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Abstract

Zipf’s law is one of the best-known empirical regularities in urban eco-
nomics. There is extensive research on the subject, where each city is treated
symmetrically in terms of the cost of transactions with other cities. Recent devel-
opments in network theory facilitate the examination of an asymmetric transport
network. In a scale-free network, the chance of observing extremes in network
connections becomes higher than the Gaussian distribution predicts and there-
fore it explains the emergence of large clusters. The city-size distribution shares
the same pattern. This paper decodes how accessibility of a city to other cities
on the transportation network can boost its local economy and explains the city-
size distribution as a result of its underlying transportation network structure.

Keywords: Zipf’s law, city-size distribution, scale-free network
JEL classification: R12, R40

1 Introduction

Cities develop in relation to other cities rather than in a vacuum. What we consume
in a city differs from what we produce in a city. The gap between the range and
scale of production and consumption at city level is bridged by the transportation
network, over which cities trade their products with others. The transportation net-
work, in turn, does not coordinate cities uniformly. Some cities have only limited
connections while others receive many links from cities across the country, both
large and small, near and far away. The fate of city’s economy, and by extension
its population size, is more or less conditioned by how it is positioned (inadver-
tently or otherwise) in the overall interurban network of cities and how accessible
it is from others. We will show that the city-size distribution is the result of a par-
ticular class of network that our economy installs on itself for interurban trading
purposes, namely, a scale-free network.

The way we treat the transportation network has been rather naïve and simplis-
tic. Most existing models of city-size distribution implicitly or explicitly assume a
completely isolated graph (Figure 1(a)) or complete graph (Figure 2(a)). Each
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(a) The United States according to completely isolated graph
with the 50 largest cities.
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(b) Completely isolated graph with 50
nodes.

Figure 1. Completely isolated graph
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(a) The United States according to complete graph with the
50 largest cities.
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(b) Complete graph with 50 nodes.

Figure 2. Complete graph

node represents a city and a link represents a route available for shipment. The
number inside a node counts its degree, i.e., the number of edges or routes each
node has. Commodities cannot be shipped at all on a completely isolated graph,
but they can be shipped anywhere in a single step from any city on a complete
graph. Either way, the resulting equilibrium will be an even split of population
among the cities, which does not match the actual city-size distribution. To explain
the city-size distribution, we have sought a source of variation other than what
the nexus of interurban relationships has to offer. Some use a completely isolated
graph (e.g., Eeckhout [Eec04]). Others such as Duranton [Dur06], Rossi-Hansburg
and Wright [RHW07] or the New Economic Geography [FKV99] engage a complete
graph as the transport structure, when in fact, transaction and/or communication
between hub cities is much easier than between cities on peripheries. Behrens et
al [BMMS13] introduce a more lifelike representation of transportation cost in that
the delivered price depends on a particular city pair. The price differential reflects
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monopolistic pricing rather than the underlying transportation network structure,
which is still an (ex-ante) complete graph. The literature usually introduces a
tiebreaker in the form of externalities, random growth, economies of scale or scope
to replicate the actual city-size distribution.

In practice, transportation cost differs greatly depending on where you are and
where you are headed. We will drop the assumption that our economy operates
on a complete or completely isolated graph and see how much explanatory power
network structure exerts as the engine of local economies of various sizes.

The transaction pattern between any two cities affects both the way cities are
populated and the overall city-size distribution. Cities are tied together in various
ways both topologically and economically. Some cities function as an intersection
of major transportation routes and they trade and process commodities frequently
in large volume. Others are less active in the interurban exchange of commodities.
Differences among cities in terms of exchange patterns reverberate in the city-size
distribution. Cities heavily interrelated to many others are likely to grow due to
increased economic activities, whereas cities with sparse connections to a limited
number of cities are liable to remain small in size. Those small cities, however, will
not be completely wiped off the map.

1.1 Cities on a Network

Intercity exchange patterns like Figures 1(a) and 2(a) are best described by a net-
work with cities as a set of vertices and traffic by edges as in Figures 1(b) and 2(b).
In this regard, network theory is indispensable when constructing a model of cities
in the nationwide economy.

The recent seminal work by Barabási and Albert [BA99] has revitalized network
theory. Classical network theory pioneered by Erdős and Rényi [ER59]’s model (ER
network) cannot explain the emergence of a cluster or hub in a network, which we
observe in most real social networks. In a classic random graph, each node is
linked with an equal probability to any other and lacks distinctiveness, for the
number of pre-existing links does not matter in forming a network. Barabási and
Albert (BA) add a dynamic feature and preferential attachment to the classical
random graph model so that the nodes are no longer ex-ante identical. Some
nodes gather lots of links while others are wired to just a few. The model has been
applied to many fields, including the emergence of web science, and has produced
an improved description of the organization and development of networks. Most
real-world networks have one thing in common: the resulting distributions of links
are scale-invariant, that is, the distributions have fat tails. We can find nodes with
an extremely large number of links rather easily with these networks compared to
a classical random graph.

The city-size distribution shares the same pattern of scale invariance: the dis-
tribution of the 100 largest cities follows the same distribution as the one for the
1000 largest cities and so on, a property known as a power law, and in particular,
Zipf’s law in the city-size literature. We expect that the degree of a city is posi-
tively related to its population. And for that reason, we imagine that our economy
is based on a BA network rather than an ER network. This turns out to be correct,
but selection of the appropriate network structure depends on exactly how node
degree is related to city size. We will decode their relationship in Section 3.8.

The urban economic application of network theory is in its very early stage
of development and there is much room for advancement. Interaction between
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individual cities has not caught much attention so far. Our goal in this paper is to
bring to the fore the interaction between transportation network structure and the
city-size distribution. With this goal in mind we introduce (asymptotic) techniques
from network theory and merge them with a tractable economic model in a new
way. We do not intend this work to be the last word on this topic, but merely a
suggestion of a first step into a bigger research program.

1.2 Some Transportation Networks Are Scale Free

Our economy operates on various modes of transportation and each mode comes
with distinct network structures. Take a highway and airline network for example.
Figures 3(a) and 4(a) are schematic representations of the Interstate System and
a typical airline route map for the 50 largest US cities. Apparently, a network
composed of the Interstates does not share its structure with that of airlines. The
Interstate will remain relatively intact when we take away New York, Houston
and Cleveland. On the other hand, it would prove devastating if we did the same
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to the airline network (cf. [BB03]). More broadly, there is not much variance in
the degree of nodes in the Interstate network, whereas the airline network has a
limited number of heavily wired cities. The BA network (Figure 4(b)) explains the
latter network better, as it follows a power law.

It should be noted, however, that what is geographically visible may not repre-
sent the real network that our economy relies on in effect. The Interstate network
exhibits an ER-type topology as in Figure 3. Nonetheless, the economy may oper-
ate a transportation network of a scale-free class on it. Shipment from Memphis
has to go through St. Louis even if its final destination is Chicago. In this case Mem-
phis is connected to Chicago in a single step rather than in two steps via St. Louis.
For a carrier making Chicago-bound shipment from Memphis, St. Louis (a seeming
layover node) is no different from the cornfield they pass through along the way
(just a part of the edge), in that neither one of them add anything to the shipment.
An economically relevant network is buried beneath the easily noticeable surface
network and we do not want to confuse one with the other.

It is very important to note here a difference between the literature on dynamic
social network formation and transportation networks. In the standard economics
literature on social networks, for example Mele [Mel11] or Christakis et al [CFIK10],
it is the individual agents, represented by nodes, who make decisions about form-
ing links among themselves. In contrast, the nodes of a transport network are
cities. Typically, it is not the cities or their agents who make decisions about form-
ing links. Rather, it is another agent who controls an entire networks, for example
the federal government in the case of highways or airlines in the case of an airline
system.

1.3 The City-Size Distribution Is Scale Free Too

The city-size distribution has a distinct feature. Figure 5 plots the frequency of
the city-size distribution from US Census 2000. It is only when we take the log
of population (Figure 5(b)) that the distribution exhibits resemblance to a familiar
Gaussian distribution. Black and Henderson [BH03] and Soo [Soo05] explain how
widespread scale-free distributions are in urban economics1. Under the scale-free
distribution, the arithmetic mean (Hillsboro, TX in Figure 5) becomes less interpre-
tive and the geometric mean (Sutton, NE) takes over the role of the average in the
conventional sense.

The fat-tailed distribution also makes its appearance on a map. Figure 6 illus-
trates the population density of each metropolitan and micropolitan statistical area
(MSA and µSA, collectively referred to as Core Based Statistical Area, CBSA) in the
United States in 2000. Most of the cities have a low density and are painted in blue;
there are only few cities that are green and only two cities are colored in red. If the
city-size distribution followed a Gaussian distribution or Poisson distribution with
a large mean2, most of the cities should be green and only a few should be in blue
or red. Just as for the airline network in Figure 4(a), if we take away the ten largest
US cities, we will leave more than a quarter of urban population unaccounted for.

1 Scale-free distributions are commonplace in the socioeconomic realm. It seems that something of
an additive nature presides over natural phenomena, leading to a Gaussian distribution, and something
of multiplicative nature (cf. [LSA01]) is at work among socioeconomic phenomena, leading to a scale-free
domain. We study the latter.

2As in the degree distribution of an ER network.
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Figure 5. Frequency plot of the city-size distribution. Dots are size proportionate. See Table 1
for explanation of the cities selected in the figure. Data source: US Census 2000.

Our main findings are as follows. City sizes are positively related to their
degree. A city with a high degree has good accessibility to other cities. Reduced
transportation cost makes the city’s product inexpensive and stimulates a large
demand. As a consequence, the city creates large-scale employment. However, a
marginal increase in degree contributes less to the city size as the degree increases.
If a city is well-connected, then adding a new link to the city will not increase
accessibility much because the city is already readily accessible from other cities
through the existing grid.

We test implications of our model with Belgian and US data. The BA network
leads to a result comparable to existing models, whereas the ER network fails to
replicate the empirical city-size distribution. This confirms that the BA transport
network is more consistent with reality.

The rest of the paper is organized as follows. In Section 2, we will go over the
two types of network structures mentioned above as a preamble to the next section,
where we introduce and develop a model of spatial equilibrium with a transporta-
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Figure 6. Population density by CBSA (persons/km2). Data source: Census 2000.

tion network woven into it. Particularly, in Section 3.8, we will connect the network
structure to the city-size distribution. In Section 4, we verify the prediction of our
model with data before we draw conclusions from our project in Section 5.

2 Preliminaries

We will briefly review how ER and BA networks are built and examine the qual-
itative differences in terms of their degree distributions before we apply them to
transportation networks.

2.1 ER Networks

The ER network is the simplest random graph of all. A pair of nodes are connected
with a fixed connection probability. A completely isolated graph illustrated in
Figure 1 and complete graph illustrated in Figure 2 are the special cases of the ER
network where connection probability is zero and one, respectively.

The degree distribution of an ER network follows a Poisson distribution. The
important feature is that the degree distribution is concentrated around its arith-
metic mean3 and we rarely observe a city with an exceedingly large degree. All
pairs of nodes share the same ex-ante connection probability, which leads to a small
variance, and the network is egalitarian in that sense.

2.2 BA Networks

The degree distribution of most real network structures does not follow a Poisson
distribution. Rather, it follows a power law. This class of networks is called scale
free. There are a number of proposed generative models that lead to power-law
degree distributions (see Section VII of Albert and Barabási [AB02] for a review).
To get a sense of how power-law type behavior emerges, consider the BA model

3Recall that arithmetic mean does not mean much for scale-free distributions like the city-size distribu-
tion or a BA degree distribution.

7



A Scale-Free Transportation Network Explains the City-Size Distribution

[BA99] for example. Two major characteristics of BA model are growth and prefer-
ential attachment. The model sets off with a complete graph of a fixed number of
nodes as a starting grid. New nodes with edges will be added sequentially to the
existing network (growth).

As we can see from this mechanism, in general, older nodes are likely to gain
an excessively large number of edges. The rich get richer because they are already
rich (known as the Matthew effect). The rest of the nodes are merely mediocre
in terms of degree. They are poor because they are already poor. This type of
variance in degree hardly arises with an ER network. That is, New York City will
not happen if the links are formed uniformly at random. Compare BA network
Figure 4(b) to ER network Figure 3(b). BA network is not egalitarian, as connection
probability depends on the number of acquired edges, which is path dependent.
We shall also emmploy the network structure of Jackson and Rogers [JR07] that
contains both the ER and BA types of networks as special cases. Details shall be
provided in Section 3.8.

3 Model

We propose a model where the trading costs of commodities among cities are
explicitly specified. The city-size distribution is derived as a result of gains from
trade and the underlying transport network configuration.

3.1 Location-Specific Commodities

There are J cities in the economy, with index j. A city is defined as a geographic
entity within which it produces the same commodity and from within which the
geodesic paths (the shortest path on the network) to any other city in the country
have the same length. If Adam and Beth both live in St. Louis, then they have the
same shipping cost schedule to everywhere in the nation. We know they are in
different cities if Adam pays a 10% shipping charge to San Francisco and a 5%
charge to Minneapolis, whereas Beth pays a 10% charge to San Francisco but an
8% charge to Minneapolis. The endogenous population of city j is given by s j and
in total, there are

J
∑

j=1

s j = S (1)

households in the economy. Each household supplies a unit of labor inelastically.
City j produces consumption commodity c j in a competitive environment. We
assume that technology exhibits constant returns to scale and that one unit of
labor produces one unit of commodity. In what follows a superscript denotes a
city of production or origin, whereas a subscript denotes a city of consumption or
destination.

The delivered price of commodity j in city i is denoted by p
j

i
. The value of

marginal product p
j

j
· 1 coincides with the local wage w j in equilibrium:4

p
j

j
= w j (2)

4Note that p
j

j
denotes the mill price.
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Consumer preferences are represented by a Cobb-Douglas utility function of

the form u(ci) =
1

J

∑J

j=1
log(c

j

i
). The set of consumption bundles is constrained by

the budget wi ≥
∑J

j=1
p

j

i
c

j

i
.

3.2 Network Infrastructure and Delivered Price

The economy has a network infrastructure Γ = (V, E), where V = {1, · · · , J} denotes
the set of vertices representing each city and E denotes a set of edges. For example
a completely isolated graph in Figure 1 is given by Γ = ({1, · · · , 50},;) and a com-
plete graph in Figure 2 by Γ = ({1, · · · , 50}, {{i, j} : 1≤ i < j ≤ 50}). All the traffic
flow will follow Γ . We assume that the network is unipartite (i.e., there is a path
between any pair of nodes) to avoid multiple equilibria. Whereas consumers in
city j can consume any commodity in the economy, they have to incur an extra
iceberg transport cost to consume commodities brought in from other cities. Trans-
portation cost piles up as a commodity travels from city to city along the path. To
describe the exact transport cost structure, we define a metric l i

j
: V × V → R

+
to

measure a geodesic length between node i and j given Γ . The delivered price of
commodity j shipped to city i is given by

p
j

i
= τl

j

i p
j

j
, (3)

where τ(≥ 1) marks the iceberg transportation parameter. We use the iceberg
transport technology, standard in urban economics, for tractability reasons.5 If
you dispatch τ units of commodity to your neighboring city, one unit of it will be
delivered and the rest melts en route. The delivered price snowballs as the package

travels from one city to another and the initial mill price is inflated by τ
l i
j by the

time the package reaches its final destination l i
j

steps over. We assume that all
the links share the same value of τ. The large fraction of transportation cost is a
location-invariant fixed cost. Having τ dependent on each link will not add much
to our analysis but will make our equilibrium analytically insolvable.

3.3 Equilibrium

Simple calculations yield the Marshallian demand for commodity c
j

i
:

φ
j

i
(p1

i
, · · · , pJ

i
, wi) = wi(τl

j

i p
j

j
)−1J−1.

The aggregate demand for commodity j is the sum of demand from all the cities in

the country: C j(p, w) ≔
∑

i∈V siφ
j

i
(·).6 Recalling that each household supplies one

unit of labor inelastically and one unit of labor produces one unit of output, the
commodity market j clears when

s j = C j(p, w) =
�

p
j

j

�−1

J−1
∑

i∈V

si w
i (4)

5For detailed discussion, see McCann [McC05].
6 This expression may seem incredulous at first, for it does not include τ. A large τ discourages

demand but it also means that firms have to ship more commodities. A large portion of shipment will
melt on its way. They cancel each other in equilibrium. This propitious cancellation may not occur with
other preference specifications.
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The indirect utility function is given by

v(p1
i
, · · · , pJ

i
, wi) = 1

J

∑J

j=1
logφ

j

i
(·)

= log wi − log J − 1

J

∑

j∈V log p
j

j
− ai logτ,

where

ai ≔
1

J

J
∑

j=1

l
j

i
= 〈li〉 (5)

is a remoteness parameter, or an average geodesic length from city i, where li : j 7→

l
j

i
. In what follows 〈x〉 denotes the average value of x . The parameter measures

how hard it is to reach city j from other cities in the economy. The higher the value
is, the more remote the city is because we have to go through many links to get
there. We will explore the role of accessibility later.

Free mobility of consumers implies

v(p1
i
, · · · , pJ

i
, wi) = v(p1

j
, · · · , pJ

j
, w j) (6)

for all i, j ∈ V in equilibrium.
The equilibrium (s1, · · · , sJ ; p1

1
, · · · , pJ

J
; w1, · · · , wJ ) satisfies (1), (2), (4) and (6).

Utility equalization (6) leads to

log pi
i
− log p

j

j
= (ai − a j) logτ. (7)

Equation (7), together with (4), implies s j = τ
ai−a j si . With the population condition

(1), we obtain the city-size distribution

si =
S

τai

∑

j∈V τ
−a j

. (8)

3.4 How Does a Network Break Symmetry?
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Figure 7.

An obvious implication of (8) is that
cities with better accessibility have
larger equilibrium population. Natu-
rally, we are tempted to conclude that
the entire population will collapse into
the city with the best accessibility and
the rest of the cities will be completely
vacated. As it turns out, this is not the
case. The city-size distribution will not
become degenerate. Let us break down
(8) both mathematically and economi-
cally to see why.

First, let us recast the relationship
(8) to explore how accessibility trans-
lates to the population of a city. We
can rewrite (8) as s(ai) = 〈s〉τ

−ai/〈τ−a〉,
where 〈s〉 ≔ S/J is a base city size and 〈τ−a〉 ≔

∑

j τ
−a j/J gives the average of

τ−a j . The city size spreads around the canonical size 〈s〉. A better accessibility (i.e.,
small remoteness value ai) contributes to the city by augmenting the baseline size
〈s〉 by a factor of τ−ai/〈τ−a〉. The multiplier is large when τ−ai is greater than the
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national average 〈τ−a〉 and vice versa. Furthermore, the multiplier grows more than
proportionally as the city’s accessibility improves as can be seen in Figure 7. The
multiplier τ−ai is monotone decreasing and convex in ai . Does this mean New
York City sweeps away all the population off the rest of the cities? — Not really.
And it calls for an economic exposition of (8) to see why.

Although restricted accessibility of a city raises its delivered prices, demand for
its produced commodity does not cease to exist. Eliminating a commodity from
the basket will punish consumers a lot. They appreciate variety and missing a
single variety will push the utility level down to negative infinity. Workers in a
poorly connected city will have to pay a high price for imported commodities due
to a poor network infrastructure, but they are compensated with a high nominal
wage, as indicated by the wage (2) and utility equalization (7). These two equations
imply that the mill price (and ultimately, the nominal wage) is positively related to
the average geodesic length 〈li〉 from city i in equilibrium, i.e., a sparsely connected
city has a high mill price. The prices adjust to make it worth living in small cities
in equilibrium. The scale of local production is small, but each commodity is sold
high to make up for an increased cost of living due to remoteness and the resulting
costly transport.

Variance in city sizes is solely due to the structure of the network. The above-
mentioned trade-off entails two counteracting forces. The agglomerative force is
heterogenous accessibility, which tends to spread out the city-size distribution. The
dispersion force is preference for variety, which tends to push the distribution back
to a collection of equal-sized cities.

There are alternative ways to derive city size with a tractable economic model,
particularly for the dispersion force. In this model, location-specific commodity
production drives dispersion, as a bundle of all goods is desired by consumers. An
alternative model would use another natural dispersive force, say housing or land
markets. If we had just a few produced commodities (say one for illustration), then
Starrett’s Spatial Impossibility Theorem (Fujita and Thisse [FT02], Ch.2) applies,
and we would have an autarkic equilibrium where no commodity is transported.7

Yet another alternative is to introduce a congestion externality, but then the model
begins to look more complicated and, at the same time, arbitrary.

Obviously, this trade-off disappears and there will be no variance in city sizes if
the agglomerative force is removed. This can happen when shipment becomes cost-
less (to be discussed in Proposition 3.1) or network structure becomes redundant,
that is, if it turns into a complete graph. Although we introduced a location-specific
technology, commodities are symmetric. Technology is linear everywhere. Con-
sumer preferences are identical and they put the same weight on each commodity.
If we take the network structure out of the equation, the resulting equilibrium is
such that all the cities share the same size 〈s〉 and every household consumes an
equal portion of all the commodities available.

3.5 Transportation Cost Skews the City-Size Distribution

Along with remoteness ai , transportation cost τ plays a leading role in the determi-
nation of the city-size distribution. Depending on its magnitude, τ can nullify or
amplify the influence of a network structure over the economy. Figure 7 compares

7Starrett’s Theorem makes no assumption about the transport network or transport cost.
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the relationship between accessibility and the city-size distribution under different
transportation costs.

In the extreme situation where shipment is free (τ= 1), all the cities will be of an
equal size regardless of the network structure. The city size s(ai) becomes constant
against ai (see the blue line in Figure 7). The network becomes a complete graph in
effect, because the delivered price will be the same no matter how long the geodesic
length is. For τ > 1, city size (8) becomes a strictly convex function of remoteness.
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Figure 8. D(τ)measures the convexity of s(ai).
The midpoint (aH+aL)/2 is given by aM above.

The transportation network Γ starts
to sink in as τ grows. A large τ im-
plies that the geodesic length exerts a
more dominant influence on the size of
a city. With a small value of τ, a city
with good accessibility does not distin-
guish itself well from other cities be-
cause the effect of path length is lim-
ited due to low transportation cost. On
the other hand, if shipping is costly,
a city with a good accessibility bene-
fits from a low ai value because high
transportation cost amplifies the effect
of accessibility. In other words, a high
transportation cost reveals the network
structure and projects the network Γ
onto the city-size distribution in a more pronounced, clear-cut manner than with a
low transportation cost. As a result, holding the remoteness distribution constant,
large τ skews the city-size distribution and makes the emergence of disproportion-
ately large hubs more likely. To measure how the cost of transportation τ bends
the city-size distribution, consider a measure

D(τ) =
s(aH) + s(aL)

2
− s

� aH + aL

2

�

,

where aH and aL are the highest and lowest remoteness of a given network. The
first term is the average of the smallest and the largest city whereas the second term
is the city size of average remoteness. For a given distribution of remoteness ai ,
D(τ)measures the convexity of s(ai), which gauges how spread out the distribution
of city size s(ai) is for each τ. See Figure 8. When τ= 1, s(·) lays flat and D(τ) = 0.
As τ grows, s(·) bends more and D(τ) grows accordingly as can be seen in Figure 7.

We confirm the observation above as follows:

Proposition 3.1 Transportation Cost Skews the City-Size Distribution

Suppose that the economy has a unipartite network Γ . The city-size distribution si is a
convex function of remoteness ai for τ≥ 1. Moreover, the degree of convexity measured by
the size difference D(τ) between the city of average size and the city of average remoteness
increases with τ.

Proof. See Appendix A.1. �
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3.6 Geodesic-Length Distribution

The city-size distribution (8) depends on the distribution of remoteness (5), which,
in turn, rests on the distribution of geodesic length. While most of the research
on network topology is focused on mean intervertex distance ([NSW01], [FFH04],
[ZLG+09]), what we need here is the geodesic length between individual nodes.
Mean intervertex distance comes in handy when we gauge how efficient a network
is, but we are not here to see if the transportation network that our economy relies
on is optimally configured (that would be another paper). We would like to derive
the city-size distribution, not the average size of cities or the remoteness thereof.

There is not much research that looks into the geodesic length between each
pair of nodes. At the time of writing, the analytical form of geodesic length
between individual nodes is yet to be discovered8. There is an attempt to track
down the geodesic length by guessing the analytical form from sequentially gen-
erated, fractal-like networks reverse-engineered from a Pareto degree distribution
([DMO06]), which we cannot use because our distribution (14) is not a Pareto dis-
tribution.

Hołyst et al [HSF+05] take a different approach to derive an intuitive solution
for a wide range of network types. They measure the expected geodesic length
between any pair of nodes i and j as follows:

l i
j
= A− B log(kik j), (9)

where A≔ 1+ log(J〈k〉)/ logκ and B≔ (logκ)−1. The number ki denotes the degree
of node i. Rearrange the nodes so that we have a tree with node i as its root. The
average number of children is called an average branching factor and denoted by
κ. For more details see Appendix A.2.

Although [HSF+05] does not provide a formal proof of (9), but rather is based
on a heuristic, it appears to be the best we can do given the current state of net-
work theory. Zhang et al [ZLG+09] provide an analytical background for the mean
intervertex distance for a special case. We hope that its extension to individual
distances will become available in the near future.

Meanwhile, (9) proves to be quite useful in translating a network structure into
economic context without loss of generality. A path length is a global property
whereas a degree is a local property. We cannot compute the individual geodesic
path unless we compare all the possible pathes between a city pair of interest and
pick the shortest one, which calls for a systemic search all across the board. The
geodesic path thus obtained is too specific to the particular network in question
and does not have wide implications beyond the specific network itself. Degree is
much easier to compute because we do not have to launch a nationwide search for
it, and the degree distribution is readily available for a wide range of networks.
Equation (9) succinctly writes a global property (a path length) in terms of the
analytically manageable local property (a degree). It implies that the path length
will be short if your city and/or your destination city have many edges to choose
from to begin with and/or to end with. This abundance in selection should save
you from being thrown to circuitous paths, and vice versa when your degree is
small. Absent this conversion of the global property into the local property, we
would not be able to describe a general relationship between degree and city size,

8 The one for the average intervertex separation has already been brought out into the open. Cf. [NW99],
[NMW00], [ZLG+09].
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when in fact, there is an obvious symbiotic interaction between them waiting to be
investigated.

3.7 City-Size Distribution

From (9), remoteness (5) is written as

ai(= 〈li〉) = A− B log ki − B〈log k〉. (10)

We observe that accessibility improves as a city acquires more edges, but only on
the logarithmic order. Taking the log of (8), we have

log si = log S − (A− B log ki − B〈log k〉) logτ− log

�

∑

j

τ−a j

�

.

The last term is approximated by log J − 〈a〉 logτ9 so that

log si = log〈s〉+ B logτ (log ki − 〈log k〉) . (11)

A couple of observations are in order. The equation above answers two ques-
tions concerning the relationship between a network structure and a system of
cities. The first one is "Does construction of an edge boost the local economy?" The
answer is "Apparently." The second, and more interesting question is "How so?"
The answer is twofold.

In terms of a linear scale, (11) can be rewritten as si = 〈s〉
�

ki

γ

�B logτ

, where γ ≔
∏J

i=1
k

1/J

i
is the geometric mean of the degree. It indicates that city size is anchored

around the base city size 〈s〉 multiplied by the deviation (ki/γ)
B logτ. If a city has a

large degree, then its size becomes larger than the standard city size by a factor of
(ki/γ)

B logτ and vice versa for a city with a small degree. The city size coincides with
the cornerstone size of 〈s〉 exactly when its degree matches the national (geometric)
average.10 The deviation is amplified as shipment becomes costly, which, in turn,
confirms our observation made in Proposition 3.1.

We also note that adding an edge to a city increases its size, but the change
in size is inversely proportional to the current degree provided B logτ < 1. If
city i is highly wired already, then the introduction of a new edge to city j does
not add much to city i. The geodesic length to city j is already short before the
establishment of the new edge. You can go to many cities in a single step and city
j is likely to be linked to at least one of those many neighboring cities already,
making the geodesic length to city j just two. The added edge will only reduce
the geodesic length by one. On the other hand, if the current degree of city i

9 Let *a≔ (a1, a2, · · · , aJ ) and 〈*a〉≔ (〈a〉, 〈a〉, · · · , 〈a〉). The Taylor series expansion about *a = 〈*a〉 tends to

log
�

∑

j τ
−a j
�

= log
�

∑

j τ
−〈a〉
�

+ (*a− 〈*a〉) · D log
�

∑

j τ
−a j
�

�

�

�*
a=〈*a〉

+O [(*a− 〈*a〉) · (*a− 〈*a〉)]

→ log J − 〈a〉 logτ,

by the law of large numbers.
10 This examination begs one question: If my city has the average number of edges, is my city larger

or smaller than the national average in size? The answer is "larger". Since transportation cost and the

branching factor are both greater than one,
logτ
logκ is positive. Plus, the geometrical mean is smaller than the

arithmetic mean. To score a national average 〈s〉 you only need γ edges. It should be noted, however, that
in a scale-free world, arithmetic mean does not carry much information. The lognormal is the new normal
(or any heavy-tailed distribution is for that matter) and the geometric average is the new average in this
world as we saw in Figure 5(b).
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is low, then the link to city j will not only reduce the geodesic length to city j

greatly but also reduce the geodesic lengths to the cities in city j’s neighborhood.
Consequently, city i will see significant reduction in its average geodesic length.

Based on the degree-size relationship (11) the city-size distribution is given as
follows:

Proposition 3.2 City-Size Distribution

Suppose that the economy has a unipartite network Γ with the associated degree distribution
G(k). The city-size distribution of this economy follows the distribution function F(s),
defined by

F(s) = G(k(s)), (12)

where k(s)≔ γ(s/〈s〉)
logκ
logτ . Its probability density function (PDF) is

f (s) = k′(s)1[k(s)] =
logκ

logτ
k(s)s−1

1 [k(s)] , (13)

where 1(·) denotes the PDF of degree k.

Since the transport cost and average branching factor only come into the equa-

tion in the form of a quotient of their logarithmic values, logκ

logτ
, we will denote this by

δ for estimation purposes, in which case, (13) becomes f (s) = γδ〈s〉−δsδ−1
1 [k(s)].

As we have already seen a small δ stretches out the distribution and a large δ does
the opposite.

3.8 City-Size Distribution under Different Network Systems

Now that we have the city-size distribution based on the city’s degree, we can
make our predictions based on different transport network structures. There are
two network models of particular interest: ER and BA networks.
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Figure 9. Probability density function of de-
gree with k0 = 0 and m= 10.

Note that empirical determination
of the transport network relevant to
the formation of a system of cities is
a tough job. The task at hand is
to find a network that is consistent
with the real city-size distribution (and
we have already discarded complete
and completely isolated networks in
Section 3.4). The most consistent net-
work structure will give us a clue as to
the shape of a network that is germane
to the formation of cities.

Jackson and Rogers [JR07] con-
structed a degree distribution of a di-
rected11 dynamic network as follows:

G(k) = 1−

�

k0 + rm

k+ rm

�1+r

for k ≥ k0,

(14)

11Commodities can flow either way on an edge. We take an arrowhead on a directed edge just as
a decorative memorabilia indicating from which end the edge was constructed, but nothing more. We
represent degree distribution by an in-degree distribution. It is impossible to tell different networks apart
with an out-degree distribution due to the way a network is constructed in [JR07]. Any network comes
with a degenerate out-degree distribution.
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where k0 denotes an in-degree with which an entering node is endowed. This value
is shared across all the nodes. The ratio of the number of links formed by an ER-
like random connection and a BA-like network-based connection is given by r, and
m is the average out-degree of a node. Five PDF’s of (14) are depicted in Figure 9

as a visual cue. In the figure parameter r ranges from .01 (over 99% network-based
and less than 1% random links) to 100 (the other way around). A predominantly
random PDF (with large r) tapers off quickly whereas a mostly network-based
PDF (with small r) only gradually dissipates with degree. We expect that our
economy operates with a small r. In what follows we refer to in-degree as the
degree unless otherwise stated. BA network’s degree distribution is (14) with r = 0,
in which case, (14) turns into a Pareto distribution. ER network calls for r →∞, in
which case (14) is no longer well defined and the degree distribution turns into an
exponential distribution.12

What is left to do is write the mean branching factor κ in terms of other parame-
ters in (14) before we can fully identify the city-size distribution.13 The actual mean
branching factor cannot be computed until after the network is formed. Hołyst et
al [HSF+05] provide a good approximate to κ:

κ=

J
∑

k=1

k
k1(k)
∑J

x=1
x1(x)

− 1=

∑

k(2k− 1)G(k)
∑

x G(x)
− 1=

µ2
k
+σ2

k

µk

− 1, (15)

where µk and σ2
k

denote the mean and variance of k, respectively. For details, see
Appendix A.3.

While [JR07] is microfounded and sufficient to generate a fat-tailed degree dis-
tribution, it is not necessarily the only degree distribution which a BA network
gives rise to. There is a chance that our economy’s transportation network may
have come around from a different mechanism than [JR07]. In this regard we
experimented with other fat-tail distributions as a candidate degree distribution
along with (14). In particular, we tested lognormal and generalized extreme value
(GEV) distributions for use as a degree distribution. To our knowledge, these de-
gree distributions are not yet microfounded.

4 Empirical Implementation

Now that the model with an explicit transport system is at the ready, we will pitch
it against the actual city-size distributions to identify what class of network governs
the city-size distribution. By and large the results are in full support of our initial
inkling that a scale-free network explains the city-size distribution but ER or other
network structures commonly adopted do not.

All told, we have four sets of data on our plate: Belgium, Metropolitan Area
(MA), CBSA and Places.14 Descriptive statistics for each data set are in Table 1.
The Belgian data is included to see if our model’s predictive value is subject to

12 The original ER network [ER59] comes with a Poisson degree distribution rather than an exponential
degree distribution. The differences in the distribution arise from the way the network is constructed:
[JR07] is dynamic, whereas [ER59] is static.

13The branching factor is not a free parameter and it cannot be directly estimated from the data, because
the estimation algorithm will either explode or create indeterminacy. It is dependent on the shape of the
network, which, in turn, is characterized by the other parameters via (15).

14 The Belgian data is provided courtesy of Soo [Soo05] and the remainder are from US Census 2000.
For definitions of MA and CBSA, see http://www.census.gov/population/metro/about/ and for Places,
see http://www.census.gov/geo/reference/gtc/gtc_place.html. We thank Jan Eeckhout for sharing
his data used in [Eec04].
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Data Belgium MA CBSA Places

Data size J 69 276 922 25,358
Total urban population S 4,344,222 225,981,679 261,534,991 208,735,266
Population covered 42.38% 80.30% 92.93% 74.17%

Largest city Antwerp New York CMSA New York MSA New York city
Largest size 446,525 21,199,865 18,323,002 8,008,278

City near arithmetic mean Genk Oklahoma, OK MSA Green Bay, WI MSA Hillsboro city, TX
Arithmetic mean 62,960 818,774 283,661 8,232

Median city Beringen Anchorage, AK MSA Hinesville-Fort Stewart, GA MSA Harristown village, IL
Median size 39,261 259,600 71,800 1,338

Smallest city Arlon Enid, OK MSA Andrews, TX µSA New Amsterdam, IN
Smallest size 24,791 57,813 13,004 1

Standard deviation 61,240 1,968,621 974,190 68,390
Skewness 4.183 6.682 10.98 75.53

City near geometric mean Mouscron Huntsville, AL MSA Sunbury, PA µSA Sutton city, NE
Geometric mean 50,809 342,844 94,373 1,447

Mean of log(s) 10.84 12.75 11.46 7.278
Standard deviation of log(s) .5697 1.119 1.191 1.754
Skewness of log(s) 1.498 1.048 1.187 .2091

Table 1. Descriptive Statistics. The statistics above the line (shaded in blue) are related to a
linear scale and the below (shaded in green) are related to a log scale. Mean of log(s) is same
as the log of geometric mean.

both the area and population size of a country under study. (It was not.) MA and
CBSA are a popular choice in the literature. The smallest unit of measurement is a
county and they suffer from data truncation ([Eec04]). Places have the finest unit
of measurement and are free of truncation. We tested the following five distribu-
tions against them: ER/BA, BA, lognormal, GEV and the degenerate distribution.
The first two distributions are estimated in three ways: maximum spacing estima-
tion (MSE), minimum Kolomogorov-Smirnov estimation (minKS) and maximum
likelihood estimation (MLE), and the remainder in MSE.

In what follows a hat on parameter x indicates its estimate, x̂ .

4.1 Estimation Methods Employed

The first choice is to go for MLE, which does not work with (14). The likelihood
function is monotone increasing in k0. As a workaround to MLE, we calculated the
estimates by MSE. While its use is limited in the city-size literature so far especially
when compared to MLE, it is more robust and easier to handle than MLE. The
problem we have with MLE is exactly the one exemplified in Ranneby [Ran84] and
we used his solution. The MSE estimator maximizes the geometric mean of the
gap or step between two adjacent CDF’s

F(si;θ )− F(si−1;θ ),

where θ is a vector of parameters to be estimated and data sequence s is rearranged
in the ascending order s1 ≤ s2 ≤ · · · ≤ sJ .15 The idea here is to split the interval [0,1],

15 The first and last gap are defined by F(s1;θ )− F(−∞;θ ) and F(∞;θ )− F(sJ ;θ ) each.

17



A Scale-Free Transportation Network Explains the City-Size Distribution

the range of a CDF, in J steps in the way that none of the assigned F(si;θ ) will
create a disruptively large gap with its neighbors and the gaps should be evenly
spaced as much as possible on the logarithmic scale. Maximizing the arithmetic
mean does not work here because it will always be 1/J no matter what estimates
we toss in. This actually works as a ap on our geometric mean in turn, by Jensen’s
inequality. Thus, we can safely rule out the possibility that the maximand tends
to infinity, which is exactly the reason why we had to discard MLE. For more on
MSE, see Appendix A.4.

4.2 A Scale-Free Transportation Network Explains the City-Size Distri-
bution

Estimation with four different data sets unanimously chooses BA over ER as the
underlying transport network in our economy. We report our results in Table 2 and
Figures 10 to 13 along with other distributions.

ER/BA in the table corresponds to (14). We left the estimated distribution func-
tions for ER/BA in Figures 14 to 17. As low values of r̂ indicate, edges are formed
predominantly through networking rather than by random selection. We cross-
checked estimates with minKS and MLE16 and we obtained a similar result. To be
doubly sure of our findings, we ran estimation with r →∞. ER in Table 2 lists
the statistics with r →∞. The statistics of ER seem to be comparable with other
distributions except that the estimated transportation cost is unreasonably high.
A one-dollar pen will cost more than the US GDP five towns over on the purely
random network.17 Thus, we conclude that a scale-free transportation network
explains the city-size distribution but a scale-variant network does not.

Estimated δ̂ ranges from .9911 to 2.536.18 As we discussed in reference to (11)
we confirm that in most cases, the impact of adding an edge on city size wears off
as degree itself becomes saturated (it cannot exceed J − 1), or put differently, New
York has more edges, size for size, than any other cities as it takes more edges to
raise the city size as the city grows further.

We ran MSE with three other distributions representative of the existing city-
size models to compare with our model. Eeckhout [Eec04]’s model leads to a
lognormal distribution and Berliant and Watanabe [BW14] predict a GEV distri-
bution as the city-size distribution. A complete graph will result in a degenerate
probability distribution. The BA economy fits comfortably into the circle of ex-
isting testable models based on all the statistics we computed in Table 2 (usually
coming in second on all fronts except for Places).

In addition we put two other fat-tailed degree distributions to the test. The
results (the last two rows in Table 2) seem to indicate that the network formation
does not necessarily have to be of [JR07] type. Regardless of how it came about,
a network with a fat-tailed degree distribution results in the city-size distribution
that closely resembles the actual distribution.

16With k0 fixed at zero to prevent explosion. MSE and minKS point k̂0 towards zero.
17There is not enough variance in the ER degree distribution, certainly not power-law type behavior.

To generate the empirical city-size distribution, the ER economy has to amplify and capitalize on what
little variance its degree distribution has to offer (cf. Proposition 3.1). As a result τ has to be ludicrously
large to make things work. On the other hand, if the transportation infrastructure is in its early stage of
development without any hubs, then the country’s transportation cost will probably be higher than more
BA-like countries because Zipf’s law is a universally observed phenomenon. There is a trade-off between
τ and how close the transport network is to BA, provided that Zipf’s law holds at all times.

18The estimate tends to decrease as data size J increases.
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Data Distribution 〈logLH〉 KS 〈logstep〉 geo/arith |θ | BIC AIC r
Î È Î Î È È

Belgium Lognormal (Eeckhout) -11.69 .1986 -5.266 .005166/.01449 2 1621 1617

Belgium GEV (Berliant & Watanabe) -11.40 .1122 -4.981 .006870/.01449 5 1594 1583
Belgium Complete Graph (de facto) −∞ .6812 −∞ 0/.01449 1 ∞ ∞

Belgium ER/BA (Jackson & Rogers) -11.47 .1348 -5.072 .006268/.01449 5 1604 1593 .002745

Belgium ER (Jackson & Rogers) -11.49 .1766 -5.086 .006185/.01449 4 1603 1594 ∞

MA Lognormal (Eeckhout) -14.28 .1036 -6.232 .001996/.003623 2 7891 7884

MA GEV (Berliant & Watanabe) -14.13 .04334 -6.089 .002267/.003623 5 7828 7810
MA Complete Graph (de facto) −∞ .7935 −∞ 0/.003623 1 ∞ ∞

MA ER/BA (Jackson & Rogers) -14.17 .06102 -6.134 .002168/.003623 5 7852 7834 .001154
MA ER (Jackson & Rogers) -14.21 .1057 -6.173 .002084/.003623 4 7860 7851 ∞

CBSA Lognormal (Eeckhout) -13.05 .09402 -7.548 .0005270/.001085 2 2.407e+04 2.4063+04

CBSA GEV (Berliant & Watanabe) -12.91 .02606 -7.409 .0006056/.001085 5 2.384e+04 2.382e+04
CBSA Complete Graph (de facto) −∞ .8362 −∞ 0/.001085 1 ∞ ∞

CBSA ER/BA (Jackson & Rogers) -12.95 .05922 -7.449 .0005819/.001085 5 2.391e+04 2.389e+04 .0004526
CBSA ER (Jackson & Rogers) -13.29 .1762 -7.794 .0004121/.001085 4 2.454e+04 2.452e+04 ∞

Places Lognormal (Eeckhout) -9.258 .01895 -8.840 0/3.944e-05 2 4.696e+05 4.696e+05

Places GEV (Berliant & Watanabe) -9.254 .008847 -8.836 0/3.944e-05 5 4.694e+05 4.693e+05
Places Complete Graph (de facto) −∞ .8342 −∞ 0/3.944e-05 1 ∞ ∞
Places ER/BA (Jackson & Rogers) -9.268 .02198 -8.849 0/3.944e-05 5 4.701e+05 4.700e+05 .0003171
Places ER (Jackson & Rogers) -9.392 .1134 -8.974 0/3.944e-05 4 4.764e+05 4.763e+05 ∞

Places Lognormal as Degree Dist. -9.258 .01896 -8.840 0/3.944e-05 4 4.696e+05 4.696e+05
Places GEV as Degree Dist. -9.255 .01159 -8.836 0/3.944e-05 5 4.694e+05 4.694e+05

Table 2. Model Comparison

Row color corresponds to the line colors in Figures 10 to 13. Î denotes a statistic the higher
value of which indicates a better fit and È, the other way around. 〈logLH〉 denotes the average
of the log of likelihood values, KS denotes the Kolomogorov-Smirnov statistic, 〈logstep〉
measures the geometric mean of the step F(si ;θ )−F(si−1;θ ) in logarithms. Geo/arith measures
the ratio between geometric mean and arithmetic mean of the step. The closer the geometric
mean is to the arithmetic mean, the better the fit is. It is zero for Places due to multiple cities
having the same size. |θ | counts the number of parameters. BIC and AIC stand for Bayesian

and Akaike Information Criteria for detecting overfitting. Boldface with white foreground

marks the winner and boldface with black foreground denotes the runner-up among the
five distributions tested.

5 Conclusion and Extensions

We examined how the network of cities affects the city-size distribution. We built
a simple economic model with an explicit transport network. The bridge between
network structure and city size is represented in (11), where we learned that there
is a log-linear relationship between city size and city degree.

We put two commonly studied networks to the test. The classical ER random
graph is too egalitarian to generate gravitationally large cities like New York City.
The BA model explains the city-size distribution better than the ER model and
bears very close comparison with other proposed city-size models in existence.
The BA network has a scale-free degree distribution and the resulting city-size
distribution behaves similarly via (11). In fact, it is would be odd if the city-size
distribution was not scale free under a BA network. Large nodes with a high degree
like Chicago attract a large mass of people because A) goods produced in Chicago
are in high demand for its inexpensive delivered price owing to its high degree
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and B) goods available for consumption in Chicago are also inexpensive thanks
to its high degree. The exact opposite applies to small cities. But there are still
some people knowingly living in small cities because we cannot afford to wipe
them off the map due to preference for variety. This gives rise to a few cities of an
overwhelming size and a myriad of small cities. The actual city-size distributions
(we tried Belgium and the United States in particular) unanimously opt for a BA
network.

From this point on, it would be reasonable to combine GEV to determine firm
productivity as in [BW14] and BA for transportation network structure by way of
simulations, but we will not have an analytical solution due to the added complex-
ity.

We argued that network structures motivate the population to form a specific
distribution of city sizes. The structure of the network is pre-selected. Considering
the fact that it is easier to relocate people than to build transport infrastructure,
this is not an unreasonable assumption in the short run. New York City would
have been much smaller had it not been the entrepôt to Europe. However, the
degree-city relationship is not a one-way street. It may be the other way around:
the relocation of people forces the transportation network to follow a specific pat-
tern. It can also be the case that the network structure and its associated city-size
distribution are in fact a product of some common underlying causes. The United
States has seen a number of drastic changes in its network structure. Tracing the
historical co-development of the network structure with the city-size distribution
may reveal a clue to identifying the direction of causality. A problem with this
methodology is that transportation networks are not unique, in that there are gen-
erally multiple modes of transport and multiple companies providing services in
each mode.

For now, as a preview, consider a commodity transportation firm that is in-
stalling a transportation network that maximizes its profit by choosing r. It uses
the mechanism described by [JR07] to add links to its network, namely random
links and friends of friends, where r determines the relative proportions. As noted
in the introduction, the difference between social networks and transportation net-
works is who makes the decisions about links, the nodes themselves or the owner
of the network. If the revenues and cost of the network are additive across nodes,
then the profit from a network is additive across nodes, so there is no distinction
between maximizing the objective of a node and maximizing profit or utility of
the entire network. In other words, profit of the network owner corresponds to
efficiency of the network in [JR07]. Suppose that shipping industry is competitive
and the shipping firm’s indirect revenue function is additively separable across
nodes and convex in node degree, and also assume that its cost is additive across
nodes and proportional to node degree. Then we can follow the framework pro-
posed in section IV of [JR07], in particular Corollary 1, to find r that maximizes its
profit, independent of the city-size distribution. This allows us to take the network
development process as exogenous, and leading to the BA network r = 0.

We finish our discussion with one last remark. It has been suggested that other
networks be implemented in our framework, for example the optimal transport
network for a given population distribution (assuming a cost function). This would
require the geodesic length or degree distribution for the optimal network. We are
not aware of any results addressing this issue.
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(b) PP Plot

Figure 10. Model Comparison (Belgium)

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

N
ew

 Y
ork

S
t. Louis

T
ulsa, O

K

B
eaum

ont, T
X

H
untsville, A

L
A

nchorage, A
K

E
nid, O

K

City Size s

P
D

F

 

 
Data
Lognormal (Eeckhout)
GEV (Berliant & Watanabe)
Complete Graph (de facto)
ER/BA (Jackson & Rogers)
ER (Jackson & Rogers)

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

N
ew

 Y
ork

S
t. Louis

T
ulsa, O

K

B
eaum

ont, T
X

H
untsville, A

L
A

nchorage, A
K

E
nid, O

K

City Size s

P
D

F

 

 

(a) PDF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 #1 New York
#18 St. Louis

#58 Tulsa, OK

#106 Beaumont, TX
#117 Huntsville, AL

#138 Anchorage, AK

#276 Enid, OK

Empirical CDF

E
st

im
at

ed
 C

D
F

 

 
Lognormal (Eeckhout)
GEV (Berliant & Watanabe)
Complete Graph (de facto)
ER/BA (Jackson & Rogers)
ER (Jackson & Rogers)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 #1 New York
#18 St. Louis

#58 Tulsa, OK

#106 Beaumont, TX
#117 Huntsville, AL

#138 Anchorage, AK

#276 Enid, OK

Empirical CDF

E
st

im
at

ed
 C

D
F

 

 

(b) PP Plot

Figure 11. Model Comparison (MA)
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(b) PP Plot

Figure 12. Model Comparison (CBSA)
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(b) PP Plot

Figure 13. Model Comparison (Places)
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(c) PP Plot

Figure 14. ER/BA for Belgium, 2000 [Soo05].
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(c) PP Plot

Figure 15. ER/BA for MA, Census 2000.

23



A Scale-Free Transportation Network Explains the City-Size Distribution

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

N
ew

 Y
ork

S
t. Louis

B
eaum

ont, T
X

G
reen B

ay, W
I

S
unbury, P

A
H

inesville, G
A

A
ndrew

s, T
X

City Size s

P
D

F

 

 

Data
Estimated PDF

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

N
ew

 Y
ork

S
t. Louis

B
eaum

ont, T
X

G
reen B

ay, W
I

S
unbury, P

A
H

inesville, G
A

A
ndrew

s, T
X

City Size s

P
D

F

 

 

(a) PDF

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1
New YorkSt. Louis

Beaumont, TX
Green Bay, WI

Sunbury, PA

Hinesville, GA

A
ndrew

s, T
X

City Size s

C
D

F

 

 

Data
Estimated CDF
Residual

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1
New YorkSt. Louis

Beaumont, TX
Green Bay, WI

Sunbury, PA

Hinesville, GA

A
ndrew

s, T
X

City Size s

C
D

F

 

 

(b) CDF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
#1 New York

#18 St. Louis
#117 Beaumont, TX

#152 Green Bay, WI

#386 Sunbury, PA

#461 Hinesville, GA

#922 Andrews, TX

Empirical CDF

E
st

im
at

ed
 C

D
F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
#1 New York

#18 St. Louis
#117 Beaumont, TX

#152 Green Bay, WI

#386 Sunbury, PA

#461 Hinesville, GA

#922 Andrews, TX

Empirical CDF

E
st

im
at

ed
 C

D
F

(c) PP Plot

Figure 16. ER/BA for CBSA, Census 2000.
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Figure 17. ER/BA for Places, Census 2000.
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A Appendix

A.1 Proof of Proposition 3.1

Proof. Note that s(ai) is monotone decreasing in ai . Suppose J > 2 and the network
is neither complete or completely isolated. We have

s′(ai) :=
ds(ai)

dai

= −(logτ)s(ai)S
−1(S − si)≤ 0

with equality iff τ= 1. The second derivative is, therefore,

d2s(ai)

da2
i

= [s′(ai)]
2 S − 2si

si(S − si)
≥ 0,

with equality iff τ= 1. Hence s(ai) is strictly convex in ai .

To show that s(ai) bulges as τ grows, first note
∂ s(ai )

∂ τ
= −τ−1s(ai)(ai − AB−1),

where A :=
∑

j a jτ
−a j and B :=
∑

j τ
−a j . Then

dD(τ)

dτ
=

1

2τ

�

[s(aM )− s(aH)](aH − AB−1) + [s(aM )− s(aL)](aL − AB−1)
	

,

where aM := (aH + aL)/2. The first term in the curly braces is positive because
s(aM )− s(aH) > 0 and aH − AB−1 = B−1

∑

j,H(aH − a j)τ
−a j > 0. Likewise, the second

term is positive because s(aM )− s(aL) < 0 and aL − AB−1 < 0. Therefore dD(τ)

dτ
> 0,

which establishes the claim. �

A.2 Idea behind Geodesic Length (9)

We briefly repeat [HSF+05]’s arguments to obtain (9) in our context. Consider a
geodesic between nodes vi and v j . We ignore loops. The probability that a child
node traces back to its ancestors via some circumvention is proportional to 1/J .
It becomes negligible as the system size J grows (our system size ranges from 69

to 25,358 in Section 4). As shown in [HSF+05], the resulting error is minimal. A
tree is a sequence of nodes where each node except for the root node has exactly
one parent (or ancestor) node. Each node may or may not be followed by (a) child
node(s). There are no cycles on a tree. If we pick a random tree starting from vi ,
we will wind up at v j somewhere along the tree k j/

∑

r∈V kr of the time and we will
not reach vi the remaining 1− k j/

∑

r kr of the time. On average, we will reach v j

within
∑

r kr/k j trials. Suppose that the depth (the number of parent nodes that
you have to go through before reaching your root node) of v j is l. There are kiκ

l−1

nodes whose depth is l. Therefore, on average, we arrive at v j in l steps if

∑

r kr

k j

= kiκ
l−1, (16)

from which we obtain (9). In other words, if, on average, it takes more than kiκ
l−1

trials to reach city j, i.e.,
∑

r kr

k j
> kiκ

l−1, then it is likely that city j is more than l

steps away from your city i. You would try kiκ
l−1 times to find city j, when in fact

you would need additional
∑

r kr

k j
− kiκ

l−1 trials to reach city j, meaning that city j

is not in the group of cities l steps away from you but actually located somewhere
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farther down. On the contrary if it takes less than kiκ
l−1 trials to reach city j, then

city j should be less than l steps away from you. You would not need that many
trials to find a city j, the implication being that, once again, you are looking at a
wrong group of cities. Thus, city i and j are l steps apart from each other exactly
when (16) is satisfied with equality.

A.3 Branching Factor

Take a random edge and walk towards one arbitrarily selected end. Call where
you arrived at a neighboring node. The average degree of neighboring nodes thus
reached approximates the mean branching factor κ. In effect, we will take one
degree off the average degree found above because the edge we just walked on
cannot be used to reach the destination city. We are climbing up a tree, not down
(recall how goods find their destination city in Section 3.6). Also note that the mean
branching factor is not just a mean degree 〈k〉. We are not hopping from one city
to another but climbing a tree from one neighbor to next to reach the destination
city. Thus, a city charged with lots of links is more likely to be a neighbor of some
city than a poorly connected city, and cities are duly weighted when fed into the
mean branching factor. In other words, Houston is rare while there are quite a few
mid-sized cities but that does not mean Houston is hard to reach at random for its
rarity. Houston has far more edges than mid-sized cities and we are likely to travel
through Houston at some point or another (cf. Figure 4(a)). In particular a node
of degree k has a chance proportional to k1(k) of being at one end of an arbitrary
direction on a randomly chosen edge, where 1(k) is a probability density function
of (14). Or put differently, if we parachute into a random edge and then flip a coin
to decide which direction to go in, we will arrive at a k-th degree city k1(k) out of
∑J

x=1
x1(x) times. Thus, the mean branching factor is given by (15).

A.4 Maximum Spacing Estimation

It might be easier to make sense of the use of geometric mean in MSE if we recast
it as an analogue of a more familiar, linear regression. The geometric mean of steps
here corresponds to ordinary least squares and the arithmetic mean corresponds
to a plain sum of residuals. Say we are trying to regress 2 = (−1,0, 1) on x =

(−1,0,1). If we aim to minimize the sum of residuals, any real estimate that makes
the regression line run through the origin (0, 0) will work, just as much as any
estimate will make the arithmetic mean of gaps 1/J . We will end up with infinitely
many estimates because residual at x = 1 always offsets the one at x = −1. To
ward off this cancellation problem, we usually try to minimize the sum of squared
residuals, which leads to a unique estimate, a 45-degree line. Similarly, the use of
geometric mean will solve the indeterminacy problem that comes with arithmetic
mean and will promise us sensible estimates.

The geometric mean also comes in handy here. The gap tends to get tighter
near the top and/or the bottom of most distributions as the CDF creeps up to
one and/or bears down on zero. However, this does not mean New York or New
Amsterdam, IN counts less than other cities as a sample. The geometric mean
offsets this general tendency and duly stretches small gaps so that these extremities
will receive no less attention than the ones in the middle. There is no particular
reason to let the mid-sized cities punch above their weight.
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On a related matter, we report Kolomogorov-Smirnov (KS) statistic. MSE is
similar to KS in that both KS and the maximand of MSE are a power mean. KS
statistic is a power mean of the form

�

1

J

∑

i

|Empirical F(si)− F(si)|
p

�
1
p

(17)

with p→∞ (i.e., the maximum of the residuals, the L∞ norm), whereas the maxi-
mand of MSE is a power mean of the form

�

1

J

∑

i

(F(si)− F(si−1))
p

�
1
p

(18)

with p→ 0 (i.e., the geometric mean of the gaps). The way they aggregate the data
is where their difference comes in. KS statistic only picks up a single city where the
predicted value deviates from the actual value the most. It does not tell us anything
about the selected model’s performance over the remainder of cities other than the
fact that their gap is tighter than the KS value (but not by how far). On the other
hand, the maximand of MSE is determined by the step gap log-averaged over the
entire range of the cities, and probably a better measuring tool to gauge the model’s
performance in that respect.

To get a sense of what MSE hunts for, consider what happens if we pull out the
estimate that minimizes the geometric mean instead. Minimum spacing estimator
would dump the entire interval [0,1] on one particular city i (any city will do)
so that F(s j;θ ) = 0 for all j < i and F(s j;θ ) = 1 for all j ≥ i, in which case, the
geometric mean would be zero, the smallest value possible (practically the same
result when you try to maximize the arithmetic mean as we mentioned above, in
the sense that any estimate will be as good as any other). This would make such a
pointless estimator. MSE does the exact opposite.
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