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Abstract

We consider a Cournot duopoly with strategic delegation, where quantities of firms
are chosen by their managers. A firm can offer its manager one of the two incentive
contracts: the profit incentive or the revenue incentive. We show that in this setting
there are Nash equilibria in which an inefficient firm obtains higher profit than its
efficient rival. This result continues to hold under a robust set of correlated equilibria.

Keywords: duopoly; managerial contract; Nash equilibrium; correlated equilibrium;
anticoordination games

1 Introduction

In a duopoly where two firms compete under different marginal costs of production, the
standard result is that the firm with the lower marginal cost obtains a higher profit than its
rival. In this paper we show that there are situations where this result is reversed. To this
end, we build on the strategic delegation framework developed by Vickers [12], Fershtman
and Judd [2] and Sklivas [10].

The theory of strategic delegation studies the functioning of firms that are characterized
by ownership-management separation. The production and pricing decisions within these
firms are taken by their managers. The owners of firms (called simply “firms” from now on-
wards) strategically manipulate incentives of managers via the terms of the contracts offered
to them. These contracts are designed to induce the managers to behave “aggressively” in
the market that results in higher profits for firms.

This paper considers the problem of strategic delegation in a Cournot duopoly with two
firms A and B. Both have constant marginal costs, A having the lower cost of the two. The
interaction among firms and their managers is modeled as a two-stage game. In the first
stage (delegation stage), firms offer the terms of managerial contracts. In the second stage
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(competition stage), managers choose quantities of their firms based on these contracts.1 It
is usually assumed in the literature that firms ask managers to maximize mixtures of profits
and revenues, the weights of which are determined in the pure strategy equilibrium of the
delegation stage. This paper adopts a different approach. We assume that each firm asks its
manager to maximize either the profit (profit incentive) or the revenue (revenue incentive)
of their firms. Incorporating Cournot equilibrium of the competition stage, the interaction
between firms A,B is reduced to a 2×2 game of managerial contract choices. We characterize
all Nash and correlated equilibria of this game.

We show that provided B is not too inefficient compared to A, then for intermediate sizes
of the market there are Nash equilibria (both pure and mixed) under which the inefficient
firm B obtains a higher profit than its more efficient rival A. To the best of our knowledge,
the result that a cost disadvantage can lead to a higher profit has never appeared before in
the literature of industrial economics.

Subsequently we consider correlated equilibrium to check the robustness of our result.
Based on the property that our game of managerial contract choices is an anticoordination

game, we use the results of Calvó-Armengal (2003) to characterize its set of all correlated
equilibrium payoffs. We determine the entire set of points where B obtains more than A. A
simple geometric presentation (Figure 1) identifies this set in the two-dimensional plane.

Our approach to the delegation problem (where a firm asks its manager to maximize
either its profit or its revenue) is distinct from Fershtman-Judd-Sklivas-Vickers (FJSV) where
a firm asks its manager to maximize a combination of profit and revenue. Contracts based
on such combinations are not easy to implement and rarely observed in practice. In contrast,
managerial contracts based on revenue or profit maximization are simple, clearly defined and
frequently observed in real life. Thus, compared to the FJSV formulation, the modeling of
delegation in this paper is arguably more natural and realistic.

While this paper considers the specific problem of delegation in a duopoly, our result can
hold in more general settings. Consider a two-person game between two different players:
strong and weak. Prior to the game each player decides whether or not to make a costly
investment which acts as a commitment device. The interaction can be reduced to a 2 × 2
game of investment choices. Assume that the strong player obtains higher payoff than the
weak player under symmetric investment choices, but under asymmetric choices the player
who makes investment obtains higher payoff than its rival. If this game is an anticoordination
game,2 then both asymmetric outcomes are Nash equilibria and in one of these outcomes,
the weak player obtains a higher payoff. Furthermore its set of correlated equilibria coincides
with the set of correlated equilibria of general 2 × 2 anticoordination games and there is a
robust subset of such equilibria where the weak player obtains more than the strong player.

The paper is organized as follows. We describe the model in Section 2. We characterize
Nash equilibria in Section 2 and correlated equilibria in Section 3.

1In recent years the basic delegation model has been enriched by incorporating aspects such as R&D
(Zhang & Zhang [13], Kopel & Riegler [4]), collusion (Lambertini & Trombetta [5], Pal [8]),patent licensing
(Saracho [9]), wage bargaining (Szymanski [11]), endogenous mode of market competition (Miller & Pazgal
[6]), two-period models (Mujumdar & Pal [7]), and Stackelberg competition (Kopel & Loffler [3]).

2If a 2× 2 game is an anticoordination game, it is also a game of strategic substitutes. See the discussion
after Lemma 1 (p.5).
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2 The model

Consider a Cournot duopoly with firms A,B. For i ∈ {A,B}, let qi ≥ 0 be the quantity
produced by firm i and Q = qA + qB the market quantity. The market price is given by

p(Q) = k −Q if Q < k and p(Q) = 0 if Q ≥ k (1)

where k > 0. Firms A,B operate under constant marginal costs τA, τB. We assume3

0 < τA < τB < k (2)

Firm i ∈ {A,B} seeks to maximize its profit

πi(qA, qB) = p(qA + qB)qi − τiqi (3)

Each firm employs a manager that chooses the firm’s quantity. Denote the managers of A,B
by mA,mB. A firm can offer its manager either the profit incentive or the revenue incentive.
If manager mi works under the profit incentive, he chooses qi to maximize firm i’s profit πi
given in (3). If he works under the revenue incentive, he chooses qi to maximize i’s revenue

Ri(qA, qB) = p(qA + qB)qi (4)

For i ∈ {A,B}, the nature of the incentive offered to managermi is captured by the indicator
variable λi defined as

λi :=

{
1 if firm i uses the profit incentive
0 if firm i uses the revenue incentive

(5)

By (3), (4) and (5), when firm i sets λi ∈ {0, 1}, its manager mi chooses qi to maximize

πλi

i (qA, qB) = p(qA + qB)qi − λiτiqi (6)

2.1 The game Γ

The strategic interaction among firms A,B and managersmA,mB is modeled as an extensive-
form game Γ that has the following stages.

Stage 1: Firms A,B simultaneously choose λA, λB ∈ {0, 1} for their managers. The chosen
(λA, λB) becomes commonly known in Stage 1.

Stage 2: For every (λA, λB), a simultaneous-move game Γ̃(λA, λB) is played where managers

mA,mB, simultaneously choose qA, qB ≥ 0. The payoff of mi in Γ̃(λA, λB) is given by πλi

i

from (6). The payoff of firm i is its profit πi given in (3). Using (3) in (6) it follows that
firm i’s payoff in Γ is

πi(λA, λB, qA, qB) = πλi

i (qA, qB)− (1− λi)τiqi (7)

We seek to determine the Subgame Perfect Nash Equilibria (SPNE) of Γ. To this end, we

first determine the Nash equilibrium (NE) of Γ̃(λA, λB).

3Throughout the paper, we consider generic values of the parameters τA, τB , k, so we confront only strict
inequalities.
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2.1.1 Stage 2 of Γ: NE of Γ̃(λA, λB)

Observe from (6) that Γ̃(λA, λB) can be viewed as a standard Cournot duopoly game played
between two managers mA,mB where mi has marginal cost λiτi. In addition to (2), assume

k > 2τB (8)

which ensures that for any λA, λB ∈ {0, 1}, at the (unique) NE of Γ̃(λA, λB), both qA, qB > 0.

Let i, j ∈ {A,B} and i 6= j. By equilibrium conditions, at the NE of Γ̃(λA, λB), manager mi

chooses qi = qi(λAτA, λBτB) and obtains payoff φi(λAτA, λBτB) where

qi(λAτA, λBτB) = (k − 2λiτi + λjτj)/3 and φi(λAτA, λBτB) = [qi(λAτA, λBτB)]
2 (9)

2.1.2 Stage 1 of Γ: The reduced form game Γ∗

Using the unique NE of Γ̃(λA, λB) in stage 2, firms A,B play the 2× 2 reduced form game
Γ∗ in stage 1, where firm i ∈ {A,B} has two pure strategies: λi = 0 and λi = 1. For
λA, λB ∈ {0, 1}, denote the payoffs of firms A,B, in Γ∗ by aλAλB

, bλAλB
. Taking πλi

i (qA, qB) =
φi(λAτA, λBτB) in (7), we have

aλAλB
= φA(λAτA, λBτB)− (1− λA)τAqA(λAτA, λBτB) (10)

bλAλB
= φB(λAτA, λBτB)− (1− λB)τBqB(λAτA, λBτB) (11)

Using (9) in (10) and (11), the game Γ∗ is described as follows.

Table 1: The game Γ∗

λB = 0 λB = 1
λA = 0 a00 = φA(0, 0)− τAqA(0, 0) a01 = φA(0, τB)− τAqA(0, τB)

= k2/9− τAk/3 = (k + τB)
2/9− τA(k + τB)/3

b00 = φB(0, 0)− τBqB(0, 0) b01 = φB(0, τB) = (k − 2τB)
2/9

= k2/9− τBk/3
λA = 1 a10 = φA(τA, 0) = (k − 2τA)

2/9 a11 = φA(τA, τB) = (k − 2τA + τB)
2/9

b10 = φB(τA, 0)− τBqB(τA, 0) b11 = φB(τA, τB) = (k − 2τB + τA)
2/9

= (k + τA)
2/9− τB(k + τA)/3

We say that (λA, λB) is an SPNE of Γ if (λA, λB) is an NE of the reduced form game Γ∗.
For the rest of the paper, we consider the game Γ∗.

3 Pure and mixed strategy NE of Γ∗

In this section we identify cases where there are NE of Γ∗ in which the inefficient firm B
obtains higher profit than its efficient rival A. Denote

k0 ≡ 4τA − τB, k1 ≡ 4τB − τA, k2 ≡ 4τA and k3 ≡ 4τB (12)

As 0 < τA < τB, we have k0 < k1 < k3 and k0 < k2 < k3. In addition to (2) and (8), assume
that firm B is not too inefficient compared to firm A:

τB < 5τA/4 (13)
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which implies k1 < k2. Finally assume that the market size (represented by the demand
intercept k) is of intermediate size:

k1 < k < k2 (14)

Under (13)-(14), we have k0 < k1 < k < k2 < k3. The assumptions in (2), (8), (13) and (14)
are maintained throughout.

Definition Consider a 2×2 game with players A,B where the set of strategies of each player
is {0, 1}. For i, j ∈ {0, 1}, let aij, bij be the payoffs of A,B at the cell (i, j). This game is an
anticoordination game if a01 > a11, a10 > a00, b01 > b11 and b10 > b00.

Lemma 1 shows that Γ∗ is an anticoordination game. Furthermore its payoff structure
has additional properties.

Lemma 1 The following hold for the game Γ∗.

(i) a01 > a11 > a10 > a00 > 0 and b10 > b11 > b01 > b00 > 0. Thus, in particular, Γ∗ is an

anticoordination game.

(ii) b10 > a10 and for all other i, j ∈ {0, 1}, aij > bij.

Proof See the Appendix.

The fact that Γ∗ is an anticoordination game will be useful to characterize its correlated
equilibria in Section 3. Lemma 1 also shows that the payoffs of any firm are well-ordered
over the four cells of Γ∗. A firm obtains its maximum payoff at the cell where it chooses the
revenue incentive and its rival chooses the profit incentive. It obtains its minimum payoff at
the cell where both firms choose the revenue incentive. Finally, firm B obtains higher payoff
than firm A only at the cell (1, 0).

From the property of anticoordination of Γ∗, we have a00 − a10 < 0 < a01 − a11 and
b00 − b01 < 0 < b10 − b11. If the revenue incentive (λi = 0) is viewed as a more aggressive

strategy for a firm compared to the profit incentive (λi = 1), then these inequalities imply
that for any firm, the incremental gain from a less aggressive to a more aggressive strategy is
lower when its rival chooses a more aggressive strategy. Therefore Γ∗ is a game of strategic
substitutes.

Consider now the mixed strategy extension of Γ∗. For i ∈ {A,B}, a mixed strategy of
firm i in Γ∗ is given by σ(x) for x ∈ [0, 1]. Under σ(x), firm i chooses the pure strategy
λi = 0 with probability x and the pure strategy λi = 1 with probability 1− x. The set of all
mixed strategies of any firm is {σ(x)|x ∈ [0, 1]}. A mixed strategy σ(x) is completely mixed

if x ∈ (0, 1).
Theorem 1 characterizes all NE of Γ∗. It is shown there is a pure strategy NE as well as

an NE in completely mixed strategies where the inefficient firm B obtains higher profit than
its efficient rival A.

Theorem 1

(i) Γ∗ has three NE in total. The cells (1, 0) and (0, 1) correspond to two NE in pure

strategies. There is another NE, where both firms play completely mixed strategies. In

the completely mixed NE, A plays σ(x∗) and B plays σ(y∗) where x∗ ≡ (k−k1)/τA and

y∗ ≡ (k − k0)/τB.
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(ii) Firm B obtains higher profit than firm A at (1, 0). Furthermore, firm B also obtains

higher expected profit than firm A under the completely mixed strategy NE. At (0, 1),
firm B obtains lower profit than firm A.

Proof See the Appendix.

Theorem 1 shows that provided firm B is not too inefficient compared to firm A (cB <
5cA/4), then for intermediate sizes of the market (k1 < k < k2), there is an NE in pure
strategies where (a) A chooses the profit incentive and B chooses the revenue incentive (cell
(1,0)) and (b) the inefficient firm B obtains a higher profit than A.

First we see the intuition for (b), given (a). Under outcome (1,0), the objective of manager
mB is to maximize firm B’s revenue, so it effectively acts as a firm that has zero cost. In
contrast, manager mA solves the standard problem of maximizing profit with positive cost.
Therefore B would obtain a higher profit than A if firms have the same costs. By continuity,
the same result holds even if B’s costs are higher, as long as they are not too high.

To see the intuition for (a), note that for two demand curves parallel to each other, at
any price, the elasticity is higher at the demand curve that lies on the right. In other words,
for any price, demand becomes more elastic as the market expands, where the expansion is
presented by parallel rightward shift of the demand curve. This drives (a) as follows.

If both firms choose the revenue incentive, then both supply a high quantity that results
in a low price. When the market size is not too large, such a low price corresponds to
the inelastic portion of the demand curve. One of the firms can then improve its profit by
deviating to the profit incentive that results in higher price. On the other hand, if both firms
choose the profit incentive then the price is high. When the market size is not too small,
such a high price corresponds to the elastic portion of the demand curve. In that case, one
of the firms can improve its profit by deviating to the revenue incentive that results in lower
price. This explains why A’s choice of profit incentive and B’s choice of revenue incentive
can be sustained as an equilibrium when the market size is intermediate, i.e., it is not too
large or too small.

Theorem 1 shows that the inefficient firm B makes higher profit than its efficient rival
A also under the completely mixed NE. This is because that NE gives a sufficiently high
probability to the cell (1, 0) where b10 > a10. However, a mixed strategy NE has the undesir-
able feature that although a player is indifferent between its pure strategies, it must mix its
strategies in a specific way so as to make its rival player indifferent. We consider correlated
equilibrium to check the robustness of our result.

4 Correlated equilibria

The concept of correlated equilibrium is useful in modeling environments where prior to
playing the game, players observe private signals of the same random event. Using the
results of Calvó-Armengal (2003) on correlated equilibria of 2 × 2 games, in this section
we determine the set of all correlated equilibrium payoffs of Γ∗ where the inefficient firm B
obtains more than its rival.
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4.1 Set of correlated equilibria

Let ∆ := {(x1, x2, x3, x4) ∈ R
4
+|x1 + x2 + x3 + x4 = 1} be the 3-dimensional simplex of R4.

A random device is a probability distribution µ = (µ00, µ11, µ10, µ01) ∈ ∆ over the 4 cells of
Γ∗ as follows.

λB = 0 λB = 1
λA = 0 µ00 µ01

λA = 1 µ10 µ11

A random device µ is a correlated equilibrium (CRE) of Γ∗ if for i, j ∈ {0, 1}, i 6= j:

µi0ai0 + µi1ai1 ≥ µi0aj0 + µi1aj1 and µ0ib0i + µ1ib1i ≥ µ0ib0j + µ1ib1j (15)

A polytope of X ⊆ R
n is the convex hull of finitely many points of X. Thus, a polytope

is convex and compact. The set of all CRE of Γ∗, denoted by CRE(Γ∗), is a non-empty
polytope of ∆. The convex hull of the three NE of Γ∗ is a subset of CRE(Γ∗). Denote

α ≡ (a10 − a00)/(a01 − a11) and β ≡ (b01 − b00)/(b10 − b11) (16)

Note from Lemma 1 that α, β > 0 and the inequalities of (15) are equivalent to

µ01 ≥ αµ00, αµ10 ≥ µ11, µ10 ≥ βµ00, βµ01 ≥ µ11 (17)

Note from (17) that CRE(Γ∗) = CRE(γ), where γ is the following anticoordination game.

0 1
0 −α,−β 0, 0
1 0, 0 −1,−1

(18)

Following Calvó-Armengal (2003), consider these five points in ∆.

µ µ00 µ11 µ10 µ01

C 0 0 1 0
D 0 0 0 1

E 1
(1+α)(1+β)

αβ

(1+α)(1+β)
β

(1+α)(1+β)
α

(1+α)(1+β)

F 1
1+α+β

0 β

1+α+β
α

1+α+β

G 0 αβ

α+β+αβ

β

α+β+αβ
α

α+β+αβ

(19)

A point of a polytope is called a vertex if it is not a convex combination of two other points
of the polytope. Proposition 1 is a geometric characterization of CRE(Γ∗).

Proposition 1 CRE(Γ∗) is a polytope of ∆ with 5 vertices defined in (19).

Proof Follows from Lemma 2 and Proposition 2 of Calvó-Armengal (2003).

Observe that vertices C and D correspond to two pure strategy NE of Γ∗, while E
corresponds to its completely mixed NE. The vertices F and G lie outside the convex hull
of all three NE of Γ∗.
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4.2 Set of correlated equilibrium payoffs

For µ ∈ CRE(Γ∗), let πA(µ) =
∑

i,j∈{0,1} µijaij > 0 and πB(µ) =
∑

i,j∈{0,1} µijbij > 0 be the

expected payoffs4 of A andB at µ.Denote π(µ) = (πA(µ), πB(µ)). Let CREP (Γ
∗) := {π(µ) ∈

R
2
+|µ ∈ CRE(Γ∗)} be the set of correlated equilibrium payoffs of Γ∗. For i, j ∈ {A,B}, let

Sij := {π(µ) ∈ CREP (Γ∗)|πi(µ) ≥ πj(µ)}.
To simplify notations, denote the payoff pairs generated by the 5 vertices C,D,E, F,G of

CRE(Γ∗) by lowercase letters, i.e., c ≡ π(C) = (πA(C), πB(C)), d ≡ π(D) = (πA(D), πB(D))
etc. Theorem 2 characterizes5 CREP (Γ∗) and determines the entire set of points in CREP (Γ∗)
where firm B obtains more than firm A.

Theorem 2

(i) CREP (Γ∗) is a polytope of R2
+ with 4 vertices c, d, f, g.

(ii) Firm B obtains more than firm A at all of these vertices except d.

(iii) SBA is a polytope with 5 vertices and SAB is a polytope with 3 vertices.

Proof See the Appendix.
The conclusions of Theorem 2 can be seen quite clearly from Figure 1. In this figure, the

two axes present the payoffs of firms A,B. The set CREP (Γ∗) is the quadrilateral cfdg. The
points c, d, e correspond to the NE payoff pairs. The convex hull of NE payoffs, the triangle
cde, is a proper subset of cfdg.

Since πB(C) > πA(C) and πB(E) > πA(E), there are other correlated equilibrium payoffs
(e.g., any point on the line ce) where B obtains more than A. To identify the entire set of
points where this happens, consider the 45◦ line drawn in Figure 1. For any point above this
line, B has higher payoff than A. The 45◦ line cuts CREP (Γ∗) in two parts. At any point
above the line mh in the pentagon cfmhg, payoff of B is higher. On the other hand, at any
point below the line mh in triangle dmh, payoff of A is higher. For all points on the line
mh, both firms obtain the same payoff. To conclude, the result that the inefficient firm B
obtains higher profit than its efficient rival A is robust under correlated equilibrium.

4Since the payoff of any firm is positive in any cell of Γ∗ (Lemma 1), these expected payoffs are also
positive.

5An aspect of the relation between Γ∗ and the game γ (given in (18)) is worth emphasizing: CRE(Γ∗) =
CRE(γ), but CREP (Γ∗) 6= CREP (γ). For instance, points C,D of (19) give the same payoff pair (0, 0) for
γ∗, but C,D generate two distinct payoff pairs for Γ∗.
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Appendix

Proof of Lemma 1 (i) As τA, τB > 0, it is immediate from Table 1 that a10 > a11 and
b01 > b11. Next observe that a01 − a11 = τA(k − k0)/9, a10 − a00 = τA(k2 − k)/9, b10 − b11 =
τB(k − k1)/9 and b01 − b00 = τB(k3 − k)/9 are all positive, since k0 < k1 < k < k2 < k3.
Finally since τA < τB, we have a00 > b00 = k(k − 3τB)/9 > k(k − k1) > 0.

(ii) As τA < τB, from Table 1 we have a00 > b00 and a11 > b11. By (i), a01 − b01 >
a11 − b11 > 0. Finally, since k1 < k < k2, we have b10 − a10 = [(2k− τA)τA − τB(k+ τA)]/3 >
[(2k1 − τA)τA − τB(k2 + τA)]/3 = τA(τB − τA) > 0.
Proof of Theorem 1 (i) By Lemma 1(i) it is immediate that the only two NE in pure
strategies correspond to the cells (1, 0) and (0, 1). Lemma 1(i) also implies that Γ∗ does not
have an NE where one firm chooses a pure strategy and another firm chooses a completely
mixed strategy. Finally let σ(x), σ(y) be the strategies of A,B in a completely mixed NE.
Then we have ya00 +(1− y)a01 = ya10 +(1− y)a11 and xb00 +(1− x)b10 = xb01 +(1− x)b11,
whose unique solution has x = x∗ ≡ (k − k1)/τA and y = y∗ ≡ (k − k0)/τB.

(ii) From Lemma 1(ii), we have b10 > a10 and b01 < a01. To complete the proof, let π∗
A, π

∗
B

be the payoffs of A,B at the completely mixed NE. Using the values of x∗, y∗ and simplifying,
we have π∗

B − π∗
A = (τB − τA)[k − 4(τB + τA)/3] > (τB − τA)(k − k1) > 0.

Proof of Theorem 2 (i) By Lemma 2 and Propositions 2-3 of Calvó-Armengal (2003),
CREP (Γ∗) is a polytope of R2

+ with either 3 or 4 vertices. Points c, d and at least one of
f, g are its vertices. In what follows, we show that both f and g are vertices of CREP (Γ∗).

Consider the R
2
+ plane in Figure 1. We present πA on the horizontal axis and πB on the

vertical axis. The 45◦ line contains all payoff pairs where πA = πB. Hence πB > πA above
this line and πB < πA below this line. The proof of (i) proceeds in the following steps.

Step 1: c lies above and d lies below the 45◦ line and cd is a downward sloping line: As
c = (a10, b10) and d = (a01, b01), by Theorem 1 c lies above and d lies below the 45◦ line. As
b10 > b01 and a01 > a10 (Lemma 1(i)), cd is a downward sloping line as drawn in Figure 1.

Step 2: f lies below and g lies above the line cd: By (19) and Lemma 1(i) we have
πB(C) = b01 > max{πB(F ), πB(G)}, πA(D) = a10 > max{πA(F ), πA(G)}, πA(G) > a10 =
πA(C) and πB(G) > b01 = πB(D). Moreover πA(F )− πA(C) = α(a10 − a11)/(1 + α+ β) > 0
and πB(F )− πB(D) = β(b11 − b01)/(1 + α + β) > 0. These imply

πA(D) = a01 > max{πA(F ), πA(G)} ≥ min{πA(F ), πA(G)} > πA(C) = a10

πB(C) = b10 > max{πB(F ), πB(G)} ≥ min{πB(F ), πB(G)} > πB(D) = b01 (20)

By the inequalities above, ∃ θFA , θ
F
B ∈ (0, 1) such that πA(F ) = θFAa10 + (1 − θFA)a01 and

πB(F ) = θFBb10 + (1− θFB)b01. Let β̃ ≡ β/(1 + α + β) ∈ (0, 1). Note from (19) that πA(F ) <

β̃a10 + (1− β̃)a01 and πB(F ) < β̃b10 + (1− β̃)b01 As a10 < a01 and b01 > b10, we must have

θFA > β̃ and θFB < β̃. This proves that θFB < θFA . Hence f lies below the line cd.
By (20), ∃ θGA , θ

G
B ∈ (0, 1) such that πA(G) = θGAa10 + (1 − θGA)a01 and πB(G) = θGBb10 +

(1− θGB)b01. Solving these equations using (19), we have θGA = γ2(a01 − a11)/(a01 − a10) + γ1
and θGB = γ2(b11 − b01)/(b10 − b01) + γ1 where γ1 ≡ β/(α + β + αβ) and γ2 ≡ αγ1. Hence
sign[θGB − θGA ] = sign[(k− τA− τB)] > 0 (since k > 2τB > τA+ τB). This proves that θ

G
B > θGA ,

so g lies above the line cd.
By Step 2, f is not a convex combination of c, d, g and g is not a convex combination

of c, d, f. Then using the results of Calvó-Armengal (2003), it follows that CREP (Γ∗) is a
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polytope of R2
+ with 4 vertices: c, d, f, g.

(ii) The result for c, d follow from Theorem 1. For f, g, recall from Theorem 1 that
at e (the payoff pair of the completely mixed NE), πB(E) > πA(E). Hence by (19), ψ ≡
(b00−a00)+αβ(b11−a11)+β(b10−a10)+α(b01−a01) > 0. As b11 < a11, we have (b00−a00)+
β(b10 − a10) + α(b01 − a01) > ψ > 0, implying from (19) that πB(F ) > πA(F ). As b00 < a00,
we have αβ(b11−a11)+β(b10−a10)+α(b01−a01) > ψ > 0, so by from (19), πB(G) > πA(G).

(iii) By (ii), both f, g lie above the 45◦ line. Let m,h be the respective points of inter-
section of fd, gd with the 45◦ line. Then the result is immediate from Figure 1.
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