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In a recently reprinted paper Borch wonders whether an increase in
insurance loadings, together with the consequent increase in customers’
deductibles, may be the start of a vicious circle, in which higher de-
ductibles produce higher loadings and vice versa, ad infinitum. This paper
rules out the possibility of a vicious circle, in a model a /a Borch. First of
all, increases in costs of the type considered by Borch are not necessarily
followed by increases in loadings. Second, increases in loadings are not
necessarily followed by increases in deductibles, since in equilibrium
insurance may be Giffen. Last but not least, loadings do not increase with
deductibles, because the only viable equilibrium is a Stackelberg one. Key
words: Deductibles, insurance, loadings, Stackelberg equilibrium.

1. INTRODUCTION

A recently reprinted paper by Borch [5,7] poses an unresolved question, regarding
direct relationships between proportional loadings and deductibles: can higher
loadings, caused for instance by higher costs, act as a catalyst for a vicious circle
with ever increasing deductibles and loadings? If so, can this process ever be
brought to a halt?

This paper rules out the possibility of a vicious circle. It proves that with rational
insurance buyers and sellers the only viable equilibrium is a Stackelberg one, in
which higher costs are not necessarily followed by higher loadings, higher loadings
do not always lead to higher deductibles, higher deductibles are not followed by
higher loadings.

In order to discuss Borch’s vicious circle, we break it into two parts: the first in
which higher loadings cause higher deductibles, and the second, in which higher
deductibles cause higher loadings.

The plan of the paper is as follows: in Section 2, we revise the customer’s
problem in the set up of Borch. In Section 3, we analyze the insurance company’s
problem, and point out that the insurance company can set loadings only taking
into consideration their falldown on deductibles: as a consequence, the equilibrium
is Stackelberg, with the insurer acting as a leader. In this equilibrium, both the first
and the second part of Borch’s vicious circle are ruled out. In Section 4 we conclude
and outline future research. All the proofs are in the Appendices.

.
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2. MODEL SET-UP

Borch builds a model with two utility maximizing agents: a (representative)
customer and an insurance company.

The customer’s wealth has an initial level S. A risk X with non-negative values
and positive expected value E(X) impinges on it. Against the risk X the customer
writes an insurance contract Y = y(X), by paying a proportional premium P[y]:

Pyl=(1+ DEW (X))

It has been demonstrated' that the optimal insurance contract is linear in risk,
with a deductible M. If we denote with F(x) the distribution function of X, with M
the maximum probable loss

M £ min{x: F(x) =1}
the linearity property turns into

0 X<M

_ 2.1)
X—M M<X<M

Y=y(X)= {
and implies that for every X the premium P is a function of M and A: P=
Py(M, 7).

Borch assumes that the insurance company determines 4 > 0, while the customer
chooses the deductible M so as to maximize his expected utility:

sup _ H(M) 2.2)

osSM<M
where

M
HM@QLJLMNLAQMW@%HmMLAﬂ+x—AﬂU—FM@)

0
u is the twice differentiable utility function of the customer, w(x, M)=S—
Py(M, 2)— x—or simply w—is the customer’s final wealth when X< M,
w(x, M)+x—M=S— Py(M, ) — M is his wealth when X > M.

The existence of interior or boundary solutions to problem (2.2) has been
extensively studied®. As far as we are concerned, in Appendix 1 we take quite a
different approach. We start by characterizing the class of risks X endowed with the
properties mentioned above, which entail positive values with positive probability.
We study when they are also insurable, in the sense that they guarantee the
existence of a solution to the customer’s problem, i.e., of a demand for insurance:

THEOREM 2.1 (partial deductibles). An interior maximum 0 < M* < M exists—
for a given, positive A—Iif:

! See Arrow [2].
2 See for instance [11].
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1. X is an absolutely continuous random variable in (0, M) with (at most) a positive
probability p, of being equal to zero;
2. the marginal utility is decreasing in such a way that

MY

M
J u'(S —x) dF(x)
0

Having done this, we demonstrate that, for the class of insurable risks*:
LEMMA 2.2. M is abways a stationary point for the function H(M).

THEOREM 2.3 (no full deductible). If a maximum in [0, M) exists, there is not a
maximum at M = M.

Provided that X satisfies theorem 2.1, an interior solution for the customer’s
problem exists. In case it does not, a boundary solution can still exist. In both of
these cases, the insurer’s problem is well posed. We turn now to this problem. While
discussing it we will demonstrate that it has no solution consistent with a boundary
deductible.

3. BORCH'’S VICIOUS CIRCLE*

The key point in analyzing the insurance company’s behaviour, and consequently in
studying the vicious circle, is that in the model of Borch the insurer cannot
determine its loadings ignoring the customer’s reaction or acting as a follower in a
von Stackelberg game. Let us keep in mind that a follower in such a game acts as
if his/her counterpart kept its decision variable fixed. In the insurance company—
customer game, a follower company would fix loadings as if the demand for
insurance were not sensitive to them. As a result, it would drive loadings to infinity.

Opposite to that, an insurance company acting as a leader in a von Stackelberg
game moves from the following belief: the insured will react to the insurer’s
loadings assuming that they will not change further. As a consequence, the
insurance company postulates that the customer’s decision depends on its own one
and takes into consideration the dependence of deductibles on loadings, while
deciding the latter.

3 We do not discuss the existence of a stationary boundary deductible M* = 0: however, it is well known
that it exists iff =0 (see for instance [11]).

4 The purpose of this section is to study how the buyer analyzed above might interact with a rational
seller: in this sense, the section is very much in the spirit of [1, 4, 12]. However, since our main purpose
is to discuss Borch’s vicious circle, we stick to his case of fair actuarial premium plus loadings on the
supply side and deductibles on the demand side, without exploring other Pareto optimal policies. For the
same reason we assume fixed costs: they are the only ones in Borch’s model.
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This rules out the second part of Borch’s vicious circle. In order to discuss the
effect of increased costs and the first part of the circle, however, we must enter into
the details of the insurance company’s problem.

Let us assume that the insurance company has a (cardinal) utility function U,
with U’ >0, U” <0 and consider fixed costs C > 0 only, because these are the ones
assumed in Borch’s paper.

Let us denote by A(2) the insurer’s expected utility:

M
h(2) 4 UW(A)— C)F(M*(1)) + J UW(L) —x+ M*(1)— C) dF(x)
M*(2)
where W(/) is the sum of the initial wealth 7 and the premium Py(M*, 1),
W) =T+ Py(M*, 2)

The insurer’s problem can be formalized as:
sup h(4) 3.1
subject to the zero-utility principle (or participation condition)
sup h(A4)= U(T) 3.2)

and given the contract (2.1).

First of all, we notice that, as is well known and can be proven with some
algebra, the constraint (3.2) is satisfied if and only if the difference between overall
loadings AEY and total costs C is greater than the insurance company’s risk
premium at 7— C+ P— Y. Second, we remark that, with EY >0, the loading
A= CJ/EY satisfies the constraint (3.2) if and only if the insurance company is
risk-neutral. If it is risk-averse, 2 must be greater than® C/EY. In other words, since
the insurer’s risk premium is greater or equal to zero, when EY >0 (i.e. M < M),
a necessary condition for participation is that loadings be greater or equal to the
ratio of total costs to the expected outflows, 4= C/EY. Due to the fact that
C/EY >0 a prerequisite for participation is then that A*, the optimum /, be
positive. In turn, 2* > 0 rules out the case of no deductibles (M* = 0).

Also, we can rule out the existence of an optimum 2 which entails M* = M, since
in this case EY=P =0, h(l)= U(T — C) and the constraint (3.2) is not satisfied:

U(T — C) < U(T)

We are then left with the problem of finding a maximum for /(1) which corre-
sponds to interior deductibles: 0 < M* < M.

5 Please note that the risk-neutral case could also be studied using [12] and the competitive equilibrium
results in [3]. The risk-averse case instead cannot be described as a competitive equilibrium. I thank the
editor for having pointed out to me this circumstance.
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The insurance company’s necessary condition® for a maximum at 1* >0 when

0< M* < M is:

daw

= U'(W — C)F(M*(/¥))

dﬂ A=*M= M*
dw IM* M

+( ‘ >J UW—-C—x+ M*(A*)dF(x)=0 (3.3)
A2 ;= v pr= are Al |2 ] Jarwam

~where

dw dM*

— =FEY|,_ e ppeape— [l = F(MF(AF)](1 + A* 34

d/{ e A e |/.—/.‘1VI—M [ ( ( ))]( + ) dj. o ( )

We could demonstrate from this first order condition that an increase in costs
does not necessarily produce an increase in loadings: the derivative of A* with
respect to C must be computed using the implicit function theorem on (3.3). This
derivative is of unknown sign, so that increased fixed costs are not necessarily
followed by an increase in loadings. The only sure effect they have is on the
participation constraint.

In Appendix 2, two necessary conditions for (3.3) to admit a solution are given:

THEOREM 3.1 (solutions with insurance). If M* < M, both in the risk-neutral and
in the risk-averse insurance case, a solution to problem (3.1) exists provided that

either
AM* EY

5
i |, S TF—F)A + %) )
or
AM* EY

1.5
i |, A =FM)( + 2% (36

Remark 1. Please notice that, in the first case, insurance is a Giffen good’ at

S Even if the necessary condition is satisfied, no sufficient condition for the existence or the uniqueness
of a maximum can be found.

7 Please note that a Giffen good is characterized by demand increasing with price. The fact that the
Giffen property is obtained through a maximization of both the insurance buyer and seller distinguishes
our approach from previous results on the same property, such as [6, 8, 9]. As for the buyer-only results,
according to Borch, if " is strictly negative, the first order condition for the customer entails that A*
increases with /, i.e. insurance is not a Giffen good. He relates this to theorem (6) of Arrow [2], who
subordinates it to a specific condition on relative risk-aversion. Also, by applying the implicit function
to the customer problem only, it is easy to demonstrate that with M* >0, a sufficient condition for
insurance not to be Giffen is that the customer’s absolute risk aversion at the minimum wealth
guaranteed by the insurance policy be smaller than

1 — F(M*)
EY |y e [+ DF(M*) — 2]

(3.7)
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A= A% while in the second it is not, since the right hand sides of (3.5) and (3.6)
are respectively negative and positive.

We can sum up the results obtained so far by saying that if an equilibrium
between the insurance company and its customer exists, then:

1. the insurance company can act only as a von Stackelberg leader, so that the
second part of the vicious circle is ruled out;

2. loadings do not necessarily increase with costs, since A* is given by (3.3)—in-
stead of being equal to C/EY—and the sign of the sensitivity of loadings to
costs cannot be deduced from (3.3);

3. insurance may or may not be a Giffen good. In the first case, also the first part
of the circle is ruled out.

4. CONCLUSIONS AND EXTENSIONS

We have demonstrated in the previous section that, when insurance exists, be-
cause deductibles are smaller than the maximum probable loss, then the vicious
circle is ruled out. This happens not only when insurance is Giffen at the
equilibrium, as expected, but in every case, since it follows from the Stackelberg
nature of the equilibria.

The result just mentioned has been obtained in two steps. First of all, we have
re-examined the problem of the insured, as described by Borch (Section 2). We
have analyzed the strategic behavior of an insurance company which faces
Borch’s customer (Section 3). By so doing, we have excluded the second part of
the vicious circle. We have also excluded the first part, when insurance is Giffen:
we have demonstrated that insurance may or may not be Giffen not only when
the insured alone is considered, but also when the interaction between the in-
sured and the insurer is taken into account. In the process, we have also ruled
out the fact that higher costs always cause higher loadings.

Insurance, however, may not exist, because deductibles are equal to the maxi-
mum probable loss. We are left with the doubt that this situation can be pro-
duced by a vicious circle of the type described by Borch, in which deductibles
and loadings increase for ever. We are going to argue that this can happen at
most with a different cost structure.

We know that the insured’s expected utility has always a stationary point at
M = M: however, under the hypotheses of theorem 1, this is not a maximum.
Even if these hypotheses are not satisfied and M= M is a maximum for the
insurance buyer, the insurance company’s participation constraint is not satisfied
at M = M: with fixed costs, the insurance company has no incentive to offer a
policy with both premium and reimbursement equal to zero.

Let us suppose, however, that in this borderline case costs too are equal to
zero: formally, this means that the constant cost function C turns into a step
one, C(M):
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C M<M

With the latter costs, the insurance company is indifferent as to whether to offer the
above zero-reimbursement zero-premium policy or not. It is also indifferent to any
loading corresponding to it: the loading level is totally ineffective in this case, since
both the premium and the reimbursement are equal to zero.

From this reasoning, we understand that the only way in which a vicious circle
of the type envisaged by Borch can exist—in the sense of loadings which, for
dM|dj > 0, are high enough to produce M = M—is when costs are of the step type,
not constant as in the previous sections.

Apart from this step-cost case, it would be interesting to study the possibility of
a vicious circle in the presence of Pareto optimal policies different from Borch’s
(proportional loadings and no coinsurance), such as the ones discussed in [10]. We
leave this investigation in the agenda for future research.

APPENDIX 1

This appendix demonstrates the lemma and theorems of Section 2.
We demonstrate theorem 2.1 through the following lemmas:

LEMMA 5.1 (interior stationary points). An interior stationary point M* exists—
for given, positive A—if

1. X is an absolutely continuous random variable in (0, M) with (at most) a positive
probability p, of being equal to zero;
2. the marginal utility is decreasing in such a way that

u(S— M)

= >1+7 (5.1
J u'(S —x) dF(x)
0

LEMMA 5.2 (concavity). Under the hypothesis (1) of the previous lemma every
interior stationary point for the problem (2.2) is a maximum.

Proof of lemma 5.1. In order, to study the existence of solutions to the customer’s
first order condition

M

1+ 4) J u'w)dF(x)—[1+ AD)FM)—Alu'(w+x—M)=0 (5.2)
0
we use the following shortcut for his expected, truncated marginal utility

V', M) JM u'(w) dF(x) (5.3)

0

and the two functions:
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2

1+ 2
(1+ A)F(M)— 4
da u'(w+x—M)
GM) = Vu', M)

g(M) <

In fact, we can state condition (5.2) as an equality between g and G at M*.

We study the properties of these functions, in order to establish whether and
under which conditions on X there exists at least one value M* of X which equates
their expressions.

e g) The function g is right-continuous at 0 with

g(0)=
Po

A
T+

since F(0) = p,. As a consequence, g(0) is neézifive whenever p, < 2/(1 + 2).
If X is continuous in (0, M) and p, < A(1 + 1), then?® there is a value M > 0 such
that AR

F(M)=1/1+2) ' ; (5.4

Corresponding to this value, g has a vertical asymptote with

lim g(M)= 4+ ©

M—M=*

On the contrary, g has no jumps if X is continuous in (0, M) and p, > /(1 + 2).
In addition, g is monotone non-increasing in M, due to the monotonicity

properties of F as a distribution function, and

gM)=1+1
We draw the two possible behaviours of g in the following figures:
M M
9(M) < M(L+X) 9(M) p> M(1+N)
gl0
Ak b — - = :
7 oMol L T
4+ A _l
! M
9{0) M

8 Please note that the case of X continuous at zero is included in this one, since if p,=0 then
Po<Z2/(1+ 7).
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1.

2

G) is always non-negative, being a ratio of marginal utilities. It is greater than
one, since u” <0 implies V(u', M) <u'(w+ x — M) when M > 0. We have
lim G(M)= +
M—-0+
if po=0, G(0) = 1/p, otherwise, and

GUIT) = —— u'(S— M)

JM u'(S —x) dF(x)

0

G is continuous in (0, M) whenever X is absolutely continuous in that interval.
The derivative of G, which is well defined if X is absolutely continuous and our
hypotheses on « hold, can have any sign.

From our study of g and G it follows that:

if X is not continuous when it is positive, g and G have jumps and no sufficient
condition for g to be equal to G can be given;

if X has at most a discontinuity at 0 and p, < A/(1 + 4), then g is continuous and
monotonically decreasing in (M, M). As a consequence, it takes all the real
values in [g(M), + o0). Let us suppose now that G(M)> g(M), and observe
that this implies

G(M)e[g(M), + )

From this it follows that there exists (at least) a value M < M* < M such that
g(M*) = G(M™),

. if X has at most a discontinuity at 0 and p, > 4/(1 + 1), then G has a finite value

at 0. We have g(0) > G(0), since this inequality can be written
1 - 1
. A Po
1+2

Do

and the latter can be easily transformed into 1> — /(1 + 1).

The monotonicity of g in [0, M] implies that g takes all the real values in
[g(M), g(0)].

The continuity of G implies that G takes at least all the real values in

[min{G(0), G(M)}, max{G(0), G(M)}]

If we assume G(M) > g(M), then the intersection of the intervals [g(M), g(0)]
and [G(0), G(M)] or [G(M), G(0)] is not empty (keep in mind that g(0) > G(0)).
Actually, if we are in the case G(M)< G(0), the interval [G(M), G(0)] is
contained in [g(M), g(0)]. Both in the case G(M) < G(0) and in the opposite one
(because of the non-empty intersection) there exists (at least) one value 0 <
M* < M such that g(M*) = G(M*).
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We obtain the lemma by observing that (i) the condition G(M) > g(M) can be
rewritten as (5.1); (ii) at point 2 above we assumed (5.1), X absolutely continuous
in (0, M) and p, < 2/(1 + 2); (iii) at point 3 above we assumed (5.1), X absolutely
continuous in (0, M) and p,> A/(1+ 1); (iv) both in 2 and 3 we proved the
existence of a stationary point.[]

Proof of lemma 5.2. A sufficient condition for an interior stationary point to be
a maximum, if the distribution function is differentiable at it (as stated in the
hypothesis) and the corresponding density is denoted by f(M*), is that

— fAM*G(M*, 1)+ (1 — F(M*))*(1 + 1) JW* u"(w(x, M*)) dF(x)

o
+ (1 — F(M*)[(1 + AF(M*) — 2Pu"(w+x— M*) <0

where
G(M, 1) L2 (1+4) JM u'(w)dF(x)—[(1+ AH)F(M) — Au'(w+x— M)

It is evident from the latter that risk-aversion of the insurance buyer (concavity of
u) guarantees that every interior solution to the first order conditions is a local
maximum.’ ]

Theorem 2.1 easily follows from the two previous lemmas.
We can then turn to the

Proof of lemma 2.2. First of all, let us notice that the first order conditions for
a maximum of the buyer’s problem at M = M* in (0, M] are

0Eu’
> 5.5
OM |pre pre 2 (5.5)
_ OFEu'
(M* — M) =0 5.6)
aM M= M* (
Since
0Eu’ _ _
= - F(M))9(M, 1)
oM M=M

and F(M) =1 conditions (5.5, 5.6) are always satisfied as equalities when M* =
M: M is always a stationary point. ]

In regard to theorem 2.3, we are going to argue that M is always a minimum, if an
interior stationary point exists.

91If u is strictly concave, the maximum is unique, as usual.
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Proof of theorem 2.3. The fact that every interior stationary point is a local
maximum (lemma 5.2) implies that in a right neighborhood of the greatest interior
maximum

0FEu’ 0
M

The partial derivative under exam cannot become positive without going through
zero. By so doing, however, it would generate a stationary point: this cannot
happen, since we assumed to be at the right of the greatest stationary value. The
right neighborhood above then is a left neighborhood of M. This implies that 1 is
a minimum and demonstrates the theorem.[]

APPENDIX 2
Proof of theorem 3.1. We study the existence of a solution to condition (3.3) by
distinguishing the cases of risk-neutral and risk-averse insurer.'’

In the first case, with U’ constant for every X, condition (3.3) can be re-written,
by dropping the arguments of the derivatives, as

dw
dA

AW dM*
K ()% _
F(M* (4 ))+<d/1+ —

>[1 — F(M*(2*))] =0 (6.1)

With M* < M the distribution function in (6.1) is smaller than one: 1 — F> 0. In
addition, we have to analyze only the case F# 0, since when F= 0 condition (5.2)
collapses into the one for M* =0. In turn, the latter is known to provide no
equilibrium solution, due to the incompatibility with 2 > 0. With F # 0, if dW/d] #
0, condition (6.1) becomes

dw

di _ _1-Frrar) o
dw , dM* F(M*(7*))
. di

which can be true only if the numerator and the denominator of the left hand side
have different signs. We are going to study this possibility after having analyzed the
risk-averse case.

In this second case, with M* < M, since U’ and its integral are positive, we
immediately notice that a necessary condition for (3.3) to admit a solution is that
dW/dA and dW[dA+ dM*|dA have opposite signs.

Let us turn to this question and write F for F(M*(1*)). We know from (3.4) that

19 Please note that, since the effects of loadings on deductibles are taken into account, the optimal choice
for a risk-neutral insurance company is not M* = M.
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2

dw dM*
T =EY—(1-P(+)——

Also, we deduce from it that

dw  dM* dM*
d2+ 7 =FEY—[A—F(1+ 1) 7

(6.2)

The derivatives dW/di and dW|d) + dM*/d}. then have opposite sign whenever

Ed

EY—(l—F)(1+A)%>O

dM*

EY—[1—F(1+2)]—

<0

or the opposite inequalities hold. Let us posit

b d EY
TA=F)(+4)
b d EY
2T I—F(1+2)

and notice that b, >0, b, <0, since, at the maximum of the customer’s problem,
A — F(1 + 1) <0: in turn, this depends on the fact that g= — (1 4+ 4)/[2A— F(1 + 2)]
is positive when it is equal to G, i.e. when the customer’s first order condition is
satisfied.

Using the definitions of b, and b,, and the fact that b, <0 <b,, the previous
system collapses into

dM*
W<b2<0

Analogously, the system with opposite inequalities collapses into

M
H>bl>0

By substituting back the values of b, and b, you get the theorem.J
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