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ABSTRACT 

We focus on three environmental impacts particularly influenced by population age-

structure—carbon emissions from transport and residential energy and electricity 

consumption—as well as aggregate carbon emissions for a panel of developed countries, and 

take as our starting point the STIRPAT framework. Among our contributions is to further 

disaggregate population into three particularly key age groups: 20-34, 35-49, and 50-64, and 

by doing so demonstrate that population’s environmental impact differs considerably across 

age-groups, with the older age-groups (ones typically associated with larger households) 

actually exerting a negative influence. Furthermore, those age-specific population influences 

are different (in absolute and relative terms) for the different environmental impacts we 

analyze.  Also, we find that urbanization, in developed countries, best measures access to a 

country’s power grid, and thus, is positively associated with energy consumption in the 

residential sector. Lastly, we suggest some modelling and methodological improvements to 

the STIRPAT framework. 
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1. Introduction and literature review 

Increases in anthropogenic greenhouse gas (GHG) concentrations are believed to 

have caused most of the recent increases in global average temperatures, i.e., climate change. 

The primary anthropogenic GHG is carbon dioxide, which is predominately caused by the 

combustion of fossil fuels. This paper examines the macro-level links among population 

change, economic variables, and carbon emissions and energy consumption using country-

level data. We base our analysis on the stochastic version of the IPAT model. And we 

advance the literature associated with the stochastic IPAT model (i) by informing our 

population variables (the “P” of the equation set out below) with the recent population and 

environment literature that has emphasized the importance of age-structural change, and (ii) 

by adding other improved macro-variables to capture the intensity of production and 

consumption (i.e., the “T” of the equation). Among the insights gleaned from our improved 

approach is that population’s environmental impact varies across age cohorts—a finding 

made possible by our further disaggregating population into certain age cohorts. 

Much of the work on the population-environment relationship at the national level 

follows the rather linear reasoning that more people, consuming at the same level, 

necessarily result in more human impact on the environment.  These studies frequently use 

the framework of Ehrlich and Holdren (1971), also called the IPAT/impact equation: 

TAPI ××=       (1) 

Where I is environmental impact, P is population, A is affluence or consumption per capita, 

and T is technology or impact per unit of consumption.  Among the criticisms of the Ehrlich-

Holdren/IPAT framework are that as a mathematical or “accounting” identity it does not 

permit hypothesis testing, and that it assumes a priori a proportionality in the functional 

relationships between factors. To address those two deficiencies Dietz and Rosa (1997) 

proposed a stochastic version of IPAT: 
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Where the subscript i denotes cross-sectional units (e.g., countries), the constant a and 

exponents b, c, and d are to be estimated, and e is the residual error term. Since Equation 2 is 

linear in log form, the estimated exponents can also be thought of as elasticities (i.e., they 

reflect how much a percentage change in an independent variable causes a percentage 

change in the dependent variable.) Furthermore, Equation 2 is no longer an accounting 

identity whose right and left side dimensions must balance, but a potentially flexible 

framework for testing hypotheses. In addition, the T term is now treated more like an 

intensity of use variable, and the T and P terms are modelled sometimes as a combination of 

log-linear factors. Dietz and Rosa name Equation 2 and variations of it STIRPAT (Stochastic 

Impacts by Regression on Population, Affluence, and Technology).  

The studies applying the STIRPAT formulation to carbon emissions typically find 

that both population and income/affluence are significant drivers—with elasticities often 

near or above unity (thus, e.g., a 1% increase in population causes an approximate 1% 

increase in emissions). Furthermore, most studies have found that population has a greater 

impact (i.e., elasticity) than affluence (e.g., Dietz and Rosa 1997; Shi 2003; York et al. 

2003a; Cole and Neumayer 2004; and Martinez-Zarzoso et al. 2007). This paper strives to 

further understanding of the influence of population change on some specific anthropogenic 

environmental impacts and offers some modelling improvements to the STIRPAT 

framework.  

1.1 Population disaggregation 

The most common way to disaggregate population is to include (i) the share of 

working-age population (population aged 15-64) and (ii) the level of urbanization 

(proportion of population living in urban areas). (Cole and Neumayer 2004 also included the 

share of population under 15, whereas York 2007 substituted the share of population over 64 
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for the share of working-age population.) Table 1 lists the STIRPAT studies that 

disaggregate population and describes their additional population variables, intensity 

variables, and data sets. 

Table 1 

Decomposing population in this most common way is clearly an advance on studies 

that do not disaggregate population at all. However, such population disaggregation is 

relatively crude, and so fails to capture the richness of age structure and consumption that 

other studies—often using micro-level data and focusing specifically on the impact 

demographic and household change has on energy consumption—have uncovered.
1
 For 

example, O’Neill and Chen (2002) showed how both residential and transportation energy 

consumption per capita differ nonlinearly when the age of householder is decomposed at 5-

year intervals for US data. Transportation follows an inverted-U type shape, whereas 

residential energy consumption tends to increase with age of householder—but at a non-

constant rate. To some degree these consumption patterns reflect (i) the association of age of 

household head with size of household, and (ii) the fact that large households consume more 

energy in aggregate, but less per person, than smaller households.
2
  Figure 1, which shows 

the breakdown of the number of households of various sizes by age of household head for 

the US in 2007, illustrates the first point. (The second point will be discussed further below 

and illustrated in Figure 2 below.) Figure 1 indicates that large households (4 people or 

more) are predominately headed by people in the 35-49 age cohort, and that the vast majority 

                                                
1
 Perhaps the level of aggregation encountered in the literature is so popular because it is the level of 

aggregation in the widely used World Bank data set. The UN does publish (with free access) population data in 

5-year age groupings, but the data is only available at 5-year intervals (beginning in 1950), and that data set 

requires considerably more manipulation by the analyst to compile in a form suitable for regressions. (Web 

address: http://esa.un.org/unpp.) 
 
2
 The first published population-environment study to consider households as the unit of analysis we know of 

was MacKellar et al. (1995). However, household size can be a difficult variable to collect for an empirical 

panel analysis; thus, few other macro-level, cross-country studies have followed MacKellar et al.’s lead—two 

exceptions are Cole and Neumayer (2004) and Liddle (2004). 
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of households headed by those aged 50 and older are either single or two-person (the 

estimated3 average household size for the four different household head age groupings 

shown in the figure are 2.7, 3.1, 2.2, and 1.8, respectively). 

Figure 1 

Liddle (2004), like O’Neill and Chen considering US data, showed that average miles 

driven per person decline as the number of household members increases, and, in small 

households (one to two people) at least, when controlling for the size of household, 20-30 

year-olds drive more per person than other age-groups. Prskawetz et al. (2004) demonstrated 

that similar relationships exist for Austria. Figure 2 shows average vehicle miles traveled 

(US data from 2001), both per household (left axis) and per person within a household (right 

axis) for three household types: (i) working adults without children, (ii) households with 

children, (iii) retired adults without children.4 The figure also differentiates between urban 

and rural households. Figure 2 illustrates a number of important generalizations: (i) 

households with children drive more—because they are larger—but drive less per person 

than smaller households; (ii) among households without children (typically one or two 

adults), younger, working-age households drive more; and (iii) keeping household types 

constant, rural households drive more than urban ones.  

Figure 2 

1.2 Urbanization 

 As mentioned above and displayed in Table 1, a number of carbon emissions/energy 

consumption studies that disaggregate population have included urbanization, and those 

studies have typically found a positive relationship between urbanization and carbon 

emissions or energy consumption (e.g., York et al. 2003a; Cole and Neumayer 2004; and 

                                                
3
 This number is estimated because the last household size category supplied in the data is “seven or more” 

members, i.e., the number of households with exactly eight, nine, etc., members is not explicitly known from 

the data. 
4
 The working or retired designation is merely to distinguish between two household types that do not include 

children. The data set used does not otherwise allow for disaggregations by employment status. 
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York 2007). This finding is not surprising for studies that include developing countries since 

urbanization is clearly part of the development process. More curious is the comparison 

between York (2007), who found a positive relationship between urbanization and energy 

use for 14 EU countries, and Fan et al. (2006), who found a negative and statistically 

significant relationship between urbanization and carbon emissions for their OLS regressions 

on a sub-sample of high income countries.  

It makes sense that, even in developed countries, certain types of energy consumption 

might increase with urbanization, for example, residential energy consumption as more 

people are connected to the electricity grid. On the other hand, if increases in urbanization 

mean more people living in multiple family and especially high-rise buildings, then less 

energy should be consumed on a household basis compared to people living in single family, 

detached housing.5 Counter-balancing somewhat this last factor is that dwelling area per 

capita has continued to rise with income (Schipper et al. 2001). A further reason to believe 

that urbanization may not lead to less residential energy consumption in developed countries 

is that the definition of urbanization does not necessarily imply high density living in those 

countries. For example, in highly urban Australia (with the third highest urbanization rate 

among OECD countries), 83% of people live in single family, detached homes, and only 2% 

live in apartment blocks of four or more storeys (Australian Social Trends, Australian 

Bureau of Statistics, 2004).  

By contrast, urbanization may lead to less energy consumption in transport since the 

spatial distribution of population is associated with transport demand (see Badoe and Miller 

2000 for a survey of the North American literature); i.e., more dense concentrations of 

population are associated with greater use of public transport, and thus, negatively associated 

with transport energy consumption. Indeed, Figure 2 shows, at least in the US, urban 

                                                
5
 This point was made by an anonymous reviewer.  
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households drive less than rural ones. And Liddle (2004) found a negative relationship 

between urbanization and road energy use per capita for a panel of 23 IEA countries.  

Yet, national-level urbanization rates are a relatively crude measure of spatial 

density, and thus, perhaps not the most accurate proxy for public transport. For example, 

Australia, again, a highly urbanized country (with an urbanization rate of over 80 percent in 

1960), has a relatively high reliance on personal transport; in contrast, the Netherlands, a 

country with initially low urbanization (only 60 percent in 1960 and reaching 80 percent 

only recently)—but with historically high population density—has a relatively low reliance 

on personal (motorized) transport. Finally, urbanization has a natural limit (100%), which 

most developed countries have approached. Better measures, although not appropriate for a 

country-level STIRPAT study, may be population density (also used by Liddle 2004) and 

population centrality (used by Bento et al. 2003); the latter measure is an urban area-level 

variable based on the distribution of the cumulative population against the cumulative 

distance from the central business district of a city. 

1.3 Energy intensity  

To capture intensity of use (or T), for example, a number of studies include measures 

of economic structure (e.g., Shi 2003; York et al. 2003a; and Cole and Neumayer 2004), like 

manufacturing’s share of GDP, while others add aggregate energy intensity (Cole and 

Neumayer 2004; Fan et al. 2006; and Martinez-Zarzoso et al. 2007). However, using 

structural shares of manufacturing or industry activity to explain aggregate emissions or 

energy use is a misspecification. Just because the share of economic activity from 

manufacturing or industry has declined does not mean the level of such activity has fallen; 

and it is the level of activity that should influence the level of emissions. Furthermore, 

industry is a diverse sector with respect to energy intensity, as it ranges from iron and steel 

and chemicals to textiles and the manufacturing of computing, medical, precision, and 
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optical instruments. Indeed, as Figure 3 shows, the share of value added from industry has 

declined over 1971-2005 for the OECD as a whole, but at the same time industrial output has 

increased rather substantially (variables are indexed to their 1971 value in the figure). Figure 

3 also shows a decline in industry energy intensity (industry energy consumption divided by 

industry output), until around 1990, from where it has been essentially level (again data is 

for the OECD as a whole).  

Figure 3 

Aggregate energy intensity is an improvement on economic structural share 

variables, but as a very macro-level variable it does not capture the importance of 

diversity/change among/in economic structure. In addition, aggregate energy intensity 

changes over time at very different rates and for different reasons across countries. Indeed, 

there is an extensive literature using decomposition methods to uncover the sources of 

energy intensity change (see Ang and Zhang 2000 for a review).  

1.4 This paper’s contribution 

We advance the current stochastic IPAT/STIRPAT literature in a number of ways. 

First, and most important, we use a more disaggregated measure of population—

decomposed into age cohorts that have a meaningful impact on energy consumption as 

discussed below (Sec. 3.2). Second, in addition to considering aggregate carbon emissions, 

we also examine three types of environmental impact for which population has a substantial 

demonstrated impact or influence, i.e., carbon emissions from transport and residential 

energy and electricity consumption; no other STIRPAT emissions/energy study has 

disaggregated environmental impact by demand or causal sector.6 Third, we employ better 

intensity factors (share of energy from non-fossil fuels and industry energy intensity), and 

focus more specifically on the role of urbanization by considering end-use environmental 

                                                
6
 In addition to carbon emissions, Cole and Neumayer (2004) also considered aggregate sulphur emissions, and 

both York et al. (2003b) and Rosa et al. (2004) considered methane emissions too. 
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impact. Lastly, we believe, as Cole and Neumayer (2004) did, that we use a data set and 

econometric techniques that represent an improvement over many previous stochastic IPAT/ 

STIRPAT analyses. The next section presents a discussion of the empirical methods often 

employed in macro-level, panel data studies like STIRPAT. The following (third) section 

covers our data and methods. The fourth section presents and discusses our results, and the 

fifth section concludes the paper with a summary of our findings and some directions for 

future research.  

2. Macro-level, panel data empirical methods 

Empirical studies of macro-level relationships (like STIRPAT) sometimes employ 

cross-sectional data, i.e., data taken from many countries at one period in time, and ordinary 

least squares (OLS) estimation. The main statistical concern for such studies is 

heteroskedasticity—i.e., disturbances do not all have the same variance, e.g., the estimated 

residuals may be larger for larger values of an independent variable. This problem is 

typically treated via a transformation developed by White (1980), which is an option on most 

statistical programs. The disadvantage of cross-sectional data is that dynamics are not 

directly observed; thus, it is common to collect more time dependent observations and 

transform the data set into a time-series-cross-section (TSCS) one.  

A TSCS data set (which can have more time observations than cross-sections or more 

cross-sections than time observations) implies more than just a few time observations (more 

than 2 or 3), and comes in two general varieties: (i) frequent time observations (e.g., every 

year); or (ii) more infrequent time observations (every five years). In addition to 

heteroskedasticity, TSCS analysts need to be concerned with serial correlation—i.e., 

residuals are correlated with their own lagged values—because of the dynamic nature of 

their data. Furthermore, in TSCS data sets encompassing yearly or monthly data, series 

comprised of stock (population) or stock-related variables (GDP, emissions, and energy 
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consumption, which are influenced by stocks like population and physical capital) are likely 

nonstationary—i.e., their mean, variance, and/or covariance with other variables changes 

over time. Such data sets should be tested for panel-unit roots7 and panel-cointegration,8 and, 

depending on the outcome of those tests, estimated via time-series (single cross-section)-

derived methods like vector error correction models and dynamic or fully modified ordinary 

least squares rather than standard OLS. Indeed, the energy consumption-GDP causality 

literature has shown that GDP, population, and emissions/energy consumption are all panel-

unit root and panel-cointegrated for panels consisting of a number of different countries 

(e.g., Narayan and Smyth 2008; Lee et al. 2008; Lee and Chang 2008). 

Beck and Katz (1995 & 1996) argued that a modified version of OLS produces more 

accurate estimates of standard errors in the presence of serial correlation of the residuals and 

heteroskedasticity than a number of popular weighted least squares methods (sometimes 

called feasible generalized least squares). Beck and Katz (1995) recommended that dynamic 

complications (i.e., serial correlation) be treated first by transforming the data via a common 

first order autoregressive term (AR(1)) or by adding lagged dependent variables, and that 

cross-sectional complications (i.e., contemporaneous correlation and panel 

heteroskedasticity) then be handled via OLS with panel corrected standard errors (PCSE)—a 

variation of White’s method appropriate for TSCS data.
9
 In their second paper, Beck and 

Katz (1996) argued that using lagged dependent variables is better than the AR(1) method 

because the former method makes the dynamics explicit and can sometimes be justified 

theoretically, unlike the latter. For TSCS data sets with more infrequent time observations, 

                                                
7
 Unit root tests are used to determine stationarity, and were originally developed for time-series but have been 

expanded to cover panels.  

 
8
 Two or more nonstationary variables are said to be cointegrated if some linear combination of them is 

stationary. The finding of cointegration among economic variables is interpreted as evidence of a long-run, 

equilibrium relationship. Like for unit roots, cointegration tests were originally designed for time-series but 

have been expanded to cover TSCS data sets. 
9
 This variation is now available as an option on most statistical programs too. 
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nonstationarity of the data usually is not an issue (or at least there are not enough data points 

to robustly confirm or reject its presence); thus, Beck and Katz’s approach may be preferred. 

Table 2 outlines the types of data sets and recommended methods typical for macro-level 

empirical studies like STIRPAT. 

Table 2 

Another choice TSCS modelers face is whether to use fixed effects—cross-section 

specific and/or time period specific dummy variables—or random effects (a weighting 

scheme). Some researchers make this decision based on statistical tests; however, theory and 

the particulars of the data set used can also provide guidance. Fixed effects have the 

disadvantage of requiring a number of additional coefficients to be estimated; however, 

cross-section fixed effects are ideal to address country-specific, time-invariant factors (like 

geographical ones). Also, time-period fixed effects may be able to capture the impact of 

broadly experienced, short-lived economic shocks like oil price spikes. Random effects may 

be most appropriate when the cross-sections and/or time periods included can be thought of 

as being drawn from a larger sample (e.g., a selection of developed and developing countries 

is used to gain insights into variable relationships believed to apply to all countries). 

3. Data and Empirical Specification 

We focus our analysis on 17 developed countries for which we were able to collect 

sufficient data.
10

 Our panels span 1960-2005 and include observations at five-year intervals 

(because we use age-structure disaggregated population data from the United Nations, as 

discussed below). Table 3 below lists all the variable definitions and sources we use.  

3.1 Dependent variables and affluence 

We consider total carbon dioxide emissions (from the Carbon Dioxide Information 

Analysis Center of the Oak Ridge National Laboratory), as do most other studies mentioned 

                                                
10

 Those countries are: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece, Ireland, Italy, 

Japan, Netherlands, Portugal, Spain, Sweden, United Kingdom, and United States. 
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above; we also consider three other climate change related environmental impacts for which 

population is likely to exert an important influence: carbon emissions from transport (i.e., all 

transport activity from domestic aviation, domestic navigation, road, rail and pipeline 

transport) and both residential energy and electricity consumption
11

 (all from the 

International Energy Agency). Again, following others in the literature, we use real GDP per 

capita (from the Penn World Tables) as the measure of affluence.  

3.2 Population 

Because we believe age-structure plays an important part in population’s influence 

on environmental impact, in addition to total population, we consider the population shares 

of four potentially key age groups: 20-34, 35-49, 50-64, and 65-79 (data from the United 

Nations and is only available at five-year intervals).12 The age groupings are chosen to 

approximate life-cycle periods that likely correspond to different levels of economic activity 

(and thus energy consumption) and to various household size membership (the chosen age 

groupings are essentially the same as those used in Figure 1). In addition, we must balance 

the number of independent variables with their costs in degrees of freedom. We do not 

include the share of those aged 19 and younger since as primarily dependent children their 

impact mostly should be included in their parents’ age group, and we do not include the 

share of aged 80 and older since such households are few in number and we expect their 

additional/marginal impact to be small. Hence, we gain in degrees of freedom by having 

fewer independent variables. 

Table 3 

                                                
11

 Of course, as a secondary energy source, electricity’s ultimate greenhouse gas impact depends on the extent 

to which fossil fuels are used to generate it.  

 
12

 Initially, we planned to use the population levels of these age groups, but were deterred because of the multi-

colinearity problems such variables created.  The size (but not the shares) of population cohorts are very highly 

correlated.  
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We expect population age-structure’s effect to be most evident in carbon emissions 

from transport and in residential energy and residential electricity consumption since those 

activities are likely to be influenced by household size and levels of individual behavior. 

Aggregate carbon emissions, by contrast, are likely to be more influenced by macro-

economic trends like industrial production and the carbon intensity of all energy sources than 

by the sum of individual behavior (it would be particularly surprising if the size of the oldest, 

nonworking-age cohort was significant here). We do not expect all age structure variables to 

exert a significant impact on all the dependent variables—for some measures of 

environmental impact, an age cohort’s effect will not be statistically different from that of 

the population’s as a whole. Again, in general, the 35-49 age group tends to have the largest 

households, and thus, should be less energy intensive (i.e., have a negative coefficient); 

whereas, the oldest age group (65-79) may stay at home more and thus, consume more, 

residential energy and electricity. Also, the youngest group (20-34) drives the most per 

capita, while the oldest age group drives the least.    

3.3 Technology/intensity variables 

We employ technology or intensity variables that are appropriate for the dependent 

variable (or type of environmental impact) we analyze. For total carbon dioxide emissions 

we include as variables (i) urbanization (from the World Bank) to facilitate comparisons 

with other studies, (ii) industrial energy intensity,
13

 and (iii) the share of primary energy 

consumption from non-fossil fuels14 (both second and third variables from the International 

Energy Agency); the latter two variables are included since industry is a major end-use 

                                                
13

 This variable is constructed as follows: industrial energy consumption (from the International Energy 

Agency—IEA) is divided by industrial output. Industrial output is derived by scaling the IEA’s industrial 

production index, which is indexed to year-2000, by 2000’s GDP from industry—itself calculated by 

multiplying total GDP (from Penn World Table) by industry’s share of value added (from the World Bank). A 

few missing observations in the IEA’s industrial production index are filled from a similar index produced by 

the International Monetary Fund. 

 
14

 The non-fossil fuel sources considered are: geothermal, nuclear, hydro, and solar/wind. 
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sector not influenced directly by population age-structure, and since countries that source 

energy from non-fossil fuels would have lower carbon emissions, all else equal.  

Urbanization is included as an intensity variable for residential energy and electricity 

consumption since, as argued above, it is likely to be correlated to the amount of people who 

are connected to a country’s power/electricity grid and possibly the level of housing density. 

Also, since countries differ in the extent to which electricity is used in the residential sector, 

we include electricity’s share of residential energy consumption. Other intensity variables 

related to residential electricity consumption are (i) floor area per capita and persons per 

household, which are influenced by income and population age-structure, and (ii) climate, 

which is mostly non-changing over our analysis, and thus, potentially could be captured by 

fixed country effects. Therefore, those two types of intensity variables are not expressly 

included in the regressions.  

For carbon emissions from transport we include the ratio of a country’s rail network 

to its road network (from the International Road Federation)—a reflection of a country’s 

priorities in transport mode. Road transport is more carbon intensive than rail, in particular in 

urbanized areas where rail networks are likely to be for public transit. We also include 

urbanization; however, urbanization’s impact on transport carbon emissions is difficult to 

assess. Others have found a positive relationship between urbanization and aggregate 

emissions; yet, the US data, shown previously, indicated that rural people drive more per 

capita than urban dwellers.  

Another important intensity variable would be the fuel efficiency of the vehicle fleet: 

since most of the emissions come from the road sector, and since vehicle miles traveled are 

related to area, income, and population structure, fleet efficiency would be important in 

explaining differences in fuel consumption. Unfortunately, the limited availability of 

distance traveled data means it is not possible to assemble a balanced panel that spans the 
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same length of time as our other variables (complete motor fuel consumption data is 

available for our countries over that time period from the International Energy Agency). 

Gasoline price is correlated with country level fleet fuel efficiency, but the International 

Energy Agency’s price data starts only in 1978, and so it too would result in a much shorter 

panel.   

About 85 percent of carbon emissions from transport come from the road sector in 

North America; this share is 93 percent for Europe. One reason for this difference is likely 

that the size of Canada and the US means more freight travel and more domestic air travel. 

Thus, area is likely factor in explaining cross-national differences in transport carbon 

emissions—another factor potentially captured by fixed country effects.   

3.4 Methods and specification 

Because our mostly balanced15 panel data occurs at five-year intervals, we follow the 

advice of Beck and Katz (1996) and (i) treat serial correlation by including a lagged 

dependent variable among the independent variables
16

 and (ii) account for contemporaneous 

correlation and panel heteroskedasticity by using panel corrected standard errors. It makes 

sense that emissions and energy consumption would depend on past levels (even 5 years 

before), even after accounting for affluence, population, and intensity measures, since those 

emissions and consumption levels depend on physical capital stocks for which we do not 

account. Adding a lagged dependent variable does impose an information cost, since the first 

observation (1960) cannot be used for many of our estimations. (Because total carbon 

dioxide emissions data begins in 1950, those regressions have the full 10 time periods.)  

                                                
15

 The panels used in the carbon dioxide from transport estimations are missing two observations as described 

in Table 3. 

 
16

 When including a lagged dependent variable, the Durbin-Watson test for serial correlation is no longer 

accurate. The recommended test is a Lagrange multiplier (LM) test that involves regressing the residuals from 

an OLS estimation on the first lag of those residuals as well as all the independent variables (including the 

lagged dependent variable) used in that OLS estimation. One then performs a LM test on the null hypothesis 

that the coefficient on the lagged residual term is zero—a rejection of that null is evidence of first-order serial 

correlation. 
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Using data at five-year intervals instead of yearly data also exacts an informational 

cost; however, among the benefits of this frequency of data are that we are not concerned 

with two statistical problems that have plagued some STIRPAT analyses, and yet we are still 

able to capture the essence of 45 years of information. As discussed above, in order to 

correctly (i.e., avoid the possibility of spurious regressions) and fully take advantage of the 

extra information that yearly data provides, it is necessary to test for nonstationarity in that 

data. For example, both Cole and Neumayer (2004) and Martinez-Zarzoso (2007) were 

mindful of this hazard in their data and estimated first-difference (i.e., short-run) models to 

correct for it. Again, for panel-data at five-year intervals, nonstationarity should not be a 

concern. Multicolinearity is another common problem since many of the typical independent 

variables used—particularly population and GDP per capita—are highly correlated (a ρ  > 

0.9 for population and GDP per capita in some analyses). Both Martinez-Zarzoso (2007) and 

Fan et al. (2006) recognized this problem existed in their data sets. As displayed in Table 4, 

high correlations among independent variables are not an issue for the present data set.
17

 

Table 4 

We estimate our models using OLS with two-way fixed effects (i.e., dummy 

variables for both cross-sections and for time/periods)—common practice for STIRPAT 

studies employing panel data (e.g. Cole and Neumayer 2004; Martinez-Zarzosos et al. 2007; 

and York 2007). The cross-section (or country) fixed effects account for the individual cross-

section differences that are common for the whole time span. The period fixed effects 

account for the individual differences that are specific to each period but are common for all 

                                                
17

 In addition, variance inflation factors were calculated, and all were found to be below 3. Yet, it is nearly 

impossible for regressions comprised of IPAT variables to avoid completely multicolinearity (mutual 

association among variables) based on the theories developed to explain how those variables interact. For 

example, affluence (or GDP per capita) is believed to affect population—through human capital’s influence on 

birth rates (e.g., Becker et al. 1990) and higher income’s ability to lower death rates; meanwhile, population has 

been shown to impact affluence—when the size of the working-age population increases faster than the size of 

the dependent-age population (e.g., Bloom and Williamson 1998); and human capital and technology have 

been recognized as drivers of economic growth (affluence) since Solow (1956). The above theories suggest that 

the best way to perform STIRPAT regressions may be to treat the variables as part of a cointegrated system; 

however, such analysis requires annual observations and is beyond the scope of the present paper. 
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the cross-section units.  Again, non-changing, cross-section specific geographical factors 

may influence emissions and energy consumption. Also, commonly felt events like the oil 

price spike in the 1970s and early 1980s, as well as technological improvements that are 

diffused over time, might impact emissions and energy consumption in a similar fashion 

among developed countries.
18

   

The general equation we analyze is: 

itititititititititTtiit IfTdAcPzPyPxPwPvI εβα ++++++++++= −1,4,3,2,1, lnlnlnlnlnlnlnlnln

(3) 

Where subscripts it denote the ith cross-section and tth time period. The constants α  and β  

are the country or cross-section and time fixed effects, respectively. The I, PT, P1-4, and A are 

the aggregate environmental impact or emissions, total population, the shares of population 

in the cohorts defined above, and per capita GDP, respectively. The T represents one or more 

technology or intensity terms that depend on the type of environmental impact represented 

by I. Again, those specific combinations of intensity terms and dependent variables are: (i) 

urbanization, industrial energy intensity, and the share of primary energy consumption from 

non-fossil fuels for aggregate carbon dioxide emissions; (ii) urbanization and the ratio of a 

country’s rail network to its road network for carbon emissions from transport; (iii) 

urbanization for residential energy consumption; and (iv) urbanization and electricity’s share 

of residential energy consumption for residential electricity consumption. Lastly, Iit-1 is the 

one-period lagged dependent variable term, andε  is the error term.  

4. Results and discussion 

Table 5 shows the results for aggregate carbon dioxide (Models I and II) and carbon 

dioxide emissions from transport (Models III and IV). For aggregate carbon dioxide the 

coefficients for affluence and total population are positive, significant, and relatively large. 

                                                
18

 In addition, tests on the redundancy of the fixed effects were strongly rejected for our models, as were 

Hausman tests on the consistency and efficiency of a random effects alternative to fixed effects. 
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As discussed above, in developed countries, it was not clear how urbanization would impact 

aggregate carbon emissions (or how it would impact carbon emissions from transport as will 

be discussed later). Model I indicates that, with the two improved intensity variables (share 

of energy from non-fossil fuels and industry energy intensity) both significant and working 

in the expected direction, urbanization is non-significant.  

Again, we expected the least amount of influence from age-structure on aggregate 

carbon emissions; however, we might expect the youngest, most active cohort (20-34) to 

have a positive sign and the other cohorts negative signs because of their lower activity 

levels (50-64 and 65-79) or larger household sizes (35-49). This is indeed the case; however, 

only the 20-34 and 50-64 cohorts have statistically significant coefficients, and only 

marginally so. In case the distinction between the 35-49 and 50-64 cohorts is too fine, the 

model was run again (Model II) with a larger “middle-aged” cohort of 35-64 (the 65-79 

cohort was dropped from Model II). Now the 35-64 cohort is statistically significant (p-value 

is 0.059), although the 20-34 cohort remains significant only at the 10% level.  

Table 5 

The coefficients for both affluence and total population are positive, significant, and 

relatively large for carbon dioxide from transport; however, affluence’s impact is twice that 

of population’s (Model III). The coefficients for the four age cohorts have the same signs as 

for Model I, but again they are not uniformly significant. It is not surprising that the 65-79 

cohort is not at all significant since they tend to drive the least; yet, it is somewhat puzzling 

that the youngest (20-34) cohort’s impact is insignificant since transport is an area of 

environmental impact where population age-structure may have the greatest influence and 

since the youngest cohort is the most driving intensive. When the two middle cohorts (35-

64) are combined (Model IV), their coefficient is negative, significant, and relatively large—

expected since the larger families associated with this cohort benefit from “car-pooling”; 
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however, the 20-34 cohort is still statistically insignificant (as in Model II, the 65-79 cohort 

was dropped). Perhaps most surprising is urbanization’s positive and significant impact on 

transport emissions. It was believed that higher urbanization would lead to more transit use 

and thus lower emissions. Again, US household data indicated that people living in urban 

areas drive less and would therefore emit less carbon from transport than people living in 

rural areas. (A following sub-section provides more discussion on urbanization as a measure 

of spatial density.) Having a more rail-intensive rather than road-intensive transport network 

does lower carbon emissions slightly. Lastly, the country dummy variables (listed in the 

supplemental table) are correlated with country area ( ρ  = 0.6)—a factor we hypothesized 

would be important for aggregate emissions from transport and potentially captured by the 

fixed effects.  

Table 6 displays the results for residential energy and residential electricity 

consumption (Models V and VI, respectively). For both models the coefficients for affluence 

and total population are positive, significant, and large—although population has a 

considerably greater impact than affluence. Population’s relatively larger impact than 

affluence may be surprising for energy consumption in the home—a normal (even luxury) 

good—but, as discussed above, is a typical result for STIRPAT. Urbanization, as expected, 

has a significant, positive, and fairly large coefficient in both models—providing evidence 

that urbanization is a proxy for access to the national (power/electricity) grid. For both 

Models V and VI, as was the case for the previous models too, the coefficients for the two 

middle-age cohorts (35-49 and 50-64) are significant and negative (the p-value for the 50-64 

cohort in Model VI is 0.07). The coefficient for the 65-79 cohort is positive in both models, 

as predicted, but is only statistically significant (p-value 0.06) for electricity consumption 

(Model VI). The coefficient for the 20-34 cohort is not at all distinguishable from zero (it is 

small and the p-value is 0.63) for energy consumption (Model V), and is positive but 
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statistically insignificant (p-value 0.14) for electricity consumption (Model VI). Yet, since 

both the 35-49 and 50-64 cohorts are negative and significant, the 20-34 cohort is relatively 

more energy/electricity intensive in the residential sector than those two older cohorts, as 

may be expected. Lastly, it was argued that country effects might capture temperature 

differences that could lead to more residential consumption other things being equal—yet, 

this does not appear to be the case.  

Table 6 

For all six models (shown in Tables 5 and 6), the addition of a lagged dependent 

variable solved any apparent serial correlation problems, and all models have very high R-

squared values (based on total variance), which is common among panel estimated 

STIRPAT models not using differencing of the variables (e.g., Shi 2003; Fan et al. 2006; and 

York 2007). And, for all six models the period effects (shown in the supplemental table) 

work similarly to a time-trend with the impact factors for all countries becoming less 

emissions/energy intensive over time. That progression may reflect a diffusion of more 

energy efficient technology among these highly developed countries.  

4.1 Revisiting carbon from transport and residential electricity with first difference models 

 Although using data at five-year intervals means one cannot convincingly establish a 

panel unit root (nonstationarity in the data), a number of our data series exhibit high degrees 

of linear (increasing) trending. This pattern is particularly evident in the dependent variables 

carbon dioxide from transport and residential electricity consumption, as well as the 

independent variables affluence and population. Variables not characterized by linear trends 

include (i) the dependent variables total carbon dioxide emissions and residential energy 

consumption, for which many countries experienced peaks during the period studied, and (ii) 

the age structure variables, which are naturally “wave-like.” In addition, the coefficient for 

lagged electricity consumption (Model VI) was very high (although statistically significantly 
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lower than 0.85); hence, that model is nearing a first difference model. Thus, we ran the 

models for carbon dioxide from transport and residential electricity consumption (IV and VI, 

respectively), again with all variables in (logged) first differences. First differencing the 

variables treats serial correlation without the aid of a lagged dependent variable or AR(1) 

transformation, and it eliminates any possibility of a (first order)
19

 unit root in the data. The 

logged and differenced model means that the variables are now five-year growth rates, and 

that the estimated coefficients are constants of proportionality between percentage changes 

in the independent variables and percentage changes in the measure of impact, rather than 

elasticities. Also, since we believe single events are much less likely to impact percentage 

changes or growth rates, as opposed to level changes, we include only cross-section 

(country) fixed effects. (The time component of the variables no longer represents a single 

year, but a five-year period over which growth rates are calculated.) 

Table 7 

 Table 7 presents the results of the two regressions described in this sub-section. For 

residential electricity consumption, the results are similar to the previous results (compare 

Models VIII and VI); however, a number of coefficients (affluence, population, 

urbanization, and the 35-49 and 50-64 cohorts) are two to three times larger in Model VIII. 

Also, the 65-79 cohort is not at all statistically significant (p-value 0.81); thus, this cohort 

affects electricity consumption via level changes (Model VI), but not via growth rate 

changes (Model VIII). For carbon dioxide from transport (Model VII in Table 7), 

urbanization’s coefficient is no longer significant. It is surprising that the urbanization 

coefficient is positive and significant in Models III and IV (since a negative relationship was 

anticipated); it is reasonable that a percentage change in urbanization would not have a 

proportional effect on the percentage change in transport carbon emissions. Also, the 
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 When economic or demographic variables are nonstationary, they are typically I(1), i.e., if differencing is 

applied once they become stationary. Orders of integration greater than I(2) are very rare among 

economic/demographic variables.  
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coefficient for young adults (aged 20-34) is significant and positive as originally expected; 

(the coefficient for middle-aged adults (35-64) remained significant—p-value 0.07—and 

negative as in Model IV). Again, it was believed—mostly because of the associated 

household sizes—that people aged 20-34 would drive more per capita and that people aged 

35-49 would drive less per capita (or per household member). Lastly, the coefficient for total 

population is now larger than the coefficient for affluence—again, typical for STIRPAT 

analyses, both in the other models presented here and in the literature.  

4.2 Comparisons with other studies 

It is hard to compare directly our results with previous work because the other studies 

considering carbon emissions or energy consumption and employing TSCS data used annual 

observations (Shi 2003; Cole and Neumayer 2004; Fan et al. 2006; Martinez-Zarzoso et al. 

2007; and York 2007). Yet, only Cole and Neumayer (2004) and Martinez-Zarzoso et al. 

(2007) dealt with the possibility of nonstationarity in their data, and they did so by taking 

first differences; thus, their coefficient estimates have a slightly different interpretation than 

most of ours, and the R-squared values of their regressions are (correspondingly) mostly 

considerably lower (0.06-0.10 and 0.35-0.58, respectively). Also, we added a lagged 

dependent variable to avoid serial correlation—something only Martinez-Zarzoso et al. did 

too. All studies found population and affluence to be important, with population typically 

having the higher coefficient, but the relative difference ranged considerably from nearly the 

same (Cole and Neumayer and Fan et al.) to population’s coefficient being about five times 

as large (York).  

Of the studies that considered population age distribution, most used the very large 

cohort aggregation of 15-64, and their findings ran the gamut from positive (Shi 2003) to 

insignificant (Cole and Neumayer 2004) to negative (Fan et al. 2006). York (2007) 

considered the share of population over 65, and found, somewhat surprisingly, a significant, 
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positive (and relatively large) coefficient for that cohort’s influence on aggregate 

commercial energy use. It is not clear why more people over 65 would lead to more energy 

consumed for that very high economy-wide level of aggregation (i.e., why would industrial 

energy consumption or consumption in commercial buildings rise with the aged, dependent 

population?). We hypothesized that a greater percentage of people over 65 could lead to 

more energy consumed in the residential sector, since that age group may spend more time at 

home and tend to have smaller households. Indeed, our results uncovered such a 

relationship; however, the coefficient for the 65-79 cohort was only statistically significant 

for electricity consumption (Model VI). Yet, since the shares of people aged 35-64 had 

significant negative coefficients for both residential energy and residential electricity 

consumption (Models V and VI), all other age groups (0-34 and 65 and over) were relatively 

more energy intensive. 

The studies that used aggregate energy intensity (Cole and Neumayer 2004; Fan et al. 

2006; and Martinez-Zarzoso et al. 2007) typically found its coefficient to be significant, 

positive, and relatively larger than our coefficient on industrial energy intensity. It is not 

surprising that the more aggregate energy intensity variable those studies used would be 

more correlated with aggregate carbon emissions than our more specific and disaggregated 

industrial energy intensity variable.
20

 Lastly, Cole and Neumayer and Fan et al. found 

urbanization to be significant, positive, and relatively large in their carbon emissions 

regressions; by contrast, we found urbanization appropriately to be insignificant in our 

carbon emissions regressions (Models I and II), we believe, because of our additional 

included variables (disaggregated population and improved intensity variables). Meanwhile, 

York (2007) found urbanization to be significant, positive, and of similar magnitude in his 
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 As pointed out by an anonymous reviewer, national, aggregate carbon emissions are calculated from 

national, aggregate energy consumption; thus, for countries with carbon intensive energy sources, aggregate 

carbon emissions and aggregate energy intensity run the risk of being highly correlated by construction. It can 

be seen from the correlation matrix (Table 4) that our industrial energy intensity variable does not suffer from 

this problem.  
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commercial energy regression as we found in our residential energy regressions (Models V 

and VI), a finding in concert with our idea that urbanization measures access to a country’s 

power grid.  

4.3 Urbanization, spatial density, and transit 

 In the regressions presented here urbanization’s coefficient is typically positive, 

significant, and large (except for aggregate carbon emissions for which it is small and 

insignificant and for the first difference model of carbon dioxide from transport for which it 

is also insignificant). Yet, there was a belief that if urbanization is a proxy for the spatial 

density of living, it might have a negative influence on emissions and energy consumption. 

Ultimately, the way urbanization is measured and defined, it is a more accurate proxy of sub-

urbanization—a process/spatial allocation most people think is rather energy intensive. 

Indicators of spatial density are probably best measured at a more local level—as opposed to 

a national-level indicator like urbanization. Hence, two problems for STIRPAT-like analyses 

are: (i) data on cities tend to be far less frequently collected (than national data); and (ii) city-

level data does not lend itself easily to otherwise country-based panels (e.g., how to 

determine the number of cities per country to include).  

 Kenworthy et al. (1999) assembled a database that includes 32 cities from 13 

developed countries with observations taken at 1960, 1970, 1980, and 1990 for a number of 

measures of interest here (like population, area, transit and private vehicle travel). Studying 

their data leads to a couple of conclusions: (i) national measures of urbanization are not 

accurate indicators of spatial density of living; and (ii) more dense living arrangements 

indeed are associated with greater use of transit and lessor reliance on personal transport. For 

example, over 1960-1990, national levels of urbanization were actually negatively correlated 

with the population density of inner cities ( ρ  = -0.33). Also, in the cities in their data base, 

the average population density of urban areas actually fell by about one-quarter from 1960-
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1990, even though urban populations increased by an average of 40%—because urban areas 

themselves increased in size (or area covered) by an average of 70%, while the inner city 

areas increased in size by an average of only 20% over that time.  

On the other hand the population density of inner city areas (measured by people per 

hectare) does have the expected correlation with km driven per capita and transit passenger 

km per capita ( ρ  = -0.69 and ρ  = 0.64, respectively). Figure 4 illustrates these 

relationships. The Figure shows, for 32 cities and four time periods from the Kenworthy et 

al. data set, inner city population density (x-axis) and yearly km travelled per capita from 

driving and transit (y-axis). Driving has a negative relationship with density (R2=0.47), while 

transit riding has a positive relationship with density (R
2
=0.41). 

Figure 4 

5. Conclusions and further directions 

We have demonstrated the importance, in STIRPAT studies, of both further 

disaggregating population and considering environmental impacts—we focused on transport 

and residential end-uses—where population has a more direct influence. Population impacts 

the environment in considerably different ways across age-groups, and those impacts differ 

some according to the environmental measure considered. The share of people in the 20-34 

age-cohort nearly always had a positive influence on environmental impact, although that 

impact was not always significant, while the share of people in the 35-64 cohort had a 

significant, negative influence in all our regressions; and the share of people in the 65-79 

cohort exerted a positive effect on residential energy consumption (albeit, statistically 

significant only for electricity consumption). Thus, it appears people travel an U-shaped life-

cycle with respect to (certain types of) energy intensity: they live a relatively energy 

intensive lifestyle in both early adulthood and as they enter “retirement-age” or grow older 

than 65, but intermittingly live a relatively energy nonintensive lifestyle during “middle-age” 
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or ages 35-64. Again, these nonlinearities are driven in no small part by the household sizes 

with which such age groups are typically associated—larger households being less energy 

intensive on a per member basis. Some people working with micro-level, country-specific 

data already have determined that environmental impact can vary across age-groups; our 

confirmation of this variable relationship using macro-level, cross-country data provides 

those researchers with evidence that their findings are generalizable to other developed 

countries.  

For some new measures of environmental impact—carbon emissions from transport 

and residential electricity and residential energy consumption—we confirmed a consistent 

finding in the STIRPAT literature; namely, both affluence or GDP per capita and total 

population are important, but at least for developed countries, population causes a greater 

impact than affluence. Not surprisingly, countries with higher energy intensity in their 

industry sectors had higher (aggregate) carbon emissions. Urbanization, again, in developed 

countries, measures access to a country’s power grid, and thus, is significantly and positively 

associated with energy consumption in the residential sector. Urbanization had an 

insignificant impact on aggregate carbon emissions and probably an insignificant impact on 

carbon emissions from transport (at least it was insignificant in the first difference model, 

and we cannot think of a theory as to why it would be positively related to transport after 

controlling for affluence). In developed countries, urbanization is not an accurate proxy for 

the spatial density of living. (Increasing the spatial density of living almost certainly leads to 

lower private transport loads.)   

Lastly, since the STIRPAT literature traces its origins back to an accounting 

identity—rather than, say, a set of social-science based theories (e.g., there is no 

representation of price or measure of equality, etc.)—we believe it is worthwhile to 

critique/improve STIRPAT from a technical/methodological point of view. In addition, to 
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further disaggregating population cohorts, we offered two new, important intensity 

measures—share of energy from non-fossil fuels and industry energy intensity—in our 

aggregate carbon dioxide emissions analysis, and added clarity to the role urbanization plays 

with the environment in developed countries by including some additional analysis on that 

relationship and by performing regressions on residential consumption. In terms of methods, 

we employed data observed at five-year intervals to mitigate two statistical problems 

encountered in such work—multicolinearity and nonstationarity in the data, and we 

discussed another approach to address those concerns, i.e., panel-based cointegration 

analysis. 

An obvious way to move the STIRPAT literature forward would be to explore 

different/further disaggregation of population and/or environmental impact. Our analysis has 

been hindered somewhat by data availability; thus, access to improved data could open a 

number of additional channels of analysis, such as adding developing countries or adding 

improved intensity measures (like vehicle fleet fuel efficiency, or a related characteristic, 

like average weight) to transport-focused impact studies. If one could access population data 

disaggregated by five-year age-cohorts (or at least more disaggregation than 15-64) and 

issued yearly (rather than in five-year intervals), there might be considerable potential for 

applying sophisticated time-series techniques like unit root, cointegration, and causality 

tests, as the expansive GDP-energy literature has already done.  

An alternative method to cointegration modeling that also acknowledges the mutual 

causality among the IPAT variables could involve analyzing a system of multiple equations. 

As discussed in Footnote 17, a number of social science theories link various combinations 

of affluence or income, population and population change, environment or energy, and even 

intensity variables like economic structure and urbanization. Possible additional equations to 

consider include: affluence as a function of population, energy consumption, and perhaps 
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urbanization; population as a function of affluence and urbanization; and urbanization as a 

function of affluence and population.  
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Table 1. Stochastic IPAT/STIRPAT studies on Carbon emissions/energy consumption using 

disaggregated population measures 

 

Notes:  
a, working-age population is population aged 15-64, as defined by the World Bank 

b, use of average household size means the panel is no longer balanced as about 13 percent 
of observations are lost 

c, total energy use divided by GDP 

d, it is not clear from the text whether or not the panel is balanced; but given the number of 
countries, time span, sole source of data (World Bank), it is likely unbalanced 

e, dependent variable is aggregate energy consumption, and no intensity-type variables are 
used 

f, panel is not balance because Germany is included for which data do not begin until 1971; 
also, German data is the sum of East and West German data prior to reunification 

York et al. (2003b) is not materially different from York et al. (2003a) in terms of the 
dimensions emphasized in the table, and thus, is not included. 

Study Additional population 

variables 

Intensity variables Data structure 

Shi, 2003 Share of working-age 

population 
a
 

Manufacturing share of 

GDP, Service share of 
GDP, non-tradeables 

share of GDP 

 

Unbalanced panel of 93 

developed and 
developing countries, 

1975-1996 

York et al., 2003a Share of working-age 

population, urbanization 

Industry share of GDP Cross-section of 146 

developed and 

developing countries at 

1996 

 

Cole and Neumayer, 

2004 

Share of working-age 

population, Share of under 

15 population, 
urbanization, average 

household size  

Manufacturing share of 

GDP, aggregate energy 

intensity 
c
 

Balanced panel 
 b
 of 86 

developed and 

developing countries, 
1975-1998 

 

Fan et al., 2006 Share of working-age 

population, urbanization 

Aggregate energy 

intensity 

208 Developed and 

developing countries,
d
 

1975-2000 

 

York, 2007 
e
 Share of population over 

64, urbanization 

 14 EU countries, 
f
 

1960-2000 
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Table 2. Common data sets used and empirical methods recommended for macro-level 

analyses like STIRPAT 
 Data structure Advantages Drawbacks Solution References 

“Pure” 
cross-section 

Observations 

taken at one 

time point for 

many 

countries 

Simple; main 

concern 

heteroskedasticity; 

can use OLS 

Cannot directly 

observe dynamics;  

Add more time 

observations (then 

see TSCS) or 

convert variables 

to rates of change 

 

Any basic 

econometrics 

text 

“Pure” time 

series 

Frequent 

observations 

(yearly, 

monthly) for 

one country 

Can model short- 

and long-run 

relationships 

Data likely 

nonstationary; 

panelling data 

from similar 

countries can 

improve estimates 

 

Test for unit roots 

& cointegration; 

estimate with 

VECM or DOLS 

Maddala & 

Kim 2000 

TSCS w/ 

frequent 

time 

observations 

Typically 

T>N (data 

observed 

yearly or 

monthly) 
a
 

Many data points 

(high d.f.); address 

both cross-

sectional & 

dynamic variation 

Some series likely 

nonstationary; can 

take first 

differences to 

address, but lose 

ability to model 

long-run 

relationship 
 

Test for panel-unit 

roots & panel-

cointegration; 

estimate with 

panel-VECM, 

panel-DOLS, or 

panel-FMOLS 

(best if T>N) 
c
 

Pedroni 

1999; Baltagi 

2000 

 

TSCS w/ 

infrequent 

time 

observations 

Typically 

N>T (data 

observed at 5- 

or 10-yr 

intervals) 
b
 

Address both 

cross-sectional & 

dynamic variation; 

stationarity should 

not be an issue 

Can still have 

serial correlation; 

heteroskedasticity 

often present 

Transform data 

with AR(1) or add 

lagged dependent 

variables; then use 

OLS with PCSE 

Beck & Katz 

1995; Beck 

& Katz 1996 

Notes: a, Most important issue is the times-series properties of the data; not whether T 

exceeds N.  

b, Panel data is sometimes used to describe a data set with many cross-sections but very few 

time observations (say, three). This type of data set is not common for STIRPAT studies 
since the type of macro-level data they employ is (usually) readily available.  

c, Beck & Katz intended their recommendations to be valid for all TSCS data; however, their 
papers appeared before advances in panel-unit root and panel cointegration testing emerged. 

A recent paper by Beck (2008) implies he may agree with our categorization of TSCS data 
and corresponding methods. 

Abbreviations: AR (autoregressive function); d.f. (degrees of freedom); DOLS (dynamic 
ordinary least squares); FMOLS (fully modified ordinary least squares); N (number of cross-

sections); OLS (ordinary least squares); PCSE (panel-corrected standard errors); T (number 

of time periods); TSCS (time-series-cross-section); VECM (vector error correction model). 
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Table 3. Variables used in the study. 
Symbol Definition Source 

Dependent variables 
Carbon Carbon dioxide emissions from fossil 

fuel combustion and cement 

manufacture in metric tons of carbon 

Marland, G., T.A. Boden, and R.J. Andres. 

2007. Global, Regional, and National CO2 

Emissions. In Trends: A Compendium of Data 
on Global Change. Carbon Dioxide Information 

Analysis Center, Oak Ridge National 

Laboratory, U.S. Department of Energy. 

 

CarbonT Carbon dioxide emissions from 

transport in metric tons 

 

International Energy Agency 

Electric 
a
 Total residential electricity 

consumption in kilowatt hours 

 

Ibid 

ResEnrg 
a
 Total residential energy consumption 

in metric tons oil equivalent 
 

Ibid 

Independent variables 
A Real per capita GDP in USD and 

2000 constant prices 

A. Heston, R. Summers and B. Aten, Penn 

World Table Version 6.2, Center for 

International Comparisons, University of 

Pennsylvania. 

 

Pop2034 Share of mid-year population 

between ages 20-34 

Population Division of the Department of 

Economic and Social Affairs of the United 

Nations Secretariat, World Population 

Prospects: The 2006 Revision and World 

Urbanization Prospects. 

 
Pop3549 Share of mid--year population 

between ages 35-49 

 

Ibid 

Pop5064 Share of mid--year population 

between ages 50-64 

 

Ibid 

Pop6579 Share of mid--year population 

between ages 65-79 

 

Ibid 

Poptot Total mid-year population 

 

Ibid 

Urban Share of population living in urban 

areas 

 

World Bank 

NonFF Share of total primary energy supply 

generated from non-fossil fuels 

 

International Energy Agency 

ShElec Share of residential energy 

consumption from electricity 

 

Ibid 

RailRoad 
b
 Ratio of total rail network (in km) to 

total road network (in km) 

 

International Road Federation 

EI Industrial energy consumption 

divided by industrial output in ton oil 

equivalent over one-thousand USD in 

2000 constant prices 

 

Penn World Table, International Energy 

Agency, International Monetary Fund 
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Notes: a, missing data for Denmark;  

b, missing single data points for Portugal (1985) and Sweden (2000);  

All series begin in 1960 except for Carbon, A, and the UN population data, which all begin 

in 1950.  



 36

Table 4. Correlation matrix for all variables. 

 
Independent 

Variables 

 
A 

 
Poptot 

 
Pop2034 

 
Pop3549 

 
Pop5064 

 
Pop6579 

 
ShElec 

 
Urban 

 
EI 

Rail 
Road 

 
NonFF 

            

Independent Variables 

A 1.000           

Poptot 0.303 1.000          

Pop2034 0.112 0.116 1.000         

Pop3549 0.621 0.079 -0.096 1.000        

Pop5064 0.293 -0.105 -0.414 0.296 1.000       

Pop6579 0.444 -0.143 -0.201 0.340 0.678 1.000      

ShElec 0.502 0.274 0.179 0.397 0.029 0.109 1.000     

Urban 0.541 0.080 -0.033 0.239 0.221 0.361 0.249 1.000    

EI -0.304 -0.014 -0.148 -0.312 -0.182 -0.301 -0.175 -0.015 1.000   

RailRoad -0.259 -0.180 0.071 -0.191 -0.196 -0.303 -0.189 -0.080 0.331 1.000 1.000 

NonFF 0.343 0.016 -0.039 0.270 0.191 0.318 0.333 0.229 0.057 0.124  

            

Dependent  Variables 

Carbon 0.357 0.949 0.094 0.053 -0.137 -0.137  0.136 0.083  -0.027 

CarbonT 0.388 0.921 0.104 0.074 -0.143 -0.125  0.136  -0.120  

Electric 0.452 0.897 0.104 0.139 -0.088 -0.071 0.317 0.153    

ResEnrg 0.374 0.932 0.067 0.046 -0.120 -0.106  0.171    

Note: Dependent variable correlation coefficients are only shown for those independent 

variables that appear in the same model.
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Table 5. Estimation results for aggregate carbon dioxide emissions and carbon dioxide from 

transport from OLS with two-way (cross-section and time) fixed effects.  

Dep. variable Aggregate Carbon dioxide Carbon dioxide from Transport 

 I II III IV 

A         0.568****  

(0.091) 

       0.570****  

(0.100) 

       0.608****  

(0.098) 

       0.607****  

(0.096) 

Poptot         0.695****  

(0.137) 

       0.693****  

(0.164) 

   0.282**  

(0.139) 

   0.297**  

(0.140) 

Pop2034 0.173*  

(0.096) 

0.205*  

(0.118) 

0.074  

(0.113) 

0.064  

(0.107) 

Pop3549 -0.188  

(0.127) 

   -0.312**  

(0.141) 

 

Pop5064    -0.202*  
(0.116) 

 -0.192  
(0.131) 

 

Pop6579 -0.058 

(0.083) 

 -0.011 

(0.093) 

 

Pop3564  -0.359*  

(0.188) 

   -0.531**  

(0.236) 

NonFF          -0.020**** 

 (0.005) 

      -0.020****  

(0.006) 

  

EI        0.193****  

(0.040) 

       0.186****  

(0.050) 

  

Urban 0.064  

(0.141) 

0.038  

(0.138) 

    0.344**  

(0.157) 

   0.352**  

(0.157) 

Carbon (-1)          0.687****  
(0.037) 

         0.673****  
(0.037) 

  

RailRoad       -0.064***  

(0.024) 

    -0.065***  

(0.024) 

CarbonT (-1)           0.622****  

(0.067) 

        0.626****  

(0.060) 

     

R
2
 0.9975 0.9975 0.9976 0.9976 

Adjusted R
2
 0.9968 0.997 0.9969 0.9970 

     

LM test for serial 

correlation 

0.170  

(0.680) 

0.273  

(0.602) 

0.303  

(0.762) a 

0.337  

(0.737) a 

       

x-sections 17 17 17 17 

observations 170 170 151 151 

 

Notes: Standard errors, panel-corrected for cross-section heteroskedasticity and 
contemporaneous correlation, are in parentheses. Coefficients for the fixed effects (country 

and time) and intercept are not shown. All variables are in natural logarithmic form.  
Probabilities for the LM test are shown in parentheses.  

a, because the panels for carbon dioxide from transport are unbalanced, a T-test had to be 
used instead of the LM test. However, if the two series with a missing observation were 

removed, a LM test rejected serial correlation, and the regression coefficients were not 
substantially different.  

Statistical significance is indicated by: **** p <0.001, *** p <0.01, ** p<0.05, and * 

p<0.10.   
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Table 6. Estimation results for residential energy and electricity consumption from OLS with 

two-way (cross-section and time) fixed effects.  

Dep. variable Residential energy consumption Residential electricity consumption 

 V VI 

A          0.650**** 

 (0.144) 

         0.347**** 

 (0.085) 

Poptot         1.038**** 

 (0.277) 

         0.619**** 

 (0.161) 

Pop2034 -0.087 

 (0.182) 

0.175 

 (0.118) 

Pop3549       -0.915**** 

 (0.243) 

   -0.303* 

 (0.166) 

Pop5064    -0.503 **  
(0.213) 

   -0.285** 
 (0.137) 

Pop6579 0.178 

(0.145) 

0.174* 

(0.093) 

Urban     0.611** 

 (0.301) 

         0.450*** 

 (0.159) 

ShElec        0.143*** 

 (0.036) 

ResEnrg (-1)           0.602**** 

 (0.051) 

 

Electric (-1)  0.754**** 

 (0.038) 

   
R

2
 0.9909 0.9975 

Adjusted R
2
 0.9884 0.9969 

   

LM test for serial   

correlation 

0.885 

 (0.347) 

0.616 

 (0.433) 

   

x-sections 16 16 

observations 144 144 

 

Notes: Standard errors, panel-corrected for cross-section heteroskedasticity and 

contemporaneous correlation, are in parentheses. Coefficients for the fixed effects (country 

and time) and intercept are not shown. All variables are in natural logarithmic form.  

Probabilities for the LM test are shown in parentheses. Statistical significance is indicated 

by: **** p <0.001, *** p <0.01, ** p<0.05, and * p<0.10.    
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Table 7. Estimation results for rates of change in carbon dioxide from transport and 

residential electricity consumption from OLS with cross-section fixed effects (all variables 

in logged differences).  

Dep. variable ∆Carbon dioxide from Transport ∆Residential electricity consumption 

 VII VIII 

∆A           0.789**** 

 (0.098) 

        0.766**** 

 (0.124) 

∆ Poptot    1.341*** 

 (0.506) 

         2.240**** 

 (0.559) 

∆ Pop2034      0.304** 

 (0.136) 

0.187 

 (0.174) 

∆ Pop3549     -0.665*** 

 (0.204) 

∆ Pop5064         -0.671*** 

 (0.233) 

∆ Pop3564 

 

-0.484* 

(0.267) 

 

∆ Pop6579  0.061 

(0.254) 

∆Urban 0.482 

 (0.328) 

        1.916**** 

 (0.438) 

∆ ShElec          0.243**** 

 (0.049) 

   
R

2
 0.5957 0.7126 

Adjusted R2 0.5308 0.6575 

   

DW d test 1.962 2.155 

      

x-sections 17 16 

observations 153 144 

 

Notes: All variables are in natural logarithmic form. ∆  denotes first difference. Standard 
errors, panel-corrected for cross-section heteroskedasticity and contemporaneous correlation, 

are in parentheses. Coefficients for country fixed effects and intercept are not shown. 
Statistical significance is indicated by: **** p <0.001, *** p <0.01, ** p<0.05, and * 

p<0.10.   
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Figure 1. The number of households in five different household-size groups by age of 

household head for the US in 2007. Data from the US Census Bureau.  



 41

 

0

5

10

15

20

25

30

35

40

No children,

working

Children No Children, retired

Household type

V
M

T
 (

1
0
0
0
s
) 

p
e
r 

h
o

u
s
e
h

o
ld

0

2

4

6

8

10

12

14

V
M

T
 (

1
0
0
0
s
) 

p
e
r 

p
e
rs

o
n

urban

rural

avg vmt per person

 
 

Figure 2. Vehicle miles travelled (VMT) for three household types: (1) those working but 

without children, (2) those with children, and (3) those retired and without children. The left 

axis shows VMT (in thousands) per household and also differentiates between urban and 

rural households (VMT per urban/rural household is indicated by the bars). The right axis 

shows VMT (again in thousands) per person for the three household types (VMT per person 

is indicated by the line). Data are from US Department of Energy, Energy Information 

Agency, 2001. 
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Figure 3. The intertemporal paths (data normalized to the 1971 value) of industry output (in 

GDP terms), industry energy intensity (energy consumption/output), and industry value 
added (as a percent of GDP) for OECD as a whole, 1971-2005. Industry output and energy 

intensity are derived from the International Energy Agency’s Energy Balances of OECD 
Countries, 2008 edition. Industry’s share of value added is from the World Bank. 
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Figure 4. The relationship between inner city population density (persons/hectare) and yearly 

kilometers traveled per capita for driving (blue diamonds) and transit (red circles). Data are 

from 32 OECD cities taken from 1960, 1970, 1980, 1990, and were collected by Kenworthy 

el al. (1999). Logarithmic trend lines shown. 
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Supplemental Data 

 

Country and period dummy coefficients for all regressions  
Regression I II III IV V VI VII VIII 

 Country coefficients 
AUS 0.097 0.121 0.029 0.027 -0.109 -0.073 -0.058 -0.043 
AUT 0.301 0.272 -0.155 -0.136 0.691 0.344 0.007 0.026 
BEL 0.201 0.196 -0.246 -0.236 0.447 0.221 0.005 0.077 
CAN -0.122 -0.084 0.255 0.244 -0.067 -0.011 -0.056 -0.058 
DNK 0.414 0.389 -0.301 -0.275   0.027  
ESP -0.151 -0.149 0.097 0.085 -0.673 -0.343 0.000 0.043 
FIN 0.476 0.456 -0.002 0.027 1.346 0.819 0.012 0.080 
FRA -0.483 -0.470 -0.020 -0.043 -0.745 -0.411 -0.021 0.039 
GBR -0.374 -0.358 -0.050 -0.072 -0.802 -0.546 -0.043 -0.080 
GRC 0.483 0.451 0.098 0.115 0.668 0.408 0.064 0.079 
IRL 0.739 0.716 -0.074 -0.041 1.312 0.774 -0.003 -0.149 
ITA -0.364 -0.364 0.087 0.069 -0.579 -0.431 0.068 0.057 
JPN -0.580 -0.549 0.130 0.101 -1.146 -0.620 0.000 -0.006 
NLD -0.030 -0.031 -0.185 -0.180 0.274 0.086 0.020 -0.032 
PRT 0.372 0.333 0.130 0.150 0.529 0.391 0.067 0.027 
SWE 0.064 0.046 -0.154 -0.138 0.571 0.373 -0.016 0.023 
USA -1.045 -0.977 0.339 0.284 -1.717 -0.981 -0.073 -0.082 
         

 Period coefficients 

1960 0.233 0.244       
1965 0.272 0.282 0.192 0.200 0.358 0.313   
1970 0.194 0.201 0.152 0.155 0.408 0.299   
1975 0.021 0.025 0.049 0.052 0.020 0.119   
1980 -0.009 -0.010 0.004 0.005 -0.100 0.005   
1985 -0.144 -0.144 -0.077 -0.078 -0.051 -0.073   
1990 -0.101 -0.106 -0.034 -0.036 -0.120 -0.136   
1995 -0.126 -0.133 -0.073 -0.078 -0.114 -0.152   
2000 -0.165 -0.174 -0.089 -0.093 -0.200 -0.194   
2005 -0.176 -0.185 -0.124 -0.127 -0.201 -0.181   

 


