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Abstract

The most common approach for default dependence modelling is at present copula
Junctions. Within this framework, the paper examines factor copulas, which are the industry
standard, together with their latest development, namely the incorporation of sudden jumps
to default instead of a pure diffusive behavior.

The impact of jumps on default dependence — through factor copulas — has not been
Jully exploredyet. Our novel contribution consists in showing that modelling default arrival
through a pure jump asset process does maiter, even whenthe copula choice is the standard,
Jactor one, and the correlation is calibrated so as to match the diffusive and non diffusive
case. An example from the credit derivative market is discussed.

Keywords: Credit risk, correlated defaults, structural models, Lévy processes, copula
Junctions, factor copula
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1. INTRODUCTION

Modelling credit risk poses extreme challenges, since one has to care al the same
time about providing an adequate description of default arrival at the single firm
level and about dependence modelling. Research on both topics. but especially on
default dependence, has been very active in the last years.

This paper starts by reviewing the most common approach for dependence
modelling, namely copula functions. It examines factor copulas, which are the in-
dustry standard, together with their latest development, namely the incorporation
of sudden jumps to default. Indeed, jumps in the assct value. whose deterioration
is assumed to trigger default, are economically sound and statistically helpful in
model calibration. On the one side they give leptokurtic asset distributions, on the
other they can correct for lack of totally unpredictability of detault of diffusive
models, as discussed in Fiorani Luciano and Semeraro (2007).

The impact of jumps on default dependence - through factor copulas - has not
been fully explored. Earlier works include Baxter {20006}, Albrecher, Ladoucette
and Schoutens (2006), Moosbrucker (2006), who focus on CDO pricing. We
examine joint default prediction instead. Our aim is to show that the process
choice does matter, even when the copula choice is the standard, factor one, and
default correlation - through asset correlation - is matched across models.

The present paper is structured as follows: section | reviews the copula no-
tion. section 2 justifies their application to credit risk, by introducing structural
credit risk models. 1t presents also the notion of factor copula. Section 3 extends
structural models to the case of pure jumps in asset values and represents them
through factor copulas. Section 4 shows the joint default probability evaluations
which diffusions and pure jumps provide, when calibrated to the same names and
equalizing assel correlation. The conclusions follow.

2. COPULA FUNCTIONS

Copula functions are joint distribution functions of standard uniform margins.
They have been introduced by Sklar (1959), but are closely related to Hoefld-
ing's sstandardized distributions” and have been studied under different names
(t norms, dependence functions, uniform representations). The standard intro-
ductory textbook for copulas is Nelsen (1999), while applications in Finance are
presented in Cherubini, Luciano, Vecchiato (2004).

. - o . s . - 3 -
Let us consider, for the sake of simplicity, the bivariate case™. Define as f

2 For the definition and properties in the n-dimensional case see for instance Nelsen (1999).
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the unit interval, 7 = [0, 1].

Definition I A nwo-dimensional copula C(

E . . - 2
.2} s a real function defined on 12,

C: 7 —1

sweh that, for every v,z € 1

i)

ft)

Civ )=y, Cil.z)y==

ii) for every rectangle |vy, va| x lz1.22] whose vertices lie in . and such that

Example 2 The functions max{u + v — L0V uvomin{u. v) are copula functions.

Thev are called respectively the minimum, product and maximum copula, and are
denoted as C~,C~,C*t,

Example 3 Consider the finction

C¥(rz) = By (@7 (1) 07 (2)

where Oy is the joint distribution of a bi-dimensional standard normal, with lin-
ear correlation coefficient p.while @' is the inverse of the univariate standard
normal distribution ®. CY% is a copula: it is called the Gaussian copula’.

Example 4 Consider the function

£
== fp'\! (\{‘,

vt (=)

3

P iy /‘ch
; 2 - - dsdr
o oF 2y — P 2t —-p
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where 1, — 2 is the (central) univariate Student's t distribution fitnetion, with

v degrees of freedom (dof)

feix) = /

U is the usual Evler funciion. while 15 the bivariate Stuedlent s 1 distribution with

correlation p and v degrees of freedom (dof):

The finetion C* is called the Sivdent or t copula.

Copulas are satisfy the so-called Fréchet inequality, which states that each
copula function is bounded by the minimum and maximum one:

S min{yz) = C vz (1)

C vz =max{vHz— 10} < Clvz)

The uscfulness of copula functions in applications relies on the following
theorem. which clarifies the link between copulas and joint distribution functions
of non uniform variables. Let X ¥ be two continuous random variables (v s)
Theorem 5 (Sklar (1959)) Ler F{x) = Pr{X < x). 2y} = Pr(Y < v} be (given)
continuois marginal distribution finctions. Ilma /m every (X3} ¢

i) i C iy any copila,
ClR (x). (v

is a joint distribution function w nh marging Fii ARTARE

i) Conversely, if Fix,y}=Pr{X <x Y <l y) is a joint distribution function w ith

margins Y (x), Fa(y). there exists a mziquef copiela C such that

Fix.y) = ClR(x).Fay)) (2)

Based on Sklar's theorem, the copula € - which we will call the copula of X
and ¥ - represents only the dependence between the rv's. While writing

Fix.v) = ClF(x). Faiv))

one splits the joint probabilily into the marginals and dependence. From this
modelling se ;azmtmn it follows that also in the estimation one can identify the
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marginals and, at a second stage, specily the copula function. Current method-
ologies for copula identification indeed include the joint estimate of the copula
and margin parameters: this is the case for instance of the traditional maximum
likelihood approach. However, they allow also for separate identification of the
margins, al a lirst stage, and the copula, at a second stage (inference lunction for
margins). Or for the use of empirical margins in the likelihood function for the
copula {canonical maximum likelihood). In addition, a number of identification
approaches for copulas relies on dependence measures.

Copula functions are related to non parametric measures of association or
dependence, such as Kendall's tau, 7. or Spearman’s rho, ps. which generalize the
notion of linear dependence of the usual linear correlation coelficient, p. They
represent the difference between the probability of concordance of X and ¥ and
the one of discordance (respectively per se and with respect to the independence
case) and can be written as

r—4 / ClnzidClvz) — | (3)
NANTE ‘
py = 12 / / Clvzhdvdz—3 = 12/ / vodClv z) — 3
: dode J oA S
They range between -1 and +1, and are equal to zero when X and ¥ are inde-

pendent. It [ollows [rom the above expressions that the copula parameters can be
written (although not always in closed form) in terms of the dependence measures.

Example 6 The minimun copula corresponds to T = pg = —1. the prodict one to
T py = 0. the maximun one 1o T = ps = 1. These copulas vepreseils therefore
perfect (non linear) negative dependence. independence and perfect (non linear)
positive dependence.

The representation in Sklar's theorem on one side, and the correspondence
between copulas (or their parameters) and association on the other are extremely
fruittul for applications. Indeed. Sklar's theorem becomes a very powerful ool
when, as in credit risk modelling, the usual joint normality assumption can be
questioned,
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3. COPULAS AND CREDIT RISK

Two very preliminary probabilistic problems can be identified in credit risk: as-
sessing the default probability for single obligors and determining their corre-
sponding joint default likelihood. Usually. when working with copulas at the
multivariate level, one starts from marginal assessments based on the so called
structural models. which date back to Merton (1974). We will briefly introduce
the approach in section 2.1, and come back to the copula representation of joint
probabilities in section 2.2

3.1 SINGLE DEFAULTS

In the seminal model of Merton (1974), each irm 4, i = 1.2...n, 1s assumed
to have a single zero coupon debt, with face value K. which expires at maturity /.
Default of firm 7 can therefore occur only at debt maturity. It is triggered by the
fact that the firm’s asset value ¥;(7) falls at the lability one, Kj{1). The disiribution
of the time to default, 7., is
t PV < Ki(1)
o0 P(Vi(r) = K1)}

T =
Fi(t) = P{Vi{1) < Kil1)) (4

Merton assumes that asset returns are normal, or, equivalently, that the asset value
follows a geometric Brownian motion. Under his assumptions the (marginal) de-
fault probability of firm [ is

Fiit) = ®(—dxit})

where

~ STy » 2 ey
_ In(F{0)/Ki(0) + (i — o7/ 2)t
[¢ 2 I
Oiv!t
and y; and o; are respectively the instantaneous mean return on assets (r under the
risk neutral measure) and its standard deviation.
Merton’s model has been extended in a number of ways, including the exis-
tence of coupons on debt or debt covenants, and therefore the possibility of default
before expiry. The extensions are well beyond the scope of this article. However
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the extensions, once compared with the actual data, provide credit spreads # well
below the actual ones for short maturities and high ratings. This happens because
of the lack of total unpredictability of diffusive processes.

3.2 JOINT DEFAULTS

As in section 1, consider the bivarjate case to start with,

In Merton’s model, if one assumes that log assets
tributed, t
15

are jointly normally dis-
1e joint default probability of two names with common expiry of debt

F(r)=P(Ii1)

g

Ky{t) b

™
A,

H

(1) £ Ka(r}) = Dy (—dsy (1), ~daa(r})

Since —dit]) = @ E(), the copula representation of the joint default proba-

bility follows:
Flt) = ®p (@7 (A ()07 (R(1)))

The copula which we have obtained is the Gaussian copula presented above. Anal-

ogously, for the # names, the joint default probability is

F[I) == P{rg [ﬂ < K (!}Vn(j) < K'”(I‘}\.' =y {——dgg (T) wdjn(f\}}

A

which can be written using the corresponding » dimensional Gaussian cop-
ula, with correlation matrix R:

F”}:(I)R ((p*‘(m{f))‘(b_l(ﬁi‘({”) (Q)

Instead of joint normality, one can assume a Student { copula among asset
values, so that the joint default probability is

F(t) =tpo(t; (R (1)) ooty {(FL (1)) (6)

3.3 FACTOR COUPULAS

If the number of obligors increases, the representations (5) or (6), in spite of
their conceptual simplicity, can become cumbersome. Therefore, it is common

——

Credit spreads are differences between the re

quired rate of return on risky debt and the riskless
rate (v in Merton’s model).
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practice, especially for pricing and hedging applications, which can involve more
than a hundred names. to substitute the actual copula with the so called corre-
sponding factor one, as follows,

{.et us assume that the asset value has unit value at time zero and normalize
the log asset value {or asset return) of firm /. The latter is:

Ink;— {u: — 67 {2}

-t

Tiv't

An analogous expression holds under the risk neutral. pricing measure. Assime
that each log asset value in the portiolio can be factorized in a common component

d
Z and an idiosyueratic one, &, as follows:

v
/

I,I =NV \,"f I — pf»: £ 7

where p; € B, Z and g7 = |. ... n are independent standard Gaussian, The weight-

ing coefficients p; and \I,.-""] p; are chosen so that ¥/ is standard pormal. The
assumptions on the [actorization are such that not only the log asset values Vs
are independent. conditionally on the common factor Z, but also that the uncon-
ditional linear correlation coefficient between two log asset values F{ and 1] is

d

pip;. The conditional marginal default probabilities, pliz}, if K7 is the properly
normalized log Hability,

L K
o't

The expressions for the unconditional ones follow by simple integration over the
support of the factor:
) = / Az e(n)dz {8)
where @ is the standard Gaussian density.
Taking into consideration that asset values - and therefore defaults - are con-
ditionally independent, the conditional joint default probability is simply the prod-
uct of the marginal ones:
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more
| corre-

Copuilas and dependence models in credit risk:... 581

It can be written in copula terms using the product copula C*

The corresponding expressions for the joint unconditional probability easily fol-
fow:

Fit) = / TTrzieizid- = / CHp iz elzids (9)

The technigue above can be extended heyond the Gaussian case. In general,
if the common factor 7 has a density /{z) on the real line ¥, it follows from
the definition of conditional probability that the marginal (unconditional) default
probabilities can be wrillen as

Fity= | (10)

The joint unconditional probabilities can be represented through the {conditional)
product copula C-, as desired:

PR IRV

((zhoo (2] fiz)d:z (rh

We will indeed examine in the next section Lévy models in which the condi-
tional asset value is still lognormal. while the factor is gamma distributed instead
of being normal. These models allow a factor representation and therefore can be
easily handled.

Summing up. both in the original Merton model and in non Gaussian struc-
tural models, lactorization permits Lo substitute the original copulas with the prod-
ucl one, according to (11). This makes computational handling of delault and
survival probabilities - and therefore pricing and hedging results - much easier to
obtain. In section 4 below we will examine the impact of the factor copulas when
the margins correspond 1o the most traditional Merton model and when they cor-
respond to the most advanced jump ones, but the factor copula is maintained. In
order to do this. we need a brief introduction to jump models for asset values: this
is provided in the next section.

4. LEVY MODELS

Ihe very high pace of research in risk management in the fast decade spurred

=
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the nterest mn asset models able to describe skewness, kurtosis, and other devia-
tions from normality. Lévy models, which include the diffusive Brownian motion
adopted by Merton on the one side, pure jump processes on the other, seem to be
the general environment in which asset processes for the 21 century can be stud-
ied. Given the observed deviations from normality, the interest has been concen-
trated on non diffusive and even pure jump Lévy models, which easily incorporate
fat tails and leptokurtosis.

Inturn the possibility of writing pure jump models as time changed Brownian
motions provides the following intuition for them: even tough prices are diffusions
in business or transaction time, they are not in calendar time. The pace at which
business time runs constitutes a sort of stochastic clock, and asset prices are not
any more diffusions, once the stochastic time change has been accounted for. This
intuition, which is discussed at length in Geman et alii (2001), has been pursued
and related to empirical trade evidence by Geman and Ané (1996). It constitutes
a well established support for the adoption of pure jump models.

As an alternative, the use of such models in credit risk is advocated on the
ground that only sudden jumps to default can overcome the lack of total unpre-
dictability of default of diffusive models (see for instance Fiorani, Luciano, Se-
meraro (2007)).

As a main consequence, it is by now well understood that Lévy models
such as the Variance Gamma can be appropriate for describing - one by one - risk
neutral asset prices.

Let us assume then that log returns on asset i, i=1,..n, are Geometric Brow-
nian motions in transaction time, namely before any time change (and that they
have unit value at time zero, as above):

Vi)y=6r+omw 20,
with 6; and o; = 0 constant.
If the time change has value G; at time ¢, the calendar time log return is:

) = 6,G, + 0’;”’}?1 t>0. (12)

It one specifies the time change to be of the gamma type with parameter
V. as we will do in the sequel for illustrative purposes, one gets the so called .
Variance Gamima (VG) process for log asset prices or asset returns. This process
has been introduced by Madan and Seneta (1990), and developed in a number of
publications”.

> Non biasedness implies that G, must be gamma with parameters (Vt; v), where v > ().
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In the VG case, the return process has the following features, for simplicity
considered at time 1;

° mean:

£

EF ()] =6

* a variance which decomposes as:

(1)) 3@34‘"9{2

¢ alevel of asymmetry equal 1o

Biv(307 +2v67)/(07 + v67 )2
* acoefficient of kurtosis equal to

3{1+2v—voi(af +ve}) ),

Under the risk neutral measure, the value process in calendar time becomes

VO =6G +aW +mt, 120, (13)
where

- I 5
my =y~ log{ 1~ 50‘; Vo Gy
If two VG, V] and ¥, are driven by the same time ¢

hange, as in Luciano and
Schoutens (2006), their correlation coefficient is

95 93&’

p = f 3 ¥ { il ’ (14)
/o +67v \/ 03 +67v

41FACTOR COPULAS AND LEVY MODELS

Conditional normality of log-returns allows us to write joint default probabilities

of Lévy models - and of the VG case in particular - in a straightforward way. The

idea is the same used for factor models, so that the similarities will be evident.
The distribution of each single asset return at time 1, conditional on a real-

1zation z of the (Gamma) time change, is Normal, with risk neutral mean ;4 9z
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and variance o7 . Let us denote the corresponding marginal default probability as

where vy = In&;, As for the unconditi

B~z /v idz.

A closed form expression lor this integral has been given in Madan, Carr, Chang
{73, in terms of Hypergeometric functions and the nodxh“d Bessel functions, We
note that the integral can also be computed very fast using the inverse Fourier
transform approach or via Partial-Differential Integral Equations (PDIEs).

Omce more, starting from the marginal conditional distributions (15) also the
joint unconditional one can be obtained, since conditional independency holds:

. i
v By vl ! . «
Firt = / E ﬁcb — > 7 Vexp{—z/vids.
L " o = r’ : v } t B /

S

Asinthe Merton’s case. the previous expression can be written via the factor
opula O

Fiti= (16)

5. CALIBRATION AND COOMPARIONS OF FACTOR DEFAULT
PROBABILITIES

This section calibrates 1o the same data set the factor copulas (9) and (16}, so as

to compare them in dependence terms.

5.1 CALIBRATION

We select a sample of five names: Autozone, Ford, Kraft, Walt Disney, Whirlpool,

which are active in the credit derivative market. The parameters of their asset val-
ues under the VG hypothesis have been derived (from credit default swap prices)
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in Luciano and Schoutens {EUO{)}. For the present purpose, we lake the riskless

rate to be zero and we derive the cor

responding parameters under
Tusion hypmi esis by the first two moment matching. Table

the Mertons difs

I presents the marginal

parameters for both models.
Tab. 1;
variance gamma Merton
f o) v u o

Autozone -0.02500 0.2025 0.7068 -0.02500 0.20359
Ford -0.02500 0.25616 0.7068 -0.02500 0.25702
Kraft -0.02957 0.15096 0.7068 -0.02957 0.15299
Walt Disney  -0.03299 0.1542% 0.7068 -0.03299 0.15676
Whirlpool -0.03957 0.17445 0.7068 -0.03957 0.17759

The correlation coetlicients in the jump case, compulted according 1o (14)

dn
are collected in the next table:

Tab. 2:
Autozone Ford Kraft Walt Disney Whirinool
Autozone
Ford 0.701
Kraft 0.694 0.695
Walt Disney 0.692 0.693 0.686
Whirlpool 0.691 0.692 0.685 0.683

The parameters p; in the Gaussian case are calibrated so as to mateh as
closely as possible the VG ones: indeed, they are chosen so as to minimize the
distance with respect to those of table 2. This is done in order for the comparison
not to be affected by the parameters level, but only by the processe
characteristics of dependence (inste

s behavior and
ead of its level).

5.2 DEFAULT PROBABILITIES

The one year pairwise joint default probabilities, under the Merton’s
hypothesis and the corres; ponding VG ones, are
collected in tables 3 and 4 respectively

diffusive
represented m hasis points and
Evidently, the probabilitics in both tables are very low, since they are ove
one year only and refer to companies with a good credit standard, We

are imer—
ested not in their absolute level, bul in their {percentage) differences

s, which are
visualized in figure |. From the figure one can argue that even with reference to
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Tab. 3:

Autozone Ford Kraft Walt Disney Whirlpool
Autozone 6.065 0.030 0.053 0.508
Ford 6.065 0.080 0.143 1.356
Kraft 0.030 0.080 0.001 0.007
Walt Disney 0.053 0.143 0.001 0.012
Whirlpool 0.508 1.356 0.007 0.012

Tab. 4:

Autozone Ford Kraft Walt Disney Whirlpool
Autozone 2421 0.599 0.712 1.215

Ford 2.421 0.966 1.149 2.035
Kraft 0.599 0.966 0.350 0.565
Wait Disney 0.712 1.149 0.350 0.667
‘Whirlpool 1.215 2.035 0.565 0.667

this sample of five names, adopting the product copula approach and considering,
as in the VG case, that asset values jump or neglecting this, produces extremely
different evaluations. Some of the differences are positive, other negatives. It is
then incorrect to conclude that neglecting jumps, once the model, as in our case,
1s properly calibrated to data, leads to underestimating joint default probabilities.

-50.0%
S10.0%
-150.0%
-200.0% +

joint default probability
differences

couples
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6. CONCLUSIONS

This paper has examined default dependence modelling through factor copu-
las, both when the underlying processes driving default are continuous and when
they are pure jump. The aim of study was that of showing that, even under the
same parametrization, the modelling choice has a relevant impact on default pre-
diction. We have shown, through a calibration example, that factor copulas based
on diffusive assets and factor copulas based on pure jump asset provide very differ-
ent evaluations, even when the correlation is matched across models. This poses
new challenges both to the users of factor copulas. Taking into consideration that
pricing, hedging and reserving in the credit derivative market are most of time
done via factor copulas, this seems to be a major issue for credit risk assessment
of hank portfolios.
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