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Abstract

We use a laboratory experiment to test the impacts of uncertainty, the magnitude of fines and aversion

against making type-I and type-II errors on legal decision making. Measuring uncertainty as the noise of

a signal on the defendant’s guilt observed by legal decision makers, we observe that a supposed wrongdoer

is less likely to be punished if fines and uncertainty are high. Furthermore, judges care far more about

type-I errors and violators steal far less often than expected payoff maximizers would. While our results

support the theoretical predictions on average, a cluster analysis provides evidence for heterogenous

behavior of participants, many of whom don’t respond to changes in the parameters or are far more

driven by uncertainty than the magnitude of fines.
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1 Introduction

Two fundamental insights of the economic analysis of law are that deterrence is increasing in the magnitude

of fines (Becker, 1968) and the accuracy of the court system (Png, 1986, Polinsky and Shavell, 1999). For

the latter point, it has been noted that both higher frequencies of convicting innocent defendants (type-I

errors) and higher percentages of releasing guilty defendants (type-II errors) have detrimental effects as the

incentives to obey the law depend on the difference in the expected fine with and without violating the law.

The deterrence effect of higher fines is straightforward when type-I and type-II errors are exogenously

given, which is usually assumed in the literature.1 In reality, however, the frequencies of these two error types

do not only depend on the evidence and the accuracy of the court system, but also on the relative weights

judges and juries put on them: For a given quality of evidence, which is a noisy signal on the suspects’ actual

behavior, legal decision makers can reduce type-I errors at the expense of higher type-II errors and vice versa.

Intuitively, one would expect that the legal decision makers’ aversion against making type-I errors increases

in the fine size, and if this effect is strong enough, then higher actual punishment may even decrease expected

punishment (Andreoni, 1991). Understanding the impact of the fine size on the relative frequency of type-I

and type-II errors is hence a crucial point for the proper design of legal punishment.

Based on a model that structures the potential effects at work, we perform a laboratory experiment

to analyze the interplay of legal uncertainty, represented by the precision of a noisy signal on the actual

behavior, and the magnitude of fines in impacting on punishment and violation. Participants are divided

into two groups, potential violators and judges. Both groups are informed that there is a fixed amount of

money supposed to be donated to charity. The money can be stolen by the violators. If it is not stolen,

it may still disappear due to a random event, and this creates legal uncertainty. Judges can punish if and

only if they observe that the money has disappeared, and we vary both the level of fines and the degree

of uncertainty. Note that the frequencies of type-I and type-II errors are endogenously determined by the

judges’ and potential violators’ decisions, so that their interdependency is fully captured by our experiment.

Turning to our results, let us start with judges. First, we indeed find that the frequency of type-I errors

relative to type-II errors decreases in the magnitude of fines. Thus, there is a countervailing effect on the

1See the overview in Polinsky and Shavell (2009), section 15.
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deterrence effect of large fines, caused by the decision makers’ lower willingness to accept type-I errors.

Second, it is important to understand the relative weight judges put on type-I and type-II errors. This

requires to take the actual consequences of misjudgments into account. We do so by using the fines imposed

on innocents as a measure of the preference cost of making type-I errors, and the amount stolen by an

unpunished violator as a measure of the preference cost of type-II errors. Comparing these amounts, we find

that judges care far more about type-I than type-II errors, that is, they are more concerned about unjustified

fines than about unatoned thefts.

For potential violators, we first find that the signal’s noise turns out to be even more important than

the magnitude of fines. Thus, our experiment reinforces the view that accurate decisions are crucial for the

incentives to obey the law. Second, violators care more about their own money than about the money for

donation, but they have (partially) social preferences or are averse against violating social norms. Given the

punishment behavior of judges, stealing the money increases the expected payoff of potential violators for

all of our combinations of fines and uncertainty, so that risk-neutral participants who do not care about the

donation should always steal. This is contrasted by an overall stealing rate of around 55% in our experiment.

In summary, the participants’ behaviour that we observe on average confirms our theoretical model’s

results. However, individual behaviour is very heterogenous. Indeed, performing a cluster analysis yields

some additional insights into it: For instance, about 25% of judges and thieves respond far more to changes

in uncertainty than to changes in fines. Moreover, another 25% of them don’t respond at all to changes in

fines and uncertainty. However, a closer look at these latter clusters reveals that 20% of judges never punish

while only 4% punish in all cases, which is consistent with a far stronger aversion against type-I errors than

against type-II errors.

Most of the experimental literature on deterrence has restricted attention to situations where not only the

fines, but also the punishment probabilities are exogenously given. DeAngelo and Charness (2012) design an

experiment where the expected fine is kept constant, while the probability of being punished and the uncer-

tainty on this probability varies. They find that higher uncertainty enhances deterrence. Schildberg-Hörisch

and Strassmair (2012) find that small sanctions reduce deterrence compared to no sanctions, which can be

attributed to a crowding out of intrinsic motivation for socially appreciated behavior. While some individ-
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uals act selfishly and reduce their criminal rate even for small sanctions, the majority of the participants

responds in the expected direction only for large sanctions. Khadjavi (2014) confirms a path-dependency

of the impact of fines known from experiments on rewards: When fines have a deterrence effect and are

removed later on, then the pro-social behavior is lower compared to a situation with no fines at all. By using

questionnaires on the participants’ feelings, they can explain the observed behavior by a change in emotions.

Rizzolli and Stanca (2012) find in the laboratory that, for identical incentives in case of selfish preferences,

type I-errors have a larger adverse effect on deterrence than type II-errors.

The experimental papers on punishments which emerge endogenously from the behavior of the partic-

ipants have adopted voluntary contribution mechanisms (VCMs) in which the participants can mutually

sanction non-cooperative behavior (Fehr and Gächter, 2000). For our research question, however, a different

setting seems appropriate: First, legal fines are better resembled by third-party punishment, where those

who can punish are not directly affected by the behavior of violators.2 Second, we assume that fines are

costless for those who impose them, since judges themselves do not bear the social costs of punishment.

Third, VCM games are, by definition, about voluntary payments, whereas we frame our experiment as a

legal infringement by denoting the taking of the money provided for donation explicitly as theft.3

There are only a few VCM experiments with punishment which assume noisy signals or vary the magni-

tude of fines. Grechening et al. (2010) assume that participants get noisy signals on their mutual contribu-

tions in a VCM game and find that higher noise, which increases the risk of type-I errors in case of penalties,

does not reduce the punishment frequency. Social welfare, however, shrinks due to retaliation of those who

are innocently punished and because fines are costly.

While fines are kept constant in Grechening et al. (2010), Ambrus and Greiner (2012) consider different

fine levels. With low fines, people do not punish often, thereby saving on punishment costs. When fines

are high, then there is a large deterrence effect which improves social efficiency. As both of these beneficial

effects are small for intermediate levels of punishment, efficiency is U-shaped in the magnitude of fines. This

is related to results in Nikiforakis and Normann (2008) and Egas and Riedl (2008), which seem to be the

2One of the few papes applying third-party punishment is Fehr and Fischbacher (2004). but they assume that the behavior
can be perfectly observed.

3While Rega and Telle (2004) find that a terminology that relates contributions to social norms has no impact on behavior,
this may be different for dictions related to stealing.
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first experiments on the impact of fine sizes on punishments and contributions in VCM settings. We are not

aware of any other paper in which probabilities for type-I and II-errors are determined endogenously by the

violators’ actual behavior.

Other interesting results of VCM experiments that are, however, not directly related to variations in the

noisy signal or the magnitude of sanctions include that violations of social norms are reinforcing (Falk and

Fischbacher, 2002), that group decisions on punishments yield higher contributions (Ertan et al., 2009, and

Casari and Luini, 2009), that revealing the identities of non-contributors increases cooperation (Masclet et

al., 2003, and Rega and Telle, 2004) and that the deterrence effect of punishment declines sharply when

counter-punishments are feasible (Nikiforakis, 2008). Bornstein and Weisel (2010) show that uncertainty

about the counterparts’ endowments reduces the benefits from the punishment option in a repeated VCM

setting.

From a legal perspective, our finding that participants in the role of judges put considerably more weight

on type-I errors compared to type-II errors is related to the famous Blackstone ratio that it is ”better that

ten guilty persons escape, than that one innocent suffers”. Most people share the view that avoiding type-I

errors matters most, but the marginal rate of substitution differs substantially among them (Volokh, 1997).

To account for the Blackstone ratio, some models simply put higher weight on type-I errors in analyzing

optimal judgements (Miceli, 1991, Lando, 2006), and several papers explain from a rational choice perspective

why type-I errors are more severe for society (see Hylton and Khanna, 2007, who take up a public-choice

perspective, and Persson and Siven, 2007, who adopt a median-voter model). By using a reversed dictator

game where participants can steel from their counterparts’ endowments, Rizzolli and Saraceno (2013) show

experimentally that the adverse effects of type-I errors on deterrence are higher than those of type-II errors.

Finally, the starting point of our paper that higher fines may even reduce deterrence dates back to the

early legal literature on nullification pioneered by Michael and Wechsler (1937). This literature argues that

jurors or witnesses may not be willing to participate in legal action when punishments seem unfairly high,

and theoretical models show that higher fines reduce deterrence when the willingness to accept type-I errors

is decreasing in fines to a sufficiently large extent (Andreoni, 1991, Feess and Wohlschlegel, 2009).

The remainder of the paper is organized as follows: Section 2 provides a theoretical model on the
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interdependency of the judges’ and the potential violators’ decisions. We show that the impacts of the

signal’s noise and the magnitude of fines on deterrence, and on the frequency of type-I and type-II errors in

equilibrium, is not straightforward. In section 3, we describe the experimental setting. Section 4 provides

descriptive statistics, and section 5 extends to regression analysis. Section 6 discusses the heterogeneity in

the participants’ behavior. We conclude in section 7.

2 A simple model of punishment and deterrence

We first develop a model that allows to analyze the impact of fine size and uncertainty on the interplay

between punishment and deterrence. In basic models on errors in court (Png, 1986, Polinsky and Shavell,

1999), it is found that both type-I and type-II errors increase the violation frequency as the difference between

the probability of being punished with and without violation shrinks. A full-fledged equilibrium analysis,

however, needs to take into account that higher uncertainty and higher fines may reduce the decision makers’

(judges or juries) willingness to punish, so that the relative probabilities for the two errors need to be derived

endogenously.

The interdependency of the behavior of judges and violators implies that we cannot treat type-I and type-

II errors as exogenous - the probability of convicting an innocent (type-I error) depends on the percentage of

violators in equilibrium, which in turn depends on the (anticipated) punishment behavior of judges. Consider

a potential violator who, in the case of an infringement, causes an adverse outcome (a ’loss’) denoted by

L.4 In case of no infringement, an exogenous event causes the same loss L with probability q. Thus, we

assume that the loss can occur only once; if the money is already stolen by the violator, it can’t disappear

for exogenous reasons any more.5 In our experiment, observing L means that the money has disappeared,

and q is the probability that this happens even in cases where it is not taken by the respective participant.

With φ as the percentage of participants who actually commit the act, the ex post probability that a

violation took place after observing the loss is φ
φ+(1−φ)q , and the ex post probability of no infringement is

(1−φ)q
φ+(1−φ)q . Thus, π = (1−φ)q

φ+(1−φ)q is the probability of committing a type-I error in case of punishment, while

4In our experimental design, this is the amount donated to charity.
5As in all models on errors in court, we need to assume that the facts of the case cannot be fully reconstrcuted ex post.
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1− π = φ
φ+(1−φ)q is the probability of a type-II error in case of no punishment.

For judges, we introduce the following assumptions: First, we set the utility from correct decisions to

zero, that is, we take only the preference costs of misjudgments, but not the benefits of correct decisions into

account. Second, we assume that the disutility from type-I errors is αiF where αi is a parameter on judge

i’s aversion against type-I errors, and F is the fine size. Third, the disutility from type-II errors is βiA where

βi is the degree of judge i’s aversion against type-II errors, and A the severity of the infringement which we

will refer to as the ”amount stolen”. Normalizing βi = 1, αi captures the ratio of the degrees of aversion

against type-I and type-II errors.

Recalling the probabilities of type-I and type-II errors, it follows that a judge i who assumes a violation

frequency φ prefers to convict a suspect if and only if

(1− φ) q

φ+ (1− φ) q
αiF ≤

φ

φ+ (1− φ) q
A. (1)

Defining α̃ as the threshold type such that a judge prefers punishment for all α ≤ α̃, we get

α̃ =
Aφ

Fq (1− φ)
. (2)

For potential violators, we define mj as the weight that a potential violator j puts on the victim’s payoff

relative to her own payoff. For mj = 0, violator j is completely selfish, and for mj = 1, she puts equal weight

on the victim’s and her own payoff.

If individual j assumes punishment frequency p, she steals if and only if

A− pF ≥ mjA− qpF : (3)

On the left hand side, the expected benefit is the difference in the amount stolen and the expected fine.

On the right hand side, mjA is the utility associated with the donation,6 and qp is the probability of being

6Identically, we could express A (1−mi) as the utility from stealing amount A where mi captures the degree of disutility
from violating a social norm.
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punished by mistake (type-I error). Thus, we get

m̃ = 1−
Fp(1− q)

A
(4)

as threshold such that individual j violates if and only if mj ≤ m̃.

Equations (2) and (4) characterize the judges’ and violators’ optimal decisions based on their expectations

on their counterparts’ behavior: Inspecting these two equations yields the following Proposition:

Proposition 1 Suppose that violators treat the punishment frequency p, and judges the violation frequency

φ, as exogenously given. Then:

(i) ∂m̃
∂p

= −
F (1−q)

A
< 0, ∂m̃

∂F
= −

p(1−q)
A

< 0, and ∂m̃
∂q

= Fp
A

> 0 and

(ii) ∂α̃
∂φ

= A

Fq(1−φ)2
> 0, ∂α̃

∂F
= −

Aφ
F 2q(1−φ) < 0, and ∂α̃

∂q
= −

Aφ
Fq2(1−φ) < 0.

Part (i) of Proposition 1 first confirms the well-known deterrence theory: Violators are less likely to

violate if they anticipate a higher punishment probability p and a larger fine size F . Furthermore, the

violation frequency increases in q, that is, in the probability that the loss may also be observed without

infringement. This resembles the literature on the impacts of errors in court discussed in the introduction.

Part (ii) discusses judges’ behavioral responses to the model parameters when they seek to minimize

expected preference costs from wrong decisions: When they anticipate violators to break the law more

frequently, when the evidence on the actual punishment is less noisy, and when fines are low, then judges

will also punish for higher aversion against type-I errors, so that α̃ increases. In a way, ∂m̃
∂p

characterizes

how violators’ best responses depend on the judges’ punishment frequency as, for any given p, a potential

violator steals if and only if m ≤ m̃. Similarly, ∂α̃
∂φ

captures the effect of the anticipated violating frequency

on judges’ best responses. While these individual best responses are intuitive, things are more involved

when we take the interdependency of the decisions into account. In Bayesian Nash equilibrium, judges’ and

violators’ expectations about their counterparts’ actions coincide with their actual equilibrium choices, i.e.,
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punishment and violation frequencies are given by the system of equations

p = G (α̃) (5)

φ = H (m̃) , (6)

where G(.) and H(.) denote the cumulative distribution functions of judges’ parameter α of relative aversion

against type-I errors and potential violators’ marginal rate of substitution m between the victim’s and their

own monetary payoff, provided that the thresholds α̃ and m̃ are in the supports Sα of G(.) and Sm of H(.),

respectively, the intersection of which determines the Bayesian Nash equilibrium.

The following proposition summarizes the impact of noise and the fine size on equilibrium punishment

and violation frequencies, where judges and violators correctly anticipate their counterparts’ equilibrium

choices:

Proposition 2 Suppose that Sα and Sm are intervals. If α̃ ∈ Sα and m̃ ∈ Sm, then the Bayesian Nash

equilibrium has the following comparative static properties:

(i) For all distributions G(·) and H(·), dp∗

dF
< 0 and dφ∗

dq
> 0.

(ii) Independently of the distribution H(·), dφ∗

dF
is negative (positive, zero) if G (·) is concave (convex,

linear).

(iii) dp∗

dq
< 0 if and only if p∗

(1−φ∗)2h(m̃) < α̃.

Part (i) of the Proposition shows that, for all distributions of the judges’ and the potential violators’

preferences, two of the results derived for given behavior of the counterparts carry over to the Bayesian Nash

Equilibrium: The punishment frequency decreases in the magnitude of fines, and the violation frequency

increases in the probability that the loss occurs even without violation.

The fact that these two results carry over to the Bayesian Nash Equilibrium is intuitive. Let us start

with the first result in part (i) of the Proposition, dp∗

dF
< 0: For all adjustments of the violators’ behavior,

the consequences of a type-I error are increasing in the fine size, so that judges are also, in equilibrium, more

reluctant to punish in case of high fines. At the same time, however, part (ii) of the Proposition states that
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it cannot be taken for granted that Becker’s classical result concerning the deterrence effect of higher fines

holds when violators anticipate the degree at which the judges’ willingness to punish decreases in F . If this

effect is so strong that the expected fine decreases, then the violation frequency increases in the fine level.

Hence, part (ii) of Proposition 2 confirms the results of Andreoni (1991) and Feess and Wohlschlegel

(2009) that higher fines may reduce deterrence if judges care sufficiently much about type I errors. However,

our result goes one step further by identifying the distribution of judges’ preferences over type I and type II

errors as the driving force of this result, whereas it does not depend at all on the distribution of potential

violators’ aversion to stealing. To see the impact of the distribution of the judges’ preferences, note that a

convex distribution function G (·) means that there is high probability mass on large α, i.e. many judges

put high weight on type-I errors. And since a higher F reduces the critical threshold α̃, many judges do

not punish for high α when G (·) is convex. In these cases, the indirect effect of the higher fine size via the

lower punishment probability outweighs the direct effect, so that the incentive to obey the law decreases in

the fine level.

We now turn to the second result in part (i) of the Proposition, dφ∗

dq
> 0. This means that the standard

result that higher uncertainty reduces deterrence carries over from the setting with exogenously given errors

in court to the Bayesian Nash Equilibrium in which judges’ responses to higher uncertainty depend on

their preferences. While the impact on violators is hence clear-cut, the impact on the judges’ punishment

frequency is ambiguous. Moreover, the impact cannot be traced back to general properties of the distribution

functions, but rather depends on both equilibrium thresholds, α̃ and m̃.

Summing up, in the Bayesian Nash Equilibrium, judges respond to the fine size and potential violators

to uncertainty in the intuitive way (i.e. in the same direction as naive decision makers do), but the impact

of F on the stealing frequency and of q on the punishment behavior are ambiguous.

3 Experimental design

We conducted eight sessions with a total of 192 subjects in the AIX laboratory for empirical economic studies

at RWTH Aachen University. The participants consisted of 119 males and 73 females with an average age

of 25 years in the range of 18 to 62 years. Sessions were conducted in September and October 2013 and were
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computerized using the software z-tree (Fischbacher, 2007). On average, a session lasted approximately one

hour with an average payment of 12 Euro (16US$ at the time of the experiment), including a show up fee of

4 Euro. We used ECU as the currency for the experiment with an exchange rate of 75 ECU = 0.1 Euro. A

translation of the originally German instructions is provided in Appendix 2. Participants played two different

roles and were informed that both parts are paid out which we did in order to avoid potentially negative

(or very low) amounts for those who are innocently punished. Since we gave no feedback between the two

rounds and because judges receive a fixed income anyway, there are no concerns about income effects.

The experimental design proceeds closely along the lines of the model. Participants were randomly

assigned to their roles as judges (group 1) or potential violators (group 2). Then, pairs of two anonymous

participants, with one judge and one potential violator each, were formed. In each role, participants got a

fixed amount of 2400 ECU which was mainly done to avoid high negative payoffs for those who do not steal

in their role as potential violators but who are nevertheless punished. All participants were informed that,

for each member of group 2, we provide a donation of 2400 ECU to the German charity ’Brot für die Welt ’,

which is organized by the federation of Protestant regional church bodies in Germany, and mainly funds

projects of capacity development in developing countries. The money meant for donation can be stolen by

the respective member of group 2. In this case, the 2400 ECU will not be donated but are instead transferred

to the account of the thief which hence increases from 2400 to 4800 ECU. The 2400 ECU that can be stolen

resemble the amount A from our model. We deliberately framed the experiment as a violation of social

norms by using the terms ”donation”, ”stealing” and ”fine”.

All participants were informed that judges observe whether the 2400 ECU are available for donation or

not, but that there is a probability of q that the money disappears even in case it is not stolen. Judges

can impose exogenously given fines of F if and only if the money is not disposable for donation. In the

instructions, we emphasized some features of the experiment: the meaning of q, that the money will in fact

be donated, and that all features of the game are common knowledge. As this might affect their behavior,

participants were not informed that they act in both roles. Of course, we controlled for order effects.
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In the experiment itself, we provided the following nine combinations of q and F :

Table 1. q − F matrix

q/F 1200 2400 4800
10%
50%
90%

Before we started the actual experiment, we posed several control questions concerning the calculation

of the payoffs. The members of both groups were then asked to make their decisions by indicating for each

of the nine cells in table 1 whether they want to steal or punish, respectively. Subsequently, a second round

was played with opposite roles, again by forming random pairs of judges and potential violators. Between

the two rounds, no decisions or payoffs were conveyed. Finally, we distributed a personality questionnaire

and a form with questions on the reasons for the decisions made. The latter form showed that participants

had no problems in understanding the experiment.

4 Descriptive statistics

Judges. Since each of the 192 participants made nine decisions as judge and as violator each, we have, over

all, 192 · 2 · 9 = 3456 observations. Starting with judges, table 2 shows the distribution of punishments for

the nine combinations of the signal’s noise represented by q and fine sizes F . For each combination of q and

F , we first show the absolute number of punishments. The second line shows percentages. The number in

the third line is a measure of judges’ incentives to punish given that they correctly anticipate thieves’ actual

reactions to the combinations of q and F , and is calculated as ∆ ≡

(1−φ)q
φ+(1−φ)q

F

φ

φ+(1−φ)q
A

= (1−φ)Fq

φA
.7 The numerator

is the probability of a type-I error, multiplied by the fine, and hence the unjustified expected fine if a judge

punishes. Similarly, the denominator is the expected amount that has been stolen unatoned in case of no

punishment. Both terms are calculated for the actual behavior of potential violators. ∆ can be interpreted

7For instance, given that 62.5% of violators steal in the case of q = 50% and F = 1200, the probability of a type-I error
when punishing is 0.375·0.5

0.375·0.5+0.625
≈ 0.23. The expected unjustified fine in case of punishment is thus about 0.23 · 1200 = 276,

whereas the expected unatoned stolen amount in case of no-punishment is about
(

1− 0.375·0.5
0.375·0.5+0.625

)

· 2400 ≈ 1846, the ratio

of which is around 0.15.
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as the ratio in the expected undesired monetary consequences with and without punishment. Recall that

we defined α as the relative weight a judge puts on type-I compared to type-II errors, so that a judge who

correctly anticipates ∆ will punish if and only if α ≤
1
∆ .

In the fourth line, we multiply ∆ by p
1−p

to get the ratio of judges’ expected costs of punishment and

no-punishment based on the actual frequencies of each choice. Note carefully that ∆ refers to the decision

of a single judge, while ∆ p
1−p

is the ratio of the undesired monetary consequences of both types of error,

aggregated over the actual decisions of all judges.

Table 2. Punishment behavior of judges (p)

F=1200 F=2400 F=4800 Average
q=10%
Frequency 81 84 84 83
Percentage 42% 44% 44% 43%
∆ 0.04 0.09 0.36 0.17
Ratio of expected costs 0.03 0.07 0.28 0.13

q=50%
Frequency 81 87 39 69
Percentage 42% 45% 20% 36%
∆ 0.15 0.26 1.26 0.55
Ratio of expected costs 0.11 0.21 0.32 0.21

q=90%
Frequency 56 40 47 48
Percentage 29% 21% 24% 25%
∆ 0.24 0.60 1.56 0.80
Ratio of expected costs 0.10 0.16 0.50 0.25

Average
Frequency 73 70 57 67
Percentage 38% 37% 30% 35%
∆ 0.14 0.32 1.06 0.51
Ratio of expected costs 0.08 0.15 0.37 0.20

A first observation from table 2 is that the overall punishment frequency is rather low (35% over all nine

situations) which provides preliminary evidence that judges care more about type-I errors than about type-II

errors.

Turning to the impact of our primary model parameters, noise and fines, on judges’ decisions, we start

12



with considering the impact of the fine size F . Recall from Proposition 2 that the Bayesian Nash Equilibrium

predicts that the punishment frequency decreases in F . Remarkably, table 2 shows that judges only slightly

respond to different fine sizes: considering the averages taken over all levels of q, the punishment frequency

is 38% for F = 1200, 37% for F = 2400 and 30% for F = 4800. The Wilcoxon rank sum test shows that

the punishment frequency for F = 4800 differs from the one for the other two fine levels significantly at the

5%-level, but the size effect is moderate.

Our model predicts that the punishment frequency decreases in q when judges treat the violation fre-

quency as exogenous, (Proposition 1), but that the impact of q depends on the models’ parameters in the

Bayesian Nash Equilibrium (Proposition 2). Results are perfectly in line with Proposition 1: On average,

the punishment frequencies are 43% for q = 10%, 36% for q = 50% and 25% for q = 90%, with all differences

significant at the 5%-level when performing a Fisher Exact test. However, the difference between q = 10%

and q = 50% is exclusively driven by the highest fine level, but insignificant for the two lower fine levels.

Now recall that the numbers in the third line are the ratios of the expected undesired monetary con-

sequences with and without punishment, calculated as ∆ = (1−φ)Fq

φA
. Overall, we see that the expected

monetary consequences from type-I errors are lower for seven out of the nine cases, and higher only for

F = 4800 combined with q = 50% and q = 90%. Interestingly, these are in fact two of the cases where the

punishment frequencies are lowest, i.e. the observed behavior is compatible with the hypothesis that judges

adjust their punishment behavior to the differences in the expected monetary consequences of the two error

types.

The numbers in the fourth line show that judges indeed put far higher weight on type-I compared to

type-II errors. On average, we observe ∆ p
1−p

= 0.20 which means that, given the behavior of thieves and

judges, the undesired monetary consequences of type-II errors are on average five times higher than those of

type-I errors. Hence, many judges behave in line with the in dubio pro reo-principle. ∆ p
1−p

is below one in

all of our nine cases, and ranges from a minimum as small as 0.03 to a maximum of 0.5.

Summing up, the descriptive statistics on judges provides two insights: First, judges respond to the

exogenous variables as predicted by Proposition 1 as both higher noise (q) and higher fines (F ) reduce the

punishment frequency. Second, judges care far more about type-I compared to type-II errors.
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Violators. Similar to table 2 for judges, table 3 displays the stealing behavior of violators. The first three

lines can be interpreted analogously to those for judges: The number in the first (second) line is the frequency

(percentage) of violations. The numbers in the third line are calculated as τ ≡
p(1−q)F

A
. The term in the

numerator is the difference between the expected punishment, with and without violation, for the actual

behavior of judges. The term in the denominator is simply the amount stolen. For instance, τ = 0.11 for

q = 50% and F = 1200 means that the increase in the expected fine when a participant steals amounts to

only 11% of the amount stolen. Recall from the model that risk-neutral violators who anticipate the judges’

decisions correctly steal whenever 1 − m ≥ τ . In other words, everyone who is risk-neutral and puts less

than 1− 0.11 = 0.89 weight on donation relative to his own payoff should steal.

In all nine cases, τ is below one, so that risk-neutral participants who do not care about donation should

always steal. Given that we find, aggregated over all nine cases, τ = 0.22 and a violation percentage of 0.55,

it follows that many potential violators have strong social preferences or aversion against violating social

norms. This impression is reinforced by the observation that the violation frequency is only around 60% for

the two cases in which the fine is weakly below the amount that can be stolen.

We now consider in greater detail the impact of noise q on the violation frequency φ, and then turn to the

fine size F . Recall that the Bayesian Nash Equilibrium predicts that φ increases in q. For all fine sizes, the

expected rise in the punishment when a participant steals, p (1− q)F , decreases in q to a large degree. Thus,

in line with the prediction from the model, the stealing incentive increases in the signal’s noise, even when

taking the actual punishment behavior of judges into account. This is confirmed for the differences between

q = 10% and q = 50% and the difference between q = 10% and q = 90% (significant at the 1%-level in a

Fisher exact test), but not so for the difference between q = 90% and q = 50% which is insignificant. This

insignificance is driven by the fact that, for the intermediate fine size of F = 2400, the stealing frequency is

higher for q = 50% than for q = 90%.

Considering the fine size, we observe a considerable deterrence effect of the highest fine F = 4800 in a

Fisher exact test, but no significant difference between F = 1200 and F = 2400. This holds not only on

average, but also for all levels of q, that is, violators on average basically do not care whether the fine is 1200

or 2400.
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Table 3. Stealing-behavior of potential violators (φ)

F=1200 F=2400 F=4800 Average
q=10%
Frequency 106 101 68 92
Percentage 55% 53% 35% 48%
τ 0.19 0.39 0.79 0.46

q=50%
Frequency 120 127 85 111
Percentage 63% 66% 44% 58%
τ 0.11 0.23 0.20 0.18

q=90%
Frequency 125 115 103 114
Percentage 65% 60% 54% 60%
τ 0.01 0.02 0.05 0.03

Average
Frequency 117 114 85 106
Percentage 61% 60% 44% 55%
τ 0.10 0.21 0.35 0.22

Summing up, the descriptive statistics suggests that, on average, the participants respond to noise q

and fine size F in the directions predicted by our model. In the subsequent sections, we use more rigorous

methods to analyze the participants’ responses to q and F . We will focus on two issues:

First, we are interested in the interaction of q and F , that is, how the impact of higher fines on the

participants’ behavior is moderated by noise. To see the point, recall from table 2, that for instance the

lower punishment frequency for F = 4800 compared to F = 2400 holds only for q = 50%, but not so for the

other two levels of noise. The interaction of q and F can best be analyzed in regressions of the punishment

and stealing behavior, and this will be done in section 5.

Second, a closer look at our raw data reveals that there is a large heterogeneity in the behavior of

participants. We address this issue in two ways: On the one hand, we include personal characteristics

derived from a questionnaire (see below) in our regression analysis, to see whether these characteristics can

partially explain the observed behavior. On the other hand, we perform a cluster analysis to distinguish

between different types of participants (section 6).
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5 Regression analysis

Factor analysis on personal characteristics. To control for potentially relevant personal characteris-

tics, we asked participants to complete a questionnaire after the experiment. The questions referred to risk

attitudes, moral attitudes towards the violation of legal and social norms and to the willingness to punish.

These questions were tailored specifically to this experiment and are listed in Appendix 3. We performed

a confirmatory factor analysis (see e.g. Jae-on and Mueller, 1978) which led to four factors used in our

regression analyses:

• The first factor which we refer to as “attitude to risk” comprises three questions mainly regarding

financial risk attitudes (willingness to invest into a mutual fund, gambling in a poker game, and

investing into a startup).

• The second factor which we denote as “moral attitudes” consists of three questions regarding honest

behavior (minor wrong statements in tax declaration, plagiarism, keeping a found purse with 200 Euro).

• Factors three and four are determined from a questionnaire on the determinants of why people follow

rules. Factor three comprises two questions measuring the impact of fines and consequences, and factor

four refers more generally to the degree to which people are self-responsible for their actions. A detailed

list of questions is provided in Appendix 3.

Regression analysis for judges. In all regressions, we control for order effects as it might influence

the behavior whether the role as judge or as a potential thief is played first. Reference category is ”judge

first”, and reference category for gender is ”male”. We also include the personality factors just described

in all regressions. In the regressions in columns (1), (2) and (4), the reference category for q and F are

the intermediate values, that is, q = 50% and F = 2400. All coefficients are marginal effects, evaluated at

the mean of the explanatory variable. Furthermore, we need to account for the fact that each participant

makes nine decisions as a judge. Since these nine decisions are correlated, we cluster our observations in all

regression on a subject level.

Table 4 shows results for a probit-model on the behavior of judges.8 In the first two columns, we regress

8All results are qualitatively the same for logit-models.
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Table 4. Probit-model on behavior of judges

(1) (2) (3)
Age -0.007** -0.007** -0.007**

(0.003) (0.003) (0.003)
Gender = Female 0.057 0.058 0.057

(0.040) (0.041) (0.040)
∆ -0.168***

(0.028)
F = 1200 0.014 -0.029

(0.020) (0.039)
F = 4800 -0.076*** -0.252***

(0.019) (0.034)
q = 10% 0.075*** -0.015

(0.028) (0.044)
q = 90% -0.118*** -0.243***

(0.027) (0.038)
F1200 · q10% 0.015

(0.053)
F1200 · q90% 0.134**

(0.066)
F4800 · q10% 0.290***

(0.062)
F4800 · q90% 0.333***

(0.062)
More than 3 thefts 0.134*** 0.135*** 0.134***

(0.039) (0.040) (0.039)
Attitude to risk -0.029 -0.030 -0.029

(0.021) (0.021) (0.021)
Moral attitudes 0.059*** 0.059*** 0.059***

(0.022) (0.022) (0.022)
Fines and consequences 0.032* 0.032* 0.032*

(0.019) (0.019) (0.019)
Self responsibility 0.054*** 0.054** 0.054***

(0.021) (0.021) (0.021)
Order = Thief first 0.035 0.036 0.035

(0.038) (0.039) (0.038)
Observations 1728 1728 1728

One (two, three) stars denote significance at the ten- (five, one-)

percent level, respectively. All coefficient marginal effects.

Standard error in brackets.
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the punishment probability only on variables which are not affected by the actual behavior of violators. In

line with the descriptive statistics, we find that judges do not differentiate between the low and the medium

fine size (the latter one is the reference category), but an increase from 2400 to 4800 reduces the punishment

probability by 7.5 percentage points. Given that the average punishment probability in the data is 35%, this

amounts to a notable reduction of about 21 percent. For q, we also adopt the intermediate value as reference

category, and our results confirm that judges reduce their punishment frequencies significantly when the

probability that the money disappears, even when it is not taken by potential violators, increases. Overall,

judges respond in the direction predicted by Proposition 1.

When we add the interaction terms of q and F in column (2), we find no difference between q = 10%

and the reference category of q = 50% for the lowest fine, but all other interaction terms are significant. In

particular, the negative impact of the signal’s noise on the punishment frequency is most pronounced for the

intermediate fine level of F = 2400,

In column (3), the variable on the right hand side of the regression that we are mainly interested in is

∆ ≡
(1−φ)Fq

φA
, which is the ratio in the expected unjustified fine from type-I errors in case of punishment

to the unatoned theft from type-II errors in case of no-punishment, both calculated using potential thieves’

actual decisions. That is to say, the fine size F and the noise q, which are not explicitly considered as controls

in column 3, and the actual stealing frequency φ are the determinants of ∆. We find that judges respond

significantly to this difference.

Some interesting results emerge for our additional controls. First, we have a dummy variable which

indicates whether a judge has, in his role as potential violator, stolen less or weakly more than three times.

We had no prior on the sign of this dummy: On the one hand, one might assume that those who steal more

often find theft more acceptable, and hence punish less often. On the other hand, they might assume a

higher frequency of theft, which hence reduces the level of ∆ that they expect. Controlling for other factors

such as moral attitudes, we find that those who steal more often also punish more often. Furthermore, in

line with the intuition, those with higher moral attitudes and those who believe more in social responsibility

punish more often (recall the details for these factors described above). Older students punish less often,

and gender is insignificant.
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Summing up our findings for judges, our first and most fundamental result is that the punishment

probability responds strongly to the signal’s noise and the fine size. Note that this implies that the ratio of

type-I and type-II errors cannot be treated as independent of these parameters, which is usually assumed

in the literature on errors in court discussed in the introduction. Second, the effects of q and F are both

in line with our model predictions where the impact of the fine size, however, is exclusively driven by the

highest fine. Third, the violation frequency in fact depends on the ratio of the undesired consequences of

type-I and type-II errors, that is, it is decreasing in ∆. Fourth, we find that those personal characteristics

that are most closely related to our setting are highly significant as participants who believe in moral and

self responsibility punish more often.

Regression analysis for thieves. Turning to thieves, we again start by regressing the behavior on the

fine size F and the signal’s noise captured by q, that is, we do not take the punishment frequency of judges

explicitly into account. For both q and F , the intermediate values serve as reference categories. The model’s

prediction that the violation frequency increases in q is only confirmed for the comparison of the two lower

values of q, but there is no significant difference between q = 50% and q = 90%. As judges do, violators do

not differentiate their behavior between fines of 1200 and 2400, but increasing the fine from 2400 to 4800

reduces the violation frequently sharply, by about 15 percentage points or 27 percent.

When we add the interaction terms of q and F in column (2), we find no difference between q = 10%

and the reference category of q = 50%, but both interaction terms with q = 90% are positive. Thus, the

impact of increasing the signal’s noise from q = 50% to q = 90% on the stealing frequency is lowest for the

intermediate fine level of F = 2400, which matches the corresponding result for judges.

In column (3), we substitute q and F by τ = p(1−q)F
A

, the ratio of the expected punishment with and

without violation for the actual behavior of judges in the numerator, and the amount stolen. Participants

respond strongly to incentives: an increase in the ratio of expected punishment with and without violation

reduces the stealing frequency significantly.

Summing up, we find that violators respond to the signal’s noise and the fine size in directions as predicted

by our model. These results, however, are driven by the difference between q = 10% and the two other levels

of uncertainty, and between F = 4800 and the two lower fine levels, respectively. Thus, only a particularly
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Table 5. Probit-model on behavior of thieves

(1) (2) (3)
Age -0.006 -0.006 -0.006

(0.005) (0.005) (0.005)
Gender = Female -0.119** -0.119** -0.117**

(0.050) (0.050) (0.050)
τ -0.330***

(0.062)
F = 1200 0.016 -0.040

(0.023) (0.040)
F = 4800 -0.160*** -0.231***

(0.025) (0.039)
q = 10% -0.105*** -0.145***

(0.028) (0.043)
q = 90% 0.021 -0.068*

(0.028) (0.040)
F1200 · q10% 0.066

(0.042)
F1200 · q90% 0.097**

(0.045)
F4800 · q10% 0.049

(0.046)
F4800 · q90% 0.158***

(0.041)
More than 3 convictions 0.110** 0.110** 0.109**

(0.052) (0.052) (0.052)
Attitude to risk -0.011 -0.011 -0.011

(0.025) (0.025) (0.024)
Moral attitudes 0.018 0.019 0.018

(0.026) (0.026) (0.026)
Fines and consequences 0.046* 0.046* 0.046*

(0.026) (0.026) (0.026)
Self responsibility -0.066*** -0.066*** -0.065***

(0.025) (0.025) (0.025)
Order = Thief first -0.048 -0.048 -0.047

(0.048) (0.049) (0.048)
Observations 1728 1728 1728

One (two, three) stars denote significance at the ten- (five, one-)

percent level, respectively. All coefficient marginal effects.

Standard error in brackets.
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Table 6. Punishment and violation frequencies; disaggregated by individuals

Number of thefts or punishments per individual Frequencies (judges) Frequencies (violators)
0 20% 9%
1 9% 5%
2 10% 9%
3 26% 16%
4 6% 4%
5 11% 11%
6 11% 14%
7 2% 8%
8 1% 6%
9 4% 19%

low uncertainty and a particularly high fine deter participants from violation. Interestingly, self responsibility

is significant in the expected direction, but moral attitudes are not. Similar to the regression on judges, we

find that those who punish more often also violate more often. The stealing probability of females is by 11.9

percentage points or 20 percent lower than those of males, significant at the 5%-level.

6 Heterogeneity of the participants

So far, we have restricted attention to the average behavior of judges and potential violators, but we have

not yet considered the individual behavior. Individual behavior is important for several reasons: first,

participants may largely differ in the relative weight they put on type-I and type-II errors. Second, some

participants may behave more or less independently of q and F by stealing (or punishing) basically always or

never. Then, the low differences in the violation frequency for different levels of q can potentially be driven

by the fact that many individuals do not adjust their behavior at all. Table 6 summarizes the individual

behavior of the participants.

The first column captures the number of punishments and violations, respectively, per individual. The

second and the third column measure the number of individuals meeting these frequencies. For instance, the

bold ”11%” expresses that 11% of all judges penalized exactly six times, and the bold ”16%” means that

16% of all participants steal exactly three times. The table shows that 24% percent of all judges (20% of

punish never and 4% always) and 28% of all potential violators (9% steal never and 19% always) behave
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identically for all levels of noise and fines in our experiment.

To learn more about the differences in the behavior of subgroups, we perform a cluster analysis. Based

on the nine decisions in their roles as judges and thieves, respectively, we adopted an average linkage cluster

approach which generates clusters based on the observations’ average distance to each other. Observations

with the smallest average distance form clusters (see e.g. Everitt et al., 2011). Participants who punish and

steal either always or never form separate clusters.

Judges. The largest Cluster 1 (38.5%) consists of judges whose punishment frequencies are intermediate

and almost independent of the fine and the noise of the signal. They seem to deviate from this pattern

only where fines and noise are both high, in which case expected preference costs caused by type-I errors

are highest compared to those of type-II errors (see table 2 above) and, therefore, judges punish very rarely.

However, there is one observation that can’t be explained by this argument: For the very highest levels of

fine and noise, judges in this cluster return to the intermediate frequency with which they punish for low

fines and noise.

The second largest cluster (24.5%) consists of judges who punish basically always for low q, frequently

for medium q, and never for high q. By contrast, their behavior is more or less independent of F . The large

impact of q indicates that these judges take q as a very good predictor for the stealing probability, that is,

they put low emphasis on the possibility that violators adjust their behavior to q.

The third cluster consists of the 20.3 percent of judges who never punish.

All other clusters are fairly small: Cluster 4 consists of judges whose punishment frequency is to a large

degree increasing in q, a behavior that is difficult to rationalize. The same holds for the 4.7% of judges in

cluster 5 who punish far most frequently for the intermediate fine level of F = 2400. Finally 4.2% of judges

punish whenever they observe that the money is gone. Recalling from table 2 that ∆II
I is negative in all

but two cases, such a behavior can be rationalized when the weight put on type-II errors is (slightly) higher

compared to type-I errors.

Thieves The cluster analysis for thieves also leads to six different patterns. The largest Cluster 1 consists

of thieves whose behavior is in line with theoretical predictions: The higher the noise and the lower the fine,
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Table 7. Cluster analysis for judges

F=1200 F=2400 F=4800

Cluster 1 q=10% 28% 30% 34%
N=74 q=50% 31% 36% 5%
(38.5%) q=90% 35% 12% 30%

Cluster 2 q=10% 100% 98% 98%
N=47 q=50% 68% 62% 30%
(24.5%) q=90% 15% 2% 4%

Cluster 3 q=10% 0% 0% 0%
N=39 q=50% 0% 0% 0%
(20.3%) q=90% 0% 0% 0%

Cluster 4 q=10% 33% 27% 27%
N=15 q=50% 87% 100% 60%
(7.8%) q=90% 100% 100% 80%

Cluster 5 q=10% 0% 44% 11%
N=9 q=50% 56% 89% 44%
(4.7%) q=90% 0% 78% 33%

Cluster 6 q=10% 100% 100% 100%
N=8 q=50% 100% 100% 100%
(4.2%) q=90% 100% 100% 100%

the higher is the stealing frequency (with the exemption at the intermediate values of q and F where the

stealing frequency is 100%). Given the actual behavior of judges, this is also consistent with the regression

analysis which shows that the violation frequency decreases in the difference between the expected fine with

and without violation (see table 5, column I).

The second largest cluster consists of violators whose behavior depends mainly on the signal’s noise, in

the expected direction: The higher q, the higher the violation frequency. The difference to the first cluster

is that higher fines still reduce the violation frequency, but are far less important. In both of these largest
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clusters, however, violators respond in the expected directions on noise and fine sizes.

18.8% of the participants steal always (cluster 3).

The remaining three clusters are small: Cluster 4 consists of participants whose behavior can hardly be

rationalized, since the violation frequency is to a large extent decreasing in q, and because the fine size plays

basically no role. 8.9% of all participants never steal (cluster 5), and the behavior in cluster 6 is almost

completely driven by the fine size: These eleven participants (5.7%) almost always steal for low F , but hardly

ever for the two higher fine sizes.

Table 8. Cluster analysis for thieves

F=1200 F=2400 F=4800

Cluster 1 q=10% 72% 52% 17%
N=58 q=50% 95% 100% 40%
(30.2%) q=90% 100% 84% 66%

Cluster 2 q=10% 2% 22% 8%
N=50 q=50% 16% 46% 34%
(26.0%) q=90% 48% 56% 48%

Cluster 3 q=10% 100% 100% 100%
N=36 q=50% 100% 100% 100%
(18.8%) q=90% 100% 100% 100%

Cluster 4 q=10% 100% 100% 90%
N=20 q=50% 50% 50% 45%
(10.4%) q=90% 10% 10% 20%

Cluster 5 q=10% 0% 0% 0%
N=17 q=50% 0% 0% 0%
(8.9%) q=90% 0% 0% 0%

Cluster 6 q=10% 64% 36% 0%
N=11 q=50% 100% 0% 0%
(5.7%) q=90% 45% 0% 9%
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7 Conclusion

We analyze the impact of fine size and legal uncertainty on the frequencies of punishments and legal in-

fringements. In our theoretical model, we assume that legal decision makers have heterogeneous preferences

with respect to type-I and type-II errors, and that potential violators have different preference costs from

violating the law. Based on these assumptions, we first derive the straightforward results that higher un-

certainty and higher fines reduce the punishment frequency when legal decision makers ignore the strategic

interdependency between their own and the violators’ decisions (non-strategic behavior). Analogously, higher

uncertainty increases and higher fines reduce the violation frequency. Taking the interdependency between

the two market sides seriously, however, results turn out to be more complicated: higher fines still reduce the

punishment frequency and higher uncertainty increases the violation frequency, but the impact of the fine

size on the violation frequency and the impact of uncertainty on the punishment frequency is more involved

and depends on the parameters of the model.

We then conduct a laboratory experiment that accounts for differences in uncertainty and fine sizes. Our

findings are basically in line with the theory, and the following results are most notable: First, in their

role as judges, participants care far more about type-I compared to type-II errors which leads to rather

low punishment frequencies: The undesired monetary consequences of type-II errors are five times higher

than those of type-I errors. This means that the average preferences of the students participating in our

experiment coincide with the principle of in dubio pro reo that is anchored in all legal systems. Second,

although the expected own monetary payoff is always higher with stealing, the average stealing probability

is only 55%. We hence find pronounced social preferences for donation or for compliance with social norms.

Third, the data reveals a large heterogeneity in preferences both in the role as a judge and in the role as a

potential violator.

Compared to the literature which treats the (relative) frequencies of type-I and type-II errors as exoge-

nously given, two of our findings deserve attention from an applied point of view: First, when the signal’s

noise represented by q in our setting, increases, then there are two detrimental effects on deterrence: The first

effect is that both error types reduce the difference in the expected fine with and without infringement, and

this sets higher violation incentives as analyzed in the traditional literature. In addition, however, judges in
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our experiment are less willing to punish in cases of higher legal uncertainty, and this indirect effect reinforces

the negative deterrence effect. Second, although the results indicate that the deterrence effect of higher fines

is likely to be overestimated when the countervailing effect via the lower willingness to convict a suspect

is neglected; precisely as emphasized by the old dignified legal literature on nullification mentioned in the

introduction.
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Appendix 1: Proof of Proposition 2

If Sα and Sm are intervals, α̃ ∈ Sα and m̃ ∈ Sm, then the Bayesian Nash equilibrium is given by the

solution to the system of equations

p = G

(
φ

q(1− φ)

A

F

)

φ = H

(
1−

Fp(1− q)

A

)
.

The system of total differentials is




1 −g(α̃) A
(1−φ)2qF g(α̃) φA

(1−φ)qF 2 g(α̃) φA
(1−φ)q2F

h(m̃)F (1−q)
A

1 h(m̃)p(1−q)
A

−h(m̃)Fp
A







dp

dφ

dF

dq




=




0

0


 . (7)

Hence, the comparative statics are:

dφ

dF
=

h(m̃)(1− q) (g(α̃)α̃− p)

A
(
1 + 1−q

q(1−φ)2h(m̃)g(α̃)
) , (8)

the denominator of which is always positive, so that the whole expression is positive if and only if

p < Aφ
Fq(1−φ)g(α̃), which is, in equilibrium, equivalent to G(α̃) < α̃g(α̃), which is always satisfied if G(.)

is convex.

dp

dF
= −

α̃g(α̃)

F
·

1 + Fp(1−q)
φ(1−φ)Ah(m̃)

1 + α̃F (1−q)
φ(1−φ)Ag(α̃)h(m̃)

< 0 (9)

independent of the distributions of α and m.

dφ

dq
=

α̃
q
g(α̃) + p

1−q

α̃
φ(1−φ)g(α̃) +

A
F (1−q)h(m̃)

> 0 (10)

30



independent of the distributions of α and m.

dp

dq
= −

g(α̃)
q

[
α̃−

p
(1−φ)2h(m̃)

]

1 + g(α̃)h(m̃) 1−q
q(1−φ)2

, (11)

the denominator of which is always positive, so that we have dp
dq

< 0 if and only if

p∗

(1− φ∗)2
h(m̃) < α̃. (12)

�
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Appendix 2: Translation of German instructions

Welcome to this experiment and thank you very much for your participation! This experiment has

been financed by researchers from RWTH Aachen, Frankfurt School of Finance & Management and

Portsmouth Business School.

Please turn off your mobile phones and remain silent during the entire experiment. Any com-

munication between you and the other participants is not allowed. If you have questions, please raise

your hand. We will then directly come to your cabin to answer your questions.

The instructions are written using the masculine form only in order to improve readability. Please

understand this as being gender-neutral.

All of your decisions will be processed anonymously and cannot be traced back to you.

During the experiment all amounts will be presented in ECU (Experimental Currency Unit). At

the end of the experiment the amount of ECU will be converted to Euro as follows:

75 ECU = 10 Cent (EUR)

You will receive a show up fee of 3000 ECU for participating in this experiment.

The experiment consists of two rounds. Your final payment will be the sum of your payments

from all two rounds and your show up fee.

During the experiment you are allowed to use any tools such as paper, pencils or calculators.

After the actual experiment we will ask you to fill out a questionnaire. Please answer these

questions honestly. The answers to the questionnaire will not impact your payment.
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All participants have been randomly assigned to one out of two groups. You have been assigned

to Group 1. In your role you will have to take decisions, which do not have any impact on your payment

in the first round. Your payment in this round will be 2400 ECU independently of your decisions.

Nevertheless we ask you to take this round seriously.

In round 1 the computer randomly assigns one participant from Group 2 to you. This partici-

pant will also receive 6000 ECU for participating in this experiment and 2400 ECU in round 1.

The experiment is as follows: For every participant in Group 2 (including the person that has

been assigned to you) we have provided a donation of another 2400 ECU to ”Brot für die Welt”.

However, the participants in Group 2 have the possibility to steal this donation. In this case, the 2400

ECU will not be donated to ”Brot für die Welt”. At the same time the payment for the participant in

Group 2 will be increased from 2400 ECU to 4800 ECU.

You will be able to see whether the donation of 2400 ECU is available or not. The only compli-

cation is that you cannot be entirely sure whether the money has been stolen by the participant in

Group 2: After the potential thief has decided about stealing the donation, the 2400 ECU can also

get lost by chance. The probability that the donation gets lost by chance will be varied but always be

public knowledge.

This means concretely: If you notice, that the 2400 ECU are not available for donation, you

cannot be sure whether the donation has been stolen or been lost by chance.

In case that the donation is not available (and only in this case) you can decide to punish the

participant from Group 2 that has been assigned to you. However, in this case you have to consider

that you might punish an innocent person. If you decide not to punish a potential thief might not get
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any a punishment for stealing the donation.

Please consider: In case that the money is still available we will really donate the money!

The punishments will be varied as well but also always be public knowledge.

You and the person that has been assigned to you will see the following table during the exper-

iment:

q/F 1200 2400 4800

10%

50%

90%

Following the lines from the top you see the probability q. This is the probability that the donation

gets lost by chance, even if the money has not been stolen.

Example: In the second line the 2400 ECU will not be available for donation with a 50% chance even

if the person from Group 2 has not stolen the donation.

Let us clarify this: Considering that the donation is not available, the probability that an inno-

cent person gets punished will be higher in a lower line (if you decide to punish).

Following the columns from the left you can see the different amounts of punishment. A punish-

ment of 4800 ECU means that 4800 ECU will be subtracted from the account of the other participant.

This punishment will only become relevant if the money is not available. For this case we ask you to

decide in which cases of q (probability that donation gets lost by chance if it has not been stolen) and

amount of punishment you want to punish.
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Before you fill out this table, please answer the following question:

Suppose you consider the probability that the person assigned to you steals with 20% probabil-

ity. You know that the donation gets lost with a 50% chance (q=50%) even if the money has not been

stolen. You then notice that the donation is not available.

How would you estimate the actual probability that the money got stolen? If you need a calcu-

lator please use the icon on the right. Please type in a value, even if you are unsure about your result.

Let us quickly sum up:

Assume that the donation of 2400 ECU is not available. Following the lines from the top you

can see the probability q that the donation got lost by chance (if it has not been stolen). In the columns

you can see possible punishments.

The participant that has been assigned to you has to decide whether he wants to steal or not

for every case. If he has stolen and does not get punished and receives a higher payment. If he has not

stolen but the donation has been lost by chance, you might punish an innocent person.

Round 1: Judge Please mark the cases in which you want to punish. You have to decide for

every case individually. A checkmark means that you want to punish, a blank field means that you do

not want to punish.

Round 2: Thief In the following round you take the role of the participants in Group 2.

Apart from this, there are no changes in the experiment compared to round 1. You receive a base

payment of 2400 ECU in this round. A checkmark in the table now means that you steal the donation
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of 2400 ECU. If the random participant from the other group decides to punish you, the punishment

will be subtracted from your account.

Before the experiment begins we would like to explain how the actual payment in round 2 is

calculated. We ask you again to fill the table with all nine combinations of q (probability that the

donation gets lost, even if you decide not to steal) and the amount of punishment. At the same time

we will ask a person from the other group to decide in which of the nine cases he wants to punish if the

donation is not available.

For the actual payment the computer randomly selects one of the nine cases; each case with

the same probability.

Example: Assume the case with q=50% and a punishment of 2400 ECU is selected. If the do-

nation is still available, your payment will be 2400 ECU. If the donation is not available, there are four

possibilities:

(1) You have stolen and you get punished. Your payment then will be: 2400 ECU (base pay-

ment) + 2400 ECU (stolen donation) - 2400 ECU (punishment) = 2400 ECU

(2) You have not stolen but you get punished. Your payment then will be: 2400 ECU (base

payment) + 0 ECU (donation not stolen) - 2400 ECU (punishment) = 0 ECU

(3) You have stolen and you do not get punished. Your payment then will be: 2400 ECU (base

payment) + 2400 ECU (stolen donation) = 4800 ECU

(4) You have not stolen and you do not get punished. Your payment then will be: 2400 ECU

(base payment) + 0 ECU (donation not stolen) = 2400 ECU
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Please mark the cases in which you want to steal. You have to decide for every case individu-

ally. A checkmark means that you want to steal, a blank field means that you do not want to

steal.
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Appendix 3: Questionnaire

Attitude to risk:

How probably would you decide to...

... invest 10 % of your yearly income in an open mutual fund with medium growth opportunities?

... invest your daily income in a poker game?

... invest 10 % of your yearly income into an entrepreneurial company?

Moral attitudes:

How probably would you decide to...

... state favorable yet questionable information in your tax declaration?

... declare someone else’s work as your own?

... keep a found purse with 200 Euro?

Impact of fines and consequences:

To which degree do you agree to the following statements?

Whether people follow rules, depends mainly on the consequences

For many crimes punishment in Germany is too low.

Necessity of rules and regulation:

To which degree do you agree to the following statements?

The financial crisis has been caused because risks were not disclosed and underestimated.

People should be held responsible for their actions.

Self-responsibility for own actions:

To which degree do you agree to the following statements?

Whether people follow rules, depends mainly on their character and their general living conditions.

Everyone is responsible for him-/herself.
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Donations are a relevant component to fight poverty and misery.

Fault of financial crisis:

To which degree do you agree to the following statements?

The financial crisis has been caused because bankers have taken risks on behalf of the community to

enrich themselves.

The financial crisis has been caused because of bad regulation.
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