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Abstract: Border region transportation forecast analysis is fraught with difficulty. In the case of El Paso, 

Texas and Ciudad Juarez, Chihuahua, Mexico, dual national business cycles and currency market fluctuations 

further complicate modeling efforts. Incomplete data samples and asymmetric data reporting conventions further 

confound forecasting exercises. Under these conditions, a natural alternative to structural econometric models to 

consider is neural network analysis. Neural network forecasts of air transportation and international bridge activity 

are developed using a multi-layered perceptron approach. Those out-of sample simulations are then compared to 

previously published forecasts produced with a system of simultaneous econometric equations. Empirical results 

indicate that the econometric approach is generally more accurate. In several cases, the two sets of forecasts are 

found to contain complementary information. 
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1. Introduction 

 Traditional econometric forecasts of surface and air transportation traffic flows in border regions have been 

found to contain errors. One potential alternative to structural econometric models is provided by neural networks. 

Neural network forecasts have proven helpful in a variety of different settings, but have not been extensively 

tested using data for border metropolitan economies. This study carries out such an exercise using data for the 

Borderplex economy of El Paso, Texas and Ciudad Juarez, Mexico. 

 Border region transportation analyses are complicated by numerous factors. Some of the more prominent 

examples include dual national business cycles, cross jurisdictional metropolitan business cycles, incomplete data 

coverage, data asymmetries, and currency market fluctuations. Regional demographic and labor market conditions 

represent further obstacles to predictive accuracy in the case of El Paso, Texas and Ciudad Juarez, Chihuahua, 

Mexico (West, 2003). Given the preceding, it is not surprising that border region econometric transportation 

forecasts have historically posted mixed accuracy records, relative to random walk benchmarks, in at least some 

markets (Fullerton, 2004). 

 Under these circumstances, one potential alternative approach is provided by neural network analysis 

(Vlahogianni, Golias, & Karlaftis, 2004). Neural networks have been applied to a number of different economic 

and transport forecasting problems and frequently are found to provide accurate predictions relative to other 

methodologies. In particular, they are well suited to handling situations in which data generating processes are 

unknown and may involve nonlinearities (Jagric & Strasek, 2005). 

                                                        
Thomas M. Fullerton, Jr., Ph.D., Professor & Trade in Americas Chair, University of Texas at El Paso; research areas: border 

economics, urban economics, applied econometrics. E-mail: tomf@utep.edu. 

Somnath Mukhopadhyay, Ph.D., Associate Professor, University of Texas at El Paso; research areas: geometry of classifiers. 

E-mail: smukhopadhyay@utep.edu. 



 

 

 This study examines the applicability of neural networks to forecasting international port-of-entry bridge 

traffic as well as major airport transportation flows in the El Paso and Ciudad Juarez Borderplex regional 

economy that straddles the boundary separating the United States from Mexico. Section 2 provides an overview of 

related studies. Section 3 discusses data and methodology. Section 4 summarizes empirical results. Concluding 

remarks follow. 

2. Related Studies 

 Traffic forecasting is an area of substantial academic and practitioner research interest. That is due to the 

critical role of transportation in the global economy as well as the resource limitations which constrain 

infrastructure development. At present, a variety of time series and econometric are generally utilized these efforts, 

with no single method consistently outperforming the others (Taylor, 2010; Fildes, Wei & Ismail, 2011; Tsekeris 

& Tsekeris, 2011). Several studies have also employed neural network approaches in attempting to improve traffic 

planning and forecasting effectiveness (Dunne & Ghosh, 2012; Wei & Chen, 2012). 

 Recognition of the importance of cross-border traffic and transport planning has intensified in recent years as 

a consequence of reduced trade barriers, greater demands for imported products, and increased cargo vehicle 

traffic volumes (McCray, 1998; Fullerton & Tinajero, 2002). Much of the literature on this topic deals with the 

infrastructure capacity constraints, personnel staffing shortages, and other problems associated with the boundary 

between the United States and Mexico (Saintgermain, 1995; Nozick, 1996). In addition to cargo vehicles, 

substantial attention has also been paid to light vehicle and pedestrian flows through the international ports of 

entry (Fullerton, 2000). 

 Accompanying the growth in merchandise trade has been an increased focus on delivery times and 

transportation expenditures as a percentage of the cost of doing business (Stank & Crum, 1997). Not surprisingly, 

these efforts led to substantial concern over how to address periodic congestion problems and infrastructure 

development issues (Harrison, Sanchez-Ruiz, & Lee, 1998; Bradbury, 2002). Security delays and port staffing 

practices frequently serve to raise transportation costs and proposals in favor of “seamless borders” form a 
substantial plank within this research landscape (Figliozzi, Harrison, & McCray, 2001; Ashur, Weismann, Perez, 

& Weismann, 2001). 

 Concerns over management and administrative practices are well placed. Following the 11 September 2001 

terrorist attacks, North American border transportation costs grew and substantial economic displacements 

occurred in response to new security measures, regulatory, and administrative changes (Taylor, Robideaux, & 

Jackson, 2004; Fullerton, 2007). In spite of temporary declines associated with business cycle downturns, 

merchandise trade continues to expand, leaving traffic and transportation issues squarely on the agenda regarding 

border development policies (Villa, 2006). The ongoing presumption is that, in spite of trade growth, 

infrastructure bottlenecks and institutional barriers at the border cause international commerce to underperform its 

natural level by large amounts (McCallum, 1995; An & Puttitanun, 2009). 

 Similar to domestic infrastructure, planning efforts regarding maintenance and new facility construction of 

border ports of entry inevitably run into questions over funding (Levinson, 2005). Three of the four international 

bridges linking El Paso and Ciudad Juarez charge tolls to pedestrians, light vehicles, and cargo vehicles. The price 

elasticities for these various traffic flows are similar in magnitude to what has been documented for other types of 

bridges and highways (De Leon, Fullerton, & Kelley, 2009). Pricing and funding issues are likely to play 



 

 

prominent roles in future discussions involving port of entry bottlenecks. 

Neural network analysis has not previously been utilized to model and forecast Borderplex transportation 

data. It has, however, been applied in several similar contexts to those considered below (Smith & Demetsky, 

1997; Lam, Ng, Seabrooke, & Hui, 2004; Celikoglu & Akad, 2005). Among those studies, Lam, Ng, Seabrooke, 

and Hui (2004) report empirical results in favor of neural network cargo forecasts using data for the port of Hong 

Kong. Celikoglu & Akad (2005) also obtain relatively accurate neural network out-of-sample simulations of 

public transport volumes for Istanbul. The Northern Virginia highway traffic flow predictions for the neural 

network exercise of Smith and Demetsky (1997) are not as successful. 

 These and other research endeavors make it easy to see why transportation forecasting research continues to 

receive substantial academic and practitioner attention (Flyvbjerg, Holm, & Buhl, 2005; Flyvbjerg, Holm, & Buhl, 

2006; Bain, 2009). This study examines whether neural network analysis can help forecast traffic flows across the 

international bridges between El Paso and Ciudad Juarez. Prior research indicates that econometric approaches 

toward this objective meet with mixed success in terms of predictive accuracy (Fullerton, 2004; De Leon, 

Fullerton, & Kelley, 2009). Neural network analysis may provide one means for improving forecast accuracies. 

3. Data and Methodology 

 Transportation flows analyzed are the same as in Fullerton (2004). They include eight categories of air 

transportation data from El Paso International Airport. They also include eight categories of northbound traffic 

flows across the international bridges from Ciudad Juarez into El Paso. These data are forecast every year using 

the structural econometric system of simultaneous equations described in Fullerton (2001). Historical data 

employed in the Borderplex modeling system can be accessed via the web site at the University of Texas at El 

Paso (http://academics.utep.edu/Default.aspx?tabid=14417). As might be expected for a regional economy in 

which unemployment is relatively high and demographic data are subject to large periodic revisions, the track 

record of these structural forecasts is mixed (Charney & Taylor, 1984; West, 2003). 

Table 1 summarizes the variable names, time span, and units of measure for each of the transportation series 

that are modeled and forecasted (Fullerton, 2004). Air passenger data are only available from 1979 forward. 

International air passenger data are only available from 1979 to 2006, the year in which international commercial 

passenger flights to El Paso were suspended. Air freight and air mail data are available from 1974 to 2007. 

Beginning in 2007, reporting conventions at El Paso International Airport changed and these series are now reported 

together rather separately. All of the international bridge time series are available from 1974 through 2011. 

Table 2 provides an overview of the explanatory variables employed in the specifications for the various 

transportation variables listed in Table 1. Similar to other regions of the United States, transportation flows to and 

from El Paso were disrupted by infrastructure administrative practices that changed subsequent to 11 September 

2011 (Fullerton, 2007). Accordingly, many of the Borderplex transportation equations now include a post-9/11 

dummy variable either to allow for intercept adjustments or interacted with other explanatory variables. All of the 

econometric equations are dynamic in nature and contain one-period autoregressive lags of the dependent variables 

and/or ARMAX autoregressive and moving average serial correlation correction coefficients (Pagan, 1974). 

 

 

 



 

 

Table 1.  Transportation Variables Forecasted and Units of Measure 

Variable Names Definitions Units 

APDD Domestic Air Passenger Arrivals, 1979-2011 Thousands 

APDI International Air Passenger Arrivals, 1979-2006 Thousands 

APED Domestic Air Passenger Departures, 1979-2011 Thousands 

APEI International Air Passenger Departures, 1979-2006 Thousands 

AFDT In-Bound Air Cargo, Total, 1974-2007 1,000 Tons 

AFET Out-Bound Air Cargo, Total, 1974-2007 1,000 Tons 

AMD In-Bound Air Mail, 1974-2007 1,000 Tons 

AME Out-Bound Air Mail, 1974-2007 1,000 Tons 

BAC Bridge of the Americas Northbound Cars, 1974-2011 Millions 

BAT Bridge of the Americas Northbound Trucks, 1974-2011 Millions 

BAW Bridge of Americas Northbound Pedestrians, 1974-2011 Millions 

BPC Paso del Norte Bridge Northbound Cars, 1974-2011 Millions 

BPW Paso del Norte Northbound Pedestrians, 1974-2011 Millions 

BYC Ysleta Bridge Northbound Cars, 1974-2011 Millions 

BYT Ysleta Bridge Northbound Trucks, 1974-2011 Millions 

BYW Ysleta Bridge Northbound pedestrians, 1974-2011 Millions 
 

Table 2.  Transportation Variables and Regressors 

Equation Independent Variables 

APDD 

USA Real Consumer Transportation Expenditures scaled by ratio of El Pas 

Population relative to USA Population 

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

Dummy Variable for post-9/11 Period interacted with USA Real Transport. Exp. 

APED El Paso Wage & Salary Disbursements deflated by El Paso Air Travel Price Index 

AFDT 
El Paso Labor Income deflated by USA Transportation Price Index 

Dummy Variable for post-9/11 Period interacted with El Paso Real Labor Income 

AFET 

USA Real Gross Domestic Product 

Total Inbound Air Freight Cargo to El Paso International Airport 

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

AMD 

El Paso Real Gross Metropolitan Product 

Dummy Variable for post-9/11 Period interacted with El Paso Real GMP  

First Class Mail Price deflated by USA GDP Implicit Price Deflator 

AME 

El Paso Real Gross Metropolitan Product 

Dummy Variable for post-9/11 Period interacted with El Paso Real GMP 

First Class Mail Price deflated by USA GDP Implicit Price Deflator 

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

BAC 

Mexico Real Exchange Rate Index, Pesos per Dollar, Inflation Adjusted 

One Period Lag of El Paso Population plus Ciudad Juarez Population 

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

BAT 

Mexico Real Exchange Rate Index, Pesos per Dollar, Inflation Adjusted 

Dummy Variable for post-9/11 Period interacted with USA Real GDP  

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

BAW 

Mexico Real Exchange Rate Index, Pesos per Dollar, Inflation Adjusted 

Dummy Variable for post-9/11 Period interacted with USA Real GDP  

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

BPC 

One Period Lag of El Paso Population plus Ciudad Juarez Population 

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

Dummy Variable for post-9/11 Period interacted with Regional Population Lag 

Mexico Real Exchange Rate Index, Pesos per Dollar, Inflation Adjusted 

BPW 
Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

Dummy Variable for post-9/11 Period interacted with Ciudad Juarez Population 

BYC One Period Lag of Ciudad Juarez Population 

BYT 

USA Real Gross Domestic Product 

Mexico Real Exchange Rate Index, Pesos per Dollar, Inflation Adjusted 

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974-1990 

Dummy Variable for post-9/11 Period interacted with Mexico Real Exch. Rate 

BYW 

Mexico Real Exchange Rate Index, Pesos per Dollar, Inflation Adjusted 

Dummy Variable for post-9/11 Period interacted with Mexico Real Exch. Rate 

Dummy Variable for post-9/11 Period interacted with USA Real GDP  

Dummy Variable set to 1 for post-9/11 Period, set to 0 for 1974 - 1990 
 



 

 

 Table 3 reports summary statistics for the variables listed above. As can be seen, there is substantial 

variability in the sample. All of the bridge series have 38 annual observations. As noted above, historical data for 

the air passenger data only extend back to 1979. Commercial international flights to El Paso were phased out in 

2006 and have yet to resume. Air freight and air mail data are no longer reported separately. For those reasons, 

there are fewer historical observations for the air transport series included in the sample. 
 

Table 3.  Historical Data Summary Statistics 

Variable Mean Standard Deviation Maximum Minimum Total Observations 

APDD 1,452.9 276.3 1,830.8 913.0 33 

APDI 14.168 11.140 46.054 0.106 28 

APED  1,483.4 288.4 1,862.6 920.3 33 

APEI 10.809 7.898 34.891  0.137 28 

AFDT 26.494 17.654 55.600 5.002 35 

AFET 21.042 12.624 41.697 5.467 35 

AMD 2.535 0.949 4.337 0.739 35 

AME 1.490 0.659 2.331 0.046 35 

BAC 6.691 1.331 8.802 3.268 38 

BAT 0.259 0.131 0.492 0.053 38 

BAW 0.660 0.200 1.208 0.403 38 

BPC 4.223 0.920 6.039 2.011 38 

BPW 5.291 1.188 7.738 3.466 38 

BYC 2.389 0.845 3.871 1.166 38 

BYT 0.173 0.159 0.386 0.002 38 

BYW 0.418 0.353 1.256 0.027 38 

 

Figures 2-6 illustrate the behavior of several of the variables in the sample over time. From those graphs it is 

easy to see that data in the sample exhibit substantial variability. That is, in part, because the series respond to 

business cycle developments in both countries as well as currency market fluctuations. 
  

 
Figure 1  Borderplex Model Design 

 

The structural econometric forecasts are published annually by the University of Texas at El Paso. Parameter 

re-estimation is carried out for all of the model equations every year once data bank updating is completed. The 

forecasts are generated for three-year time periods. At the point at which the neural network utilized for this study 

was developed, that made 27 previously published, ex-ante, transportation forecasts per variable available for 

analysis during the sample period under consideration. The structural econometric model used to generate those 

forecasts has been discussed in several prior studies (Fullerton, 2001; 2004). Figure 1 provides an overview of the 

basic modeling strategy underlying it. Economic conditions in El Paso and Ciudad Juarez are affected by regional 
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business cycles and economic trends, as well as by their national counterparts in Mexico and the United States. 

The neural network developed for this study has not previously been analyzed. A summary of that model follows. 
 

 
Figure 2  El Paso International Airport Domestic Flight Passenger Arrivals And Deparutres In Thousands 

 

 

Figure 3.  El Paso International Airport Incoming and Outgoing Freight Volumes in Thousand Tons 
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Figure 4.  El Paso International Bridge Ports of Entry Pedestrian Flows in Millions of Persons 

BOTA – Bridge of the Americas, near central El Paso. Paso del Norte Bridge, near downtown El Paso. Ysleta Bridge, near east El 

Paso. 
 

 

Figure 5.  El Paso International Bridge Ports of Entry Personal Vehicle Flows in Millions of Cars 

BOTA – Bridge of the Americas, near central El Paso. Paso del Norte Bridge, near downtown El Paso. Ysleta Bridge, near east El 

Paso. 
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Figure 6.  El Paso International Bridge Ports of Entry Cargo Vehicle Flows in Millions of Trucks 

BOTA – Bridge of the Americas, near central El Paso. Ysleta Bridge, near east El Paso. Cargo vehicles cannot cross the Paso del 

Norte Bridge near downtown El Paso. 

4. Multi-Layered Perceptron (MLP) NN Model 

MLP offers two major advantages over traditional non-pattern-seeking mathematical models. First, MLP is 

flexible in looking for nonlinear patterns in data. Second, MLP does not require prior knowledge of relationships 

or distributional assumptions about the data. Among other things, MLP forecasting models have been shown to do 

well in simulating time series data that are subject to business cycle fluctuations (Heravi, Osborn & Birchenhall, 

2004). Transportation data, of course, are relatively sensitive to prevailing economic conditions. 

 Mukhopadhyay (2006) describes the generic topology of an MLP comprising a layer of input nodes, one or 

more layers of hidden nodes, and a layer of output nodes. First hidden layer nodes connect with input layer nodes. 

Output layer nodes connect with the last layer of hidden nodes. Connection strengths, called weights, are 

connection values. 

 The main feature of connectionist NN models reflects the learning mechanism in the brain where knowledge 

is in the connections of neurons rather than in the neurons themselves. The learning is assumed to be in modifying 

the connection strengths. Communication among neurons involves either excitatory or inhibitory messages. 

Mathematical learning algorithms attempt to mimic that. Greater values for the weights between two nodes 

represent more meaningful relationships between the nodes (excitation). Lower values reflect lesser association 

between the nodes. For example, if all the estimated weights of an input variable are insignificant in the first layer, 

the input variable is not significant in the model. 

The output of each node in an MLP, called activation value, is a function of its inputs from the previous layer 

and the corresponding weights. The function is called activation function. The activation value of an input layer 

node is the value of the input variable. The activation value of the output layer unit is the estimated value of the 

dependent variable (target). A training algorithm learns the mathematical relationship between input variables and 

the target by assigning proper weights to all network connections. 
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4.1 Training Algorithm 

A back-propagation (BP) algorithm based on Rumelhart, Hinton, and Williams (1988) is utilized. The BP 

training algorithm estimates a target value from input variable values by initially assigning a set of arbitrary 

weights. The algorithm then compares actual target value with the estimated value. The difference between the 

actual value and the estimated value is called error signal. The training process changes all weights in proportion 

to the error signal. The constant of proportionality is called the learning rate. The method produces no error signal 

if there is no difference between the actual and the estimated value. 

The training method starts changing weights from the top layer connections. The process of updating weights 

propagates back through the network from top layer to the first layer connections. The larger the learning rate, the 

larger the corresponding weight change. The process of updating weights repeats over all sample points to 

complete a full iteration. The method computes an error sum of squares value over all sample points upon 

completing each iteration. Training stops when the error sum of squares value is less than a predefined criterion. 

The nonlinear regression equation form of one hidden layered MLP is: 

 hht
y , 



n

j 1

hj ,  f (It , jhw , ) + Ep             (1) 

where, h is the length of forecast period. It is input vector of current time period value of yt. wh,j is the network 

weight vector corresponding to forecast horizon h and the jth hidden node. Ep is the measure of the error on 

input/output pattern p. The logistic form of the activation function f at each node is employed: 

f ( It , jhw , ) = (1+e
-z

 )
-1

               (2) 

where, 

z = ,, jhw tw jh *,              (3) 

and n is the number of hidden nodes. Logistic activation functions (Equations 2 and 3) introduce nonlinearity to 

the model. Activation functions must be differentiable for usage in the BP training algorithm. A differentiable 

sigmoid function (Equations 2 and 3) is used to compute activation values for hidden and output layer nodes. 

4.2 MLP Network Architecture and Parameter Values 

The MLP architecture selection guidelines proposed by Xiang, Ding, and Lee (2005) are the ones followed. 

That study suggests utilizing a simple, three-layered MLP network. In it, the number of hidden units should match 

the minimum number of line segments (hyper planes in high dimensional cases) required to approximate the target 

function for a minimal architecture. Functions learned by a minimal net over calibration sample points work well 

on new samples. Three network layers are used - one input layer for input variables (time t and a bias unit), one 

hidden unit layer with three units, and one output layer of one unit. The network connects all hidden nodes with 

all input nodes. The output node connects to all hidden nodes. Optimal network selection is based on model 

performance using training file samples. 

With high learning rate values, faster learning can be achieved. However, the learning process can jump back 

and forth along the error surface for learning rates that are too high. This process of high error sum of squares 

error fluctuation during calibration is called oscillation. One way to increase the learning rate without leading to 

oscillation is to include a momentum factor in the weight change formula. This determines the effect of past 

weight changes on the current direction of movement in the weight space. The addition of momentum factor 

effectively filters out high frequency variations of the error surface in weight space. By trying out small learning 



 

 

rates and no momentum factor can achieve similar results. However, the learning time will increase for small 

learning rates. A value of 0.1 is used for the learning rate and 0.9 is employed for the momentum factor as 

recommended by previous research (Rumelhart, Hinton, & Williams, 1988). 

 A three period lag is utilized for the neural network analyses. All of the variables employed in the structural 

econometric modeling system are also used for the MLP neural networks. The process was repeated sequentially 

by adding one additional year of actual historical variable values prior to developing each successive set of 

three-year forecasts for the different transportation series being analyzed. That mimics how the data become 

available every year for econometric model parameter estimation and forecast generation. 

5. Empirical Results 

 Table 4 summarizes the predictive accuracy results for the air transport variables included in the sample. The 

metrics utilized to gauge forecast accuracy are the root mean squared error (RMSE), the Theil inequality 

coefficient (also known as the U-statistic), and the second moment decomposition of the U-statistic. The 

advantage of the U-statistic over RMSE is its scale-free characteristic that avoids unbounded, from above, 

accuracy metrics. The second moment decomposition of the U-statistic indicates whether forecast errors are due to 

systematic out-of-sample simulation flaws or, ideally, due to unforeseeable random events (Pindyck & Rubinfeld, 

1998; Theil, 1961). As pointed out by Theil (1961), the optimal distribution of the second moment inequality 

proportions is U
M

 = 0, U
S
 = 0, and U

C
 = 1. 

 

Table 4.  Air Series Predictive Accuracy 

Series RMSE U-Statistic U-Bias U-Variance U-Covariance 

El Paso International Airport Domestic Passenger Arrivals 

APDD1 123.7009 0.0385 0.3125 0.0445 0.6430 

APDD2 132.4120 0.0411 0.3973 0.1925 0.4102 

El Paso International Airport International Passenger Arrivals, 1998-2006 

APDI1 6.4606 0.2657 0.6705 0.0640 0.2654 

APDI2 4.7764 0.2158 0.4774 0.0225 0.5001 

El Paso International Airport Domestic Passenger Departures 

APED1 133.9325 0.0411 0.3110 0.0213 0.6678 

APED2 149.4551 0.0454 0.4994 0.1680 0.3327 

El Paso International Airport International Passenger Departures, 1998-2006 

APEI1 5.5429 0.2464 0.6326 0.02297 0.3444 

APEI2 5.6168 0.2606 0.3543 0.0225 0.6232 

El Paso International Airport In-Bound Freight, 1998-2008 

AFDT1 8.1135 0.0819 0.2000 0.0057 0.7943 

AFDT2 7.4492 0.0764 0.0888 0.0070 0.9042 

El Paso International Airport In-Bound Freight, 1998-2008 

AFET1 4.8859 0.0648 0.2592 0.0005 0.7403 

AFET2 5.5981 0.0732 0.3712 0.0001 0.7693 

El Paso International Airport In-Bound Air Mail, 1998-2008 

AMD1 0.9614 0.1815 0.2381 0.0002 0.7618 

AMD2 1.1568 0.2210 0.1043 0.0026 0.8931 

El Paso International Airport Out-Bound Air Mail, 1998-2008 

AME1 0.6874 0.2727 0.2248 0.0009 0.7742 

AME2 0.7489 0.2931 0.2664 0.0000 0.7336 

Note: Sample Simulation Period: 1998 – 2011, unless otherwise noted. Boldface type indicates greatest predictive accuracy. 

1. Previously published Borderplex structural model forecasts. 2. Multi-Layered Perceptron (MLP) Neural Network forecasts. 



 

 

 Equation (4) shows how the RMSEs are computed. In (4), Y
s
 is the out-of-sample simulation or forecast 

value for variable Y, Y
a
 is the actual historical value for Y, and T is the total number of forecasts for Y. 
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Equation (5) provides the details for calculating the U-statistics. The denominator in (5) 
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ensures that the inequality coefficients to vary between 0 and 1. When U = 0, a

t

s

t YY   for all t, a perfect forecast 

has been obtained. At the other extreme, if U = 1, the predictive performance of the model is as bad as it can get 

(Pindyck & Rubinfeld, 1998). Because it covers a finite range, the inequality statistic is easier to interpret than 

other accuracy gauges such as the mean absolute percentage error and also avoids the risk of division by zero 

during severe lulls in economic activity or abnormal disruptions in commerce. 

Equation (6) summarizes the formulae for the second moment inequality proportions. In Equation (6), “ρ” is 
the correlation coefficient for the forecast data and the actual data. Also in Equation (6), “σs” is the standard 
deviation of the prediction values and “σa” is the standard deviation of the actual values of the variable being 

forecast. U
M

, U
S
, and U

C
 represent bias, variance, and covariance proportions, respectively, of the second moment 

of the prediction errors (Theil, 1961). The bias proportion measures the extent to which the average values of the 

simulated and actual series deviate from each other. It thus provides an indication of systematic error. Optimally, 

the bias proportion will approach zero. The variance proportion indicates the ability of the model to replicate the 

degree of variability in the variable of interest. Again, as simulation performance improves, the variance 

proportion approaches zero. The covariance proportion measures unsystematic error. As noted above, when 

simulation accuracy improves, the covariance proportion approaches one. 
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 In Table 4, the overall superiority of the econometric forecasts is underscored by lower RMSE and 

U-statistics for six of the eight air transportation series. Those variables include domestic passenger arrivals, 

domestic passenger departures, international passenger departures, out-bound freight, in-bound air mail, and 

out-bound air mail. The only variables for which the MLP neural network forecasts prove more accurate are 

international passenger arrivals and in-bound air freight. In all eight cases, replicating series variability is achieved 

by both methods. For all but the international flight passenger flows, prediction bias is not problematic and the 

greatest source of forecast error, according to the results obtained, is generally due to random factors. With respect 

to the international passenger data, the econometric forecasts were consistently biased upward and overly 

optimistic during the last four years during which those services were offered at El Paso International Airport. 

 Table 5 reports the forecast accuracy for the international bridge variables. Again, the econometric forecasts 



 

 

achieve greater accuracy than those of the MLP neural network approach. For six of the eight variables, the RMSE 

and U-statistics are lower for the structural econometric forecasts. Those variables include all northbound 

pedestrian traffic and all light vehicle traffic across all three international bridges. In contrast, both cargo vehicle 

traffic series across two of the three bridges are forecast more accurately by the MLP neural network models. Bias 

does not represent an obstacle for either set of forecasts. In fact, non-random simulation errors account for less 

than 50 percent of the inaccuracies that are tabulated for any of the eight variables by either method. 
 

Table 5.  Bridge Series Predictive Accuracy 

Series RMSE U-Statistic U-Bias U-Variance U-Covariance 

Bridge of the Americas Northbound Light Vehicle Traffic 

BAC1 1.6682 0.1270 0.1538 0.0041 0.8420 

BAC2 1.8130 0.1385 0.1854 0.5359 0.2787 

Bridge of the Americas Northbound Cargo Vehicle Traffic 

BAT1 0.0668 0.0876 0.2410 0.1056 0.6533 

BAT2 0.0343 0.0479 0.0676 0.6276 0.3048 

Bridge of the Americas Northbound Pedestrian Traffic 

BAW1 0.2248 0.1368 0.0150 0.0030 0.6792 

BAW2 0.2477 0.1582 0.1292 0.2097 0.6611 

Paso del Norte Bridge Northbound Light Vehicle Traffic 

BPC1 0.5416 0.0744 0.3108 0.0100 0.6792 

BPC2 0.6411 0.0876 0.1428 0.2139 0.6433 

Paso del Norte Bridge Northbound Pedestrian Traffic 

BPW1 1.0333 0.0878 0.0273 0.0110 0.9617 

BPW2 1.3278 0.1163 0.1087 0.1738 0.7175 

Ysleta-Zaragoza Bridge Northbound Light Vehicle Traffic 

BYC1 0.5824 0.0876 0.0929 0.0839 0.8231 

BYC2 0.7059 0.1056 0.1049 0.1289 0.7662 

Ysleta-Zaragoza Bridge Northbound Cargo Vehicle Traffic 

BYT1 0.0399 0.0561 0.0838 0.0089 0.9073 

BYT2 0.0386 0.0554 0.0112 0.1054 0.8833 

Ysleta-Zaragoza Bridge Northbound Pedestrian Traffic 

BYW1 0.2042 0.1252 0.3554 0.0569 0.5877 

BYW2 0.2641 0.1599 0.3667 0.0875 0.5457 

Note: Sample Simulation Period: 1998 – 2011 

Boldface type indicates greatest predictive accuracy. 

1. Previously published Borderplex structural model forecasts. 

2. Multi-Layered Perceptron (MLP) Neural Network forecasts. 
 

 The bridge results contain an interesting dichotomy. Traffic related to commercial activities is most 

accurately predicted by the structural econometric model. Cargo traffic, a function of industrial economic 

activities, is most accurately forecast by their respective MLP neural network models. 

 Although the bulk of the evidence reported in Tables 4 and 5 indicates that the MLP neural net forecasts are 

relatively less accurate than the econometric model forecasts, it does not rule out the possibility that the two sets 

of simulations might complement each other. The latter possibility is certainly plausible due to the distinct 



 

 

methodological steps involved. To formally test this proposition, a series of regression equations are estimated 

following a general approach previously utilized in various different forecasting applications and contexts (Cooper 

& Nelson, 1975; Granger & Ramanathan, 1984). 

 In order to calculate the combination coefficients, each composite weights equation models the actual 

historical values of the individual transportation series as functions of each forecast. In cases where the 

information contents of the two sets of forecasts are complementary, estimated coefficients for both regressor 

prediction series will have significant t-statistics associated with them. The regression equation used to test for 

complementarity is shown in Equation (7). In Equation (7), Y
a
t represents the actual value of Y in period t, Y

e
t 

stands for the structural econometric forecast of Y in period t, Y
n
t represents the neural network forecast for Y in 

period t, and Ut is a random disturbance term for period t. Outcomes from that test, using the forecast data from 

1998 through 2007, are summarized in Table 6. 

Y
a
t = C0 + C1Y

e
t + C2Y

n
t + Ut             (7) 

 

Table 6.  Neural Network and Econometric Forecast Complement t-Test Outcomes 

Series 
Reject Null Hypothesis that Forecast Information  

is not Complementary 

Fail to Reject Null Hypothesis that Forecast Information  

is not Complementary 

APDD  Fail to Reject 

APDI  Fail to Reject 

APED  Fail to Reject 

APEI  Fail to Reject 

AFDT  Fail to Reject 

AFET  Fail to Reject 

AMD  Fail to Reject 

AME  Fail to Reject 

BAC  Fail to Reject 

BAT  Fail to Reject 

BAW  Fail to Reject 

BPC Reject*  

BPW Reject**  

BYC  Fail to Reject 

BYT Reject**  

BYW Reject**  

Note: Sample Simulation Period: 1998-2011. 

* Complementary information test passed at 5-percent significance level. 

** Complementary information test passed at 1-percent significance level. 
 

In 4 of the 16 cases, the complementary forecast information hypothesis is supported. The 4 variables for 

which the forecast information provided by each set of predictions is complementary in nature are all northbound 

bridge traffic categories. They include pedestrian bridge crossers at the downtown Paso del Norte port of entry and 

the eastside Ysleta port of entry. They also include light vehicles across the downtown Paso del Norte Bridge, as 

well as cargo vehicles across the eastside Ysleta Bridge. In all four cases, support for the complementarity 

hypothesis occurs at the 5-percent or 1-percent levels. 

No evidence in favor of the complementary information hypothesis is provided by any of the other sets of 

forecasts. None of the airport variables would obtain improved out-of-sample simulation accuracy by combining 



 

 

the neural network and econometric forecasts. The same outcome is also tallied for all three northbound traffic 

series forecasts for the Bridge of the Americas near central El Paso. That is also the case for light vehicles coming 

across the Ysleta Bridge in east El Paso. 

 Because they can handle data nonlinearities and do not require imposing any distributional assumptions, 

neural network modeling offers several potential advantages over other quantitative procedures for analyzing 

traffic flows. In the case of the transportation variables associated with the Borderplex economy of El Paso, Texas 

and Ciudad Juarez, Mexico, forecasts from an MLP neural network methodology sometimes do achieve better 

accuracy than previously published econometric forecasts. In most cases, however, the structural econometric 

method tallies more accurate out-of-sample simulations. For the air and bridge transport variables in this region, 

the evidence is generally in line with the outcomes obtained by Smith and Demetsky (1997) and differs from the 

results that favor neural network forecasts reported by Lam, Ng, Seabrooke, and Hui (2004) and Celikoglu and 

Akad (2005). 

6. Conclusion 

 Prior research has documented that traditional econometric forecasts of both surface and air transportation 

traffic in border regions are difficult to carry out accurately. One alternative to structural econometric models is 

provided by neural networks. Neural network forecasts have proven helpful in a variety of different settings, but 

have not been extensively tested using data for border metropolitan economies. This study carries out such an 

exercise using transportation data for the Borderplex economy of El Paso, Texas and Ciudad Juarez, Mexico. 

 The sample period for which the forecasts are considered is 1998-2011. The data frequency is annual. For six 

of the air transport variables analyzed, the structural econometric forecasts are more accurate than those of the 

multi-layered perceptron neural network method utilized. For the international bridge traffic series, the 

econometric forecasts are also relatively more accurate for six of the eight series analyzed.  In twelve of the 

sixteen cases, no evidence of forecast complementarity is uncovered. 

 Empirical results obtained in this study indicate neural network approaches may not prove more accurate 

than traditional econometric modeling frameworks. Whether these results are unique to the Borderplex sample 

used in this effort is not known. Other border regions between the United States and Mexico that offer potentially 

interesting transportation series to analyze include Brownsville–Matamoros, McAllen–Reynosa, Laredo–Nuevo 

Laredo, and San Diego–Tijuana. Similar studies for the United States border with Canada might also yield 

interesting results. Evidence reported above also indicates that, in a few cases, neural network transport forecasts 

may contain information that complements that embodied in structural econometric out-of-sample simulations. 
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