial court verdict lT , (iv) the plaintiff’s

posttrial settlement demand Sr
A given the trial court’s verdict lT = r, r = 0, 1, and (v)

the set of realizations of x for which the defendant rejects Sr
A(ST ), r = 0, 1. Anticipating

that such a perfect Bayesian equilibrium will be played in the subsequent subgame, the

plaintiff will then choose ST so as to maximize her expected payoff.

The model set out here is an extension of the standard (one-stage) litigation model, in

which an unsettled case goes directly to the final instance, adding steps (iii)-(vii) to that

model. Hence, it may be useful to recapitulate the result of the standard model, which is

presented without proof. To this end, denote by cp (cd) the plaintiff’s (defendant’s) costs

of litigating at the single court.8

8Note that in the original version of this proposition, Bebchuk (1984) makes some additional assump-

tions to rule out the boundary solution x∗ = 0.
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Proposition 1 (Bebchuk (1984)) Consider a litigation model with just one round of

litigation, which consists of steps (i)-(ii) and (viii) of the game set out above. This version

of the game has a unique subgame perfect equilibrium, in which the case goes to court if

and only if the defendant observes some x < x∗ implicitly given by

D =
f(x∗)

1− F (x∗)
(cp + cd) (1)

if D ≥ f(0)
1−F (0)

(cp + cd), and x∗ = 0 otherwise.

The intuitive trade-off that the plaintiff faces when making a settlement demand is

that reducing the set of types of defendant with which a settlement is reached increases

the amount at which the case is settled but comes at additional expected litigation costs

represented by the right-hand side of (1). Note that the assumption of an increasing

hazard rate f(x)
1−F (x)

is sufficient to guarantee uniqueness of the interior equilibrium given

by (1).

3 The Signal Technology

In this section, I will be more specific about how the trial and the appeals courts’ outcomes

and the defendant’s private signal x are related to each other. Let the set of all states of

nature be partitioned into two mutually exclusive and jointly exhaustive events lA which

refer to the appeals court’s eventual judgement: In the event denoted by lA = 1 (lA = 0),

the appeals court will deterministically judge in favor of the plaintiff (defendant). The

state of nature is unknown to litigants, who just know ξ, the unconditional ex-ante

probability of event lA = 1.

Two noisy signals on the state of nature may be observed in the course of the game:

First, after the plaintiff has submitted her pretrial settlement demand, the defendant

privately observes a real number x ∈ [0, 1] as a noisy signal on the true state of nature.

Let the informativeness of this signal be such that, conditional on the signal x being

observed, the defendant can update the probability that the true state of nature is in event

lA = 1 from ξ to x.9 Assuming that the ex-ante probability that the defendant observes

signal x is distributed continuously on [0, 1] with density f(·), consistency requires that

ξ =
∫ 1

0
xf(x)dx.

Second, the trial court’s verdict lT ∈ {0, 1} is a noisy public signal on the state of

nature and, therefore, on how likely each event lA is. In order to be able to analyze

litigants’ Bayesian updating after observing lT , I need to define its accuracy in predicting

9For convenience, I will sometimes refer to a defendant who has observed the private signal x as a

’type-x defendant’.
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lA. As I want to accommodate the case in which the two signals are correlated even

conditional on the event lA in which the true state of nature is, the notation must allow

for the public signal’s accuracy to be a function of x, and to vary across events lA. In

particular, let the accuracy of the public signal when the defendant’s private signal is x

and the true state of the world is in event lA = r be pr(x). That is to say, if lA = r, the

probability that the trial court’s verdict correctly anticipates the appeals court’s when

the defendant has observed x is pr(x). In order to rule out trivial signal technologies,

assume that for all r and x, 0 < pr(x) < 1.

This informational structure implies litigants’ posterior beliefs upon observing the

signals: Recall that the plaintiff’s ex-ante beliefs for the distribution of the defendant’s

private signal x has density f(·). After observing the public signal, she may update

the density of the defendant’s types, as the public signal may be correlated with the

defendant’s private signal. In particular, her updated belief on the defendant’s private

signal when observing the public signal lT = r have density yr(x)f(x), where

yr(x) := Prob(lT = r | x) (2)

denotes the overall (i.e., unconditional on lA) probability of a public signal (trial court

verdict) lT = r given the defendant’s private information x. Using Bayes’ rule, we get

y1(x) = p1(x)x+ (1− p0(x))(1− x) (3)

y0(x) = p0(x)(1− x) + (1− p1(x))x = 1− y1(x). (4)

The defendant may also use the observed public signal to update his beliefs on the

probabilities of events lA. In particular, let

zr(x) := Prob(lA = 1 | x, lT = r) (5)

denote the probability of the true state of nature being in event lA = 1 conditional on the

realizations of the private signal x and the public signal lT = r. Then zr(x) is a type-x

defendant’s posterior of lA = 1 after observing lT = r. Using Bayes’ rule, we can express

zr(·) in terms of the accuracy pr(·):

z1(x) =
Prob(lA = 1 ∧ lT = 1 | x)

Prob(lT = 1 | x)
=

p1(x)x

p1(x)x+ (1− p0(x))(1− x)
(6)

z0(x) =
Prob(lA = 1 ∧ lT = 0 | x)

Prob(lT = 0 | x)
=

(1− p1(x))x

p0(x)(1− x) + (1− p1(x))x
. (7)

Having defined a signal technology in a most general way, I shall now restrict generality

in two respects: First, for simplicity, I will focus on signal technologies with continuous

and differentiable functions pr(·), which implies that yr(·) and zr(·) are also continuous

and differentiable. Second, the following plausible properties of the signal technology are

assumed:
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Assumption 1 (a) y1(·) non-decreasing: Defendants who observed lower x are no

more likely to win in the trial court than those who observed higher x.

(b) zr(·) strictly increasing, r = 0, 1: Given any verdict of the trial court, defendants

who observed higher x are strictly more likely to win in the appeals court than those

who observed lower x.

(c) ∀x : p1(x) + p0(x) ≥ 1: This assumption is equivalent to z0(x) ≤ z1(x) for all x,

which means that given the defendant’s private signal, the public signal is infor-

mative in the sense that a defendant who has lost in trial court can never expect to

be more likely to win in the appeals court than if he had won in trial court.

The signal technologies that satisfy Assumption 1 include a number of prominent

special cases some of which I will now briefly discuss by formalizing the public signal’s

accuracy and then using (3), (4), (6) and (7) to derive parties’ posterior beliefs. The most

common case in the literature on aggregating informative signals, such as Ottaviani and

Sørensen (2001) or Gerardi and Yariv (2008), is that the signals are drawn independently.

In this case, the public signal’s accuracy neither depends on the defendant’s private signal

x nor on the true event lA = r:

Example 1 (Independent Signals) If signals are drawn independently, then p1(x) =

p0(x) = ρ > 1
2
, which is some constant. It follows that

y1(x) = ρx+ (1− ρ)(1− x)

y0(x) = ρ(1− x) + (1− ρ)x

z1(x) =
ρx

ρx+ (1− ρ)(1− x)

z0(x) =
(1− ρ)x

ρ(1− x) + (1− ρ)x
.

From the plaintiff’s perspective, the public signal lT = 1 may be true, which occurs

with ex-ante probability ρx, or false, which occurs with probability (1 − ρ)(1 − x). The

defendant updates his private information by dividing the probability that the public

signal lT = 1 is true by the total ex-ante probability of the signal lT = 1.

A polar case is that the trial court just rolls dice, i.e. where its verdict does not

contain any information on the true state of nature. This implies that any signal lT = r

is sent with some constant probability which is neither related to the defendant’s private

signal nor the event lA in which the true state of nature is.
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Example 2 (Uninformative Public Signal) If the public signal is completely unin-

formative, then p1(x) = 1− p0(x) = ρ, which is some constant. It follows that

y1(x) = ρ

y0(x) = 1− ρ

z1(x) = x = z0(x).

As the probability that a particular public signal lT = r is sent neither depends on the

true event lA nor on the defendant’s private information x, no party can use the signal

to update information.

A third example is a case which I will refer to as the public signal being based on the

private signal but otherwise random, that is to say, the trial court judges with exactly

those probabilities given by the defendant’s private signal, but completely randomizes

given these probabilities. In this example, the defendant cannot infer any new information

from the public signal, but, subject to this restriction, the public signal is as informative

as possible for the plaintiff. This is the case whenever the public signal lT = 1 is sent

with probability x independent of the true event lA.

Example 3 (Randomizing Based on Private Signal) If the public signal is randomly

drawn on the basis of the defendant’s private signal, then p1(x) = 1−p0(x) = x. It follows

that

y1(x) = x

y0(x) = 1− x

z1(x) = x = z0(x).

Just like in the case of the completely uninformative public signal, the probability of

each signal lT does not depend on the true event, i.e. p1(x) = 1 − p0(x). Hence, the

defendant’s posterior beliefs on the probability distribution of the events lA is the same

as before observing the public signal. However, as the trial court sends the public signal

with the correct probabilities privately known by the defendant, the plaintiff can update

her beliefs on the defendant’s private information. In particular, the posterior density

function with which the plaintiff believes the defendant’s types to be distributed after

observing the public signal lT = r is yr(x)f(x), which is clearly different from her ex-ante

beliefs f(x).

4 General Analysis

As the game has a proper subgame starting after the pretrial settlement demand ST

has been made, I will analyze the game using backward induction. Hence, most of the

10



following analysis will be performed for some given ST . Let us start with the plaintiff’s

choice of posttrial settlement demand SA after a pretrial settlement demand ST has

been made by the plaintiff and rejected by the defendant, the trial court has made a

verdict lT = r, r = 0, 1, and appeal has been filed. The plaintiff believes that the

defendant’s private information is distributed on [0, 1] with some density µr(x) with

support Mr ⊆ [0, 1]. Furthermore, the defendant may have used the trial court’s verdict

to update his private information x, so that he expects to be held liable by the appeals

court with probability zr(x).

The concept of perfect Bayesian equilibrium then requires that, given these updated

expectations, players maximize their payoffs. Hence, the analysis of the posttrial set-

tlement negotiations is similar to the standard screening model of litigation: If a type-x

defendant rejects the settlement demand, his expected payoff is −zr(x)D−cdT −cdA, which

is strictly decreasing in x, whereas accepting a posttrial settlement demand SA gives him

−SA − cdT , which is constant in x. Hence, if any type of defendant accepts the settlement

demand, it is someone who has observed a high probability x of losing in the appeals court.

The plaintiff anticipates the defendant’s optimal strategy when choosing her posttrial set-

tlement demand. The following Lemma states that in any perfect Bayesian equilibrium

and for each outcome r of the trial, there exists a type of defendant xr
A, r = 0, 1, who is

indifferent between accepting and rejecting the equilibrium posttrial settlement demand,

and whose equilibrium strategy has been to reject the pretrial demand ST .

Lemma 1 In any pure-strategy perfect Bayesian equilibrium, the plaintiff’s posttrial set-

tlement demand after a trial court’s verdict lT = r, r = 0, 1 is Sr
A = zr(x

r
A)D + cdA with

xr
A < supMr and

xr
A ∈ arg max

xA∈Mr

∫

Mr∩[0,xA]

(zr(x)D − c
p
A)µr(x)dx+ (zr(xA)D + cdA)

∫

Mr∩[xA,1]

µr(x)dx. (8)

Proof. As zr(·) are strictly increasing in x due to Assumption 1, there exists, for every

SA and r, a unique x̃r
A(SA) such that SA = zr(x̃

r
A(SA))D+cdA. Suppose that this x̃

r
A(SA) ̸∈

Mr, and define Macc
r (SA) := {x ∈ Mr : x > x̃r

A(SA)} the set of all private signals x such

that a defendant who has observed x appears in the posttrial settlement negotiation stage

with positive probability in equilibrium and accepts the posttrial settlement offer SA.

IfMacc
r (SA) ̸= ∅, then S ′

A = zr(infM
acc
r (SA))D+cdA yields the plaintiff a strictly higher

expected payoff than SA, as it will be accepted with the same probability and S ′
A > SA.

If, on the other hand, Macc
r (SA) = ∅, this means that SA will be rejected with probability

1. Then there exists a sufficiently small ε > 0 such that [supMr − ε, supMr) ⊂ Mr and

S ′′
A = zr(supMr − ε)D+ cdA yields the plaintiff a strictly higher expected payoff than SA.

11



The plaintiff’s expected payoff with this S ′′
A is

∫

Mr

(zr(x)D − c
p
A)µr(x)dx+

∫ supMr

supMr−ε

[cdA + c
p
A − (zr(x)− zr(supMr − ε))D]µr(x)dx,

whereas her payoff with a never-accepted settlement demand is just the first summand

thereof,
∫

Mr
(zr(x)D − c

p
A)µr(x)dx. Note that this also proves xr

A < supMr.

Lemma 1 greatly simplifies the subsequent analysis by allowing to transform the

plaintiff’s problem of optimizing the posttrial settlement demand into one of optimizing

the marginal type of defendant who will reject or accept the posttrial settlement demand,

just like the literature on the single-stage model usually proceeds. However, that this is

possible in this model is not trivial, as there may be density holes in the plaintiff’s beliefs,

i.e. the support of the plaintiff’s beliefs Mr may not be an interval. Furthermore, Lemma

1 proves that it cannot be optimal for the plaintiff to make a settlement demand that is

rejected with certainty: Making a settlement demand that will be accepted only just by

the highest type of defendant from the set Mr yields the plaintiff a settlement payment

that is only marginally smaller than what expected damages from these types would have

been, whereas the litigation cost savings are substantial.

This latter implication of Lemma 1, that it is optimal for the plaintiff to settle with

some types of defendant posttrial, also implies that the highest types of defendant which

the plaintiff believes to be facing always pay less than what they expect to pay after a

verdict by the appeals court. To be more specific, given a trial court’s verdict lT = r, all

types x ≥ xr
A have exactly the same payoff in the posttrial stage. The next Lemma shows

that this property implies that a losing defendant always files appeal: If the plaintiff

believes that some type x ≥ xr
A of defendant has filed appeal, she must do so for all types

of defendant who had turned down the pretrial settlement demand.

The following Lemma shows that this is true also for a losing plaintiff, although this

latter result is an artefact of the simplifying assumption that the case directly proceeds

to court after the defendant has rejected a settlement demand (which means that the

settlement demand is always credible): The plaintiff always prefers to file appeal and

then appropriate the defendant’s cost savings in the settlement.

Lemma 2 In any pure-strategy perfect Bayesian equilibrium, the litigant who has lost in

trial files appeal.

Proof. Suppose that lT = 1. Without appeal the defendant’s payoff is −D − cdT

with certainty. With Lemma 1, the defendant’s expected payoff from filing appeal is

−z1(min{x, x1
A})D − cdA − cdT . Hence, the defendant files appeal if and only if

z1(min{x, x1
A})D + cdA ≤ D. (9)
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In a perfect Bayesian equilibrium in which, in the posttrial settlement negotiation, the

plaintiff believes that the defendant has observed x ∈ M1, consistency of beliefs requires

that condition (9) is satisfied for all x ∈ M1. Furthermore, with Lemma 1, x1
A ∈ M1.

Hence, all x ∈ [0, 1] satisfy (9).

Suppose now that lT = 0. If appeal is not filed, the plaintiff’s payoff is −c
p
T with

certainty. Upon filing appeal, she can always secure herself a payoff cdA − c
p
T by setting

xA = infM0. Hence, filing appeal must be optimal also under the optimal posttrial

settlement strategy.

An immediate implication of Lemma 2 is that the plaintiff’s equilibrium beliefs when

her settlement demand is due do not depend on the trial court’s outcome, i.e. M0 = M1 =:

M . Hence, when restricting attention to pure-strategy equilibria, consistent beliefs on x

have density

µr(x) :=
yr(x)f(x)

∫

x′∈M
yr(x′)f(x′)dx′

(10)

if x ∈ M .

Consider now a defendant’s decision of whether to accept the plaintiff’s pretrial settle-

ment demand ST . In a perfect Bayesian equilibrium, the defendant will take the plaintiff’s

equilibrium beliefs with density µ(·) and the resulting equilibrium posttrial settlement

demands Sr
A as given. Recall from Lemma 1 that the posttrial settlement demands Sr

A

can be expressed in terms of the marginal types of defendant xr
A accepting this demand.

Hence, every pure-strategy Bayesian equilibrium of the subgame following a pretrial set-

tlement demand ST can be completely characterized by the triple (x0
A, x

1
A,M).

More specifically, recall that the defendant anticipates pretrial to be held liable in

trial court with probability y1(x). Hence, defining

S(x) :=
∑

r

yr(x)zr (min{x, xr
A}) , (11)

the defendant’s expected payoff when going to trial is

Πd(x) = −S(x)D − cdA − cdT . (12)

The defendant will reject the pretrial settlement demand ST if and only if −ST < Πd(x).

The plaintiff’s beliefs are consistent if and only if M = {x : −ST < Πd(x)}. Furthermore,

Lemma 1 requires that x0
A, x

1
A ∈ M . These observations imply that any pure-strategy

perfect Bayesian equilibrium must take one of the three forms set out in the following

proposition:

Proposition 2 Consider the subgame after the plaintiff has made a settlement demand

ST . In any pure-strategy perfect Bayesian equilibrium one of the following statements is

true:
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(i) z0(x
0
A) < z1(x

1
A) and there is some xT > max{x0

A, x
1
A} such that the defendant

rejects ST if and only if x ≤ xT .

(ii) z0(x
0
A) = z1(x

1
A), S(x

0
A)D + cdA + cdT ≤ ST and [0, x0

A] ⊆ M .

(iii) z0(x
0
A) > z1(x

1
A), [0, x

1
A] ⊂ M and [x0

A, 1] ⊂ M .

Proof. Using (4), (6) and (7), we can write (11) as

S(x) =























x, if x ≤ min{x0
A, x

1
A};

(1− y1(x))z0(x
0
A) + y1(x)z1(x), if x0

A < x < x1
A;

(1− y1(x))z0(x) + y1(x)z1(x
1
A), if x1

A < x < x0
A;

z0(x
0
A) + y1(x)(z1(x

1
A)− z0(x

0
A)), if x ≥ max{x0

A, x
1
A}.

(13)

Part (i): If z0(x
0
A) < z1(x

1
A), then S(·) is strictly increasing in x: This is obvious for the

first and the last case in (13); if x0
A < x < x1

A then10 S ′(x) = y1(x)z
′
1(x) + y′1(x)(z1(x)−

z0(xA)) > y1(x)z
′
1(x) + y′1(x)(z1(x

0
A) − z0(x

0
A)) ≥ 0; and if x1

A < x < x0
A then S ′(x) =

(1− y1(x))z
′
0(x) + y′1(x)(z1(x

1
A)− z0(x)) > (1− y1(x))z

′
0(x) + y′1(x)(z1(x

1
A)− z0(x

0
A)) > 0.

Hence, Πd(·) is strictly decreasing in x, which implies that if any type of defendant

rejects ST , it will be those who observed low x. Finally, recall that defendants who

observed x0
A or x1

A must reject ST in equilibrium, which completes the proof by showing

that there are some types at all that reject ST .

Part (ii): Note first that z0(x
0
A) = z1(x

1
A) implies x1

A ≤ x0
A. Hence, the second case

in (13) is the empty set. Furthermore, S(·) is flat for x ≥ max{x0
A, x

1
A} = x0

A. Last, if

x1
A < x < x0

A, then S ′(x) = (1− y1(x))z
′
0(x) + y′1(x)(z1(x

1
A)− z0(x)) > (1− y1(x))z

′
0(x) +

y′1(x)(z1(x
1
A) − z0(x

0
A)) > 0. Summing up, S(·) is strictly decreasing in x if x < x0

A and

constant otherwise.

As a consequence, if S(x0
A)D + cdA + cdT > ST , then x0

A ̸∈ M , a contradiction to

consistency of beliefs. Hence, S(x0
A)D + cdA + cdT ≤ ST .

Part (iii): z0(x
0
A) > z1(x

1
A) implies x1

A < x0
A. Hence, S(·) is strictly increasing in x

if x ≤ min{x0
A, x

1
A} = x1

A and strictly decreasing in x if x ≥ max{x0
A, x

1
A} = x0

A. With

x0
A, x

1
A ∈ M , this implies that ST ≥ max{S(x0

A), S(x
1
A)}D + cdA + cdT .

If the trial court’s verdict contains any information on how the appeals court will

eventually judge, case (i) is intuitively most plausible: Winning in trial court indicates

to the plaintiff that the defendant’s private information is likely to be in the plaintiff’s

favour, and that the appeals court is likely to rule for the plaintiff given any private

information of the defendant. Hence, an intuitive implication of this case is that, if the

less informed litigant has won in trial court, she will be tougher in posttrial bargaining

10Recall that S(·) is continuous and differentiable in x.
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and agreement is less likely to be reached than if the better informed litigant had prevailed

in trial court.

However, depending on the exact functional forms implied by the signal technology,

the counterintuitive case (iii), where prevailing in the trial court is seen as bad news by

the plaintiff, cannot be ruled out in general. Hence, it is necessary to deal with case (iii)

for the sake of completeness, and the analysis of specific signal technologies in Sections 5

and 6.2 will involve identifying which of these three cases may ever occur in equilibrium.

5 The Strategic Effect

The aim of this section is to isolate the strategic effect of anticipating posttrial settlement

negotiations by assuming that the trial court’s verdict does not reveal any information to

litigants on the strength of their case. Referring to the discussion in Section 3, the signal

technology is characterized by an ex-ante probability that the plaintiff wins in trial court

that is independent of x, y1(x) = ρ, and by a type-x defendant’s posterior probability of

being held liable in the appeals court of z1(x) = z0(x) = x that is independent of the trial

court’s verdict and equal to the ex-ante probability. In this case, the trial court’s verdict

does not matter for the litigants’ expected payoffs and the plaintiff’s beliefs. Hence, case

(ii) of Proposition 2 applies:

Lemma 3 Assume that the trial court’s verdict is completely uninformative. In any

pure-strategy perfect Bayesian equilibrium (x0
A, x

1
A,M) of the subgame after the plaintiff

has made a settlement demand ST , z0(x
0
A) = z1(x

1
A), x

0
A = x1

A, x
0
AD + cdA + cdT ≤ ST and

[0, x0
A] ⊆ M .

Proof. With the discussion of Example 2 in Section 3, we have, for every x, z0(x) = z1(x).

Hence, the plaintiff’s posttrial optimization problem (8) is identical for both potential

outcomes of the trial up to the constant probability that the plaintiff wins in trial court.

Hence, x0
A = x1

A, and z0(x
0
A) = z1(x

1
A). The remaining claims made in the Lemma then

follow immediately from Proposition 2.

Lemma 3 simplifies the analysis considerably: It implies that a defendant with private

information xA := x0
A = x1

A anticipates being indifferent between accepting and rejecting

the equilibrium posttrial settlement demand later on. A defendant with private informa-

tion x < xA anticipates to reject the equilibrium posttrial settlement demand and earn

an even higher payoff. Hence, if a defendant who has observed x = xA rejects the pretrial

demand ST , so will a defendant who has observed x < xA.

In a perfect Bayesian equilibrium, the plaintiff’s beliefs, which are characterized byM ,

must be consistent with this strategy. On the other hand, xA must solve the plaintiff’s
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posttrial problem (8). Hence, the range of the first integral in (8) is simply [0, xA].

Furthermore, the second integral in (8) is the probability that x is in M but larger than

xA. Hence, denoting the probability that x is in M as λ :=
∫

x′∈M
f(x′)dx′, (8) can be

written as

xA ∈ arg max
x′

A∈M

∫ x′

A

0

(xD − c
p
A)

f(x)

λ
dx+ (x′

AD + cdA)

(

1−
F (x′

A)

λ

)

. (14)

The objective function is continuous and differentiable in x′
A, and, due to the monotoni-

cally increasing hazard rate of F (·), there is a unique maximum given by the first-order

condition

D =
f(xA)

λ− F (xA)
(cpA + cdA) (15)

if D ≥ f(0)
λ−F (0)

(cpA + cdA), and xA = 0 otherwise.

Note the similarity to the first-order condition (1) of the standard model of litigation

with just a single stage - indeed, the conditions are identical for λ = 1, cpA = cp and

cdA = cd. Of course, the intuitive tradeoff carries over from the single-stage model: If an

indifferent defendant’s private information xA is more favorable, this allows the plaintiff

to settle for a larger amount xAD. However, increasing xA comes at the cost of litigation

with the marginal type of defendant, represented by the right-hand side of (15).

The following lemma states that, for every ST , the equilibrium cutoff type of defendant

for posttrial settlement, xA(ST ), and the equilibrium probability (unconditional on x) of

rejection of the pretrial demand, λ(ST ), are unique:

Lemma 4 Let xA be the unique xA that solves (14) for λ = 1. For every ST ≥ cdA + cdT ,

there exist unique xA(ST ) and λ(ST ) such that for every pure-strategy perfect Bayesian

equilibrium (x0
A, x

1
A,M) of that subgame, xA(ST ) = x0

A = x1
A = min

{

ST−cdA−cdT
D

, xA

}

,

λ(ST ) =
∫

M
f(x)dx is the ex-ante probability that the defendant rejects ST , and the plain-

tiff’s expected payoff in that subgame is

Πp(ST ) =

∫ xA(ST )

0

(xD − c
p
A − c

p
T )f(x)dx

+(λ(ST )− F (xA(ST ))) (xA(ST )D + cdA − c
p
T ) + (1− λ(ST )) (xA(ST )D + cdA + cdT ).

(16)

Proof. In any perfect Bayesian equilibrium of the subgame following a pretrial settlement

demand ST , xA is a solution to the plaintiff’s posttrial optimization problem (14) given

λ, λ ∈ [F (xA), 1] if xAD + cdA + cdT = ST , and λ = 1 if xAD + cdA + cdT < ST . Note first

that the solution xA to (14) is increasing in λ due to the increasing hazard rate of F (·).

Hence, the largest xA that can ever be a solution to (14) is xA, which solves (14) for

λ = 1. Hence, if ST > xAD + cdA + cdT , there is no λ ≤ 1 such that xA =
ST−cdA−cdT

D
solves
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(14), so that ST > xAD+ cdA+ cdT . However, this implies M = [0, 1] and, therefore, λ = 1,

in which case the unique solution to (14) is xA = xA.

Suppose now that ST ≤ xAD + cdA + cdT . In this case, the equilibrium xA(ST ) is

uniquely given by xA(ST ) =
ST−cdA−cdT

D
: If xA were below that, this would imply λ = 1, in

which case the unique solution to (14) would be xA > xA, a contradiction. Furthermore,

there is a unique λ such that xA(ST ) =
ST−cdA−cdT

D
solves (14).

To complete the proof, the plaintiff’s equilibrium payoff given by (16) is obtained by

summing up the posttrial payoff (14) with probability λ(ST ) and the payoff from pretrial

settlement ST with probability 1− λ(ST ).

If xA(ST )D + cdA + cdT < ST , then the defendant will reject ST no matter what his

private information is, which means that λ(ST ) = 1 is unique. The unique equilibrium

settlement demand in this case induces xA(ST ) = xA. An equilibrium in which some

types of defendant accept ST is possible only if xA(ST )D + cdA + cdT = ST , the left-hand

side of which is strictly increasing in x. Hence, the xA(ST ) that satisfies this condition is

unique. On the other hand, the solution xA to (14) is strictly increasing in λ, so that the

equilibrium λ(ST ) is also unique.

Lemma 4 is important because it establishes that, before making a pretrial settlement

demand ST , the plaintiff can anticipate a unique equilibrium payoff in the respective

subgame following each choice of ST . An equilibrium pretrial settlement demand therefore

maximizes (16) and can be intuitively characterized by the cutoff type of defendant x∗
A

which is indifferent between accepting and rejecting the equilibrium posttrial settlement

demand:

Proposition 3 Assume that the trial court’s verdict is completely uninformative. In any

pure-strategy perfect Bayesian equilibrium, a case goes all the way to the appeals court if

and only if x < x∗
A, where x∗

A ≤ xA. If 0 < x∗
A < xA, then

D =
f(x∗

A)

1− F (x∗
A)

(cpT + cdT + c
p
A + cdA) +

f ′(x∗
A)

1− F (x∗
A)

c
p
A + cdA
D

(cpT + cdT ). (17)

Proof. Note that, due to uniqueness of the equilibrium payoffs in the subgame following

any settlement demand ST , the plaintiff’s problem of choosing ST boils down to choosing

some xA ≤ xA so as to maximize (16), where λ satisfies the posttrial first-order condition

(15) for that xA. Hence, the upper bound x∗
A ≤ xA follows immediately from Lemma 4,

and an interior solution can be obtained by taking the derivative of (16),

dΠp

dxA

= (1− F (xA))D − f(xA)(c
p
A + cdA)−

dλ

dxA

(cpT + cdT ).

Using the total differential of (15), substituting for dλ
dxA

= f(xA) + f ′(xA)
c
p
A
+cdA
D

yields

(17).
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The left-hand side and the first summand on the right-hand side of (17) again con-

stitute the well-known tradeoff from the literature on single-stage litigation systems. In

addition to that, the second summand on the right-hand side of (17) shows the effect

introduced by the possibility to appeal, which depends on the allocation of parties’ total

litigation costs on the trial and the appeal stage, and on the first derivative of the density

of the defendant’s private signal. Intuitively, this term reflects that the result of pretrial

settlement will influence the plaintiff’s cost of increasing xA in posttrial settlement bar-

gaining, f(xA)(c
p
A + cdA), which is litigation costs in the appeal stage times the marginal

probability of the defendant to prefer settlement.

The similarity of the equilibrium conditions of the single-stage and two-stage models,

(1) and (17), makes the two models easy to compare. The following Proposition analyzes

the effect of appeals on the set of cases that are eventually settled in some stage, and on

the defendant’s expected equilibrium payoff.

Proposition 4 Let D ≥ f(0)
1−F (0)

(cpT + cdT + c
p
A + cdA). If f ′(x∗

A) < 0 (f ′(x∗
A) > 0), then

the ex-ante probability that the case will be settled in some stage is lower (higher), and

the defendant’s ex-ante expected payoff is smaller (larger) than in a one-stage litigation

system with total legal costs cp + cd = c
p
T + cdT + c

p
A + cdA.

Proof. The proposition compares the present model with a one-stage model just con-

sisting of stages (i), (ii) and (viii) and legal costs cp + cd = c
p
T + cdT + c

p
A + cdA. The

condition D ≥ f(0)
1−F (0)

(cpT + cdT + c
p
A + cdA) implies that the unique equilibrium of the latter

model is given by (1). Furthermore, recall the definition of xA, D = f(xA)
1−F (xA)

(cpA + cdA),

which is strictly smaller than f(xA)
1−F (xA)

(cp + cd). Summing up, the unique equilibrium of

the single-stage model satisfies

0 < x∗ < xA. (18)

Suppose first that f ′(x∗
A) < 0. If 0 < x∗

A < xA, x∗
A satisfies (17), which implies

D <
f(x∗

A)

1−F (x∗

A)
(cp + cd) and, with Proposition 1, x∗ < x∗

A. If x∗
A = xA, then x∗ < x∗

A is

trivially implied by (18). x∗
A = 0 cannot occur, as a necessary condition for this would

be that D <
f(0)

1−F (0)
(cpT + cdT + c

p
A + cdA), a contradiction to a condition of the Proposition.

Suppose now that f ′(x∗
A) > 0. If 0 < x∗

A < xA, x∗
A satisfies (17), which implies

D >
f(x∗

A)

1−F (x∗

A)
(cp + cd) and, with Proposition 1, x∗ > x∗

A. If x∗
A = 0, then x∗ > x∗

A is

trivially implied by (18). x∗
A = xA cannot occur, as a necessary condition for this would

be that D >
f(xA)

1−F (xA)
(cpA + cdA), a contradiction to the definition of xA.

Proposition 4 shows that the direction in which the appeals system affects equilibrium

crucially depends on the distribution from which the defendant’s private information is

drawn: In a system with appeals, the plaintiff’s pretrial settlement demand also seeks to
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optimize the cost-benefit tradeoff that governs posttrial bargaining. As the marginal cost

of increasing x∗
A is positively related to the marginal probability that the defendant prefers

settlement, introducing the additional level of jurisdiction has shifted the defendant’s

equilibrium cut-off type in the direction of lower density.

6 The Information Effect

6.1 Some General Results

In this section, it will be analyzed how the litigants’ equilibrium settlement behavior is

affected when they can use the trial court’s outcome to update their expectations on how

the appeals court will eventually judge. Depending on the exact nature of the signal

technology, the plaintiff may use the trial court’s verdict to update her beliefs on the

private information x that the defendant has observed, and both litigants may update

their expectations of how the appeals court will eventually judge for given x. Hence,

winning (losing) in trial court makes the plaintiff more (less) confident of winning in the

appeals court, and therefore it is plausible for her to demand a higher (lower) amount

in the posttrial settlement negotiation. Recalling Lemma 2, this latter conclusion is

equivalent to z1(x
1
A) > z0(x

0
A), which is exactly how case (i) of Proposition 2 is defined.

Hence, the intuitively most appealing case of that Proposition is the first one, which is

why this Subsection is devoted to characterizing equilibria for general signal technologies

under the assumption that equilibrium satisfies this intuitively appealing condition.

Note, however, that contrary to this intuitive argument, the plaintiff’s optimal choice

of posttrial settlement demand will depend on the marginal effect of the trial court’s

verdict on litigants’ expectations of how the appeals court may judge. Hence, it is not

possible to rule out the third case of Proposition 2 for general signal technologies, so

that it is necessary to rule it out whenever one discusses a specific signal technology. I

will analyze such a specific signal technology in the next Subsection. It will turn out

that any perfect Bayesian equilibrium must be according to case (i) of Proposition 2.

Furthermore, this specific signal technology will serve as an example for the possibility

of some counter-intuitive comparative statics regarding the impact of legal costs and the

trial court’s accuracy on litigants’ incentives to settle.

Under case (i) of Proposition 2 and using (10), the plaintiff’s posttrial objective func-

tion (8) can be simplified to

xr
A ∈ arg max

xA∈[0,xT ]

∫ xA

0

(zr(x)D − c
p
A)y(x)f(x)dx+ (zr(xA)D + cdA)

∫ xT

xA

y(x)f(x)dx, (19)

where xT is the threshold type of defendant defined in case (i) of Proposition 2 above
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which the defendant rejects the pretrial settlement demand. The first-order condition is

z′r(x
r
A)D =

yr(x
r
A)f(x

r
A)

∫ xT

xr
A
y(x)f(x)dx

(cpA + cdA). (20)

The following Lemma presents some results on the plaintiff’s optimal choice of posttrial

settlement demand.

Lemma 5 Consider a pure-strategy perfect Bayesian equilibrium of the subgame after

the plaintiff’s pretrial settlement demand that is governed by case (i) of Proposition 2.

(i) If y1(0) = 0, then x1
A > 0. Furthermore, x0

A = 0 for sufficiently flat z0(·) and

y1(0) < 1.

(ii) If the function y(x)f(x) exhibits an increasing hazard rate and zr(·) is weakly con-

cave on (0, 1), there is at most one xA that satisfies the first-order condition (20).

In this case, the equilibrium choice of xr
A is the unique solution of (20) and strictly

increasing in xT if it exists, and xr
A = 0 otherwise.

Proof. Note first being in case (i) of Proposition 2 immediately rules out xT = 0, as in

this case the trivial posttrial equilibrium would be x0
A = x1

A = 0. Hence, xT > 0.

Part (i): The first derivative of the objective function in (19) w.r.t. xA is

z′r(xA)

∫ xT

xA

y(x)f(x)dxD − yr(xA)f(xA)(c
p
A + cdA),

which is strictly positive for xA = 0 if yr(0) = 0. Hence, x1
A > 0 whenever y1(0) = 0.

Furthermore, for y0(0) > 0 (which is equivalent to y1(0) < 1) and sufficiently small z′r(·),

the derivative of the objective function will be negative for all xA ∈ [0, 1], which implies

x0
A = 0.

Part (ii): y(x)f(x) exhibiting an increasing hazard rate implies that the right-hand

side of (20) is strictly increasing in xA, and zr(·) being weakly concave implies that the

left-hand side of (20) is strictly decreasing in xA. Hence, there can be at most one xA

that satisfies (20). If a solution of (20) does not exist, xr
A = xT is ruled out by Lemma

1, which leaves xr
A = 0 as the only alternative.

Suppose now that xr
A > 0 satisfies (20). Taking the total differential of (20) yields

dxr
A

dxT

=
yr(xT )f(xT )z

′
r(x

r
A)D

[

yr(xr
A)f(x

r
A)z

′
r(x

r
A)− z′′r (x

r
A)

∫ xT

xr
A
y(x)f(x)dx

]

D + [y′r(x
r
A)f(x

r
A) + yr(xr

A)f
′(xr

A)] (c
p
A + cdA)

which is strictly positive whenever z′′r (x) ≤ 0.

If the defendant’s private signal is sufficiently informative also for predicting the trial

court’s decision, a case will go to the appeals court with strictly positive probability after
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the plaintiff has won in trial court. The plaintiff infers having a weak case from the fact

that the defendant has rejected the pretrial demand, but infers having a strong case from

the trial court’s decision. Hence, it is sufficiently unlikely that the defendant has observed

a very low x as to make it worthwhile for the plaintiff to make a settlement demand that

these low-x types of defendant will reject.

On the other hand, this is not necessarily true if the defendant has won in trial court:

In this case, both the fact that the defendant is obviously confident and the trial court

outcome make the plaintiff believe that the defendant is sufficiently likely to have observed

a very low x that she prefers to settle even with these low types of defendant.

Part (ii) of Lemma 5 translates the uniqueness of the solution of the standard, single-

instance model’s first-order condition (1) to posttrial bargaining. If the distribution of the

plaintiff’s beliefs satisfies the increasing-hazard-rate condition, which is usually imposed

on the ex-ante distribution of types in the single-stage model, then the right-hand side,

divided by the integral, is increasing in xr
A. Hence, if the left-hand side is non-increasing

(which is always the case in (1), as it is independent of x∗), the result follows immediately.

However, note that this latter condition may not hold in posttrial bargaining, espe-

cially for the case that lT = 0 in which the defendant will typically be more optimistic

and revise his expectations of losing in the appeals court to below x: For instance, if

signals are independent (see Example 1 in Section 3), z0(x) is convex, which means that

the defendant’s revision of expectations is larger for intermediate levels of observed x.

In this sense, part (ii) of Lemma 5 points out another potential complication that may

arise in the analysis of posttrial bargaining after the defendant has won in trial court, as

opposed to settlement negotiation in the single-instance model.

The second result presented in Part (ii) of Lemma 5 is that, under the same set of

assumptions that guarantees an interior posttrial solution, posttrial equilibrium choices

are monotonic in pretrial choices. That is to say, if the ex-ante probability that the

defendant rejects the pretrial settlement demand is high (which means that the pretrial

demand was high), then the ex-ante probability that the case will go all the way to the

appeals court is also high, which also means that the posttrial settlement demand is high.

Assuming that, for every pretrial settlement demand ST , there is a pure-strategy

perfect Bayesian equilibrium characterized by case (i) of Proposition 2, the plaintiff will

anticipate equilibrium Sr
A, x

r
A and xT > max{x0

A, x
1
A} when choosing ST . Using the results

from Section 4, the plaintiff’s objective is equivalent to choosing xT so as to maximize
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Πp(xT ) =
∑

r

[

∫ xr
A

0

(zr(x)D − c
p
A)yr(x)f(x)dx+ (zr(x

r
A)D + cdA − c

p
T )

∫ xT

xr
A

yr(x)f(x)dx

]

+

[

∑

r

(yr(xT )zr(x
r
A))D + cdA + cdT

]

∫ 1

xT

f(x)dx.

(21)

The following Proposition presents the first-order condition of an interior optimum and

specifies conditions under which it will be satisfied in perfect Bayesian equilibrium.

Proposition 5 Assume that there is a pure-strategy perfect Bayesian equilibrium of the

subgame after making the pretrial settlement demand that is governed by case (i) of Propo-

sition 2, and let the conditions of Part (ii) of Lemma 5 be satisfied and y1(0) be sufficiently

small as to guarantee x1
A > 0 for every xT .

If D is sufficiently large and c
p
A + cdA and f(0) are sufficiently small, then there is a

perfect Bayesian equilibrium such that the case is settled pretrial if and only if x ≥ x∗
T ,

where x∗
T satisfies the first-order condition

{

y′1(x
∗
T )(z1(x

1
A)− z0(x

0
A)) +

∑

r

(

z′r(x
r
A)

dxr
A

dxT

yr(x
∗
T )

)

}

D =
f(x∗

T )

1− F (x∗
T )

(cdT + c
p
T ). (22)

Proof. The first-order condition (22) is obtained by taking the first derivative of the

objective function (21) w.r.t. xT . Let us denote this objective function ΠT (xT ). A

sufficient set of conditions for xT to satisfy this first-order condition in a perfect Bayesian

equilibrium is that (i) ΠT (xT ) is indeed the relevant objective function, (ii) the first

derivative of this objective function satisfies limxT↘0 Π
′
T (0) > 0 and Π′

T (1) < 0, and (iii)

the first derivative of the objective function Π′
T (·) is continuous except for a finite set

(xi
d), where for every i, limxT↗xi

d
Π′

T (xT ) < limxT↘xi
d
Π′

T (xT ).

The first condition is guaranteed by assumption. As for the third condition, continuity

of Π′
T (·) depends on the impact of xT on the posttrial choices xr

A(xT ): Low xT may imply

a boundary solution xr
A(xT ) = 0 for some r ∈ {0, 1}. Due to Part (ii) of Lemma 5,

xr
A are increasing in xT whenever they are positive. Hence, there may be up to two

discontinuities at xr
d := max{xT : xr

A(xT ) = 0}. Furthermore,

lim
xT↘xi

d

Π′
T (xT )− lim

xT↗xi
d

Π′
T (xT ) = z′r(x

r
A)

dxr
A

dxT

yr(x
r
d)D(1− F (xr

d)) > 0

again due to Part (ii) of Lemma 5.

As for the second condition, note first that 1 − F (1) = 0 as F (·) is a probability

density function, and recall that zr(·) and yr(·) are differentiable by assumption. Hence,
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Π′
T (1) = −f(1)(cdT + c

p
T ) < 0. Furthermore, limxT↘0(z1(x

1
A)− z0(x

0
A)) = 0, so that

lim
xT↘0

Π′
T (0) =

∑

r

(

z′r(0)
dxr

A(0)

dxT

yr(0)

)

D(1− F (0))− f(0)(cdT + c
p
T ),

which is increasing in D and decreasing in (cdT + c
p
T ) and f(0), as long as xr

A is not a

boundary solution for at least r = 1, which is guaranteed by the assumption of sufficiently

large y1(0).

Intuitively, in order to establish the interior solution as an equilibrium, it is necessary

to rule out the boundary solutions xT = 0 and xT = 1 as well as potentially those points

at which the objective function may not differentiable. It turns out that the assumptions

made in Part (ii) of Lemma 5 already rule out xT = 1 and the non-differentiable points

if they exist. Hence, if, in addition to these assumptions, the potential gain D for the

plaintiff is sufficiently large compared to the legal costs and the defendant is sufficiently

unlikely to privately know to have a very strong case as to rule out that the plaintiff wants

to settle pretrial with certainty (xT = 0), the equilibrium x∗
T will satisfy the first-order

condition (22).

Let us now examine this first-order condition (22) in more detail: The right-hand side

is the well-known marginal cost of making a tougher settlement demand that already

appears in the first-order condition (1) of the standard, single-instance model: The de-

fendant will accept such a higher settlement demand with lower ex-ante probability, so

that the litigation costs of the trial court cdT + c
p
T will be incurred with higher probabil-

ity, represented by the hazard rate f(xT )
1−F (xT )

. The difference introduced by the possibility

of an appeal is related to the expected marginal benefit of making a higher settlement

demand, which is on the left-hand side of the first-order condition. While this marginal

benefit is just D in the standard model (see again equation (1)), there are two effects

in the two-stage model: First, there is a strategic effect similar to that introduced in

Section 5, captured by the second summand in the expression in curly brackets on the

left-hand side of (22),
∑

r

(

z′r(x
r
A)

dxr
A

dxT
yr(xT )

)

D. This effect is just the average impact

of settling with lower probability pretrial on the probability of settling posttrial in equi-

librium, and therefore also on the plaintiff’s equilibrium posttrial payoff. Intuitively, the

plaintiff chooses the pretrial settlement demand so as to optimize her strategic position

in the eventual posttrial settlement negotiation.

The second effect, captured by the first summand in the expression in curly brack-

ets on the left-hand side of (22), y′1(xT )(z1(x
1
A) − z0(x

0
A))D, is related to the litigants

anticipating the way in which the information revealed by the trial court’s verdict will

eventually translate into posttrial payoffs. This is why I will refer to this effect as the

information effect. The information effect is made up of the difference in equilibrium
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posttrial settlement payment S1
A −S0

A = (z1(x
1
A)− z0(x

0
A))D after the plaintiff versus the

defendant having won in trial court, and the impact y′1(xT ) of settling with less types

of defendant pretrial on the probability of winning the marginal case in the trial court.

Intuitively, making a tougher pretrial settlement demand is more attractive for the plain-

tiff if (i) this increases the probability y1(xT ) of winning the marginal case in trial court

to a larger extent, and (ii) good news in trial court translate more heavily into posttrial

equilibrium payoffs.

Note that, due to the increasing-hazard-rate assumption for F (·), it is sufficient to

compare the left-hand side of (22) under different sets of assumptions to compare xT and

thus the probabilities of a pretrial settlement in these cases: If the equilibrium marginal

type x̃T of defendant that settles pretrial under a certain set of assumptions causes the

left-hand side of (22) to be larger than the right-hand side under some other set of

assumptions, then the equilibrium marginal type xT under this latter set of assumptions

will be larger than x̃T , which means that a case will go to trial court with a larger

probability in the latter case.

6.2 Example: Identical Conditional Probabilities

In the preceding Subsection I have analyzed equilibrium assuming it to satisfy certain

conditions. Whether these assumptions indeed hold, and in which direction the strategic

and the information effects move equilibrium choices, will need to be assessed for spe-

cific given signal technologies. In this Subsection I will, therefore, illustrate some typical

features of the information effect for a special class of signal technologies in which, condi-

tional on the defendant’s private signal x, the interim probabilities for the plaintiff to win

in the trial court and for her to win in the appeals court are both equal to x, which means

that y1(x) = x = 1 − y0(x). In order to capture the effect of the trial court’s accuracy,

I assume that with probability ρ the trial court perfectly anticipates the appeals court’s

eventual verdict (lT = lA), and with probability 1 − ρ it just randomizes between each

outcome using the probabilities x and 1 − x, and that the ’type’ of trial court is unob-

servable to litigants. Hence, ρ is a proxy for the trial court’s accuracy: For high values

of ρ, the appeals court is very unlikely to overturn the trial court’s decision. If, on the

other hand, ρ is low, observing the trial court’s verdict is still useful for the plaintiff to

update her beliefs on the defendant’s private information, whereas litigants cannot learn

much new on the appeals court’s eventual verdict for given x.

Following the discussion in Section 3, the signal technologies analyzed in this section

are characterized by pr(x), which are equal to 1 with probability ρ, and equal to those

given in Example 3 with probability 1 − ρ, i.e. p1(x) = ρ + (1 − ρ)x and p0(x) =
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ρ+ (1− ρ)(1− x). It follows that

z1(x) = ρ+ (1− ρ)x

z0(x) = (1− ρ)x.

Furthermore, I will simplify the analysis by assuming that the defendant’s private

information is ex-ante uniformly distributed. This assumption also allows me to better

focus on the information effect, as it rules out some of the purely strategic effect analyzed

in section 5.11 The following lemma characterizes equilibrium of the subgame following

the plaintiff’s pretrial settlement demand ST .

Lemma 6 Assume that the trial court perfectly anticipates the appeals court’s eventual

decision with probability ρ, and judges according to Example 3 with probability 1− ρ, and

that the defendant’s private information is ex-ante uniformly distributed. Then:

(i) There is no pure-strategy perfect Bayesian equilibrium that is characterized by cases

(ii) or (iii) of Proposition 2.

(ii) The unique pure-strategy perfect Bayesian equilibrium of the subgame following any

pretrial settlement demand ST > cdT + cdA is characterized by x0
A, x

1
A and xT which

satisfy:

ST =
[

xT (ρ+ (1− ρ)x1
A) + (1− xT )(1− ρ)x0

A

]

D + cdA + cdT (23)

x1
A = −

ZA

1− ρ
+

√

Z2
A

(1− ρ)2
+ x2

T (24)

x0
A = max

{

1−
ZA

1− ρ
−

√

Z2
A

(1− ρ)2
+ (1− xT )2, 0

}

, (25)

where ZA :=
cdA+c

p
A

D
is the ratio of total litigation costs in the appeals court and the amount

in dispute.

Proof. For all proofs of this Subsection see the Appendix.

Taking the partial derivative of (24) and (25) with respect to ρ confirms the straight-

forward intuition that, for a given set of cases that go to trial court in equilibrium, a case

will be settled posttrial with a higher probability if the appeals court is more costly and

trial court more accurate: If it is known that the appeals court will probably judge in

11Recall from Proposition 4 that with uniformly distributed x, litigants’ anticipation of appeals has

no impact in the absence of the information effect.

25



the same way as the trial court, there is no need to incur the additional legal costs of the

appeals court.

Furthermore, due to y(0) = 0 in this example, Part (i) of Lemma 5 applies which

states that posttrial settlement will, in equilibrium, be governed by an interior solution

after the plaintiff has won in trial court, i.e. the case will be settled posstrial and go

to the appeals court with strictly positive probabilities. However, if the defendant has

won in trial court, there may be a boundary solution posttrial: (25) implies that such

a case will always be settled posttrial if (1 − xT )
2 ≥ 1 − 2ZA

1−ρ
, which is satisfied if the

probability of the case not being settled pretrial was already low, the litigation costs in

the appeals stage are sufficiently high relative to the potential damages, and the trial

court is sufficiently accurate.

Let us now turn to the plaintiff’s choice of pretrial settlement demand. Part (i) of

Lemma 6 confirms that, for any choice of ST , the subsequent equilibrium will be of the

type described in case (i) of Proposition 2, i.e. the defendant’s decision of whether to

accept such a settlement demand depends in a strictly monotonic way on his private

information: If this private information indicates that he is going to win in the appeals

court with a high probability, then his expected payoff from the trial court and posttrial

settlement negotiation will also be high. Hence, he will reject ST if and only if x is below

a certain threshold xT .

The first-order condition for the plaintiff’s optimal choice of pretrial settlement de-

mand can therefore be obtained by using Lemma 6 to substitute for the subsequent

equilibrium choices in (22). The following Proposition specifies under which conditions

this first-order condition is also sufficient:

Proposition 6 If the signal technology is as described in Lemma 6 and ρ ≥
c
p
T
+cdT
D

, there

is some x∗
T such that in any pure-strategy perfect Bayesian equilibrium the case is settled

pretrial if and only if x ≥ x∗
T , where x∗

T satisfies the first-order condition







ρ+ (1− ρ)



−1 +

√

√

√

√4x∗
T
2 +

Z4
A

(1−ρ)4

Z2
A

(1−ρ)2
+x∗

T
2
+

√

√

√

√4(1− x∗
T )

2 +
Z4
A

(1−ρ)4

Z2
A

(1−ρ)2
+(1−x∗

T )2











D =
c
p
T + cdT
1− x∗

T

(26)

if (1− x∗
T )

2 < 1− 2ZA

1−ρ
, and







ρ+ (1− ρ)



−
ZA

1− ρ
+

√

√

√

√4x∗
T
2 +

Z4
A

(1−ρ)4

Z2
A

(1−ρ)2
+x∗

T
2











D =
c
p
T + cdT
1− x∗

T

(27)

if (1− x∗
T )

2 > 1− 2ZA

1−ρ
.

Specifically, if
(

c
p
T+cdT
ρD

)2

< 1− 2ZA

1−ρ
, then x∗

T > 1−
c
p
T+cdT
D

.
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In line with the findings for general signal technologies presented in Proposition 5,

Proposition 6 shows that there will be an interior equilibrium settlement demand (in the

sense that it will be accepted and rejected with positive probabilities) if ρ ≥
c
p
T+cdT
D

, that

is to say, if the trial court is sufficiently accurate (high ρ), the stakes D are sufficiently

large and trial costs cdT + c
p
T sufficiently low.

Taking a closer look at the first-order conditions, it turns out that the left-hand side

of (26) is always larger than D and the left-hand side of (27) always larger than ρD. The

right-hand sides are weakly smaller than D whenever xT ≤ 1−
c
p
T+cdT
D

and weakly smaller

than ρD whenever xT ≤ 1−
c
p
T
+cdT
ρD

. Hence, an equilibrium x∗
T that satisfies the first-order

condition (26) [(27)] must be above 1−
c
p
T+cdT
D

[1−
c
p
T+cdT
ρD

].

Furthermore, if the lower bound 1−
c
p
T+cdT
ρD

for the interior solution given by the first-

order condition (27) (which is the relevant condition for the case of the posttrial boundary

solution x0
A = 0) is above the domain that is relevant for this condition, this immediately

excludes the possibility of the posttrial boundary solution x0
A = 0 to occur in any perfect

Bayesian equilibrium of the entire game. This is exactly the case that is highlighted by

the last claim of Proposition 6: If
(

c
p
T+cdT
ρD

)2

< 1 − 2ZA

1−ρ
, then the objective function is

increasing throughout the domain (1−xT )
2 > 1− 2ZA

1−ρ
under which the posttrial boundary

solution x0
A = 0 occurs, which implies that equilibrium will always satisfy (26), for which

case we have just established that xT > 1−
c
p
T+cdT
D

.

Proposition 6 allows us to analyze the impact of litigation costs on litigants’ incentives

to settle. While the following proposition shows the expected positive effect of litigation

costs in the trial stage on settlement incentives, it establishes the somewhat surprising

result that, if equilibrium satisfies the first-order condition 26, higher litigation costs in

the appeal stage actually increase the probability that a case goes to the trial court:12

Proposition 7 Let the signal technology be as described in Lemma 6, assume
(

c
p
T
+cdT
ρD

)2

<

1− 2ZA

1−ρ
, and consider a marginal change in the total legal cost of the trial stage cdT + c

p
T

(of the appeals stage cdA + c
p
A). Then there is at least one perfect Bayesian equilibrium

before and after the change such that the equilibrium probability that the case goes to the

trial court x∗
T has decreased (increased) due to the change.

Higher litigation costs in the trial stage increase the right-hand side of the first-order

condition (26), which implies that x∗
T must be reduced. Hence, just like in the well-known

12Note that, while it is readily established that, under the conditions formulated in Proposition 7, x∗

T

must satisfy the first-order condition (26) in any perfect Bayesian equilibrium, multiplicity of equilibrium

cannot be ruled out. Hence, the comparative statics result presented in Proposition 7 holds only for

continuous changes in the equilibrium x∗

T
. However, such a continuously changing equilibrium always

exists for every marginal parameter change.

27



single-stage model summarized in Proposition 1, higher litigation costs encourage out-

of-court settlement. In order to understand why increasing the litigation costs of appeal

has the opposite effect, it will be useful to look at both effects identified in the discussion

of the first-order condition (22) separately: The marginal types of defendant who settle

posttrial, x1
A and x0

A given by (24) and (25) are increasing in xT , but this effect is smaller

for higher litigation costs in the appeals stage. Hence, the impact of settling pretrial with

lower probability on the plaintiff’s posttrial payoff, which we have labelled the ’strategic

effect’, gets smaller as cdA + c
p
A increases which would imply a decreasing equilibrium x∗

T .

However, the ’information effect’, which captures how litigants anticipate the later use

of the information revealed by the trial court, works in the opposite direction and turns

out to dominate the strategic effect: Although, in the case of interior equilibria posttrial

implied by the condition (1− x∗
T )

2 < 1− 2ZA

1−ρ
, equilibrium posttrial settlement payments

S1
A and S0

A for both possible trial outcomes are falling in the litigation costs, those after

the defendant has won in trial court are more heavily affected by the litigation costs, so

that the difference S1
A − S0

A is increasing in cdA + c
p
A. This makes it more attractive for

the plaintiff to win in trial court and thus reduces her incentives to settle pretrial.

The intuitive reason for why S1
A−S0

A is increasing in cdA+c
p
A is that losing in trial court

makes the plaintiff also pessimistic on the appeals court’s eventual judgment. Hence,

losing in trial court reduces the impact y′r(·) of the posttrial settlement demand Sr
A on

the plaintiff’s marginal cost of settling with lower probability posttrial (see the right-hand

side of (20)). Consequently, for a given increase in legal costs, the plaintiff will reduce

equilibrium posttrial settlement demand after losing in trial court more than after winning

in trial court. In other words, the plaintiff’s choice of posttrial settlement demand is less

sensitive to parameter changes if she has lost in trial court. Hence, if a parameter change

reduces equilibrium posttrial settlement demands after any outcome in the trial court,

as the increase in the legal cost of the appeals stage does, it will increase the difference

S1
A−S0

A in the plaintiff’s posttrial payoffs after winning and losing in trial court. As this

mechanism is just based on the identity y0(x) ≡ 1− y1(x) and therefore y′0(x) = −y′1(x),

it seems safe to argue that the information effect being countervailing to the strategic

effect is a typical feature of interior equilibria of the game.

Another interesting question is whether a trial court that is more accurate in predicting

the appeals court’s eventual decision will attract more cases in the first place. Let us

start by considering two extreme cases, a perfectly accurate and a purely randomizing

trial court. As the perfectly accurate trial court is characterized by ρ = 1, posttrial

settlement bargaining after the defendant has prevailed in trial court is given by the

boundary solution x0
A = 0 for every xT , which, together with ρ = 1 >

cdT+c
p
T

D
, implies that

the equilibrium x∗
T is given by (27). Substituting for ρ = 1 in (27) yields the first-order
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condition x∗
T = 1−

cdT+c
p
T

D
.

As for the other extreme case in which the trial court only randomizes, note first that

this case is not equivalent to the case ρ = 0 in the example discussed in this Subsection

- even this lowest possible accuracy reveals some information on the appeals court’s

eventual judgment to the plaintiff, as the trial court is known to decide for the plaintiff

with the probability x privately observed by the defendant. Instead, we must go back

to the analysis in Section 5, where (15) and (17) together imply that if the defendant’s

private information is ex ante uniformly distributed, as it is assumed throughout this

Subsection, the probability that the case goes to trial court is λ = 1−
cdT+c

p
T

D
.

The surprising result of this exercise is that a perfectly accurate trial court will be used

with exactly the same ex-ante probability as a purely randomizing court. An immediate

conclusion is that, unless equilibrium choices are completely independent of the trial

court’s accuracy, it is always possible to find two signal technologies such that the less

accurate trial court will be used with higher ex-ante probability in equilibrium. Indeed,

it is shown in Proposition 6 that, as long as stakes are sufficiently high relative to the

legal costs of the trial court and ρ is not too high as to ensure an interior solution given

by the first-order condition (26), a case will go to trial court with a higher probability

than in either of the extreme cases just discussed. The following proposition summarizes

this result and is presented without proof:

Proposition 8 Consider a signal technology as described in Lemma 6. If
(

c
p
T
+cdT
ρD

)2

< 1−
2ZA

1−ρ
, such an intermediately accurate trial court will be used with higher ex-ante probability

than a perfectly accurate trial court (ρ = 1), which in turn will be used with identical ex-

ante probability as the completely uninformative trial court discussed in Section 5.

Intuitively, a very inaccurate trial court’s decision won’t influence posttrial equilibrium

payoffs much. Due to the aforementioned effect that smaller differences in the plaintiff’s

posttrial equilibrium payoffs across trial court outcomes increase her incentive to settle

pretrial, a very inaccurate trial court will be used with rather low probability. Hence,

making the trial court slightly more accurate than that will increase the probability

that it is used. However, as the trial court’s accuracy increases further, the defendant’s

informational advantage in posttrial settlement negotiation vanishes. Anticipating his

lower information rent in posttrial bargaining, the defendant will be easier to convince of

settling pretrial, which brings the probability that the court is used back down again.
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7 Conclusions

This paper has identified two effects through which the possibility of an appeal will in-

fluence asymmetrically informed litigants’ incentives to settle: The strategic effect makes

litigants consider in pretrial negotiations the strategic environment in which posttrial

settlement negotiations will eventually take place and follows a similar intuition as the

literature on sequential bargaining with asymmetric information. The second effect is the

information effect which makes litigants anticipate how the information revealed by the

trial court’s verdict will influence equilibrium posttrial payoffs.

The main lesson from this paper is that taking into account the trial court’s verdict as

a public signal on the appeals court’s eventual decision may yield the following surprising

results: It turns out that the information effect implies higher incentives to settle pretrial

if posttrial equilibrium payoffs are insensitive to the trial court’s verdict, which is typically

the case if legal costs are high. Furthermore, a very accurate trial court reduces the

defendant’s posttrial information rent and makes him more willing to accept a given

pretrial settlement demand.

A policy discussion to which these results may make an important contribution is

that on the optimal design of the legal process. In general, a social planner may decide

on whether to invest in more or less levels of jurisdictions, and whether to invest more or

less in the accuracy of the existing courts. For instance, Shavell (1995) compares costs

and benefits of adding a level of jurisdiction, arguing that due to convex costs of avoiding

judicial errors at each level two imperfectly accurate levels of court are socially preferable

to a single, more accurate court. However, Shavell assumes that litigants are perfectly

informed but cannot settle. The present paper relaxes these assumptions and suggests

that litigants’ settlement behavior may affect social welfare in different ways as a result

of such a legal reform.

Of course, my results depend on various simplifying assumptions which may be relaxed

in future research. First, a potential way of relating my analysis to the main line of the

economic literature of appeals cited in the introduction would be to extend the model

to allow for courts to act strategically or to update their information using a potentially

better informed litigant’s actions. Another group of strategic players that has not been

addressed in my model is solicitors, whose incentives may not be aligned with their

clients’ depending on the compensation scheme in use. As for the timing of the game, I

have made the simplifying assumption that the case always goes to court if settlement

negotiations break down, which rules out those credibility issues addressed by Nalebuff

(1987). Allowing for these credibility issues may create interesting countervailing effects

and, therefore, be a worthwhile task for future research. Finally, when using the model
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presented in this paper for a welfare analysis of legal reform, it should be kept in mind that

changes in the equilibrium of the litigation game may be interrelated with the incentives

for the underlying actions before litigation takes place like, for instance, an injurer’s

decision to take precautions.13

A feature of my model that practitioners may feel uncomfortable with is that I do

not address the appeals court’s accuracy in finding the ’truly’ correct decision at all. The

reason why I ignored this question is that the paper’s focus is on deriving generally valid

results on litigants’ settlement incentives. All that rational, monetary payoff maximizing

litigants care about is the highest court’s eventual decision. The results that I derive

in this model are therefore valid whether or not the appeals court’s decision is correct.

Having said this, the issue of the appeals court’s accuracy may be important when ana-

lyzing welfare effects, and if litigants suffer non-monetary preference costs when the legal

system errs to their disadvantage.

Appendix: Proofs for Subsection 6.2

A Proof of Lemma 6

Suppose there is an equilibrium that is characterized by case (iii) of Proposition 2. Then,

in the interval x1
A < x < x0

A, S(x) = [ρ + (1 − ρ)(1 − x + x1
A)]x is strictly convex.

Hence, in any perfect Bayesian equilibrium characterized by case (iii) of Proposition 2

there must be unique xT and x0
T such that S(xT )D+ cdA + cdT = S(x0

T )D+ cdA + cdT = ST ,

x1
A < xT < x0

T < x0
A andM = [0, xT ]∪[x

0
T , 1]. Furthermore, by symmetry of the quadratic

function S(·),

x0
T =

1

1− ρ
+ x1

A − xT . (28)

Let λr := Prob(x ∈ M ∧ lT = r) =
∫

M
yr(x)dx. When choosing a posttrial settlement

demand after a trial court’s verdict lT = r, the plaintiff’s objective function (8) becomes,

in our example,

Πr
A(xA) =

{
∫ xA

0
(zr(x)D − c

p
A)

yr(x)
λr

dx+ (zr(xA)D + cdA)
∫

[xA,xT ]∪[x0
T ,1]

yr(x)
λr

dx, if xA ≤ xT ;
∫

[0,xT ]∪[x0
T
,xA]

(zr(x)D − c
p
A)

yr(x)
λr

dx+ (z1(xA)D + cdA)
∫ 1

xA

yr(x)
λr

dx, if xA ≥ x0
T ,

the first derivative of which is

Πr′
A(xA) =

{

−yr(xA)
λr

(cdA + c
p
A) + z′r(xA)D

∫

[xA,xT ]∪[x0
T ,1]

yr(x)
λr

dx, if xA ≤ xT ;

−yr(xA)
λr

(cdA + c
p
A) + z′r(xA)D

∫ 1

xA

yr(x)
λr

dx, if xA ≥ x0
T ,

(29)

13See, for instance, P’ng (1987), Spier (1994), Shavell (1999), Hylton (2002) and Landeo, Nikitin, and

Baker (2007).
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As both parts of Πr′
A(·) are strictly decreasing in xA, local maxima for either part are

given by the first-order conditions.

Due to our initial supposition of being in case (iii) of Proposition 2, we have x1
A ≤ xT ,

which is given by the first-order condition based on the first case of (29):

−x1
A(c

d
A + c

p
A) + (1− ρ)D

1

2

(

x2
T − x1

A

2
+ 1− x0

T

2
)

= 0,

which, with ZA =
cdA+c

p
A

D
, implies that

x1
A = −

ZA

1− ρ
+

√

Z2
A

(1− ρ)2
+ 1− x0

T

2
+ x2

T . (30)

Similarly, Proposition 2 requires that x0
T ≤ x0

A, so that x0
A is given by the first-order

condition based on the second case of (29):

−(1− x0
A)(c

d
A + c

p
A) + (1− ρ)D

1

2
(1− x0

A)
2 = 0,

which implies that

x0
A = 1−

2ZA

1− ρ
. (31)

However, this interior solution is not an element of the relevant domain (x0
T , 1]:

x0
T =

1

1− ρ
+ x1

A − xT = 1−
2ZA

1− ρ
+

ρ+ ZA

1− ρ
− xT +

√

Z2
A

(1− ρ)2
+ 1− x0

T

2
+ x2

T

> 1−
2ZA

1− ρ
+

ZA

1− ρ
− xT +

√

Z2
A

(1− ρ)2
+ x2

T

> 1−
2ZA

1− ρ
= x0

A.

Hence, for all xA > x0
T , Π

0
A(xA) < Π0

A(x
0
T ). As Π0

A(x
0
T ) < Π0

A(xT ), it follows that the

plaintiff’s optimal choice after lT = 0 is some x0
A ≤ xT , a contradiction to case (iii) of

Proposition 2.

Consider therefore an equilibrium characterized by cases (i) or (ii) of Proposition 2.

Define λr := Prob(x ∈ M ∧ lT = r) =
∫

M
yr(x)dx. As [0,max{x0

A, x
1
A}] ⊆ M , we can

rewrite the plaintiff’s posttrial objective function (8) as

Πr
A(xA) =

∫ xA

0

(zr(x)D − c
p
A)

yr(x)

λr

dx+ (zr(xA)D + cdA)

(

1−

∫ xA

0

yr(x)

λr

dx

)

.

Taking the partial derivative w.r.t. xA yields the first-order conditions

−x1
A(c

d
A + c

p
A) +

1

2
(1− ρ)D(2λ1 − x1

A

2
) = 0

−(1− x0
A)(c

d
A + c

p
A) +

1

2
(1− ρ)D

(

(1− x0
A)

2 − (1− 2λ0)
)

= 0,
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which imply

x1
A = −

ZA

1− ρ
+

√

Z2
A

(1− ρ)2
+ 2λ1 (32)

x0
A = max

{

1−
ZA

1− ρ
−

√

Z2
A

(1− ρ)2
+ (1− 2λ0), 0

}

, (33)

Let us compare x1
A and x0

A. Note first that x1
A > 0. Hence, if x0

A = 0, then x0
A < x1

A.

If x0
A > 0, then

x1
A − x0

A =

√

Z2
A

(1− ρ)2
+ 2λ1 +

√

Z2
A

(1− ρ)2
+ (1− 2λ0)− 1

=

√

Z2
A

(1− ρ)2
+ 2

∫

M

xdx+

√

Z2
A

(1− ρ)2
+ 1− 2

∫

M

(1− x)dx− 1.

The integrand in the first square root is smaller than that in the second one if and

only if x < 1
2
. Hence, the above expression is minimized by M =

[

0, 1
2

]

, in which case

2
∫

M
xdx = 1− 2

∫

M
(1− x)dx = 1

4
, which implies that x1

A − x0
A ≥ 2

√

Z2
A

(1−ρ)2
+ 1

4
− 1 > 0.

However, this is a contradiction to case (ii) of Proposition 2, which proves that equilibrium

in this example must be characterized by case (i) of that Proposition.

Now that it is known that equilibrium is characterized by case (i) of Proposition 2,

we can use M = [0, xT ] to substitute for 2λ1 = x2
T and 2λ0 = 1 − (1 − xT )

2 in (32) and

(33) and thereby obtain (24) and (25). �

B Proof of Proposition 6

(26) and (27) are obtained by using (24) and (25) to substitute for x0
A, x

1
A,

dx0
A

dxT
and

dx0
A

dxT

in (22): If x0
A > 0, the expression in curly brackets in (22) becomes

ρ+ (1− ρ)(x1
A − x0

A) + (1− ρ)





x2
T

√

Z2
A

(1−ρ)2
+ x2

T

+
(1− xT )

2

√

Z2
A

(1−ρ)2
+ (1− xT )2





= ρ+ (1− ρ)



−1 +

Z2
A

(1−ρ)2
+ 2x2

T
√

Z2
A

(1−ρ)2
+ x2

T

+

Z2
A

(1−ρ)2
+ 2(1− xT )

2

√

Z2
A

(1−ρ)2
+ (1− xT )2





which is equal to the expression in curly brackets in (26). Note furthermore from (25)

that x0
A > 0 if and only if (1− xT )

2 < 1− 2ZA

1−ρ
.
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If (1− xT )
2 ≥ 1− 2ZA

1−ρ
, then x0

A ≡ 0 and, therefore,
dx0

A

dxT
= 0. Hence, the expression in

curly brackets in (22) becomes

ρ+ (1− ρ)x1
A + (1− ρ)

x2
T

√

Z2
A

(1−ρ)2
+ x2

T

= ρ+ (1− ρ)



−
ZA

1− ρ
+

Z2
A

(1−ρ)2
+ 2x2

T
√

Z2
A

(1−ρ)2
+ x2

T





which is equal to the expression in curly brackets in (27).

It remains to show that the optimum indeed satisfies the first-order condition. Note

first that the conditions listed in the first paragraph of Proposition 5 are satisfied: As

shown in Lemma 6, equilibrium is governed by case (i) of Proposition 2. Furthermore,

y(x)f(x) = x exhibits an increasing hazard rate and both zr(·) are differentiable and

weakly concave on (0, 1). According to the proof of Proposition 5, under these assump-

tions the equilibrium pretrial choice x∗
T satisfies the first-order condition (26) or (27) if

and only if the first derivative of the objective function at xT = 0 is positive.

To check whether this is the case, note that 1 > 1−2ZA

1−ρ
, which implies that limxT↘0

dx0
A

dxT
=

0, so that the first derivative of the plaintiff’s objective function for xT sufficiently close

to zero is

Π′
T (xT ) =







ρ+ (1− ρ)



−
ZA

1− ρ
+

√

√

√

√4x2
T +

Z4
A

(1−ρ)4

Z2
A

(1−ρ)2
+x2

T











(1− xT )D − (cpT + cdT ).

Hence, limxT↘0Π
′
T (0) = ρD − (cpT + cdT ), which is positive if and only the condition in

the proposition holds. �

C Proof of Proposition 7

Proposition 6 implies that, under the conditions of this proposition, x∗
T satisfies (26)

in any perfect Bayesian equilibrium. There may be multiple local maxima which satisfy

(26), but as the objective function is continuous and differentiable in the set of parameters

given by the conditions of this proposition, it is always possible to find equilibria that

are continuous in a given, sufficiently small interval of the parameter space. Hence, it

is always possible to find an equilibrium such that the comparative statics derived in

this proposition hold. Let us therefore restrict to the impact of marginal changes in

parameters on continuous changes in the solution to the first-order condition (26).

If cdT + c
p
T increases, then the right-hand side of (26) increases. As the second-order

condition for an interior maximum is satisfied by assumption, the equilibrium x∗
T will fall

as a result.
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Again due to the second-order condition, the sign of the effect of an increase in cdA+c
p
A

on x∗
T is equal to the sign of the partial derivative of the left-hand side of (26) w.r.t. ZA,

which in turn is equal to the sign of the partial derivative of any function h(x) = x2

x+A

with A > 0. As h′(x) = x(x+2A)
(x+A)2

> 0, we can conclude that x∗
T is increasing in cdA+ c

p
A. �
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