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Abstract

This paper considers the maximum generalized empirical likelihood (GEL) estimation and inference
on parameters identified by high dimensional moment restrictions with weakly dependent data when
the dimensions of the moment restrictions and the parameters diverge along with the sample size. The
consistency with rates and the asymptotic normality of the GEL estimator are obtained by properly
restricting the growth rates of the dimensions of the parameters and the moment restrictions, as well
as the degree of data dependence. It is shown that even in the high dimensional time series setting,
the GEL ratio can still behave like a chi-square random variable asymptotically. A consistent test for
the over-identification is proposed. A penalized GEL method is also provided for estimation under
sparsity setting.

JEL classification: C14; C30; C40
Key words: Generalized empirical likelihood; High dimensionality; Penalized likelihood; Variable selec-
tion; Over-identification test; Weak dependence.

1 Introduction

In economic, financial and statistical applications, econometric models defined with a growing number of
parameters and moment restrictions are increasingly employed. Vector autoregressive models, dynamic
asset pricing models, dynamic panel data models and high dimensional dynamic factor models are specific
examples; see, e.g., Bai and Ng (2002), Stock and Watson (2010) and Fan and Liao (2014). Due to the
desire to better capture large scale dynamic fundamental relations, these models with large number of
unknown parameters of interest are typically used to for time series data of high dimension due to a large
number of variables (relative to the sample size).

The unconditional moment restriction models are the inferential settings of the Generalized Method
of Moment (GMM) of Hansen (1982), which is perhaps the most popular econometric method for semi-
parametric statistical inference. There are two dimensions that play essential roles in this method: the
dimension of the moment restrictions and the dimension of the unknown parameters of interest. When
both dimensions are fixed and finite, there is a huge established literature on inferential procedures, which
include but not restrict to Rothenberg (1973) for the minimum distance, Hansen (1982) and Hansen and
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Singleton (1982) for the GMM, Owen (1988), Qin and Lawless (1994) and Kitamura (1997) for the em-
pirical likelihood (EL), Smith (1997), Newey and Smith (2004) and Anatolyev (2005) for the generalized
empirical likelihood (GEL). Among these methods, some members of the GEL (especially the EL) have
the attractive properties of the Wilks’ theorem (Owen, 1988, 1990; Qin and Lawless, 1994), Bartlett cor-
rection (Chen and Cui, 2006, 2007), and a smaller second order bias (Newey and Smith, 2004; Anatolyev,
2005). See Owen (2001), Kitamura (2007) and Chen and Van Keilegom (2009) for reviews.

This paper investigates high dimensional GEL estimation and testing for weakly dependent obser-
vations when the dimensions of both the moment restrictions and the unknown parameters of interest
may grow with the sample size n. Let p and r denote the dimension of the unknown parameters and the
number of moment restrictions, respectively. When r ≥ p, we investigate the impacts of p and r on the
consistency, the rate of convergence and the asymptotic normality of the GEL estimator, the limiting
behavior of the GEL ratio statistics as well as the overidentification test. To accommodate the potential
serial dependence in the estimating functions induced by the original time series data, the blocking tech-
nique is employed. This paper establishes the consistency (with rate) and the asymptotic normality of
the GEL estimator under either (fixed) finite or diverging block size M under some suitable restrictions
on r, p, M and n. It is demonstrated that in general the blocking technique with a diverging block size
delivers the estimation efficiency. We also discuss the impact of the smallest eigenvalue of the covari-
ance matrix of the averaged estimating function on the consistency and the asymptotic normality of the
GEL estimator. We show that, even in high dimensional nonlinear time series setting (with diverging
M), the GEL ratio still behaves like a chi-square random variable asymptotically, which echoes a similar
result by Fan, Zhang and Zhang (2001) for nonparametric regression with iid data. A GEL based over-
identification specification test is also presented for high dimensional time series models, which extends
that of Donald, Imbens and Newey (2003) for iid data from increasing dimension of moments (r) but
fixed finite dimension of parameters (p) to both dimensions are allowed to diverge (as long as r− p > 0).
Finally, when the parameter space is sparse, a penalized GEL method is proposed to allow for p > r, and
is shown to attain the oracle property in the selection consistency as well as the asymptotic normality of
the estimated non-zero parameters.

There are some studies on the EL and its related methods under high dimensionality of both the
moment restrictions and the parameters of interest. Chen, Peng and Qin (2009) and Hjort, McKeague and
Van Keilegom (2009) evaluated the EL ratio statistic for the mean under high dimensional setting. Tang
and Leng (2010) and Leng and Tang (2012) evaluated a penalized EL when the underlying parameter is
sparse in the context of the mean parameters and the general estimating equations, respectively. Fan and
Liao (2014) considered penalized GMM estimation under high dimensionality and sparsity assumption.
These papers assume independent data. Recently, by allowing for dependent data but losing the self-
standardization property of the EL, Lahiri and Mukhopadhyay (2012) proposed a modified EL method by
adding a penalty term to the original EL criterion for estimating the high-dimensional mean parameters
with r = p > n. Lahiri and Mukhopadhyay (2012) did not implement data blocking in their modified
(penalized) EL for the means despite the moment equations are serially dependent. The EL ratio statistic
based on their modified EL method is no longer asymptotically pivotal. As a result, any inference based
on this modified EL has to use data blocking or other HAC long-run variance estimation. The rationale in
our paper is to preserve the attractive self-standardization property of the GEL in high dimensional time
series setting; doing so makes our allowed dimensionality smaller than that in Lahiri and Mukhopadhyay
(2012) but maintains simple GEL inference.

The rest of the paper is organized as follows. Section 2 introduces the high dimensional model
framework and the basic regularity conditions. Sections 3 and 4 establish the consistency, the rate of
convergence and the asymptotic normality of the GEL estimator. Sections 5 and 6 derive the asymptotic
properties of the GEL ratio statistic and the overidentification specification test respectively. Section 7
presents a penalized GEL approach for parameter estimation and variable selection when the unknown
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parameter is sparse. Section 8 reports some simulation results and Section 9 briefly concludes. Technical
lemmas and all the proofs are given in Appendix.

2 Preliminaries

2.1 Empirical Likelihood and Generalization

Let {Xt}nt=1 be a sample of size n from an R
d−valued strictly stationary stochastic process, where d

denotes the dimension of Xt, and θ = (θ1, . . . , θp)
′ be a p-dimensional parameter taking values in a

parameter space Θ. Consider a sequence of r-dimensional estimating equation

g(Xt,θ) = (g1(Xt,θ), . . . , gr(Xt,θ))
′

for r ≥ p. The model information regarding the data and the parameter is summarized by moment
restrictions

E{g(Xt,θ0)} = 0 (1)

where θ0 ∈ Θ is the true parameter. As argued in Hjort, McKeague and Van Keilegom (2009), the
moment restrictions (1) can be viewed as a triangular array where r, d,Xt,θ and g(x,θ) may all depend
on the sample size n. We will explicitly allow r and/or p grow with n while considering inference for θ0
identified by (1). Although there is often a connection between d and r which is dictated by the context
of an econometrical or statistical analysis, the theoretical results established in this paper are written
directly on the growth rates of r and p relative to n. Hence, we will not impose explicit conditions
on d which can be either growing or fixed. Certainly, when d diverges, it would indirectly affect the
underlying assumptions made in Section 2.3, for instance the moment condition and the rate of the
mixing coefficients.

We assume the dependence in the time series {Xt} satisfies the α-mixing condition (Doukhan, 1994).
Specifically, let F v

u = σ(Xt : u ≤ t ≤ v) be the σ-field generated by the data from a time u to a time v
for v ≥ u. Then, the α-mixing coefficients are defined as

αX(k) = sup
d

sup
A∈F0

−∞,B∈F∞
k

|P (A ∩B)− P (A)P (B)| for each k ≥ 1.

The α-mixing condition means that αX(k) → 0 as k → ∞. When {Xt} are independent, αX(k) = 0 for
all k ≥ 1.

We employ the blocking technique (Hall, 1985; Carlstein, 1986; Künsch, 1989) to preserve the de-
pendence among the underlying data. Let M and L be two integers denoting the block length and
separation between adjacent blocks, respectively. Then, the total number of blocks is Q = ⌊(n −
M)/L⌋ + 1, where ⌊·⌋ is the integer truncation operator. For each q = 1, . . . , Q, the q-th data block
Bq = (X(q−1)L+1, . . . , X(q−1)L+M ). The average of the estimating equation over the q-th block is

φM (Bq,θ) =
1

M

M∑

m=1

g(X(q−1)L+m,θ). (2)

Clearly, E{φM (Bq,θ0)} = 0. For any n and θ ∈ Θ, {φM (Bq,θ)}Qq=1 is a new stationary sequence. The
blockwise EL (Kitamura, 1997) is defined as

L(θ) = sup

{ Q∏

q=1

πq

∣∣∣∣πq > 0,

Q∑

q=1

πq = 1,

Q∑

q=1

πqφM (Bq,θ) = 0

}
. (3)
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Employing the routine optimization procedure for the blockwise EL leads to

L(θ) =
Q∏

q=1

{
1

Q

1

1 + λ̂(θ)′φM (Bq,θ)

}
, (4)

where λ̂(θ) is a stationary point of the function q(λ) = −∑Q
q=1 log{1 + λ′φM (Bq,θ)}.

The EL estimator for θ0 is θ̂EL = argmaxθ∈Θ log L(θ). The maximization in (3) can be carried out
more efficiently by solving the corresponding dual problem, which implies that θ̂EL can be obtained as

θ̂EL = argmin
θ∈Θ

max
λ∈Λ̂n(θ)

Q∑

q=1

log{1 + λ′φM (Bq,θ)}, (5)

where Λ̂n(θ) = {λ ∈ R
r : λ′φM (Bq,θ) ∈ V, q = 1, . . . , Q} for any θ ∈ Θ and V is an open interval con-

taining zero.
The link function log(1 + v) in (5) can be replaced by a general concave function ρ(v) (Smith, 1997).

The domain of ρ(·) contains 0 as an interior point, and ρ(·) satisfies ρv(0) 6= 0 and ρvv(0) < 0 where
ρv(v) = ∂ρ(v)/∂v and ρvv(v) = ∂2ρ(v)/∂v2. The GEL estimator (Smith, 1997; Newey and Smith, 2004)
is

θ̂n = argmin
θ∈Θ

max
λ∈Λ̂n(θ)

Q∑

q=1

ρ(λ′φM (Bq,θ)), (6)

which includes the EL estimator θ̂EL of Owen (1988), the exponential tilting (ET) estimator of Kitamura
and Stutzer (1997) and Imbens, Spady and Jonson (1998) (with ρ(v) = − exp(v)), the continuous updating
(CU) GMM estimator of Hansen, Heaton and Yaron (1996) (with a quadratic ρ(v)), and many others as
special cases. Define

Ŝn(θ, λ) =
1

Q

Q∑

q=1

ρ(λ′φq(θ)). (7)

Then θ̂n and its Lagrange multiplier λ̂ satisfy the score equation

∇λŜn(θ̂n, λ̂) = 0.

By the implicit function theorem [Theorem 9.28 of Rudin (1976)], for all θ in a ‖ · ‖2-neighborhood of
θ̂n, there is a λ̂(θ) such that ∇λŜn(θ, λ̂(θ)) = 0 and λ̂(θ) is continuously differentiable in θ. By the
concavity of Ŝn(θ, λ) with respect to λ, Ŝn(θ, λ̂(θ)) = max

λ∈Λ̂n(θ)
Ŝn(θ, λ). From the envelope theorem,

0 = ∇θŜn(θ, λ̂(θ))
∣∣
θ=θ̂n

=
1

Q

Q∑

q=1

ρv(λ̂(θ̂n)
′φq(θ̂n)){∇θφq(θ̂n)}′λ̂(θ̂n). (8)

The role of the block sizeM played in the consistency and the asymptotic normality of the GEL estimator
θ̂n will be discussed in Sections 3 and 4, respectively.

2.2 Examples

We illustrate the model setting of high dimensional moment restrictions framework through three exam-
ples.
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Example 1 (High dimensional means): Suppose {Xt}nt=1 is a stationary sequence of observations,
where Xt ∈ R

d and θ0 = E(Xt). For high dimensional data, d diverges and g(Xt,θ) = Xt−θ constitutes
the simplest high dimensional moment equation, which implies the dimension of observation d, the number
of moment restrictions r and the number of parameters p all are the same. Under this setting and for
independent data, Chen, Peng and Qin (2009) and Hjort, McKeague and Van Keilegom (2009) considered
the asymptotic normality of the EL ratio, that mirrors the Wilks’ theorem for finite dimensional case.

This framework can be used in other inference problems. For instance checking if two univariate
stationary time series {Yt} and {Zt} have identical marginal distribution. Let

fY (s) = E(eisYt) and fZ(s) = E(eisZt)

denote the characteristic functions of the two series, respectively. Suppose all the moments of Yt and Zt

exist, then the characteristic functions can be expressed as

fY (s) = 1 +

∞∑

k=1

(is)k

k!
E(Y k

t ) and fZ(s) = 1 +

∞∑

k=1

(is)k

k!
E(Zk

t ).

Let Xt = (Yt, Zt) and g(Xt,θ) = (a1(Yt − Zt − θ1), . . . , ar(Y
r
t − Zr

t − θr))
′ for some nonzero constants

a1, . . . , ar. Here θl measures E(Y l
t ) − E(Z l

t) for l = 1, . . . , r, and the ai’s are used to account for the
potential diverging moments case, i.e, either E(Y l

t ) or E(Z l
t) may diverge as l → ∞. Then, the test for

whether Yt and Zt having the same marginal distribution can be conducted by testing if θ0 = 0 via the
growing dimensional moment restrictions E{g(Xt,θ0)} = 0 by letting r → ∞.

Example 2 (Time series regression): We assume a structural model for s-dimensional time series
Yt which involve unknown parameter θ ∈ R

p of interest as well as time innovations with unknown
distributional form. Specifically, assume

h(Yt, . . . , Yt−m;θ0) = εt ∈ R
r (9)

where m ≥ 1 is some constant. In this model, we can view Xt = (Y ′
t , . . . , Y

′
t−m)′ ∈ R

d with d = sm and
g(Xt,θ) = h(Yt, . . . , Yt−m;θ). If E(εt) = 0, it implies

E{g(Xt,θ0)} = 0.

For conventional vector autoregressive models

Yt = A1Yt−1 + · · ·+AmYt−m + ηt (10)

where A1, . . . ,Am are some coefficient matrices needed to be estimated and ηt is the white noise series.
This model is the special case of (9) with

h(Yt, . . . , Yt−m;θ0) = (Yt −A1Yt−1 − · · · −AmYt−m)⊗ (Y ′
t , . . . , Y

′
t−m)′.

In modern high dimensional time series analysis, we always assume the dimensionality of Yt is large in
relation to sample size, i.e., s → ∞ as n → ∞. Under such background, the numbers of estimating
equation and unknown parameters are both s2m. If we replace (Y ′

t , . . . , Y
′
t−m)′ by (Y ′

t , . . . , Y
′
t−m−l)

′ for
some fixed l ≥ 1, the model will be over-identified. The phenomenon of over-parametrization in such
model is well known (Lütkepohl, 2006). Davis, Zhang and Zheng (2012) considered the estimation of (10)
under the sparsity assumption on Ai’s. Under the sparsity, the penalized method proposed in Section
7 can be applied. Some other models share the form (9) can be found in Section 3.1 of Nordman and
Lahiri (2013).
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Example 3 (Conditional moment restrictions): Let {Xt = (Y ′
t , Z

′
t)
′}nt=1 be a set of observations, and

ρ(y, z,θ) be a known J-dimensional vector of generalized residual function. The parameter θ0 is uniquely
defined via the following conditional moment restrictions

E{ρ(Yt, Zt,θ0)|Yt} = 0 almost surely. (11)

By different choices of the functional forms of the generalized residual function ρ(y, z,θ), the conditional
moment restrictions (11) include many existing models in statistics and econometrics as special cases.
The popular generalized linear models are special cases of (11). To appreciate this point, let µ(y) =
E(Z|Y = y) and h(µ(y)) = y′θ0 for an increasing link function h(·). Then the generalized linear models
are special cases of (11) with ρ(y, z,θ0) = z − h−1(y′θ0).

Let qK(y) = (q1K(y), . . . , qKK(y))′ denote a K × 1 vector of known basis functions that can approxi-
mate any square integrable functions of Y well as K → ∞, such as polynomial splines, B-splines, power
series, Fourier series, wavelets, Hermite polynomials and others; see, e.g., Ai and Chen (2003) and Donald,
Imbens and Newey (2003). Then, (11) implies

E{ρ(Yt, Zt,θ0)⊗ qK(Yt)} = 0. (12)

Moreover, the unknown parameter θ0 is a solution to this set of increasing dimensional (r = JK) uncon-
ditional moment restrictions (12). The dimension K will increase with n to guarantee the consistency
of the estimator for θ0 and its asymptotic efficiency. Define g(Xt,θ) = ρ(Yt, Zt,θ) ⊗ qK(Yt), then (12)
is a special case of (1). The number of moment restrictions r = JK increases as K does. For this
model with iid data, Donald, Imbens and Newey (2003) apply the GEL method to the increasing number
of the unconditional moment restrictions (12) to obtain efficient estimation for finite fixed dimensional
θ0. They find that the diverging rate of the moment restrictions r = JK depends on the choice of the
basis functions qK(y). For example, if qK(y) is a spline basis then r = JK could grow at the rate of
K = o(n1/3).

2.3 Notations and Technical Conditions

Throughout the paper, we use Cs, with different subscripts, to denote positive finite constants which does
not depend on the sample size n. For a matrix A, we use ‖A‖F and ‖A‖2 to denote its Frobenius-norm

and operator-norm respectively, i.e., ‖A‖F = {tr (A′A)}1/2 and ‖A‖2 = {λmax (A
′A)}1/2. If a is a vector,

‖a‖2 denotes its L2-norm. Without causing much confusion, we denote the i-th component of g(x,θ)
by gi(x,θ); and simplify g(Xt,θ) and φM (Bq,θ) by gt(θ) and φq(θ), respectively, where φM (Bq,θ) is
defined in (2). Furthermore, we use gt,j(θ) and φq,j(θ) to denote the j-th component of gt(θ) and φq(θ)

respectively. Let ḡ(θ) = n−1
∑n

t=1 gt(θ) and φ̄(θ) = Q−1
∑Q

q=1 φq(θ). Additionally, define

VM = Var{M1/2φq(θ0)} and Vn = Var{n1/2ḡ(θ0)}

which are the covariance of the averaged estimating functions over a block and the entire sample respec-
tively. Clearly VM = Vn if M = n. The following regularity conditions are needed in our analysis.

(A.1) (i) {Xt} is strictly stationary and there exists γ > 2 such that
∑∞

k=1 kαX(k)1−2/γ < ∞; (ii)
M ≥ L and M/L → c ≥ 1; (iii) E{gt(θ0)} = 0 and there are positive functions ∆1(r, p) and ∆2(ε) such
that for any ε > 0,

inf
{θ∈Θ:‖θ−θ0‖2≥ε}

‖E{gt(θ)}‖2 ≥ ∆1(r, p)∆2(ε) > 0,

where lim infr,p→∞∆1(r, p) > 0; (iv) supθ∈Θ ‖ḡ(θ)− E{gt(θ)}‖2 = op{∆1(r, p)}.
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(A.2) (i) θ0 ∈ int(Θ) and Θ contains a small ‖ · ‖2-neighborhood of θ0 in which g(x,θ) is continuously
differentiable with respect to θ for any x ∈ X , the domain of Xt, and

∣∣∣∣
∂gi(x,θ)

∂θj

∣∣∣∣ ≤ Tn,ij(x) (i = 1, . . . , r; j = 1, . . . , p)

for some functions Tn,ij(x) with E{T 2
n,ij(Xt)} ≤ C for any i, j; (ii) supθ∈Θ ‖g(x,θ)‖2 ≤ r1/2Bn(x), where

E{Bγ
n(Xt)} ≤ C for γ given in (A.1)(i); (iii) E{|gt,j(θ0)|2γ} ≤ C for all j = 1, . . . , r; (iv) the eigenvalues

of [E{∇θgt(θ)}]′[E{∇θgt(θ)}] in a ‖ · ‖2-neighborhood of θ0 are uniformly bounded away from zero and
infinity; supθ∈Θ λmax{n−1

∑n
t=1 gt(θ)gt(θ)

′} ≤ C with probability approaching to 1.

(A.3) In a ‖ · ‖2-neighborhood of θ0, g(x,θ) is twice continuously differentiable with respect to θ for
any x ∈ X , and for some functions Kn,ijk(x) with E{K2

n,ijk(Xt)} ≤ C for any i, j, k,

∣∣∣∣
∂2gi(x,θ)

∂θj∂θk

∣∣∣∣ ≤ Kn,ijk(x) (i = 1, . . . , r; j, k = 1, . . . , p).

Condition (A.1)(i) specifies the rate of decay for the mixing coefficients via a tuning parameter γ as
commonly assumed in the analysis of weakly dependent data. When the data are independent, αX(k) = 0
for all k ≥ 1 and this condition is automatically satisfied for any γ > 2. Kitamura (1997) assumed∑∞

k=1 αX(k)1−2/γ < ∞ for fixed finite dimensional EL, which implies M−1
∑M

k=1 kαX(k)1−2/γ → 0 by
Kronecker’s lemma. In the current high dimensional setting, we need stronger condition on the mixing
coefficients in order to control remainder terms when analyzing the asymptotic properties of the GEL
estimator and the GEL ratio. If {Xt} is exponentially strong mixing (Fan and Yao, 2003) so that
αX(k) ∼ ̺k for some ̺ ∈ (0, 1), then (A.1)(i) is automatically valid for any γ > 2. (A.1)(ii) imposes
a condition regarding the two blocking quantities M and L, which is commonly assumed in the works
of block bootstrap and blockwise EL. (A.1)(iii) is the population identification condition for the case of
diverging parameter space. A similar assumption can be found in Chen (2007) and Chen and Pouzo
(2012). The last part of (A.1) is an extension of the uniform convergence. If p is fixed, under the
assumption of the compactness of Θ and some other regularity conditions, following Newey (1991),
supθ∈Θ ‖ḡ(θ)− E{gt(θ)}‖2 = op(1) which is a special case of (A.1)(iv) with ∆1(r, p) being a constant.

As conditions (A.1)(iii) and (iv) are rather abstractive, we illustrate them via the examples given
in Section 2.2. For Example 1, we can choose ∆1(r, p) = 1 and ∆2(ε) = ε. For the conditional mo-
ment restrictions model (Example 3), a common assumption in the literature is that for any a(Yt) with
E{a2(Yt)} <∞ there exists a K × 1 vector γK such that E[{a(Yt)− γ′KK (Yt)}2] → 0 as K → ∞. For any
θ ∈ {θ : ‖θ − θ0‖2 ≥ ε}, let ΓK(θ) satisfy E[‖E{ρ(Yt, Zt,θ)|Yt} − ΓK(θ)qK(Yt)‖22] → 0 as K → ∞. If
supy ‖E{ρ(Yt, Zt,θ)|Yt = y} − ΓK(θ)qK(y)‖2 = O(K−λ) for some λ > 1/2, then

‖E{gt(θ)}‖2 ≥
∥∥E[{ΓK(θ)qK(Yt)} ⊗ qK(Yt)]

∥∥
2
−
∥∥E[{ρ(Yt, Zt,θ)− ΓK(θ)qK(Yt)} ⊗ qK(Yt)]

∥∥
2

≥ λmin

(
E{qK(Yt)q

K(Yt)
′}
)
‖ΓK(θ)‖F −O(K−λ)

(
tr[E{qK(Yt)q

K(Yt)
′}]

)1/2
.

Under the assumption that the eigenvalues of E{qK(Yt)q
K(Yt)

′} are uniformly bounded away from zero
and infinity, we have

inf
{θ∈Θ:‖θ−θ0‖2≥ε}

‖E{gt(θ)}‖2 ≥ C

[
inf

{θ∈Θ:‖θ−θ0‖2≥ε}
‖ΓK(θ)‖F −K1/2−λ

]

≥ C

[
inf

{θ∈Θ:‖θ−θ0‖2≥ε}
E
[∥∥E{ρ(Yt, Zt,θ)|Yt}

∥∥
2

]
−K1/2−λ

]
.
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Hence, as θ0 is the unique root of E{ρ(Yt, Zt,θ)|Yt} = 0, (A.1)(iii) holds provided that the lower bound
in the above inequality is greater than or equal to ∆1(r, p)∆2(ε). In addition, if the generalized residual
function ρ(y, z,θ) is continuously differentiable with respect to θ. Then,

∥∥E{ρ(Yt, Zt,θ)|Yt}
∥∥
2
≥ ‖θ − θ0‖2λ1/2min

(
E
[
{∇θρ(Yt, Zt,θ

∗)}′{∇θρ(Yt, Zt,θ
∗)}|Yt

])

where θ∗ is on the line joining θ0 and θ. If the eigenvalues of E[{∇θρ(Yt, Zt,θ)}′{∇θρ(Yt, Zt,θ)}|Yt]
are uniformly bounded away from zero, ∆1(r, p) and ∆2(ε) can be chosen as some constant C and ε,
respectively.

Condition (A.2)(i) assumes that the first derivatives of gi(x,θ) near θ0 are uniformly bounded by some
functions which have bounded second moments. (A.2)(ii) generalizes the moment conditions on g(x,θ) for
fixed dimensional case (Qin and Lawless, 1994; Kitamura, 1997; Newey and Smith, 2004). More generally,
we can replace the factor r1/2 by some function ζ(r) > 0. We let ζ(r) = r1/2 to simplify the presentation.
(A.2)(iii) is the moment assumption on each gt,j(θ0). The first part of (A.2)(iv) is an extension of that
assumed in the EL or the GEL in the fixed dimensional case (Qin and Lawless, 1994; Kitamura, 1997;
Newey and Smith, 2004). The second one of (A.2)(iv) is to bound supθ∈Θ λmax{Q−1

∑Q
q=1 φq(θ)φq(θ)}.

Our proofs in Appendix can be easily extended to allow for supθ∈Θ λmax{Q−1
∑Q

q=1 φq(θ)φq(θ)
′} diverging

in probability. Note that we do not assume the eigenvalues of VM or Vn being bounded away from zero
and infinity, but rather leave it open for specific treatments in Sections 3 and 4 for the consistency and
the asymptotic normality of the GEL estimator. Our subsequent analysis shows that, to obtain the
main results of the paper, λmin(VM ) is allowed to decay to zero at certain rates by properly restricting
the diverging rates of r and p. Condition (A.3) ensures the second derivatives of gi(x,θ) near θ0 are
uniformly bounded by functions which have bounded second moments.

3 Consistency and Convergence Rates

To study the consistency of the GEL estimator θ̂n defined by (6), we need the following conditions
regarding the dimensionality r, the block size M and the sample size n:

r2M2−2/γn2/γ−1 = o(1) and r2M3n−1 = o(1). (13)

Theorem 1. Assume conditions (A.1), (A.2) and that the eigenvalues of VM are uniformly bounded

away from zero and infinity. Then, if (13) holds, ‖θ̂n − θ0‖2
p−→ 0. If in addition, r2pM2n−1 = o(1), then

‖θ̂n − θ0‖2 = Op(r
1/2n−1/2) and ‖λ̂(θ̂n)‖2 = Op(r

1/2Mn−1/2).

This theorem provides the consistency of the GEL estimator θ̂n for both independent and dependent
data when the blocking sizeM is either finite or diverging. For independent data, VM = E{g1(θ0)g1(θ0)′}
for any M ≥ 1. Thus, to make r have a faster diverging rate, we select the block size M = 1. For
dependent data,

VM = E{g1(θ0)g1(θ0)′}+
M−1∑

k=1

(
1− k

M

)[
E{g1(θ0)g1+k(θ0)

′}+ E{g1+k(θ0)g1(θ0)
′}
]
.

However, if {gt(θ0)}nt=1 is a martingale difference sequence, then VM ≡ E{g1(θ0)g1(θ0)′} for any M ≥ 1
and M = 1 should be used to make r have a faster diverging rate. Furthermore, if the eigenvalues of VM
are uniformly bounded away from zero and infinity for some fixed M , (13) is simplified to

r2n2/γ−1 = o(1).
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Here γ determines the number of moments of the estimating equation as specified in (A.2)(ii) and
(A.2)(iii). Then, r = o(n1/2−1/γ) ensures the consistency of the GEL estimator θ̂n. For large enough γ,
r will be made close to o(n1/2), which is the best rate we can established.

Theorem 1 encompasses the existing consistency results for the GEL estimator in the literature.
Indeed, if r is fixed and the data are independent, Theorem 1 implies that both ‖θ̂n− θ0‖2 and ‖λ̂(θ̂n)‖2
are Op(n

−1/2), which are the same as the rates obtained in Qin and Lawless (1994) for the EL and
Newey and Smith (2004) for the GEL. If r is fixed but the data are dependent, Theorem 1 means that
‖θ̂n−θ0‖2 = Op(n

−1/2) and ‖λ̂(θ̂n)‖2 = Op(Mn−1/2), which coincides with the result of Kitamura (1997)

for the EL estimator. If r is diverging and the data are independent, both ‖θ̂n − θ0‖2 and ‖λ̂(θ̂n)‖2 are
Op(r

1/2n−1/2), which retain the results in Donald, Imbens and Newey (2003) and Leng and Tang (2012).
The following is an extension of Theorem 1 by allowing VM to be asymptotically singular, namely

λmin(VM ) → 0 as r → ∞, with M being either fixed or diverging.

Corollary 1. Assume conditions (A.1), (A.2), and that λmin(VM ) ≍ r−ι1 for some ι1 > 0 and λmax(VM )
is uniformly bounded away from zero and infinity. Then ‖θ̂n−θ0‖2 = Op(r

(1+ι1)/2n−1/2) and ‖λ̂(θ̂n)‖2 =
Op(r

(1+3ι1)/2Mn−1/2) provided that r2+3ι1M2−2/γn2/γ−1 = o(1), r2+2ι1M3n−1 = o(1), r2+3ι1pMn−1 =
o(1) and r2+ι1pM2n−1 = o(1).

This corollary shows that when the smallest eigenvalue of VM is not bounded away from zero, the
convergence rates for θ̂n and the Lagrange multiplier λ̂(θ̂n) become slower. Theorem 1 can be viewed as
a special case of Corollary 1 with ι1 = 0.

The convergence rate of ‖θ̂n−θ0‖2 attained in Theorem 1 is dictated by r, the number of the moment
restrictions, rather than by p, the dimension of θ. Under slightly stronger conditions the next proposition
improves the convergence rate to Op(p

1/2n−1/2).

Proposition 1. Under conditions (A.1)-(A.3), assume that the eigenvalues of VM and Vn are uniformly
bounded away from zero and infinity. Then ‖θ̂n−θ0‖2 = Op(p

1/2n−1/2) provided that r3M2−2/γn2/γ−1 =
o(1), r3M3n−1 = o(1), r3pMn−1 = o(1) and r3p2n−1 = o(1).

4 Asymptotic Normality

We now turn to the asymptotic normality of the GEL estimator θ̂n. We are in particularly interested
in the effect of the block size M on the estimation efficiency. Based on the consistency of θ̂n and λ̂(θ̂n)
given in Theorem 1, expanding ∇λŜn(θ̂n, λ̂(θ̂n)) = 0 for λ̂(θ̂n) around λ = 0 gives

0 =
1

Q

Q∑

q=1

ρv(0)φq(θ̂n) +
1

Q

Q∑

q=1

ρvv(λ̃
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′λ̂(θ̂n), (14)

where λ̃ is on the line joining 0 and λ̂(θ̂n). From (8) and (14), it yields

[
1

Q

Q∑

q=1

ρv(λ̂(θ̂n)
′φq(θ̂n)){∇θφq(θ̂n)}′

]{
1

Q

Q∑

q=1

ρvv(λ̃
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′

}−1

φ̄(θ̂n) = 0. (15)

Based on (15), we can establish the following proposition which is the starting point in our study of the
asymptotic normality of θ̂n.

Proposition 2. Under conditions (A.1)-(A.3), assume that the eigenvalues of VM and Vn are uniformly
bounded away from zero and infinity. If r2pM2n−1 = o(1) and (13) holds, then for any vector αn ∈ R

p
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with unit L2-norm,

√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}](θ̂n − θ0)

=−
√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M ḡ(θ0)

+Op(r
3/2p1/2M1/2n−1/2) +Op(r

3/2pn−1/2) +Op(r
3/2M1−1/γn1/γ−1/2) +Op(r

3/2M3/2n−1/2).

Proposition 2 covers both the finite and diverging M cases. When M is diverging, ‖VM − Vn‖2 → 0
provided that r = o(M). We can replace V −1

M VnV
−1
M on the left-hand side of above asymptotic expansion

by V −1
n via adding an extra high order term on the right-hand side of the asymptotic expansion. Let

βn = −V −1
M [E{∇θgt(θ0)}]([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])−1/2αn (16)

and Un,t = n−1/2β′
ngt(θ0) for t = 1, . . . , n. From Proposition 2, a major point of interest is under what

conditions
∑n

t=1 Un,t is asymptotically normal.
Let us first consider the easier case where the observations {Xt}nt=1 are independent. From Lindeberg-

Feller theorem (Durrett, 2010), to attain the asymptotic normality of
∑n

t=1 Un,t, it suffices to verify the
following two conditions,

(i)
n∑

t=1

E(U2
n,t) → 1 and (ii)

n∑

t=1

E{U2
n,t1(|Un,t|>ε)} → 0 as n→ ∞ for any ε > 0.

Actually, Vn = VM = E{gt(θ0)gt(θ0)′} in this case. Hence,
∑n

t=1E(U2
n,t) = 1. Note that ‖βn‖2 ≤

λ
−1/2
min (Vn) which is uniformly bounded away from infinity if λmin(Vn) is uniformly bounded away from

zero. Hence, by (A.2)(ii),

(n1/2ε)γ−2E[|β′
ngt(θ0)|21{|β′

ngt(θ0)|>n1/2ε}] ≤ E{|β′
ngt(θ0)|γ} ≤ Crγ/2,

which implies that part (ii) holds if rn2/γ−1 = o(1). Therefore,
∑n

t=1 Un,t
d−→ N(0, 1) provided that

rn2/γ−1 = o(1) for any selection of αn ∈ R
p with unit L2-norm.

For dependent data, we need to assume supnE{|β′
ngt(θ0)|2+v} <∞ for some v > 0, namely |β′

ngt(θ0)|
has a higher than two uniformly bounded moment. This is required in the central limit theorem for
dependent processes as carried out in Peligrad and Utev (1997) and Francq and Zaköıan (2005). It is
used to guarantee the limit of Var{n−1/2

∑n
t=1 β

′
ngt(θ0)} can be well defined as n→ ∞. More specifically,

notice that

Var

{
1

n1/2

n∑

t=1

β′
ngt(θ0)

}
= E{|β′

ng1(θ0)|2}+ 2

n−1∑

k=1

(
1− k

n

)
E{β′

ng1(θ0)g1+k(θ0)
′βn},

to define the limit of above sum of series, we need that Var{n−1/2
∑n

t=1 β
′
ngt(θ0)} is absolutely convergent,

i.e.,

lim
n→∞

[
E{|β′

ng1(θ0)|2}+ 2

n−1∑

k=1

(
1− k

n

)
|E{β′

ng1(θ0)g1+k(θ0)
′βn}|

]
<∞.

By Davydov inequality (Davydov, 1968; Rio, 1993), the absolute convergence of Var{n−1/2
∑n

t=1 β
′
ngt(θ0)}

will hold by requiring supnE{|β′
ngt(θ0)|2+v} <∞ for some suitable v.

For high dimensional moment equation g(x, θ) with diverging r, we need

sup
n
E{|β′

ngt(θ0)|γ} <∞ (17)
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for βn defined via (16) and γ > 2 specified in (A.1)(i). A sufficient condition for (17) is to restrict

βn ∈ D(K) :=

{
(v1, v2, . . .) ∈ R

∞ :

∞∑

k=1

|vk| ≤ K

}
,

whereK is a given finite constant. To appreciate this, write βn = (βn,1, . . . , βn,r)
′ and let κr =

∑r
j=1 |βn,j |.

Then,

E{|β′
ngt(θ0)|γ} = κγrE

{∣∣∣∣
r∑

j=1

|βn,j |
κr

sign(βn,j)gt,j(θ0)

∣∣∣∣
γ}

≤ KγC,

where the last step is based on the Jensen’s inequality and (A.2)(iii). If
∑r

j=1 |βn,j | → ∞ as n → ∞,

we can construct a counter-example such that supnE{|β′
ngt(θ0)|2+v} → ∞ for any v > 0. The following

theorem establishes the asymptotic normality of θ̂n.

Theorem 2. Under conditions (A.1)-(A.3), assume that the eigenvalues of VM and Vn are uniformly
bounded away from zero and infinity. For dependent data, if

r3M2−2/γn2/γ−1 = o(1), r3M3n−1 = o(1), r3pMn−1 = o(1) and r3p2n−1 = o(1), (18)

then for any αn ∈ R
p with unit L2-norm such that (17) holds,

√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}](θ̂n − θ0)

converges to N(0, 1) as n→ ∞.

For finite block size M , the above asymptotic distribution holds provided that

r3n2/γ−1 = o(1) and r3p2n−1 = o(1).

Since

([E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}])−1([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])

× ([E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}])−1 ≥ ([E{∇θgt(θ0)}]′V −1

n [E{∇θgt(θ0)}])−1,

the GEL estimator is asymptotically efficient if ‖VM − Vn‖2 → 0, which implies V −1
M VnV

−1
M is asymp-

totically equivalent to V −1
n . This means that if {gt(θ0)}nt=1 is a martingale difference sequence, as

VM = Vn = E{g1(θ0)g1(θ0)′} for any M ≥ 1, selecting M = 1 will lead to the efficient GEL estimation.
In a general case where the nature of the dependence in the estimating function is unknown, letting
M → ∞ at some suitable diverging rate, so that (18) is satisfied, will lead to the efficient estimation.
Specifically, as

‖VM − Vn‖2 ≤ CrM−1
M∑

k=1

kαX(k)1−2/γ ,

under (A.1)(i) and (A.2)(ii), choosing M → ∞ such that r = o(M) produces the asymptotically
efficient GEL estimator θ̂n. According to (18) and r = o(M), the divergence rate in M is M =
O(n{(γ−2)/(5γ−2)}∧1/6) while r = o(n{(γ−2)/(5γ−2)}∧1/6), regardless p being fixed or diverging. Under
such setting, the best growth rate for r is r = o(n1/6) when γ ≥ 10. In comparison with the case of finite
M , while letting M → ∞ can guarantee the efficiency, it does slows the divergence of r.

If the smallest eigenvalues of VM and Vn decay to zero as r → ∞, we assume λmin(VM ) ≍ r−ι1 and
λmin(Vn) ≍ r−ι2 for some positive ι1 and ι2. Based on Corollary 1, by repeating the proof of Proposition 2
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in Appendix, it can be shown that the leading term in the asymptotic expansion of Proposition 2 remains
while the four remainder terms become

Op(r
(3+6ι1+ι2)/2p1/2M1/2n−1/2) +Op(r

(3+4ι1+ι2)/2pn−1/2)

+ Op(r
(3+5ι1+ι2)/2M1−1/γn1/γ−1/2) +Op(r

(3+5ι1+ι2)/2M3/2n−1/2)

provided that the conditions governing r, p,M and n assumed in Corollary 1 hold. By the central limit
theorem established in Francq and Zaköıan (2005), the leading term in the asymptotic expansion of
Proposition 2 converges to N(0, 1) regardless λmin(VM ) → 0 and λmin(Vn) → 0 or not. Hence, the
asymptotic normality of the GEL estimator θ̂n is valid free of the statue of the eigenvalues of VM and
Vn. The difference is that when λmin(VM ) → 0 and λmin(Vn) → 0, the growth rate of r and/or M are
reduced.

To put the growth rate of r into perspectives and to highlight the impacts of data dependence, we
consider the independent analogue of Theorem 2 in the following, whose proof is obtained by assigning
αX(k) = 0 and M = 1 in Proposition 2.

Corollary 2. Under conditions (A.1)-(A.3), assume that the eigenvalues of E{g1(θ0)g1(θ0)′} are uni-
formly bounded away from zero and infinity. For independent data, if r3p2n−1 = o(1) and r3n2/γ−1 = o(1),
then for any αn ∈ R

p with unit L2-norm,

√
nα′

n([E{∇θgt(θ0)}]′V −1
n [E{∇θgt(θ0)}])1/2(θ̂n − θ0)

d−→ N(0, 1) as n→ ∞.

The above corollary shows that under independence, the growth rate for r is o(n1/3−2/(3γ)) if p is fixed.
If γ is sufficiently large, the rate of r can be close to o(n1/3). If p grows with r and p/r → y ∈ (0, 1], then
r = o(n{1/3−2/(3γ)}∧1/5). In particular, if γ ≥ 5, r = o(n1/5) which retains Theorem 2 in Leng and Tang
(2012) for the EL estimator. Comparing the growth rates for r under the dependent and independent
settings, whenM is diverging, we see a slowing down in the rate under dependence from o(n1/5) to o(n1/6)
if the best moment conditions hold.

If p, the dimension of θ, is fixed, as in a case of conditional moment restrictions in Example 3, the
asymptotic normality of θ̂n can be attained with some ease. It can be shown that βn is automatically in
D(K) for a large enough K, which implies the condition (17) holds for any αn ∈ R

p with unit L2-norm.
This is summarized in the following corollary.

Corollary 3. Under conditions (A.1)-(A.3), assume that the eigenvalues of VM and Vn are uniformly
bounded away from zero and infinity. For dependent data, if p is fixed, then for any αn ∈ R

p with unit
L2-norm,

√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}](θ̂n − θ0)

converges to N(0, 1) as n→ ∞, provided that r3M2−2/γn2/γ−1 = o(1) and r3M3n−1 = o(1).

This Corollary with M = 1 recovers that in Donald, Imbens and Newey (2003) for iid data.

5 Generalized Empirical Likelihood Ratios

The EL ratio wn(θ) = −2 log{QQL(θ)} for L(θ) defined in (4) plays an important role in the statistical
inference. A prominent result for fixed dimensional EL is its resembling the parameter likelihood by
have a limiting chi-square distribution under a wide range of situations, as demonstrated in Owen (1988),
Chen and Cui (2003), Qin and Lawless (1994) and Chen and Van Keilegom (2009) for independent data,
and Kitamura (1997) for dependent data.
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For GEL, we define the GEL ratio as

wn(θ) =
2ρvv(0)

ρ2v(0)

{
Qρ(0)− max

λ∈Λ̂n(θ)

Q∑

q=1

ρ(λ′φq(θ))

}
(19)

which is the extension of the EL ratio in the GEL framework.
We consider the asymptotic distribution of the GEL ratio wn(θ0) when both r and p are diverging.

Under such setting, a natural form of the Wilks’ theorem is

(2r)−1/2{wn(θ0)− r} d−→ N(0, 1) as r → ∞. (20)

For the case of means where gt(θ) = Xt−θ with independent observations, Chen, Peng and Qin (2009) and
Hjort, McKeague and Van Keilegom (2009) evaluated the impact of the dimensionality on the asymptotic
distribution (20) for the EL ratio by providing various diverging rates for r. For parameters defined by
general moment restrictions, establishing the limiting distribution of the GEL ratio is far more challenging.
We need the following stronger version of (A.1)(i):

(A.1)’(i) There is some η > 8 such that αX(k)1−2/γ ≍ k−η where γ is given in (A.2).

Condition (A.1)’(i) is used to guarantee the leading order term of (19) has the similar probabilistic
behavior as the chi-square distribution. It is automatically satisfied with η = ∞ if Xt is exponentially
strong mixing or independent. We also need the following conditions:

r3M2−2/γn2/γ−1 = o(1), r3M3n−1 = o(1) and r3/2M−1
M∑

k=1

kαX(k)1−2/γ = o(1). (21)

Define

ξ =
η − 8

4η + 4
1{8<η<32} +

2

11
1{32≤η≤∞} + 1{indenpendent data}. (22)

The next theorem establishes the asymptotic distribution of wn(θ0).

Theorem 3. Under conditions (A.1)’(i), (A.1)(ii) and (A.2)(iii), assume that the eigenvalues of Vn are
uniformly bounded away from zero and infinity. If (21) holds and r = o(nξ) where ξ is defined in (22),
then

(2r)−1/2{wn(θ0)− r} d−→ N(0, 1) as r → ∞.

This theorem is new for dependent data and includes some established results for independent data as
special cases. For independent data, this theorem implies that the asymptotic normality of the GEL ratio
is valid if r = o(n1/3−2/(3γ)), which is the same as that in Hjort, McKeague and Van Keilegom (2009) for
the EL ratio with independent data. Our result is more general than theirs since we allow for GEL ratio
and for dependent data. For dependent data, the block size is M = O(n(γ−2)/(4γ−2)) if 2 < γ < 8 and
M = O(n1/5) otherwise, and hence the asymptotic distribution (20) holds if r = o(nδ) with

δ = min

(
η − 8

4η + 4
1{8<η<32} +

2

11
1{32≤η≤∞},

γ − 2

6γ − 3
1{2<γ<8} +

2

15
1{γ≥8}

)
.

When η and γ are sufficiently large, the best diverging rate is r = o(n2/15) for the dependent case, which
is slower than the rate of r = o(n1/3−2/(3γ)) for the independence case.
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6 Test for Over-identification

For moment restrictions, it is important to check on the validity of the model by testing the following
hypotheses

H0 : E{g(Xt,θ0)} = 0 for some θ0 ∈ Θ v.s. H1 : E{g(Xt,θ)} 6= 0 for any θ ∈ Θ.

We consider testing the above hypothesis when r > p, namely the moment equation overly identify the
parameter θ.

We formulate the test statistic as the GEL ratio wn(θ̂n). For the EL ratio, it has been demonstrated
in the fixed dimensional case by Qin and Lawless (1994) and Kitamura (1997) that

wn(θ̂EL)
d−→ χ2

r−p as n→ ∞

under H0. This mirrors the J-test of Hansen (1982)’s GMM with fixed and finite dimensions r and p.
To formulate the GEL specification test allowing for increasing dimensions r and p, we are to study

the asymptotic distribution of wn(θ̂n) under H0 first. We only need to consider its leading order
nḡ(θ̂n)

′{M Ω̂(θ̂n)}−1ḡ(θ̂n) as the remainder terms in the asymptotic expansion of wn(θ̂n) can be shown
to be of a smaller order. Since θ̂n is consistent for θ0 under H0, Lemma 17 in Appendix establishes
the relationship between the asymptotic distributions of nḡ(θ̂n)

′{M Ω̂(θ̂n)}−1ḡ(θ̂n) and nḡ(θ0)
′V −1

n ḡ(θ0)
under H0. We need the following conditions:

r3pn−1 = o(1), pr−1/2 = o(1), r3M3n−1 = o(1),

r3M2−2/γn2/γ−1 = o(1) and r3/2M−1
M∑

k=1

kαX(k)1−2/γ = o(1).
(23)

Compared with the conditions for the asymptotic distribution of wn(θ0) in (21), the first two restrictions
in (23) are the extra ones used to control the remainder terms.

Theorem 4. Under conditions (A.1)’(i), (A.1)(ii), (A.1)(iii), (A.1)(iv), (A.2) and (A.3), assume that
the eigenvalues of Vn are bounded away from zero and infinity. If (23) holds and r = o(nξ), where ξ is
defined in (22), then

{2(r − p)}−1/2{wn(θ̂n)− (r − p)} d−→ N(0, 1) as r → ∞.

The asymptotic normality can be used to derive the over-identification test under high dimensionality
and dependence. Specifically, H0 is rejected if

{2(r − p)}−1/2{wn(θ̂n)− (r − p)} > z1−α

where z1−α is the 1− α quantile of N(0, 1).
To show the above GEL test for over-identification is consistent, we assume that under the alternative

hypothesis H1,
inf
θ∈Θ

‖E{g(Xt,θ)}‖2 ≥ ς. (24)

The following theorem describes the behavior of {2(r − p)}−1/2{wn(θ̂n)− (r − p)} under H1.

Theorem 5. Under conditions (A.1)(i), (A.1)(ii), (A.1)(iv), (A.2)(ii) and (24), if there is a positive
constant ǫ such that r2M1−2/γn2/γ−1(log n)ǫς−2 = O(1), r1/2Mn−1ς−1 = o(1) and ∆1(r, p)ς

−1 = O(1),
then

{2(r − p)}−1/2{wn(θ̂n)− (r − p)} p−→ ∞ as r → ∞.

14



This theorem shows that the GEL test is consistent. Unlike Theorem 4, this theorem does not require
the block size M → ∞ and assumes the weaker condition (A.1)(i) (instead of the more restrictive one
(A.1)’(i)). From the proof given in the Appendix which follows the technique developed in Chang, Tang
and Wu (2013), the test statistic {2(r− p)}−1/2{wn(θ̂n)− (r− p)} diverges to infinity at least at the rate
of O(r1/2) under H1.

7 Penalized Generalized Empirical Likelihood

In high dimensional data analysis, when the dimension of parameters is large, i.e., p → ∞, a more
reasonable assumption is that only a subset of the parameters are nonzero. Write θ0 = (θ01, . . . , θ0p)

′ ∈ R
p

and define A = {j : θ0j 6= 0} with its cardinality s = |A|. Without loss of generality, let θ = (θ(1)′ ,θ(2)′)′,
where θ(1) ∈ R

s and θ(2) ∈ R
p−s correspond to the nonzero and zero components respectively, i.e.,

θ0 = (θ
(1)′

0 ,0′)′. Under such sparsity, we can allow the number of parameters is larger than the number
of estimating equations, i.e., p > r. However, we still need to assume s ≤ r, which means that the
“real” parameters can be uniquely identified by the moment restrictions (1). To carry out the statistical
inference on θ under the sparsity assumption, we add a penalty term in (6) and the penalized GEL
estimator is defined as

θ̂(pe)
n = argmin

θ∈Θ
max

λ∈Λ̂n(θ)

{ Q∑

q=1

ρ(λ′φM (Bq,θ)) +Q

p∑

j=1

pτ (|θj |)
}

where pτ (·) is some penalty function with a tuning parameter τ . The following conditions are imposed
on the penalty function pτ (·) and the tuning parameter τ .

(A.4) lim infτ→0 lim infθ→0+ p
′
τ (θ)/τ > 0.

(A.5) There exists a positive constant C such that maxj∈A pτ (|θ0j |) ≤ Cτ .

Conditions (A.4) and (A.5) hold for many penalty functions such as the one in Fan and Li (2001) and
the minimax concave penalty of Zhang (2010). Define

S(θ0) =
(
[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}]
)−1(

[E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}]

)

×
(
[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}]
)−1

.

We correspondingly decompose S(θ0) as

S(θ0) =

(
S11(θ0) S12(θ0)
S21(θ0) S22(θ0)

)
(25)

where S11(θ0) and S22(θ0) are s×s and (p−s)× (p−s) matrices, respectively. The following restrictions
are needed

sτr−1nM−1 = O(1) and τ(r−1n)1/2M−1 → ∞. (26)

Write the penalized GEL estimator θ̂
(pe)
n = (θ̂

(1)′

n , θ̂
(2)′

n )′ and define

Sp(θ0) = S11(θ0)− S12(θ0)S
−1
22 (θ0)S21(θ0).

The following theorem describes the basic properties of the penalized GEL estimator.
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Theorem 6. Under conditions (A.1)-(A.5), assume that the eigenvalues of VM are uniformly bounded
away from zero and infinity. If maxj∈A p

′
τ (|θ0j |) = o(r−1/2n−1/2), minj∈A |θ0j |/τ → ∞ and (26) holds,

the following results hold.

1. P{θ̂(2)
n = 0} → 1 as n→ ∞, provided that (13) holds and r2pM2n−1 = o(1);

2. In addition, if the eigenvalues of Vn are uniformly bounded away from zero and infinity, then for
any αn ∈ R

s with unit L2-norm, then

√
nα′

nS
−1/2
p (θ0)(θ̂

(1)
n − θ

(1)
0 )

d−→ N(0, 1) as n→ ∞,

provided that

(a) for independent data, r3p2n−1 = o(1) and r3n2/γ−1 = o(1);

(b) for dependent data, (18) holds and αn satisfies (17) with

βn = − V −1
M [E{∇θg(θ0)}]

(
[E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}]

)−1

× [E{∇θgt(θ0)}]′V −1
M [E{∇θ(1)gt(θ0)}]{S11(θ0)− S12(θ0)S

−1
22 (θ0)S21(θ0)}1/2αn.

Similar to the consistency of GEL estimator, if the eigenvalues of E{gt(θ0)gt(θ0)′} are uniformly
bounded away from zero and infinity, result (i) still holds without blocking technique if r2n2/γ−1 = o(1)
and r2pn−1 = o(1) are satisfied. Comparing Theorem 6 with Theorem 2 and Corollary 2, since Sp(θ0) ≤
S11(θ0), the penalized GEL estimator is more efficient in estimating the nonzero components. Leng and
Tang (2012) considered the theoretical results of the penalized EL estimator for independent data by
assuming p/r → c ∈ (0, 1). Our results extend theirs to penalized GEL estimator for weakly dependent
data without requiring p/r → c ∈ (0, 1).

8 Simulation Results

In this section, we present simulation results to compare the finite sample performance of the GEL
estimators with the GMM estimator in the high dimensional time series setting. Three versions of
the GEL estimators were considered in the simulations: the EL, the ET and the CU estimators. We
experimented two forms of the moment restrictions: one was linear, and the other was nonlinear. The
penalized GEL estimator was also considered in the non-linear case.

We first conducted simulation for the linear moment restrictions with g(Xt,θ) = Xt − θ. The
observations {Xt}nt=1 were generated according to the vector autoregressive (VAR) model of order 1:
Xt = ψXt−1 + εt where εt ∼ N(0,Σε), Σε = (σi,j)p×p, σi,i = 1− ψ2, σi,i±1 = 0.5(1− ψ2) and σi,j = 0 for
|i− j| > 1. The stationary distribution of Xt is N(0,Σx) where Σx = (σ̃i,j)p×p and σ̃i,i = 1, σ̃i,i±1 = 0.5
and σ̃i,j = 0 for |i− j| > 1. In this model, p = r and the true parameter θ0 = 0 ∈ R

p.
The second simulation model was the generalized linear model. The covariates {Zt}nt=1 were generated

with the same VAR(1) process as the {Xt}nt=1 in the first model setting. The response variables {Yt}nt=1

were generated from the Bernoulli distribution such that P (Yt = 1|Zt) = exp(1+Z ′
tθ0)/{1+exp(1+Z ′

tθ0)}
with the true parameter θ0 = (0.8, 0.2, 0, . . . , 0)′ ∈ R

p. Then

E

{
Yt −

exp(1 + Z ′
tθ0)

1 + exp(1 + Z ′
tθ0)

∣∣∣∣Zt

}
= 0.

In this setting, we have nonlinear moment restrictions

g(Xt,θ) =

(
Zt

Wt

){
Yt −

exp(1 + Z ′
tθ)

1 + exp(1 + Z ′
tθ)

}
,

16



where Wt = (Z2
1,t, . . . , Z

2
p,t)

′ for Zt = (Z1,t, . . . , Zp,t)
′. This model is over-identified. We considered both

non-penalized and penalized estimators under this model setting.
In both simulation models, we chose n = 500, 1000 and 2000, respectively. The parameter ψ in

the VAR(1) process capturing the serial dependence was set to be 0.1, 0.3 and 0.5, respectively. The
dimension p was pegged to the sample size n such that p = ⌊cn2/15⌋, where c = 10 and 12 in the first
model setting, and c = 5 and 6 in the second model setting, respectively. Simulations results were based
on 200 repetitions. For each repetition of each model setting, we obtained the parameter estimates θ̂’s
based on the four considered estimation methods: EL, GMM, ET and CU under five regimes regarding
the blocking parameters L and M :

Regime (i). L =M = 1; Regime (ii). M = ⌊n1/5⌋ and L = ⌊0.5M⌋;
Regime (iii). L =M = ⌊n1/5⌋; Regime (iv). M = ⌊3n1/5⌋ and L = ⌊0.5M⌋;
Regime (v). L =M = ⌊3n1/5⌋ .

Regime (i) means no blocking. Regimes (ii) and (iv) assigned the block size M to be twice of the
block separation parameter L; and Regimes (iii) and (v) prescribed M = L. For each repetition of the
second model setting, we additionally considered the parameter estimates θ̂’s based on the penalized
GEL estimation methods. The penalty function pτ (u) used in the simulation satisfied:

p′τ (u) = τ

{
I(u ≤ τ) +

(aτ − u)+
(a− 1)τ

I(u > τ)

}

for u > 0, where a = 3.7, and s+ = s for s > 0 and 0 otherwise. This penalty function is given in Fan and
Li (2001). We applied the method given in Leng and Tang (2012) to determine the penalty parameter
τ . In each simulation replication, we calculated the L2 distance between θ̂ and θ0 as ‖θ̂ − θ0‖2 =
{(θ̂ − θ0)

′(θ̂ − θ0)}1/2.
Tables 1 and 2 report empirical medians of the squared estimation errors for the EL, ET, CU and

GMM estimators in the first simulation model with c = 10 and c = 12, respectively. And Tables 3
and 4 summarize the empirical median for the second simulation model with the extra penalized GEL
estimators. We had also collected the average of the squared estimation errors, which exhibited similar
patterns as the empirical median. Hence, we only report the median of squared estimation errors per the
suggestion of one referee.

It is noted that the performance of each estimator at each given blocking regime was improved
when the sample size was increased, which confirms the convergence of these estimators. For the second
nonlinear model, we observed that the performance of three GEL estimators and their penalized analogues
were improved under the blocking regimes (ii)-(v) which were bona fide blocking since L,M > 1. This was
not that surprising since dependence was presence in both simulated models, and applying the blocking
can improve the efficiency of the estimation. However, the performance of the GMM estimator were
largely similar regardless of the blocking regimes used. The empirical medians of the squared estimation
errors of the GMM estimator were much larger than those of the GEL estimators, which confirmed the
existing research on GMM versus GEL for finite fixed dimensional settings (Newey and Smith, 2004;
Anatolyev, 2005). Among the three GEL estimators, we observed that while they were largely similar
under the first simulation model, the EL and the ET estimators performed better than the CU estimator
for the logistic regression model. This might be due to the multivariate asymmetry in the moment
conditions, which makes the bias term of the CU estimator more pronounced, as shown in Newey and
Smith (2004) and Anatolyev (2005). We note that the estimation efficiency among the GEL estimator
with respect to the different regimes of the blocking width selection was largely comparable to each other
for the simple mean models. However, in the case of the generalized linear model, the regimes (iv) and
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(v), with the block width M = ⌊3n1/5⌋, led to the best performance. We also observed that under
the second model setting where the parameter is sparse, the penalized GEL estimators were much more
efficient than their non-penalized counterparts, which confirmed our Theorem 6.

9 Conclusion

In this paper, we have investigated the asymptotic properties of the GEL estimator, the GEL ratio
statistic and the over-identification specification test for high dimensional moment restriction models
with increasing number of parameters and weakly dependent data. We have also investigated a penalized
GEL approach that is designed for the high dimensional sparse parameter situation with p > r, although
the true but unknown number of non-zero parameters is not larger than r. We establish the oracle
property of the penalized GEL estimator. Both theoretical and simulation studies find the penalization
leads to efficiency gain for the GEL estimators even for dependent data.

We establish the consistency and the asymptotic normality of the high-dimensional GEL and the
penalized GEL estimators allowing for fixed block size M for time series data. However, when the
unconditional moment functions {g(Xt,θ0)}nt=1 are autocorrelated, the simple limiting distributions of
the GEL ratio statistic and the over-identification specification test are established when the block size
M diverges with the sample size n. How to practically select M is a quite challenging problem. As
indicated in Hall, Horowitz and Jing (1995) and Lahiri (2003), although there has been much research in
determining the order of magnitude of M , there is in general a lack of research for selecting the tuning
parameter, the coefficient of M for general nonlinear time series models. The simulation study reported
in Section 8 shows that M = ⌊3n1/5⌋ led to satisfactory performance. Instead of blocking, one could
also perform local smoothing of the unconditional moment functions {g(Xt,θ0)}nt=1 to reduce temproal
dependence (Smith, 1997; Anatolyev, 2005; Kitamura, 2007), which introduces an alternative tuning
parameter, however. We leave it to future research about the performance of this local smoothing GEL
approach for high dimensinal time series models.
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Appendix

Throughout the Appendix, C denotes a generic positive finite constant that may be different in different
uses. For any q = 1, . . . , Q and k = 1, . . . ,M , let β1(q, k) = #{j < q : X(q−1)L+k ∈ Bj} and β2(q, k) =
#{j > q : X(q−1)L+k ∈ Bj}. These two quantities denote the times of the k-th element of the q-th block
occurs in the blocks before and after the q-th block, respectively. Let ḡ(θ) = n−1

∑n
t=1 gt(θ), φ̄(θ) =

Q−1
∑Q

q=1 φq(θ), VM = Var{M1/2φq(θ0)}, Ω̂(θ) = Q−1
∑Q

q=1 φq(θ)φq(θ)
′ and Ω(θ) = E{φq(θ)φq(θ)′}.

Some Lemmas I

The lemmas proposed in this subsection are used to prove Theorem 1.
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Lemma 1. β1(q, k) = (q − 1) ∧ ⌊(M − k)/L⌋ and β2(q, k) = (Q− q) ∧ ⌊(k − 1)/L⌋ .

Proof: For t = (q−1)L+k, suppose Xt ∈ Bq̄ where q̄ < q. Then there exists a positive integer k̄ ∈ [1,M ]
such that (q−1)L+k = (q̄−1)L+k̄. It means q̄ = q−(k̄−k)/L. From this, we can get k̄ = k+iL for some
i ∈ {1, . . . , q− 1}. Note that k̄ ∈ [1,M ], then i ≤ ⌊(M − k)/L⌋. Hence, β1(q, k) = (q− 1)∧ ⌊(M − k)/L⌋.
By the same argument, β2(q, k) = (Q− q) ∧ ⌊(k − 1)/L⌋. �

Lemma 2. Under conditions (A.1)(ii) and (A.2)(ii), supθ∈Θ ‖φ̄(θ)− ḡ(θ)‖2 = Op(r
1/2Mn−1).

Proof: By Jensen’s inequality,

E

{
sup
θ∈Θ

‖φ̄(θ)− ḡ(θ)‖2
}

≤ 1

MQ

{
n− (Q− 1)L−M +

∑

β1(q,k)=0

β2(q, k) + n−MQ

}
· E

{
sup
θ∈Θ

‖gt(θ)‖2
}
.

From Lemma 1 and (A.1)(ii),
∑

β1(q,k)=0 β2(q, k) ≤ (Q− 1)(M − L) for sufficiently large n. Noting that
Q = ⌊(n−M)/L⌋+ 1, then for sufficiently large n

E

{
sup
θ∈Θ

‖φ̄(θ)− ḡ(θ)‖2
}

≤ 2LM−1Q−1 · E
{
sup
θ∈Θ

‖gt(θ)‖2
}
.

Hence, (A.1)(ii) and (A.2)(ii) lead to the conclusion. �

Lemma 3. Under conditions (A.1)(i) and (A.2)(iii), ‖Ω̂(θ0)− Ω(θ0)‖F = Op(rM
1/2n−1/2) .

Proof: Note that

E{‖Ω̂(θ0)− Ω(θ0)‖2F } = Q−1E(tr{[φq(θ0)φq(θ0)′ − Ω(θ0)]
2})

+Q−2
∑

q1 6=q2

E(tr{[φq1(θ0)φq1(θ0)′ − Ω(θ0)][φq2(θ0)φq2(θ0)
′ − Ω(θ0)]})

=: A1 +A2.

As A1 ≤ Q−1E{‖φq(θ0)‖42}, by Jensen’s inequality and (A.2)(iii), A1 = O
(
r2Mn−1

)
. At the same time,

A2 = Q−2
r∑

u,v=1

∑

q1 6=q2

E{[φq1,u(θ0)φq1,v(θ0)− Ωu,v(θ0)][φq2,v(θ0)φq2,u(θ0)− Ωv,u(θ0)]},

where Ωu,v(θ0) denotes the (u, v)-element of Ω(θ0). By Davydov inequality and (A.2)(iii), |A2| ≤
Cr2Q−2

∑
q1 6=q2

αφ{|q1 − q2|}1−2/γ . Hence, by (A.1)(i), A2 = O(r2Mn−1). From Markov inequality,

‖Ω̂(θ0)− Ω(θ0)‖F = Op(rM
1/2n−1/2). �

Lemma 4. Under conditions (A.1)(ii), (A.2)(ii) and (A.2)(iv), then supθ∈Θ λmax{Ω̂(θ)} = Op(1) pro-
vided that rMn−1 = o(1).

Proof: Using the same approach as in the proof of Lemma 2,

sup
θ∈Θ

sup
‖x‖2=1

{∣∣∣∣
1

MQ

Q∑

q=1

∑

t∈Bq

x′gt(θ)gt(θ)
′x− 1

n

n∑

t=1

x′gt(θ)gt(θ)
′x

∣∣∣∣
}

= Op(rMn−1).

By Jensen’s inequality, for any ‖x‖2 = 1,

1

Q

Q∑

q=1

x′φq(θ)φq(θ)
′x ≤ 1

MQ

Q∑

q=1

∑

t∈Bq

x′gt(θ)gt(θ)
′x.

Then supθ∈Θ λmax{Ω̂(θ)} ≤ supθ∈Θ λmax{n−1
∑n

i=1 gt(θ)gt(θ)
′} + op(1). The result can be implied by

(A.2)(iv). �
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Lemma 5. Under condition (A.2)(ii), define δn = o(r−1/2Q−1/γ) and Λn = {λ ∈ R
r : ‖λ‖2 ≤ δn}, we

have sup1≤q≤Q,θ∈Θ,λ∈Λn
|λ′φq(θ)|

p−→ 0. Also w.p.a.1, Λn ⊂ Λ̂n(θ) for all θ ∈ Θ.

Proof: From (A.2)(ii) and Markov inequality, sup1≤q≤Q,θ∈Θ ‖φq(θ)‖2 = Op(r
1/2Q1/γ). Then,

sup
1≤q≤Q,θ∈Θ,λ∈Λn

|λ′φq(θ)| ≤ δn · sup
1≤q≤Q,θ∈Θ

‖φq(θ)‖2
p−→ 0.

It also implies w.p.a.1 λ′φq(θ) ∈ V for all θ ∈ Θ and ‖λ‖2 ≤ δn. �

Lemma 6. Under conditions (A.1)(i), (A.2)(i) and (A.2)(iii), assume that λmax(VM ) is uniformly
bounded away from infinity. If r2M3n−1 = o(1), ‖θ − θ0‖2 = Op(τn) and rpMτ2n = o(1), then

‖Ω̂(θ)− Ω̂(θ0)‖2 = Op(r
1/2p1/2M−1/2τn).

Proof: Choose x ∈ R
r with unit L2-norm such that λmax{Ω̂(θ)− Ω̂(θ0)} = x′{Ω̂(θ)− Ω̂(θ0)}x. Then,

|λmax{Ω̂(θ)− Ω̂(θ0)}|

≤ 1

Q

Q∑

q=1

|x′φq(θ)− x′φq(θ0)| · ‖φq(θ)− φq(θ0)‖2 +
2

Q

Q∑

q=1

|x′φq(θ0)| · ‖φq(θ)− φq(θ0)‖2

≤ 1

Q

Q∑

q=1

‖φq(θ)− φq(θ0)‖22 + 2[λmax{Ω̂(θ0)}]1/2
{

1

Q

Q∑

q=1

‖φq(θ)− φq(θ0)‖22
}1/2

.

Note that r2M3n−1 = o(1), by Lemmas 3 and λmax(VM ) is uniformly bounded away from infinity,
λmax{Ω̂(θ0)} = Op(M

−1). From (A.2)(i), Q−1
∑Q

q=1 ‖φq(θ)− φq(θ0)‖22 = rp ·Op(‖θ− θ0‖22). If rpMτ2n =

o(1), then |λmax{Ω̂(θ) − Ω̂(θ0)}| = Op(r
1/2p1/2M−1/2τn). Using the same argument, |λmin{Ω̂(θ) −

Ω̂(θ0)}| = Op(r
1/2p1/2M−1/2τn). This completes the proof. �

Lemma 7. Under conditions (A.1)(i), (A.1)(ii), (A.2)(i), (A.2)(ii) and (A.2)(iii), assume that the
eigenvalues of VM are uniformly bounded away from zero and infinity. If r2M2−2/γn2/γ−1 = o(1),
r2M3n−1 = o(1), ‖θ̃ − θ0‖2 = Op(τn), rpMτ2n = o(1) and ‖ḡ(θ̃)‖2 = Op(r

1/2n−1/2), then λ̂(θ̃) =

argmax
λ∈Λ̂n(θ̃)

Ŝn(θ̃, λ) exists w.p.a.1, supλ∈Λ̂n(θ̃)
Ŝn(θ̃, λ) = ρ(0)+Op(rMn−1) and ‖λ̂(θ̃)‖2 = Op(r

1/2Mn−1/2)

where Ŝn(θ, λ) is defined in (7).

Proof: Pick δn = o(r−1/2Q−1/γ) and r1/2Mn−1/2 = o(δn), which is guaranteed by r2M2−2/γn2/γ−1 =
o(1). From Lemma 2 and Triangle inequality, then ‖φ̄(θ̃)‖2 ≤ ‖ḡ(θ̃)‖2 + Op(r

1/2Mn−1) which implies

‖φ̄(θ̃)‖2 = Op(r
1/2n−1/2). Let λ̄ = argmaxλ∈Λn Ŝn(θ̃, λ), where Λn is defined in Lemma 5. By Lemmas

3, 5 and 6, noting ρvv(0) < 0,

ρ(0) = Ŝn(θ̃, 0) ≤ Ŝn(θ̃, λ̄) = ρ(0) + ρv(0)λ̄
′φ̄(θ̃) +

1

2
λ̄′
{

1

Q

Q∑

q=1

ρvv(λ̇
′φq(θ̃))φq(θ̃)φq(θ̃)

′

}
λ̄

≤ ρ(0) + |ρv(0)| · ‖λ̄‖2 · ‖φ̄(θ̃)‖2 − C‖λ̄‖22 · {M−1 + op(M
−1)}.

where λ̇ lies on the jointing line between 0 and λ̄. Hence, ‖λ̄‖2 ≤ C · M · ‖φ̄(θ̃)‖2 · {1 + op(1)} =

Op(r
1/2Mn−1/2) = op(δn). Thus λ̄ ∈ int(Λn) w.p.a.1. Since Λn ⊂ Λ̂n(θ̃) w.p.a.1, λ̂(θ̃) = λ̄ w.p.a.1 by the

concavity of Ŝn(θ̃, λ) and Λ̂n(θ̃). Then,

Ŝn(θ̃, λ̂(θ̃)) ≤ ρ(0) + |ρv(0)| · ‖λ̂(θ̃)‖2 · ‖φ̄(θ̃)‖2 − C ·M−1 · ‖λ̂(θ̃)‖22 · {1 + op(1)}

leads to sup
λ∈Λ̂n(θ̃)

Ŝn(θ̃, λ) = ρ(0) +Op(rMn−1). �
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Proof of Theorem 1

Choose δn = o(r−1/2Q−1/γ) and r1/2Mn−1/2 = o(δn). Let λ̄ = sign{ρv(0)} · δnφ̄(θ̂n)/‖φ̄(θ̂n)‖2, then
λ̄ ∈ Λn. By Taylor expansion, Lemmas 4 and 5, noting ρvv(0) < 0,

Ŝn(θ̂n, λ̄) = ρ(0) + ρv(0)λ̄
′φ̄(θ̂n) +

1

2
λ̄′
{

1

Q

Q∑

q=1

ρvv(λ̇
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′

}
λ̄

≥ ρ(0) + |ρv(0)| · δn · ‖φ̄(θ̂n)‖2 − C ·Op(1) · ‖λ̄‖22.

Meanwhile, by the same way in the proof of Lemma 3, ‖ḡ(θ0) − E{gt(θ0)}‖2 = Op(r
1/2n−1/2). Since

E{gt(θ0)} = 0, ‖ḡ(θ0)‖2 = Op(r
1/2n−1/2). Then, from Lemma 7,

Ŝn(θ̂n, λ̄) ≤ sup
λ∈Λ̂n(θ̂n)

Ŝn(θ̂n, λ) ≤ sup
λ∈Λ̂n(θ0)

Ŝn(θ0, λ) = ρ(0) +Op(rMn−1).

Hence, ‖φ̄(θ̂n)‖2 = Op(δn). Consider any εn → 0 and let λ̃ = sign{ρv(0)} · εnφ̄(θ̂n), then ‖λ̃‖2 = op(δn).
Using the same way above, we can obtain

|ρv(0)| · εn · ‖φ̄(θ̂n)‖22 − C ·Op(1) · ε2n · ‖φ̄(θ̂n)‖22 = Op(rMn−1).

Then, εn‖φ̄(θ̂n)‖22 = Op(rMn−1). Thus, ‖φ̄(θ̂n)‖22 = Op(rMn−1). From Lemma 2, ‖ḡ(θ̂n)‖2 = Op(r
1/2M1/2n−1/2).

If ‖θ̂n − θ0‖2 does not converge to zero in probability, then there exists a subsequence {(n∗,M∗, r∗, p∗)}
such that ‖θ̂n∗−θ0‖2 ≥ ε a.s. for some positive constant ε. By (A.1)(iv), ‖E{gt(θ̂n∗)}‖2 = op{∆1(r∗, p∗)}+
Op(r

1/2
∗ M

1/2
∗ n

−1/2
∗ ). On the other hand, from (A.1)(iii), ‖E{gt(θ̂n∗)}‖2 ≥ ∆1(r∗, p∗)∆2(ε). As lim infr,p→∞∆1(r, p) >

0, it is a contradiction. Hence, ‖θ̂n − θ0‖2
p−→ 0. By (A.2)(iv), ‖ḡ(θ̂n) − ḡ(θ0)‖2 ≥ C‖θ̂n − θ0‖2

w.p.a.1. Then, ‖θ̂n − θ0‖2 = Op(r
1/2M1/2n−1/2). In addition, if r2pM2n−1 = o(1), from Lemmas 3

and 6, λmax{Ω̂(θ̂n)} ≤ CM−1 w.p.a.1. By repeating the above arguments, we can obtain ‖φ̄(θ̂n)‖2 =
Op(r

1/2n−1/2) and ‖θ̂n−θ0‖2 = Op(r
1/2n−1/2). From Lemma 7, ‖λ̂(θ̂n)‖2 = Op(r

1/2Mn−1/2). Therefore,
we complete the proof of Theorem 1. �

Proof of Corollary 1

To construct Corollary 1, we need the analogue of Lemma 7 listed below.

Lemma 8. Under conditions (A.1)(i), (A.1)(ii), (A.2)(i), (A.2)(ii) and (A.2)(iii), assume that λmin(VM ) ≍
r−ι1 for some ι1 > 0.

(a). If r2+3ι1M2−2/γn2/γ−1 = o(1), r2+2ι1M3n−1 = o(1), ‖θ̃ − θ0‖2 = Op(τn), r
1+2ι1pMτ2n = o(1) and

‖ḡ(θ̃)‖2 = Op(r
(1+ι1)/2n−1/2), then λ̂(θ̃) = argmax

λ∈Λ̂n(θ̃)
Ŝn(θ̃, λ) exists w.p.a.1, supλ∈Λ̂n(θ̃)

Ŝn(θ̃, λ) =

ρ(0) +Op(r
1+2ι1Mn−1) and ‖λ̂(θ̃)‖2 = Op(r

(1+3ι1)/2Mn−1/2) where Ŝn(θ, λ) is defined in (7).

(b). If r2+2ι1M2−2/γn2/γ−1 = o(1) and r2+2ι1M3n−1 = o(1), then λ̂(θ0) = argmax
λ∈Λ̂n(θ0)

Ŝn(θ0, λ)

exists w.p.a.1, sup
λ∈Λ̂n(θ0)

Ŝn(θ0, λ) = ρ(0) +Op(r
1+ι1Mn−1).

Proof: We first prove (a). Pick δn = o(r−1/2Q−1/γ) and r(1+3ι1)/2Mn−1/2 = o(δn), which is guaranteed
by r2+3ι1M2−2/γn2/γ−1 = o(1). From Lemma 2 and Triangle inequality, then ‖φ̄(θ̃)‖2 ≤ ‖ḡ(θ̃)‖2 +
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Op(r
1/2Mn−1) which implies ‖φ̄(θ̃)‖2 = Op(r

(1+ι1)/2n−1/2). Let λ̄ = argmaxλ∈Λn Ŝn(θ̃, λ), where Λn is
defined in Lemma 5. By Lemmas 3, 5 and 6, noting ρvv(0) < 0,

ρ(0) = Ŝn(θ̃, 0) ≤ Ŝn(θ̃, λ̄) = ρ(0) + ρv(0)λ̄
′φ̄(θ̃) +

1

2
λ̄′
{

1

Q

Q∑

q=1

ρvv(λ̇
′φq(θ̃))φq(θ̃)φq(θ̃)

′

}
λ̄

≤ ρ(0) + |ρv(0)| · ‖λ̄‖2 · ‖φ̄(θ̃)‖2 − C‖λ̄‖22 · {M−1r−ι1 + op(M
−1r−ι1)}.

where λ̇ lies on the jointing line between 0 and λ̄. Therefore, ‖λ̄‖2 ≤ C ·Mrι1 · ‖φ̄(θ̃)‖2 · {1 + op(1)} =

Op(r
(1+3ι1)/2Mn−1/2) = op(δn). Thus λ̄ ∈ int(Λn) w.p.a.1. Since Λn ⊂ Λ̂n(θ̃) w.p.a.1, λ̂(θ̃) = λ̄ w.p.a.1

by the concavity of Ŝn(θ̃, λ) and Λ̂n(θ̃). Then,

Ŝn(θ̃, λ̂(θ̃)) ≤ ρ(0) + |ρv(0)| · ‖λ̂(θ̃)‖2 · ‖φ̄(θ̃)‖2 − C ·M−1r−ι1 · ‖λ̂(θ̃)‖22 · {1 + op(1)}

leads to sup
λ∈Λ̂n(θ̃)

Ŝn(θ̃, λ) = ρ(0) +Op(r
1+2ι1Mn−1). The proof of (b) is similar to that of (a). �

Here, we begin to prove Corollary 1. Choose δn = o(r−1/2Q−1/γ) and r(1+3ι1)/2Mn−1/2 = o(δn).
Let λ̄ = sign{ρv(0)} · δnφ̄(θ̂n)/‖φ̄(θ̂n)‖2, then λ̄ ∈ Λn. By Taylor expansion, Lemmas 4 and 5, noting
ρvv(0) < 0,

Ŝn(θ̂n, λ̄) = ρ(0) + ρv(0)λ̄
′φ̄(θ̂n) +

1

2
λ̄′
{

1

Q

Q∑

q=1

ρvv(λ̇
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′

}
λ̄

≥ ρ(0) + |ρv(0)| · δn · ‖φ̄(θ̂n)‖2 − C ·Op(1) · ‖λ̄‖22.

Meanwhile, by the same way in the proof of Lemma 3, ‖ḡ(θ0) − E{gt(θ0)}‖2 = Op(r
1/2n−1/2). Since

E{gt(θ0)} = 0, ‖ḡ(θ0)‖2 = Op(r
1/2n−1/2). Then, from Lemma 8(b),

Ŝn(θ̂n, λ̄) ≤ sup
λ∈Λ̂n(θ̂n)

Ŝn(θ̂n, λ) ≤ sup
λ∈Λ̂n(θ0)

Ŝn(θ0, λ) = ρ(0) +Op(r
1+ι1Mn−1).

Hence, ‖φ̄(θ̂n)‖2 = Op(δn). Consider any εn → 0 and let λ̃ = sign{ρv(0)} · εnφ̄(θ̂n), then ‖λ̃‖2 = op(δn).
Using the same way above, we can obtain

|ρv(0)| · εn · ‖φ̄(θ̂n)‖22 − C ·Op(1) · ε2n · ‖φ̄(θ̂n)‖22 = Op(r
1+ι1Mn−1).

Then, εn‖φ̄(θ̂n)‖22 = Op(r
1+ι1Mn−1). Thus, ‖φ̄(θ̂n)‖22 = Op(r

1+ι1Mn−1). From Lemma 2, ‖ḡ(θ̂n)‖2 =

Op(r
(1+ι1)/2M1/2n−1/2). If ‖θ̂n − θ0‖2 does not converge to zero in probability, then there exists a sub-

sequence {(n∗,M∗, r∗, p∗)} such that ‖θ̂n∗ − θ0‖2 ≥ ε a.s. for some positive constant ε. By (A.1)(iv),

‖E{gt(θ̂n∗)}‖2 = op{∆1(r∗, p∗)}+Op(r
(1+ι1)/2
∗ M

1/2
∗ n

−1/2
∗ ). On the other hand, from (A.1)(iii), ‖E{gt(θ̂n∗)}‖2 ≥

∆1(r∗, p∗)∆2(ε). As lim infr,p→∞∆1(r, p) > 0, it is a contradiction. Hence, ‖θ̂n−θ0‖2
p−→ 0. By (A.2)(iv),

‖ḡ(θ̂n) − ḡ(θ0)‖2 ≥ C‖θ̂n − θ0‖2 w.p.a.1. Then, ‖θ̂n − θ0‖2 = Op(r
(1+ι1)/2M1/2n−1/2). In addition, if

r2+ι1pM2n−1 = o(1), from Lemmas 3 and 6, λmax{Ω̂(θ̂n)} ≤ CM−1 w.p.a.1. By repeating the above
arguments, we can obtain ‖φ̄(θ̂n)‖2 = Op(r

(1+ι1)/2n−1/2) and ‖θ̂n − θ0‖2 = Op(r
(1+ι1)/2n−1/2). From

Lemma 8, ‖λ̂(θ̂n)‖2 = Op(r
(1+3ι1)/2Mn−1/2). Therefore, we complete the proof of Corollary 1. �

Some Lemmas II

The lemmas proposed in this subsection are used to establish Proposition 1, Proposition 2 and Theorem
2. The proof of Proposition 1 is based on the asymptotic expansion given in Proposition 2, so we will
first construct the proof of Proposition 2 later.
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Lemma 9. Under conditions (A.1)-(A.2), assume that λmax(VM ) is uniformly bounded away from infin-
ity. If r2M2−2/γn2/γ−1 = o(1), r2pM2n−1 = o(1) and r2M3n−1 = o(1), then for any x ∈ R

p, y, z ∈ R
r,

∥∥∥∥
1

Q

Q∑

q=1

ρv(λ̂(θ̂n)
′φq(θ̂n))∇θφq(θ̂n)x− 1

Q

Q∑

q=1

ρv(0)∇θφq(θ̂n)x

∥∥∥∥
2

= Op(rp
1/2M1/2n−1/2) · ‖x‖2,

∣∣∣∣
M

Q

Q∑

q=1

y′ρvv(λ̃
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′z − M

Q

Q∑

q=1

ρvv(0)y
′φq(θ̂n)φq(θ̂n)

′z

∣∣∣∣

= Op(rM
1−1/γn1/γ−1/2) · ‖y‖2 · ‖z‖2,

where λ̂(θ̂n) and λ̃ are defined in (15).

Proof: From Theorem 1, both λ̂(θ̂n) and λ̃ are Op(r
1/2Mn−1/2) = op(δn) where δn is defined in Lemma

5. By Taylor expansion and Cauchy-Schwarz inequality,

∥∥∥∥
1

Q

Q∑

q=1

ρv(λ̂(θ̂n)
′φq(θ̂n))∇θφq(θ̂n)x− 1

Q

Q∑

q=1

ρv(0)∇θφq(θ̂n)x

∥∥∥∥
2

2

≤
[
1

Q

Q∑

q=1

ρ2vv(λ̇
′φq(θ̂n)){λ̂(θ̂n)′φq(θ̂n)}2

][
1

Q

Q∑

q=1

x′{∇θφq(θ̂n)}′{∇θφq(θ̂n)}x
]

where λ̇ lies on the jointing line between 0 and λ̂(θ̂n). From Lemma 5 and λmax{Ω̂(θ̂n)} = Op(M
−1)

which is provided by Lemmas 3 and 6, we obtain

Q∑

q=1

ρ2vv(λ̇
′φq(θ̂n))

{
λ̂(θ̂n)

′φq(θ̂n)
}2 ≤ C

Q∑

q=1

{
λ̂(θ̂n)

′φq(θ̂n)
}2 · {1 + op(1)} = Op(rMn−1).

On the other hand,

1

Q

Q∑

q=1

x′
{
∇θφq(θ̂n)

}′{∇θφq(θ̂n)
}
x ≤ 1

MQ

Q∑

q=1

∑

t∈Bq

∥∥∇θgt(θ̂n) · x
∥∥2
2
= Op(rp) · ‖x‖22.

Using the same argument, we can obtain the other result. �

Lemma 10. Under conditions (A.1)(i), (A.1)(ii) and (A.3), then ‖∇θφ̄(θ) − ∇θφ̄(θ
∗)‖F = Op(r

1/2p ·
‖θ − θ∗‖2) for any θ, θ∗ in a neighborhood of θ0, and ‖∇θφ̄(θ0)− E{∇θgt(θ0)}‖F = Op(r

1/2p1/2n−1/2)
provided that M = o(n1/2).

Proof: Using Taylor expansion and noting (A.3), the first conclusion holds. Using the same method in
the proof of Lemma 3, ‖∇θḡ(θ0) − E{∇θgt(θ0)}‖F = Op(r

1/2p1/2n−1/2). By the same way in the proof
of Lemma 2, ‖∇θφ̄(θ0)−∇θḡ(θ0)‖F = Op(r

1/2p1/2Mn−1). Hence, by Triangle inequality, we can obtain
‖∇θφ̄(θ0)− E{∇θgt(θ0)}‖F = Op(r

1/2p1/2n−1/2). �

Proof of Proposition 2

Define
β = ([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])−1/2αn,
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then

‖E{∇θgt(θ0)} · β‖22 = α′
n(U

′U)−1/2U ′V −1/2
n V 2

MV
−1/2
n U(U ′U)−1/2αn

≤ λmax(V
−1/2
n V 2

MV
−1/2
n ) · ‖U(U ′U)−1/2αn‖22 = λ2max(VM )λ−1

min(Vn),

where U = V
1/2
n V −1

M [E{∇θgt(θ0)}]. Therefore, ‖E{∇θgt(θ0)} · β‖2 = O(1). Meanwhile,

‖β‖22 ≤ λ−1
min([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])

≤ λ2max(VM )λ−1
min([E{∇θgt(θ0)}]′[E{∇θgt(θ0)}])λ−1

min(Vn).

Hence, ‖β‖2 ≤ C. From Lemma 5,

M

Q

Q∑

q=1

ρvv(λ̃
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′ = ρvv(0)M Ω̂(θ̂n) · {1 + op(1)}.

Noting Lemmas 3 and 6, we know the eigenvalues of M Ω̂(θ̂n) are uniformly bounded away from zero
and infinity w.p.a.1. Hence, the eigenvalues of MQ−1

∑Q
q=1 ρvv(λ̃

′φq(θ̂n))φq(θ̂n)φq(θ̂n)
′ are uniformly

bounded away from zero and infinity w.p.a.1. By Lemma 9 and (15),

β′{∇θφ̄(θ̂n)}′
{
M

Q

Q∑

q=1

ρvv(λ̃
′φq(θ̂n))φq(θ̂n)φq(θ̂n)

′

}−1

φ̄(θ̂n) = Op(r
3/2p1/2M1/2n−1).

From Lemmas 10 and 9,

β′[E{∇θgt(θ0)}]′{M Ω̂(θ̂n)}−1φ̄(θ̂n)

= Op(r
3/2p1/2M1/2n−1) +Op(r

3/2M1−1/γn1/γ−1) +Op(r
3/2pn−1).

Note that Lemmas 3 and 6,

β′[E{∇θgt(θ0)}]′V −1
M φ̄(θ̂n)

= Op(r
3/2p1/2M1/2n−1) +Op(r

3/2M1−1/γn1/γ−1) +Op(r
3/2M3/2n−1) +Op(r

3/2pn−1).

Expanding φ̄(θ̂n) around θ = θ0, by Lemmas 10 and 2,

β′[E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}](θ̂n − θ0)

=− β′[E{∇θgt(θ0)}]′V −1
M ḡ(θ0) +Op(r

3/2p1/2M1/2n−1) +Op(r
3/2M1−1/γn1/γ−1)

+Op(r
3/2pn−1) +Op(r

3/2M3/2n−1).

Hence, we obtain Proposition 2. �

Proof of Proposition 1

From Proposition 2, if we pick αn = (θ̂n − θ0)/‖θ̂n − θ0‖2, we can obtain that

√
n · λ−1/2

max {[E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}]}

· λmin{[E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}]} · ‖θ̂n − θ0‖2

= Op{‖
√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M ḡ(θ0)‖2}
+Op(r

3/2p1/2M1/2n−1/2) +Op(r
3/2pn−1/2) +Op(r

3/2M1−1/γn1/γ−1/2) +Op(r
3/2M3/2n−1/2).
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Note that

λ−1/2
max {[E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}]}λmin{[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}]} > C,

which is assumed in (A.2)(iv) and the eigenvalues of VM and Vn are uniformly bounded away from zero
and infinity. Therefore, by

E(
√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M ḡ(θ0)) = p,

we complete the proof of Proposition 1. �

Proof of Theorem 2

From Proposition 2, it is only need to show

Sn := −
√
nα′

n([E{∇θgt(θ0)}]′V −1
M VnV

−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M ḡ(θ0)
d−→ N(0, 1).

Let

xn,t = −α′
n([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M ḡ(θ0) =: β′
ngt(θ0),

then Sn = n−1/2
∑n

t=1 xn,t. As restriction (17) holds, supn sup1≤t≤nE(|xn,t|γ) < ∞. On the other hand,
Var(Sn) = 1. Note that (A.1)(i), then by the central limit theorem proposed in Francq and Zaköıan

(2005), we have Sn
d−→ N(0, 1). �

Some Lemmas III

To prove Theorem 3, we employ the blocking technique by splitting the observations to big blocks of
length h and small blocks of length b. Suppose that B̃i = (X(i−1)(h+b)+1, . . . , Xi(h+b)) = (B̃i1, B̃i2),

where B̃i1 = (X(i−1)(h+b)+1, . . . , X(i−1)(h+b)+h) , B̃i2 = (X(i−1)(h+b)+(h+1), . . . , Xi(h+b)) and b < h. Then
n = T (h + b) + m, where m < h + b. Later, we will discuss the selection of b and h. By a similar
argument to those in finding the order of ‖ḡ(θ0)‖2 and the proof of Lemma 2, we can obtain ‖ḡ(θ0) −
(Th)−1

∑T
i=1

∑
t∈B̃i1

gt(θ0)‖2 = Op(r
1/2T 1/2b1/2n−1). Furthermore, define Ṽn = Var{h−1/2

∑h
t=1 gt(θ0)},

ZT,i = h−1/2Ṽ
−1/2
n

∑
t∈B̃i1

gt(θ0) and GT,k =
∑k

i=1 ZT,i, then E(ZT,i) = 0 and E(ZT,iZ
′
T,i) = Ir. It

can be shown that |x′(Vn − Ṽn)y| ≤ Crh−1
∑h

k=1 kαX(k)1−2/γ · ‖x‖2‖y‖2. Define GT,0 = {∅,Ω}, GT,k =

σ(ZT,1, . . . , ZT,k), k = 1, . . . , T , and ST,k = T−1(2r)−1/2{(
∑k

i=1 Z
′
T,i)(

∑k
i=1 ZT,i)−kr}. ET,k(·) denote the

conditional expectation given GT,k. Let DT,k = ST,k −ST,k−1 = T−1(2r)−1/2(2Z ′
T,kGT,k−1+ ‖ZT,k‖22− r).

The following lemmas are used to establish Theorem 3.

Lemma 11. Under conditions (A.1)(i) and (A.2)(iii), assume that the eigenvalues of Vn are uniformly
bounded away from zero and infinity. Then

E{(‖ZT,k‖22 − r)2} ≤ Cr2h2,

E{|ET,k−1(Z
′
T,kGT,k−1)|} ≤ Crk1/2

{ h∑

l=1

αX(b+ l)1−2/γ

}1/2

,

E{E2
T,k−1(‖ZT,k‖22 − r)} ≤ Cr2h2αX(b+ 1)1−2/γ ,

and for any i 6= j,

|E{(‖ZT,i‖22 − r)(‖ZT,j‖22 − r)}| ≤ Cr2h2αX{(b+ h)|i− j| − h+ 1}1−2/γ ,

provided that rh−1
∑h

k=1 kαX(k)1−2/γ = o(1).
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Proof: As rh−1
∑h

k=1 kαX(k)1−2/γ = o(1), λmax(Ṽ
−1
n ) ≤ C. Then, E(‖ZT,k‖42) ≤ Ch−2E{‖

∑h
t=1 gt(θ0)‖42}.

By Triangle and Jensen’s inequalities, E{‖
∑h

t=1 gt(θ0)‖42} ≤ Cr2h4. Hence, E{(‖ZT,k‖22 − r)2} ≤ Cr2h2.
By Cauchy-Schwarz inequality,

E{|ET,k−1(Z
′
T,kGT,k−1)|} ≤ {E(‖GT,k−1‖22)}1/2[E{‖ET,k−1(ZT,k)‖22}]1/2.

Using the same method in the proof of Lemma 3, E(‖GT,k−1‖22) ≤ Crk. On the other hand, note that
‖ET,k−1(ZT,k)‖22 ≤ C

∑
t∈B̃k1

‖ET,k−1{gt(θ0)}‖22. Hence,

E{‖ET,k−1(ZT,k)‖22} ≤ C
∑

t∈B̃k1

r∑

j=1

E[E2
T,k−1{gtj(θ0)}]

≤ C
∑

t∈B̃k1

r∑

j=1

[E{|gtj(θ0)|γ}]2/γ αX{t+ b− (k − 1)(h+ b)}1−2/γ

= Cr

h∑

l=1

αX(b+ l)1−2/γ .

(27)

This is based on the fact that if E(X) = 0, then (E[{E(X|F)}2])1/2 = sup{E(XY ) : Y ∈ F , E(Y 2) = 1}
for any σ-field F (details can be found in Durrett (2010)), and Davydov inequality. Then, E{|ET,k−1(Z

′
T,kGT,k−1)|} ≤

Crk1/2{
∑h

l=1 αX(b+ l)1−2/γ}1/2. Using the same argument above, we can obtain E(‖ZT,k‖2γ2 ) ≤ Crγhγ .
Then, by the same argument of (27),

E{E2
T,k−1(‖ZT,k‖22 − r)} ≤ Cr2h2αX(b+ 1)1−2/γ . (28)

For any i 6= j, by Davydov inequality,

|E{(‖ZT,i‖22 − r)(‖ZT,j‖22 − r)}| ≤ C{E(|‖ZT,i‖22 − r|γ)}2/γαX{(b+ h)|i− j| − h+ 1}1−2/γ .

Hence, we complete the proof of this lemma. �

Lemma 12. Under conditions (A.1)(i) and (A.2)(iii), assume that the eigenvalues of Vn are uniformly
bounded away from zero and infinity. Then

E{‖ET,k−1(ZT,kZ
′
T,k)− Ir‖2F } ≤ Cr2h2αX(b+ 1)1−2/γ ,

E[{G′
T,k−1ET,k−1(ZT,k)}2] ≤ Cr2h2k2αX(b+ 1)1/2−1/γ .

provided that rh−1
∑h

k=1 kαX(k)1−2/γ = o(1).

Proof: Note that

E{‖ET,k−1(ZT,kZ
′
T,k)− Ir‖2F }

≤ CE

(∥∥∥∥ET,k−1

{[
h−1/2

∑

t∈B̃k1

gt(θ0)

][
h−1/2

∑

t∈B̃k1

gt(θ0)

]′}
− Ṽn

∥∥∥∥
2

F

)

≤ C
r∑

u,v=1

E

(∣∣∣∣ET,k−1

{[
h−1/2

∑

t∈B̃k1

gtu(θ0)

][
h−1/2

∑

t∈B̃k1

gtv(θ0)

]}
− Ṽn(u, v)

∣∣∣∣
2)

≤ Cr2h2αX(b+ 1)1−2/γ ,
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where Ṽn(u, v) denotes the (u, v)-element of Ṽn. The last step is similar to (28). Then we obtain the first
conclusion. As

‖ET,k−1(ZT,k)‖42 ≤ {ET,k−1(ZT,k)}′{ET,k−1(ZT,kZ
′
T,k)}{ET,k−1(ZT,k)}

≤ ‖ET,k−1(ZT,k)‖22‖ET,k−1(ZT,kZ
′
T,k)− Ir‖F + ‖ET,k−1(ZT,k)‖22,

then by Cauchy-Schwarz inequality,

E{‖ET,k−1(ZT,k)‖42}
≤ [E{‖ET,k−1(ZT,k)‖42}]1/2[E{‖ET,k−1(ZT,kZ

′
T,k)− Ir‖2F }]1/2 + E{‖ET,k−1(ZT,k)‖22}.

Let U = [E{‖ET,k−1(ZT,k)‖42}]1/2, from (27) and the first result in this lemma,

U2 ≤ CUrhαX(b+ 1)1/2−1/γ + CrhαX(b+ 1)1−2/γ .

Then, U ≤ CrhαX(b+ 1)1/2−1/γ . Hence, E{‖ET,k−1(ZT,k)‖42} ≤ Cr2h2αX(b+ 1)1−2/γ . Also,

E[{G′
T,k−1ET,k−1(ZT,k)}2] ≤ {E(‖GT,k−1‖42)}1/2[E{‖ET,k−1(ZT,k)‖42}]1/2 ≤ Cr2h2k2αX(b+ 1)1/2−1/γ .

We complete the proof. �

Lemma 13. Under conditions (A.1)(i) and (A.2)(iii), assume that the eigenvalues of Vn are uni-
formly bounded away from zero and infinity. Then r−1T−2

∑T
j=2(T − j)G′

T,j−1ZT,j = op(1) provided

that rh−1
∑h

k=1 kαX(k)1−2/γ = o(1) and n2h2αX(b+ 1)1−2/γ = o(1).

Proof: Note that

E

([
1

rT 2

T∑

j=2

(T − j){G′
T,j−1ZT,j − ET,j−1(G

′
T,j−1ZT,j)}

]2)

=
1

r2T 4

T∑

j=2

(T − j)2E[{G′
T,j−1ZT,j − ET,j−1(G

′
T,j−1ZT,j)}2].

By the first result of Lemma 12,

E{(G′
T,j−1ZT,j)

2} = E(‖GT,j−1‖22) + E[G′
T,j−1{ET,j−1(ZT,jZ

′
T,j)− Ir}GT,j−1]

≤ Crj + {E(‖GT,j−1‖42)}1/2[E{‖ET,j−1(ZT,jZ
′
T,j)− Ir‖2F }]1/2

≤ Crj + Cr2h2j2αX(b+ 1)1/2−1/γ .

Using Cauchy-Schwarz inequality and the fact E{|ET,j−1(G
′
T,j−1ZT,j)|2} ≤ E{(G′

T,j−1ZT,j)
2},

E

[
1

r2T 4

T∑

j=2

(T − j)2{G′
T,j−1ZT,j − ET,j−1(G

′
T,j−1ZT,j)}2

]
≤ Cr−1 + CnhαX(b+ 1)1/2−1/γ → 0.

Then, r−1T−2
∑T

j=2(T − j){G′
T,j−1ZT,j − ET,j−1(G

′
T,j−1ZT,j)} = op(1). From Lemma 11, we have

r−1T−2
∑T

j=2(T − j)ET,j−1(G
′
T,j−1ZT,j) = op(1). Hence, we complete the proof. �

Lemma 14. Under conditions (A.1)(i) and (A.2)(iii), assume that the eigenvalues of Vn are uniformly
bounded away from zero and infinity. If rh−1

∑h
k=1 kαX(k)1−2/γ = o(1), rT

∑h
l=1 αX(b + l)1−2/γ = o(1)

and rh2αX(b+ 1)1−2/γ = o(1), then
∑T

k=1ET,k−1(DT,k) = op(1).
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Proof: Note that

T∑

k=1

ET,k−1(DT,k) =
2

(2r)1/2T

T∑

k=1

ET,k−1(Z
′
T,kGT,k−1) +

1

(2r)1/2T

T∑

k=1

ET,k−1(‖ZT,k‖22 − r)

=: I1 + I2.

From Lemma 11,

E(|I1|) ≤
2

(2r)1/2T

T∑

k=1

E{|ET,k−1(Z
′
T,kGT,k−1)|} ≤ Cr1/2T 1/2

{ h∑

l=1

αX(b+ l)1−2/γ

}1/2

→ 0

and

E(|I2|) ≤
1

(2r)1/2T

T∑

k=1

[E{E2
T,k−1(‖ZT,k‖22 − r)}]1/2 ≤ Cr1/2hαX(b+ 1)1/2−1/γ → 0.

Then, we complete the proof of this lemma. �

Lemma 15. Under conditions (A.1)(i) and (A.2)(iii), assume that the eigenvalues of Vn are uniformly
bounded away from zero and infinity. If rh−1

∑h
k=1 kαX(k)1−2/γ = o(1), r2n2h2αX(b + 1)1−2/γ = o(1)

and rh3n−1 = o(1), then ST,T
d−→ N(0, 1).

Proof: We will use the martingale central limit theorem to show ST,T
d−→ N(0, 1). Note that

ST,T =
T∑

k=1

DT,k =
T∑

k=1

{DT,k − ET,k−1(DT,k)}+
T∑

k=1

ET,k−1(DT,k).

The first part on the right hand of above equation are the sum of a sequence of martingale difference
with respect to {GT,k}Tk=0. From Lemma 14, ST,T =

∑T
k=1{DT,k − ET,k−1(DT,k)}+ op(1).

By the martingale central limit theorem (Billingsley, 1995), in order to show the conclusion, it is
sufficient to show that, letting σ2T,k = ET,k−1[{DT,k − ET,k−1(DT,k)}2], as T → ∞,

VT,T :=

T∑

k=1

σ2T,k
p−→ 1 and

T∑

k=1

E{DT,k − ET,k−1(DT,k)}4 → 0.

For the first part,

VT,T =
2

rT 2

T∑

k=1

(G′
T,k−1[ET,k−1(ZT,kZ

′
T,k)− {ET,k−1(ZT,k)}{ET,k−1(Z

′
T,k)}]GT,k−1)

+
2

rT 2

T∑

k=1

G′
T,k−1[ET,k−1{ZT,k(‖ZT,k‖22 − r)} − ET,k−1(ZT,k) · ET,k−1(‖ZT,k‖22 − r)]

+
1

2rT 2

T∑

k=1

[ET,k−1{(‖ZT,k‖22 − r)2} − E2
T,k−1(‖ZT,k‖22 − r)]

=: I1 + I2 + I3.

We will show that I1
p−→ 1, I2

p−→ 0 and I3
p−→ 0.
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Note that 0 ≤ I3 ≤ (2r)−1T−2
∑T

k=1ET,k−1{(‖ZT,k‖22 − r)2} and E{(‖ZT,k‖22 − r)2} ≤ Cr2h2, then

I3
p−→ 0. Using Cauchy-Schwarz, Triangle and Jensen’s inequalities,

|ET,k−1{G′
T,k−1Zk(‖ZT,k‖22 − r)}|

≤ {ET,k−1(G
′
T,k−1ZT,kZ

′
T,kGT,k−1)}1/2[ET,k−1{(‖ZT,k‖22 − r)2}]1/2

≤ {‖GT,k−1‖22 + ‖GT,k−1‖22 · ‖ET,k−1(ZT,kZ
′
T,k)− Ir‖F }1/2[ET,k−1{(‖ZT,k‖22 − r)2}]1/2

≤ C‖GT,k−1‖2[ET,k−1{(‖ZT,k‖22 − r)2}]1/2{1 + ‖ET,k−1(ZT,kZ
′
T,k)− Ir‖1/2F }.

Then, by Cauchy-Schwarz inequality and Lemmas 11 and 12,

E[|ET,k−1{G′
T,k−1Zk(‖ZT,k‖22 − r)}|]

≤ C{E(‖GT,k−1‖22)}1/2[E{(‖ZT,k‖22 − r)2}]1/2

+ C{E(‖GT,k−1‖22)}1/2[E{(‖ZT,k‖22 − r)4}]1/4[E{‖ET,k−1(ZT,kZ
′
T,k)− Ir‖2F }]1/4

≤ Cr3/2hk1/2 + Cr2h3/2k1/2αX(b+ 1)1/4−1/(2γ).

Hence, r−1T−2
∑T

k=1E[|G′
T,k−1ET,k−1{ZT,k(‖ZT,k‖22 − r)}|] → 0. By the same argument, we can obtain

r−1T−2
∑T

k=1E{|ET,k−1(G
′
T,k−1ZT,k) · ET,k−1(‖ZT,k‖22 − r)|} → 0. Thus, I2

p−→ 0. Note that

I1 =
2

rT 2

T∑

k=1

‖GT,k−1‖22

+
2

rT 2

T∑

k=1

G′
T,k−1{ET,k−1(ZT,kZ

′
T,k)− ET,k−1(ZT,k) · ET,k−1(Z

′
T,k)− Ir}GT,k−1.

By Triangle inequality,

∣∣∣∣
2

rT 2

T∑

k=1

G′
T,k−1{ET,k−1(ZT,kZ

′
T,k)− ET,k−1(ZT,k) · ET,k−1(Z

′
T,k)− Ir}GT,k−1

∣∣∣∣

≤ 2

rT 2

T∑

k=1

‖GT,k−1‖22‖ET,k−1(ZT,kZ
′
T,k)− Ir‖F +

2

rT 2

T∑

k=1

{G′
T,k−1ET,k−1(ZT,k)}2.

By Cauchy-Schwarz inequality and Lemma 12,

E{‖GT,k−1‖22‖ET,k−1(ZT,kZ
′
T,k)− Ir‖F }

≤ {E(‖GT,k−1‖42)}1/2[E{‖ET,k−1(ZT,kZ
′
T,k)− Ir‖2F }]1/2

≤ Cr2h2k2αX(b+ 1)1/2−1/γ .

Then,

E

{
2

rT 2

T∑

k=1

‖GT,k−1‖22‖ET,k−1(ZT,kZ
′
T,k)− Er‖F

}
≤ CrnhαX(b+ 1)1/2−1/γ → 0.

On the other hand, by Lemma 12,

E

[
2

rT 2

T∑

k=1

{G′
T,k−1ET,k−1(ZT,k)}2

]
≤ CrnhαX(b+ 1)1/2−1/γ → 0.
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Then, I1 = 2r−1T−2
∑T

k=1 ‖GT,k−1‖22 + op(1).
From Lemma 13,

2

rT 2

T∑

k=1

‖GT,k−1‖22 =
2

rT 2

T∑

i=1

(T − i)‖ZT,i‖22 +
4

rT 2

T∑

j=2

(T − j)G′
T,j−1ZT,j

=
2

rT 2

T∑

i=1

(T − i)‖ZT,i‖22 + op(1).

In order to prove I1
p−→ 1, it is only need to show 2r−1T−2

∑T
i=1(T − i)(‖ZT,i‖22 − r)

p−→ 0. Note that

E

{
2

rT 2

T∑

i=1

(T − i)(‖ZT,i‖22 − r)

}
= 0,

it is sufficient to show

4

r2T 4

[ T∑

i=1

(T − i)2E{(‖ZT,i‖22 − r)2}+
∑

i 6=j

(T − i)(T − j)E{(‖ZT,i‖22 − r)(‖ZT,j‖22 − r)}
]
→ 0,

which can be derived from Lemma 11. Hence, I1
p−→ 1.

For the second part, we only need to prove
∑T

k=1E(D4
T,k) → 0. Note that

D4
T,k ≤ Cr−2T−4{(G′

T,k−1ZT,k)
4 + (‖ZT,k‖22 − r)4}

and

(G′
T,k−1ZT,k)

4 =
k−1∑

i1,...,i4=1

r∑

j1,...,j4=1

ZT,i1,j1ZT,i2,j2ZT,i3,j3ZT,i4,j4ZT,k,j1ZT,k,j2ZT,k,j3ZT,k,j4 ,

where ZT,i,j denotes the jth component of ZT,i. By the same way of the Lemma 15 in Francq and Zaköıan

(2007), r−2h−2E{(G′
T,k−1ZT,k)

4} ≤ Ck2. Then,
∑T

k=1E(D4
T,k) ≤ Ch2T−1 + Cr2h4T−3 → 0. Hence, we

complete the proof. �

Lemma 16. Under conditions (A.1)(i) and (A.2)(iii), assume that the eigenvalues of Vn are uniformly

bounded away from zero and infinity. Then (2r)−1/2{nḡ(θ0)′V −1
n ḡ(θ0) − r} d−→ N(0, 1) provided that

r3/2h−1
∑h

k=1 kαX(k)1−2/γ = o(1), rbh−1 = o(1), r2n2h2αX(b+ 1)1−2/γ = o(1) and rh3n−1 = o(1).

Proof: Note that

(2r)−1/2{nḡ(θ0)′V −1
n ḡ(θ0)− r}

=
n

Th
ST,T +Op

{
r3/2h−1

h∑

k=1

kαX(k)1−2/γ

}
+Op(r

1/2b1/2h−1/2).

Then, by Lemma 15, we have (2r)−1/2{nḡ(θ0)′V −1
n ḡ(θ0)− r} d−→ N(0, 1). �
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Proof of Theorem 3

Let λ̂(θ0) = argmax
λ∈Λ̂n(θ0)

∑Q
q=1 ρ(λ

′φq(θ0)). From Lemma 2, ‖φ̄(θ0) − ḡ(θ0)‖2 = Op(r
1/2Mn−1).

Hence, ‖φ̄(θ0)‖2 = Op(r
1/2n−1/2). Then, by Lemma 7, ‖λ̂(θ0)‖2 = Op(r

1/2Mn−1/2). Meanwhile,

sup1≤q≤Q |λ̂(θ0)′φq(θ0)| = op(1). Expanding max
λ∈Λ̂n(θ0)

∑Q
q=1 ρ(λ

′φq(θ0)) around λ = 0,

max
λ∈Λ̂n(θ0)

Q∑

q=1

ρ(λ′φq(θ0)) =

Q∑

q=1

[
ρ(0) + ρv(0)λ̂(θ0)

′φq(θ0) +
1

2
ρvv(λ̇

′φq(θ0)){λ̂(θ0)′φq(θ0)}2
]

where λ̇ lies on the line joining λ̂(θ0) and 0. On the other hand, from ∇λŜn(θ0, λ̂(θ0)) = 0, we have

λ̂(θ0) = −
{

1

Q

Q∑

q=1

ρvv(λ̈
′φq(θ0))φq(θ0)φq(θ0)

′

}−1{ 1

Q

Q∑

q=1

ρv(0)φq(θ0)

}

for some λ̈ lies on the line joining λ̂(θ0) and 0. Hence,

max
λ∈Λ̂n(θ0)

Q∑

q=1

ρ(λ′φq(θ0)) = Qρ(0)−Qρ2v(0)φ̄(θ0)
′Ω̈−1φ̄(θ0) +

1

2
Qρ2v(0)φ̄(θ0)

′Ω̈−1Ω̇Ω̈−1φ̄(θ0)

where Ω̇ = Q−1
∑Q

q=1 ρvv(λ̇φq(θ0))φq(θ0)φq(θ0)
′ and Ω̈ = Q−1

∑Q
q=1 ρvv(λ̈φq(θ0))φq(θ0)φq(θ0)

′. Then,
the generalized empirical likelihood ratio can be written as

wn(θ0) = 2Qρvv(0)φ̄(θ0)
′Ω̈−1φ̄(θ0)−Qρvv(0)φ̄(θ0)

′Ω̈−1Ω̇Ω̈−1φ̄(θ0)

= Qφ̄(θ0)
′Ω̂−1(θ0)φ̄(θ0) +Qφ̄(θ0)

′{2ρvv(0)Ω̈−1 − Ω̂−1(θ0)− ρvv(0)Ω̈
−1Ω̇Ω̈−1}φ̄(θ0).

By the same argument of Lemma 9,

‖Ω̇− ρvv(0)Ω̂(θ0)‖2 = Op(rM
−1/γn1/γ−1/2) = ‖Ω̈− ρvv(0)Ω̂(θ0)‖2.

From Lemmas 3 and ‖MΩ(θ0) − Vn‖2 = O(rM−1), we know the eigenvalues of M Ω̂(θ0) are uniformly
bounded away from zero and infinity. Hence,

wn(θ0) = Qφ̄(θ0)
′Ω̂−1(θ0)φ̄(θ0) +Op(r

2M1−1/γn1/γ−1/2).

By Lemmas 2 and 3, we have

(2r)−1/2{wn(θ0)− r} = (2r)−1/2{nḡ(θ0)′V −1
n ḡ(θ0)− r}+Op(r

5/2M2−2/γn2/γ−1)

+Op(r
3/2M1−1/γn1/γ−1/2) +Op(r

3/2M3/2n−1/2)

+Op

{
r3/2M−1

M∑

k=1

kαX(k)1−2/γ

}
.

(29)

The key step is to show (2r)−1/2{nḡ(θ0)′V −1
n ḡ(θ0)− r} d−→ N(0, 1). In the independent case, the require-

ments in Lemma 16 can be simplified as rbh−1 = o(1) and rh3n−1 = o(1). We can pick b = 0 and h = 1,
then r = o(n). In this case, we can regard η = ∞. In the dependent case with η < ∞, suppose b ≍ nκ1

and h ≍ nκ2 , where 0 < κ1 < κ2 < 1. Note that (A.1)’(i), the requirements in Lemma 16 turn to

r = o(n2κ2/3), r = o(nκ2−κ1), r = o(n(ηκ1−2−2κ2)/2) and r = o(n1−3κ2),
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where ηκ1−2−2κ2 > 0 and 1−3κ2 > 0. In the following, we will consider the selection of (κ1, κ2) to satisfy
these inequalities. From 2κ2 + 2 − ηκ1 < 0, 3κ2 − 1 < 0 and κ1 < κ2, we can get 2κ2+2

η < κ1 < κ2 <
1
3 .

In order to guarantee there exists the solution for above inequalities in (0, 1)2, it is necessary to require
η > 8. If 8 < η <∞,

ξ := sup
2

η−2
<κ2<

1
3

2κ2+2
η

<κ1<κ2

min

(
2κ2
3
, κ2 − κ1,

ηκ1 − 2− 2κ2
2

, 1− 3κ2

)

= sup
2

η−2
<κ2<

1
3

min

{
2κ2
3
,
(η − 2)κ2 − 2

η + 2
, 1− 3κ2

}

=
η − 8

4η + 4
1(8<η<32) +

2

11
1(32≤η<∞).

In the dependent case with η = ∞ where Xt is exponentially strong mixing. The requirements in Lemma
16 turn to r3/2h−1 = o(1), rbh−1 = o(1) and rh3n−1 = o(1). Then,

r = o(n2κ2/3), r = o(nκ2−κ1) and r = o(n1−3κ2).

In this setting,

ξ := sup
0<κ2<

1
3

0<κ1<κ2

min

(
2κ2
3
, κ2 − κ1, 1− 3κ2

)
=

2

11
.

Define

ξ =
η − 8

4η + 4
1{8<η<32} +

2

11
1{32≤η≤∞} + 1{indenpendent data}.

Hence, if r = o(nξ), then (2r)−1/2{nḡ(θ0)′V −1
n ḡ(θ0)− r} d−→ N(0, 1). If (21) holds, the other terms in (29)

are op(1). We complete the proof of Theorem 3. �

Proof of Theorem 4

In order to establish Theorem 4, we need the following lemma.

Lemma 17. For any θ̃ ∈ Θ and r× r matrix V̂n such that ‖θ̃− θ0‖2 = Op(p
1/2n−1/2) and ‖V̂n − Vn‖2 =

op(r
−1/2), if ‖∇θḡ(θ̇) − E{∇θgt(θ0)}‖2 = op(p

−1/2) for any θ̇ with ‖θ̇ − θ0‖2 ≤ ‖θ̃ − θ0‖2, and the
eigenvalues of [E{∇θgt(θ0)}]′[E{∇θgt(θ0)}] and Vn are uniformly bounded away from zero and infinity,

then (2r)−1/2{nḡ(θ̃)′V̂ −1
n ḡ(θ̃)− nḡ(θ0)

′V −1
n ḡ(θ0)}

p−→ 0 provided that p = o(r1/2).

Proof: Note that

(2r)−1/2|nḡ(θ̃)′V̂ −1
n ḡ(θ̃)− nḡ(θ0)

′V −1
n ḡ(θ0)|

= (2r)−1/2|nḡ(θ̃)′V̂ −1
n ḡ(θ̃)− nḡ(θ0)

′V̂ −1
n ḡ(θ0)|+ (2r)−1|nḡ(θ0)′V̂ −1

n ḡ(θ0)− nḡ(θ0)
′V −1

n ḡ(θ0)|
=: I1 + I2.

We only need to show I1
p−→ 0 and I2

p−→ 0.
For I1, by Taylor expansion, ḡ(θ̃) = ḡ(θ0) +∇θḡ(θ̇) · (θ̃ − θ0). Then,

I1 ≤ (2r)−1/2|2n(θ̃ − θ0)
′{∇θḡ(θ̇)}′V̂ −1

n ḡ(θ0)|+ (2r)−1/2|n(θ̃ − θ0)
′{∇θḡ(θ̇)}′V̂ −1

n {∇θḡ(θ̇)}(θ̃ − θ0)|.
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As the eigenvalues of Vn are uniformly bounded away from zero and infinity, and ‖V̂n−Vn‖2 = op(r
−1/2),

then the eigenvalues of V̂n are uniformly bounded away from zero and infinity w.p.a.1. Hence,

‖{∇θḡ(θ̇)}′V̂ −1
n − [E{∇θg(θ0)}]′V −1

n ‖2
≤ ‖({∇θḡ(θ̇)}′ − [E{∇θg(θ0)}])V̂ −1

n ‖2 + ‖[E{∇θg(θ0)}]′(V̂ −1
n − V −1

n )‖2
= op(p

−1/2) + op(r
−1/2) = op(p

−1/2).

On the other hand,

E(‖[E{∇θg(θ0)}]′V −1
n ḡ(θ0)‖22) = E{tr(V −1

n [E{∇θg(θ0)}][E{∇θg(θ0)}]′V −1
n ḡ(θ0)ḡ(θ0))

′}
= n−1tr([E{∇θg(θ0)}]′V −1

n [E{∇θg(θ0)}])
≤ Cpn−1.

Then,
‖{∇θḡ(θ̇)}′V̂ −1

n ḡ(θ0)‖2 = Op(p
1/2n−1/2) + op(r

1/2p−1/2n−1/2).

Therefore,
I1 ≤ Op(pr

−1/2) + op(1)
p−→ 0

provided that p = o(r1/2).
For I2,

I2 = (2r)−1/2|nḡ(θ0)′(V̂ −1
n − V −1

n )ḡ(θ0)| = O(r−1/2n)op(r
−1/2)Op(rn

−1) = op(1).

Hence, we complete the proof of this lemma. �

Remark: This lemma is similar to the Lemma 6.1 of Donald, Imbens and Newey (2003). However, we
work on the operator-norm in establishing the consistency results, whereas Donald, Imbens and Newey
(2003) employed the Frobenius-norm. The matrix V̂n and θ̃ are the consistency estimators of Vn and θ0
respectively.

Here, we begin to establish Theorem 4. From Proposition 1, we know ‖θ̂n − θ0‖2 = Op(p
1/2n−1/2). By

the same argument of the proof of Theorem 3, we have

wn(θ̂n) = Qφ̄(θ̂n)
′Ω̂−1(θ̂n)φ̄(θ̂n) +Op(r

2M1−1/γn1/γ−1/2).

Note Lemma 2,

wn(θ̂n) = nḡ(θ̂n)
′{M Ω̂(θ̂n)}−1ḡ(θ̂n) +Op(r

2M1−1/γn1/γ−1/2) +Op(rMn−1/2) +Op(rM
2n−1).

By Lemmas 3 and 6, it yields that

∥∥M Ω̂(θ̂n)− Vn
∥∥
2
= Op(r

1/2pM1/2n−1/2 + rM3/2n−1/2) +Op

{
rM−1

M∑

k=1

kαX(k)1−2/γ

}

= op(r
−1/2).

Noting Lemma 10, for any θ̇ such that ‖θ̇ − θ0‖2 ≤ ‖θ̂n − θ0‖2 = Op(p
1/2n−1/2),

‖∇θḡ(θ̇)− E{∇θgt(θ0)}‖F = Op(r
1/2p3/2n−1/2) = op(p

−1/2).

By Lemma 17, we can get nḡ(θ̂n)
′{M Ω̂(θ̂n)}−1ḡ(θ̂n)−nḡ(θ0)′V −1

n ḡ(θ0) = op(r
1/2). Then, by Lemma 16,

we complete the proof of Theorem 4. �
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Proof of Theorem 5

We only need to prove that for some c > 1, P{wn(θ̂n) > cr} → 1. To prove this, we use the technique
for the proof of Theorem 1 in Chang, Tang and Wu (2013). Let

λ̃ =
−ρv(0)

2ρvv(0)Qω

e

max1≤q≤Q ‖φq(θ̂n)‖2
where e is a r-dimensional vector with unit L2-norm, and ω > 0 will be determined later. Then,
λ̃ ∈ Λ̂n(θ̂n) when Q is sufficiently large. Note that ρvv(0) < 0, by Taylor expansion, we have

wn(θ̂n) =
2ρvv(0)

ρ2v(0)

{
Qρ(0)− max

λ∈Λ̂n(θ̂n)

Q∑

q=1

ρ(λ′φq(θ̂n))

}

≥ 1

Qω

Q∑

q=1

e′φq(θ̂n)

max1≤q≤Q ‖φq(θ̂n)‖2

− 1

4Q2ωρvv(0)

Q∑

q=1

ρvv(λ̇φq(θ̂n))e
′φq(θ̂n)φq(θ̂n)

′e

max1≤q≤Q ‖φq(θ̂n)‖22

where λ̇ lies on the jointing line between λ̃ and 0. By the definition of λ̃, we have

1

4Q2ωρvv(0)

Q∑

q=1

ρvv(λ̇φq(θ̂n))e
′φq(θ̂n)φq(θ̂n)

′e

max1≤q≤Q ‖φq(θ̂n)‖22
≤ 1

2
Q1−2ω w.p.a. 1.

Hence, for any c > 1,

P{wn(θ̂n) ≤ cr} ≤ P

{ Q∑

q=1

e′φq(θ̂n)

max1≤q≤Q ‖φq(θ̂n)‖2
≤ crQω +

1

2
Q1−ω

}
+ o(1).

From (A.2)(ii), we have ‖φq(θ̂n)‖2 ≤ r1/2M−1
∑

t∈Bq
Bn(Xt). Then, by Markov inequality,

P

{
max
1≤q≤Q

‖φq(θ̂n)‖2 > (cK)−1r1/2Q1/γ(logQ)ǫ/2
}

→ 0

for each fixed K > 0, which implies that

P{wn(θ̂n) ≤ cr} ≤ P

{ Q∑

q=1

e′φq(θ̂n) ≤ K−1(rQω +Q1−ω)r1/2Q1/γ(logQ)ǫ/2
}
+ o(1).

Let rQω = Q1−ω, i.e., Qω = Q1/2r−1/2, then

P{wn(θ̂n) ≤ cr} ≤ P

{ Q∑

q=1

e′φq(θ̂n) ≤ 2K−1rQ1/γ+1/2(logQ)ǫ/2
}
+ o(1).

On the other hand, by Lemma 2 and (A.1)(iv),

Q∑

q=1

e′φq(θ̂n) = Qe′ḡ(θ̂n) +Op(r
1/2) = Qe′E{gt(θ̂n)}+Op(r

1/2) + op{Q∆1(r, p)}.
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Select e = E{gt(θ̂n)}/‖E{gt(θ̂n)}‖2. Then,

P{wn(θ̂n) ≤ cr}
≤ P

[
‖E{gt(θ̂n)}‖2 ≤ 2K−1rQ1/γ−1/2(logQ)ǫ/2 +Op(r

1/2Q−1) + op{∆1(r, p)}
]
+ o(1)

≤ P
[
ς ≤ 2K−1rQ1/γ−1/2(logQ)ǫ/2 +Op(r

1/2Q−1) + op{∆1(r, p)}
]
+ o(1).

As r2M1−2/γn2/γ−1(log n)ǫς−2 = O(1), r1/2Mn−1ς−1 = o(1) and ∆1(r, p)ς
−1 = O(1), we can choose

sufficiently large K to guarantee

P
[
ς ≤ 2K−1rQ1/γ−1/2(logQ)ǫ/2 +Op(r

1/2Q−1) + op{∆1(r, p)}
]
→ 0,

which leads to P{wn(θ̂n) ≤ cr} → 0 for any c > 1. Hence, we complete the proof. �

Proof of Theorem 6

Let

Ŝ(pe)
n (θ, λ) =

1

Q

Q∑

q=1

ρ(λ′φq(θ)) +

p∑

j=1

pτ (|θj |) for any θ ∈ Θ and λ ∈ Λ̂n(θ).

Then,
θ̂(pe)
n = argmin

θ∈Θ
max

λ∈Λ̂n(θ)
Ŝ(pe)
n (θ, λ) and θ̂n = argmin

θ∈Θ
max

λ∈Λ̂n(θ)
Ŝn(θ, λ).

The following lemma will be used to construct Theorem 6.

Lemma 18. Under conditions (A.1), (A.2) and (A.5), assume that the eigenvalues of VM are uniformly
bounded away from zero and infinity. If (13) holds, r2pM2n−1 = o(1) and sτr−1M−1n = O(1), then

‖θ̂(pe)
n − θ0‖2 = Op(r

1/2n−1/2).

Proof : Choose δn = o(r−1/2Q−1/γ) and r1/2Mn−1/2 = o(δn). Let λ̄ = sign{ρv(0)}δnφ̄(θ̂(pe)
n )/‖φ̄(θ̂(pe)

n )‖2,
then λ̄ ∈ Λn where Λn is defined in Lemma 5. By Taylor expansion, Lemmas 4 and 5, noting ρvv(0) < 0,
we have

Ŝn(θ̂
(pe)
n , λ̄) = ρ(0) + ρv(0)λ̄

′φ̄(θ̂(pe)
n ) +

1

2
λ̄′
{

1

Q

Q∑

q=1

ρvv(λ̇
′φq(θ̂

(pe)
n ))φq(θ̂

(pe)
n )φq(θ̂

(pe)
n )′

}
λ̄

≥ ρ(0) + |ρv(0)|δn‖φ̄(θ̂(pe)
n )‖2 − C‖λ̄‖22 ·Op(1).

On the other hand,

Ŝ(pe)
n (θ̂(pe)

n , λ̄) ≤ sup
λ∈Λ̂n(θ̂

(pe)
n )

Ŝ(pe)
n (θ̂(pe)

n , λ) ≤ sup
λ∈Λ̂n(θ0)

Ŝ(pe)
n (θ0, λ).

By Lemma 7 and (A.5), as sr−1τn = O(1),

sup
λ∈Λ̂n(θ0)

Ŝ(pe)
n (θ0, λ) = sup

λ∈Λ̂n(θ0)

Ŝn(θ0, λ) +

p∑

j=1

pτ (|θ0j |)

= ρ(0) +Op(rMn−1 + sτ) = ρ(0) +Op(rMn−1).
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Note that Ŝ
(pe)
n (θ, λ) ≥ Ŝn(θ, λ) for any θ ∈ Θ and λ ∈ Λ̂n(θ), it yields ‖φ̄(θ̂(pe)

n )‖2 = Op(δn). Consider

any εn → 0 and let λ̃ = sign{ρv(0)}εnφ̄(θ̂(pe)
n ), then ‖λ̃‖2 = op(δn). Using the same way above, we can

obtain
|ρv(0)| · εn‖φ̄(θ̂(pe)

n )‖22 −Op(1) · ε2n‖φ̄(θ̂(pe)
n )‖22 = Op(rMn−1).

Then, εn‖φ̄(θ̂(pe)
n )‖22 = Op(rMn−1). Thus, ‖φ̄(θ̂(pe)

n )‖2 = Op(r
1/2M1/2n−1/2). Following the same argu-

ments given in the proof of Theorem 1, we can obtain ‖θ̂(pe)
n − θ0‖2 = Op(r

1/2n−1/2). �

Here, we begin to prove Theorem 6. θ̂
(pe)
n and its Lagrange multiplier λ̂(pe) satisfy the score equation

0 = ∇λŜ
(pe)
n (θ̂(pe)

n , λ̂(pe)) = ∇λŜn(θ̂
(pe)
n , λ̂(pe)).

By the implicit theorem (Theorem 9.28 of Rudin, 1976), for all θ in a ‖ · ‖2-neighborhood of θ̂
(pe)
n , there

is a λ̂(θ) such that ∇λŜ
(pe)
n (θ, λ̂(θ)) = 0 and λ̂(θ) is continuously differentiable in θ. By the concavity

of Ŝ
(pe)
n (θ, λ) with respect to λ, Ŝ

(pe)
n (θ, λ̂(θ)) = max

λ∈Λ̂n(θ)
Ŝn(θ, λ). From the envelope theorem,

0 = ∇θŜ
(pe)
n (θ, λ̂(θ))

∣∣
θ=θ̂

(pe)
n

=
1

Q

Q∑

q=1

ρv(λ̂(θ̂
(pe)
n )′φq(θ̂

(pe)
n ))

{
∇θφq(θ̂

(pe)
n )

}′
λ̂(θ̂(pe)

n ) +

Q∑

q=1

∇θpτ (|θj |)
∣∣
θ=θ̂

(pe)
n

.
(30)

For any θ such that ‖θ − θ0‖2 = Op(r
1/2n−1/2) and ‖ḡ(θ)‖2 = Op(r

1/2n−1/2), define

h(θ) =
1

Q

Q∑

q=1

ρv(λ̂(θ)
′φq(θ))

{
∇θφq(θ)

}′
λ̂(θ) +

Q∑

q=1

∇θpτ (|θj |).

Write h(θ) = (h1(θ), . . . , hp(θ))
′. From Lemma 7, it yields that ‖λ̂(θ)‖2 = Op(r

1/2Mn−1/2) which implies

sup1≤q≤Q |λ̂(θ)′φq(θ)| = op(1). For each j = 1, . . . , p,

hj(θ) =
1

Q

Q∑

q=1

ρv(0)λ̂(θ0)
′∂φq(θ0)

∂θj
+

1

Q

Q∑

q=1

ρv(0)λ̂(θ0)
′∂

2φq(θ0)

∂θj∂θ′
(θ − θ0) + p′τ (|θj |)sign(θj)

+ higher order terms.

From (A.4), there exists a positive constant C such that p′τ (|θj |) ≥ Cτ . On the other hand, as
τ(r−1n)1/2M−1 → ∞,

max
j /∈A

∣∣∣∣
1

Q

Q∑

q=1

ρv(0)λ̂(θ0)
′∂φq(θ0)

∂θj

∣∣∣∣ = Op(r
1/2Mn−1/2) = op(τ).

Similarly, we can show

max
j /∈A

∣∣∣∣
1

Q

Q∑

q=1

ρv(0)λ̂(θ0)
′∂

2φq(θ0)

∂θj∂θ′
(θ − θ0)

∣∣∣∣ = op(τ).

Hence, p′τ (|θj |)sign(θj) dominates the sign of hj(θ) uniformly for all j /∈ A. If θ̂
(2)
n 6= 0, there exists some

j /∈ A such that θ̂n,j 6= 0. Under our above arguments, we can find

P
{
hj(θ̂

(pe)
n ) 6= 0

}
→ 1.
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It is a contradiction. Hence, θ̂
(2)
n = 0.

Nextly, we consider the second result. From (25), it yields

[E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}]([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])−1

× [E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}] =




(S11 − S12S
−1
22 S21)

−1 ∗
∗ ∗


 .

Let

[E{∇θgt(θ0)}]′V −1
M [E{∇θgt(θ0)}]([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])−1/2 =




U V

V′ ∗


 ,

where U is a s × s symmetric matrix, then UU′ +VV′ = (S11 − S12S
−1
22 S21)

−1. For any αn ∈ R
s such

that ‖αn‖2 = 1, define

α̃n =

(
U′

V′

)
(S11 − S12S

−1
22 S21)

1/2αn.

Then,
α̃′

nα̃n = α′
n(S11 − S12S

−1
22 S21)

1/2(UU′ +VV′)(S11 − S12S
−1
22 S21)

1/2αn = 1.

Following the same argument for Proposition 2, we know it still holds for θ̂
(pe)
n . Note that

α̃′
n([E{∇θgt(θ0)}]′V −1

M VnV
−1
M [E{∇θgt(θ0)}])−1/2[E{∇θgt(θ0)}]′V −1

M [E{∇θgt(θ0)}](θ̂(pe)
n − θ0)

= α′
n(S11 − S12S

−1
22 S21)

−1/2(θ̂(1)
n − θ

(1)
0 ),

then we establish the second result following Proposition 2. �
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Table 1: Empirical medians of the squared estimation errors (×102) of the empirical likelihood (EL), the
exponential tilting (ET), the continuous updating (CU) and the optimal GMM for the high dimensional
mean model with p = ⌊10n2/15⌋.

Sample size n = 500 n = 1000 n = 2000

L,M
P
P
P
P
P
P
PP

Method
ψ

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

(i) EL 0.99 1.25 1.69 0.61 0.73 1.04 0.46 0.56 0.69
ET 0.98 1.24 1.68 0.61 0.72 1.03 0.44 0.55 0.71
CU 0.99 1.26 1.70 0.62 0.73 1.03 0.42 0.54 0.70

GMM 1.20 1.42 1.95 0.81 0.98 1.32 0.57 0.70 0.95
(ii) EL 0.97 1.23 1.67 0.61 0.73 1.00 0.40 0.51 0.69

ET 0.97 1.22 1.68 0.62 0.74 1.00 0.42 0.52 0.69
CU 0.98 1.22 1.67 0.60 0.72 1.01 0.44 0.51 0.68

GMM 1.20 1.41 1.97 0.82 0.99 1.32 0.58 0.72 0.97
(iii) EL 0.93 1.21 1.63 0.59 0.71 0.99 0.40 0.51 0.69

ET 0.95 1.20 1.63 0.62 0.72 0.99 0.41 0.50 0.69
CU 0.95 1.21 1.64 0.58 0.70 1.00 0.41 0.51 0.67

GMM 1.20 1.40 1.94 0.81 0.98 1.31 0.57 0.71 0.96
(iv) EL 0.98 1.25 1.67 0.61 0.72 1.00 0.39 0.50 0.66

ET 0.98 1.24 1.68 0.62 0.71 1.01 0.40 0.51 0.66
CU 0.97 1.25 1.69 0.61 0.71 1.02 0.41 0.52 0.68

GMM 1.23 1.45 1.94 0.85 1.03 1.32 0.57 0.72 0.98
(v) EL 0.96 1.21 1.64 0.57 0.71 0.98 0.37 0.50 0.66

ET 0.98 1.20 1.68 0.57 0.69 0.99 0.39 0.51 0.65
CU 0.97 1.22 1.68 0.58 0.70 1.00 0.40 0.51 0.68

GMM 1.21 1.42 1.92 0.85 1.01 1.30 0.57 0.72 0.97
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Table 2: Empirical medians of the squared estimation errors (×102) of the empirical likelihood (EL), the
exponential tilting (ET), the continuous updating (CU) and the optimal GMM for the high dimensional
mean model with p = ⌊12n2/15⌋.

Sample size n = 500 n = 1000 n = 2000

L,M
P
P
P
P
P
P
PP

Method
ψ

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

(i) EL 0.79 1.02 1.39 0.44 0.57 0.77 0.30 0.35 0.44
ET 0.80 0.99 1.39 0.45 0.58 0.78 0.33 0.36 0.45
CU 0.79 1.01 1.40 0.46 0.57 0.79 0.32 0.34 0.43

GMM 1.15 1.49 2.00 0.79 1.01 1.30 0.55 0.73 0.89
(ii) EL 0.79 0.97 1.36 0.43 0.54 0.75 0.28 0.35 0.45

ET 0.78 0.96 1.38 0.41 0.53 0.74 0.30 0.36 0.44
CU 0.77 0.98 1.39 0.40 0.52 0.75 0.26 0.33 0.42

GMM 1.15 1.48 1.99 0.81 1.01 1.31 0.56 0.71 0.90
(iii) EL 0.76 0.93 1.33 0.41 0.53 0.75 0.28 0.33 0.43

ET 0.77 0.94 1.35 0.40 0.52 0.73 0.24 0.33 0.43
CU 0.74 0.92 1.36 0.38 0.51 0.74 0.25 0.32 0.40

GMM 1.14 1.47 1.99 0.80 1.01 1.29 0.54 0.70 0.89
(iv) EL 0.77 0.98 1.35 0.41 0.52 0.71 0.26 0.32 0.42

ET 0.78 0.98 1.36 0.41 0.53 0.72 0.27 0.33 0.44
CU 0.79 0.97 1.37 0.40 0.51 0.71 0.28 0.36 0.43

GMM 1.15 1.48 1.99 0.80 1.02 1.31 0.56 0.72 0.91
(v) EL 0.75 0.95 1.34 0.40 0.51 0.69 0.23 0.32 0.40

ET 0.77 0.96 1.35 0.38 0.50 0.71 0.26 0.30 0.42
CU 0.76 0.97 1.36 0.39 0.49 0.70 0.26 0.32 0.41

GMM 1.14 1.46 1.98 0.79 1.01 1.27 0.55 0.72 0.90
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Table 3: Empirical medians of the squared estimation errors (×102) of the empirical likelihood (EL),
the penalized empirical likelihood (PEL), the exponential tilting (ET), the penalized exponential tilting
(PET), the continuous updating (CU), the penalized continuous updating (PCU) and the optimal GMM
for the high dimensional generalized linear model with p = ⌊5n2/15⌋.

Sample size n = 500 n = 1000 n = 2000

L,M
P
P
P
P
P
P
PP

Method
ψ

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

(i) EL 3.16 3.59 3.67 3.13 3.42 3.62 2.85 2.89 3.00
PEL 0.95 1.05 1.10 0.84 0.93 1.05 0.74 0.78 0.89
ET 3.05 3.19 3.38 3.03 3.10 3.20 2.70 2.83 2.92
PET 0.84 0.95 1.00 0.82 0.89 0.95 0.67 0.80 0.83
CU 3.77 4.01 4.35 3.73 3.94 4.16 3.18 3.30 3.46
PCU 1.14 1.22 1.26 1.05 1.18 1.22 0.95 1.01 1.05
GMM 6.72 7.06 7.12 6.30 6.43 6.60 5.83 5.88 5.92

(ii) EL 3.11 3.32 3.48 3.07 3.10 3.35 2.63 2.86 2.93
PEL 0.95 1.05 1.14 0.83 0.89 1.00 0.77 0.84 0.87
ET 3.05 3.10 3.11 2.85 2.95 3.00 2.37 2.53 2.76
PET 0.89 0.93 0.95 0.77 0.85 0.89 0.74 0.82 0.84
CU 3.26 3.45 3.77 3.19 3.29 3.62 2.79 3.02 3.24
PCU 1.00 1.10 1.14 0.95 1.00 1.07 0.84 0.95 0.98
GMM 6.80 7.11 7.34 6.33 6.55 6.63 5.83 5.92 5.96

(iii) EL 2.81 2.90 2.97 2.76 2.85 2.92 2.53 2.70 2.85
PEL 0.77 0.84 0.93 0.71 0.77 0.85 0.63 0.70 0.77
ET 2.65 2.70 2.76 2.45 2.65 2.68 2.21 2.41 2.51
PET 0.84 0.89 0.93 0.71 0.82 0.86 0.66 0.71 0.77
CU 3.16 3.42 3.56 3.11 3.32 3.46 2.70 2.83 3.18
PCU 0.95 1.05 1.10 0.84 0.95 1.00 0.77 0.84 0.89
GMM 6.76 7.06 7.23 6.28 6.50 6.60 5.81 5.86 5.90

(iv) EL 2.24 2.35 2.43 2.19 2.28 2.39 1.97 2.12 2.26
PEL 0.71 0.75 0.84 0.63 0.65 0.71 0.55 0.63 0.68
ET 2.14 2.28 2.33 2.07 2.21 2.26 1.92 2.05 2.12
PET 0.63 0.72 0.79 0.60 0.66 0.77 0.55 0.57 0.66
CU 2.86 2.90 3.11 2.74 2.81 3.03 2.28 2.43 2.74
PCU 0.90 0.95 1.00 0.77 0.84 0.95 0.63 0.73 0.82
GMM 7.16 7.24 7.30 6.30 6.50 6.59 5.85 5.92 6.03

(v) EL 2.19 2.26 2.32 2.07 2.14 2.17 1.61 1.76 1.84
PEL 0.63 0.71 0.77 0.55 0.63 0.70 0.45 0.50 0.57
ET 1.79 1.94 2.07 1.64 1.79 2.00 1.38 1.52 1.70
PET 0.50 0.55 0.65 0.45 0.51 0.63 0.32 0.45 0.52
CU 2.74 2.83 3.08 2.53 2.68 2.90 2.10 2.35 2.83
PCU 0.84 0.87 0.95 0.71 0.80 0.84 0.55 0.68 0.80
GMM 7.04 7.13 7.20 6.29 6.47 6.55 5.84 5.92 5.97
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Table 4: Empirical medians of the squared estimation errors (×102) of the empirical likelihood (EL),
the penalized empirical likelihood (PEL), the exponential tilting (ET), the penalized exponential tilting
(PET), the continuous updating (CU), the penalized continuous updating (PCU) and the optimal GMM
for the high dimensional generalized linear model with p = ⌊6n2/15⌋.

Sample size n n = 500 n = 1000 n = 2000

L,M
P
P
P
P
P
P
PP

Method
ψ

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

(i) EL 2.63 2.75 2.82 2.48 2.60 2.76 2.31 2.42 2.54
PEL 0.81 0.84 0.87 0.75 0.78 0.81 0.68 0.72 0.77
ET 2.46 2.60 2.71 2.35 2.51 2.62 2.19 2.23 2.34
PET 0.74 0.79 0.85 0.69 0.76 0.79 0.64 0.69 0.71
CU 2.83 2.96 3.04 2.75 2.83 2.95 2.62 2.71 2.87
PCU 0.88 0.92 0.95 0.82 0.88 0.93 0.76 0.80 0.86
GMM 5.84 5.93 6.09 5.47 5.53 5.62 4.73 4.83 4.99

(ii) EL 2.50 2.79 2.85 2.42 2.58 2.66 2.18 2.30 2.39
PEL 0.73 0.83 0.86 0.66 0.78 0.80 0.56 0.66 0.71
ET 2.35 2.44 2.59 2.28 2.37 2.45 2.15 2.23 2.32
PET 0.65 0.73 0.79 0.62 0.67 0.75 0.57 0.61 0.66
CU 2.79 2.82 2.94 2.61 2.74 2.81 2.58 2.67 2.73
PCU 0.82 0.87 0.93 0.78 0.86 0.89 0.70 0.73 0.81
GMM 5.89 5.96 6.13 5.45 5.56 5.64 4.70 4.81 5.05

(iii) EL 2.37 2.65 2.69 2.09 2.22 2.42 1.96 2.12 2.31
PEL 0.68 0.76 0.80 0.58 0.70 0.73 0.46 0.60 0.67
ET 2.20 2.36 2.44 1.98 2.15 2.27 1.90 1.99 2.08
PET 0.61 0.72 0.76 0.45 0.57 0.63 0.42 0.50 0.57
CU 2.64 2.80 2.84 2.59 2.68 2.76 2.50 2.58 2.63
PCU 0.76 0.84 0.89 0.74 0.79 0.82 0.65 0.73 0.77
GMM 5.86 5.92 6.10 5.42 5.50 5.61 4.68 4.75 5.02

(iv) EL 2.21 2.30 2.41 1.99 2.16 2.24 1.73 1.80 1.97
PEL 0.58 0.67 0.72 0.51 0.58 0.63 0.40 0.46 0.53
ET 1.92 2.04 2.18 1.82 1.89 1.97 1.46 1.62 1.83
PET 0.54 0.59 0.61 0.46 0.52 0.54 0.34 0.39 0.48
CU 2.58 2.63 2.74 2.31 2.46 2.70 2.23 2.31 2.47
PCU 0.68 0.78 0.82 0.65 0.73 0.78 0.57 0.66 0.71
GMM 6.04 6.10 6.16 5.60 5.64 5.78 4.70 4.79 5.01

(v) EL 2.16 2.25 2.32 1.84 2.02 2.15 1.63 1.76 1.92
PEL 0.56 0.60 0.67 0.47 0.52 0.61 0.37 0.42 0.52
ET 1.90 1.96 2.06 1.71 1.76 1.84 1.34 1.43 1.59
PET 0.54 0.58 0.61 0.43 0.46 0.51 0.30 0.32 0.36
CU 2.53 2.58 2.66 2.24 2.44 2.61 2.17 2.21 2.29
PCU 0.68 0.72 0.77 0.56 0.67 0.75 0.56 0.60 0.67
GMM 5.93 6.08 6.15 5.52 5.59 5.71 4.64 4.72 4.88
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