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A TWO SAMPLE TEST FOR HIGH DIMENSIONAL DATA
WITH APPLICATIONS TO GENE-SET TESTING

By SoNG X1 CHEN™, YING-LI QIN*
Towa State University and Peking University, Towa State University'

We proposed a two sample test for means of high dimensional
data when the data dimension is much larger than the sample size.
The classical Hotelling’s T test does not work for this “large p, small
n” situation. The proposed test does not require explicit conditions
on the relationship between the data dimension and sample size. This
offers much flexibility in analyzing high dimensional data. An appli-
cation of the proposed test is in testing significance for sets of genes,
which we demonstrate in an empirical study.

1. Introduction. High dimensional data are increasingly encountered
in many applications of statistics, and most prominently in biological and
financial studies. A common feature for high dimensional data is that, while
the data dimension is high, the sample size is relatively small. This is the
so-called “large p, small n” phenomena where p/n — oo; here p is the data
dimension and n is the sample size. The high data dimension (“large p”)
alone has created needs to renovate and rewrite some of the conventional
multivariate analysis procedures. And these needs only get much greater for
“large-p small-n” situations.

A specific “large p, small n” situation arises in simultaneously testing large
number of hypotheses, which is largely motivated in identification of signifi-
cant genes in microarray and genetic sequence studies. A natural question is
how many hypotheses can be tested simultaneously. This paper tries to an-
swer this question in the context of two sample simultaneous test for means.
Consider two random samples X, -+, X;,, € RP for i« = 1 and 2, which
have means p1 = (p11,- - ,ulp)T and po = (u21, - - ,ugp)T, and covariance
matrices 1 and X, respectively. We consider testing a high dimensional
hypothesis

(1.1) Hy:py = po  versus Hy iy # po.
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The hypothesis Hy consists of p marginal hypotheses Hy; : py; = o for
l=1,---,pregarding the means on each data dimension.

There have been a series of important studies on the high dimensional
problem. van der Laan and Bryan (2001) show that the sample mean of p-
dimensional data can consistently estimate the population mean uniformly
across p dimensions if log(p) = o(n) for bounded random variables. In a
major generalization, Kosorok and Ma (2007) consider uniform convergence
for a range of univariate statistics constructed for each data dimension,
which includes the marginal empirical distribution, sample mean and sample
median. They establish the uniform convergence across p dimensions when
log(p) = o(n'/?) or log(p) = o(n'/?) depending on the nature of the marginal
statistics. Fan, Hall and Yao (2007) evaluate approximating the overall level
of significance for simultaneous testing of means. They demonstrate that
the bootstrap can accurately approximate the overall level of significance
if log(p) = o(n'/3) when the marginal tests are performed based on the
normal or the ¢-distributions. See also Fan, Peng and Huang (2005) and
Huang, Wang and Zhang (2005) for high dimensional estimation and testing
in semiparametric regression models.

In an important work, Bai and Saranadasa (1996) proposed using || X; —
Xo|| to replace (X1—X3)T'S, (X1 —X3) in the Hotelling’s T2-statistic, where
X, and X, are the two sample means, 9, is the pooled sample covariance
by assuming ¥; = X9 = X, and || - || denotes the Euclidean norm in RP.
They established the asymptotic normality of the test statistics and showed
that it has attractive power property when p/n — ¢ < oo and under some
restriction on the maximum eigenvalue of . However, the requirement of p
and n being of the same order is too restrictive to be used in the “large p,
small n” situation.

To allow simultaneous testing for ultra high dimensional data, we con-
struct a test which allows p being arbitrarily large independent of the sample
size, as long as, in the case of common covariance ¥, tr(X4) = o{tr?(x?)},
where tr(-) is the trace operator of a matrix. The above condition on ¥ is
trivially true for any p if either all the eigenvalues of 3 are bounded or the
largest eigenvalue is of smaller order of (p—b)Y/26~1/4 where b is the number
of unbounded eigenvalues. We establish the asymptotic normality of a test
statistic, which leads to a two sample test for high dimensional data.

Testing significance for gene-sets rather than a single gene is a latest
development in genetic data analysis. A critical need for gene-set testing is to
have a multivariate test that is applicable for a wide range of data dimensions
(the number of genes in a set). It requires P-values for all gene-sets to allow
procedures based on either Bonferroni correction or the False Discovery Rate
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(Benjamini and Hochberg, 1995) to take into account the multiplicity in the
test. We demonstrate in this paper how to use the proposed test for testing
significance for gene-sets. An advantage of the proposed test is in its readily
producing P-values for significance of each gene-set under study so that the
multiplicity of multiple testing can be taken into consideration.

The paper is organized as follows. We outline in Section 2 the framework
of the two sample test for high dimensional data and introduce the proposed
test statistic. Section 3 provides the theoretical properties of the test. How
to apply the proposed test for significance of gene-sets is demonstrated in
Section 4, which includes an empirical study on an Acute Lymphoblastic
Leukemia data set. Results of simulation studies are reported in Section 5.
All the technical details are given in Section 6.

2. Test Statistic. Suppose we have two independent and identically
distributed random samples in RP:

{Xi1, Xio, -+, Xin, } ES F;, for i=1 and 2

where F; is a distribution in RP with mean p; and covariance ¥;. A well
pursued interest in high dimensional data analysis is to test if the two high
dimensional populations have the same mean or not, namely

(2.1) Hy:py = po ves. Hy: g # po.

The above hypotheses consist of p marginal hypotheses regarding the means
of each data dimension. An important question from the point view of mul-
tiple testing is that how many marginal hypotheses can be tested simulta-
neously. The works of van der Laan and Bryan (2001), Kosorok and Ma
(2007) and Fan, Hall and Yao (2007) are designed to address the question.
The existing results show that p can reach the rate of e’ for some posi-
tive constants a and (. In establishing a rate of the above form, both van
der Laan and Bryan (2001) and Kosorok and Ma (2007) assumed that the
marginal distributions of F} and F5 are all supported on bounded intervals.

Hotelling’s T2 test is the conventional test for the above hypothesis when
the dimension p is fixed and is less than n =: nq + ny — 2, and when ¥, =
Y9 = ¥ say. Its performance for high dimensional data is evaluated in Bai
and Saranadasa (1996) when p/n — ¢ € [0,1), which reveals a decreasing
power as ¢ gets larger. A reason for this negative effect of high dimension
is due to having the inverse of the covariance matrix in the 7?2 statistic.
While standardizing by the covariance brings benefits for data with a fixed
dimension, it becomes a liability for high dimensional data. In particular, the
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sample covariance matrix S,, may not converge to the population covariance
when p and n are of the same order. Indeed, Yin, Bai and Krishnaiah (1988)
showed that when p/n — ¢, the smallest and the largest eigenvalues of the
sample covariance .S, do not converge to the respective eigenvalues of 3. The
same phenomena, but on the weak convergence of the extreme eigenvalues of
the sample covariance, are found in Tracy and Widom (1996). When p > n,
Hotelling’s T2 statistic is not defined as S, may not be invertible.

Our proposed test is motivated by Bai and Saranadasa (1996), who pro-
pose testing hypothesis (2.1) under ¥ = 39 = ¥ based on

(22) Mn == (Xl - XQ),(Xl - XQ) - TtT(Sn)
where Sn =1 %:1 Z;V:zl(XZ] - XZ)(XZ] - Xz)/ and 7 = M. The key

n nino

feature of the Bai and Saranadasa proposal is removing S;; ! in Hotelling’s T2
since having S, ! is no longer beneficial when p/n — ¢ > 0. The subtraction
of tr(S,) in (2.2) is to make E(M,,) = ||u1 — p2||>. The asymptotic normality
of M,, was established and a test statistic was formulated by standardizing
M, with an estimate of its standard deviation.

The main conditions assumed in Bai-Saranadasa’s test are
(23)p/n—c<oo and A, = o(p'/?);
(2.4) ny/(ny +no) — k€ (0,1) and (u1 — p2)'S(p1 — po) = oftr(X?)/n}
where )\, denotes the largest eigenvalue of 3.

A careful study of M, statistic reveals that the restrictions on p and n,
and on A, in (2.3) are needed to control terms 37" X/, X;;, i = 1 and 2,
in || X1 — X||2. However, these two terms are not useful in the testing. To
appreciate this point, let us consider

U XXy N X Xey X M52 X0 X
=
nl(nl - 1) ng(ng - 1) ning

after removing -7 | X[, X;; for i = 1 and 2 from || X1 — Xo||%. Elementary
derivations show that
E(T,) = || — pel .

Hence, T), is basically all we need for testing. Bai and Saranadasa used tr(.S,,)
to offset the two diagonal terms. However, ¢r(S,,) itself impose demands on
the dimensionality too.

A derivation in the appendix shows that under H; and the second condi-
tion in (2.4)

Var(T,) — {#tr(ﬁl%) + 2 tr(S) + tr(2122)}{1 +o(1)}

ni(ni—1) ning

where the o(1) term vanishes under Hy.
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3. Main Results. We assume, like Bai and Saranadasa (1996), the
following general multivariate model

(31) XZ]:FZZU +p; forj=1,--- n;i=1and 2

where each T'; is a p x m matrix for some m > p such that I';I, = ¥;,
and {Z;;}7L, are m-variate independent and identically distributed (IID)
random vectors satisfying E(Z;;) = 0, Var(Z;j) = L, the m x m identity
matrix. Furthermore, if we write Z;; = (2ij1, ..., 2ijm)’, We assume E(zfjk) =
3+ A < oo, and

for a positive integer ¢ such that >/ ; oy < 8 and Iy # ly # --- # l;. Here
A describes the difference between the fourth moments of z;; and N(0,1).
Model (3.1) says that X;; can be expressed as a linear transformation of a
m-variate Z;; with zero mean and unit variance that satisfies (3.2). Model
(3.1) is similar to factor models in multivariate analysis. However, instead
of having the number of factors m < p in the conventional multivariate
analysis, we require m > p. This is to allow the basic characteristics of the
covariance »;, for instance its rank and eigenvalues, are not affected by the
transformation. The rank and eigenvalues would be affected if m < p. The
fact that m is arbitrary offers much flexibility in generating a rich collection
of dependence structure. Condition (3.2) means that each Z;; has a kind of
pseudo-independence among its components {z;;; }/~,. Obviously, if Z;; does
have independent components, then (3.2) is trivially true.

We do not assume ¥; = X9, as it is a rather strong assumption, and most
importantly such an assumption is harder to be verified for high dimensional
data. Testing certain special structures of the covariance matrix when p and
n are of the same order have been considered in Ledoit and Wolf (2002) and
Schott (2005).

We assume

(3.3) ni/(n1+n2) — k€ (0,1) as n— oo
(3.4) (1 — p2)'Si(p1 — p2) = o[n Mtr{(X1 + 2)?}] fori=1 or 2

which generalize (2.4) to unequal covariances. Condition (3.4) is obviously
satisfied under Hy and implies that the difference between 11 and po is small
relative to n~tr{(3; + X2)?} so that a workable expression for the variance
of T,, under Hy and the specified local alternative can be derived. It can
be viewed as a high dimensional version of the local alternative hypotheses.
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When p is fixed, if we use a standard test for two population means, for
instance Hotelling’s T test, the local alternative hypotheses has the form
of 11 — pro = 7~ Y2 for a non-zero constant vector 7 € RP. The Hotelling’s
test has non-trivial power under such local alternatives (Anderson, 2000). If
we assume each components of 1 — o is the same, say §, then the local al-
ternatives imply § = O(n~"/2) for a fixed p. When the difference is o(n="/2),
Hotelling’s test has non-power beyond the level of significance.

To gain insight on (3.4) for high dimensional situations, let us assume all
the eigen-values of ¥; are bounded above from infinity and below away from
zero so that 3; = I, is a special case of such regime. Let us also assume
like above each component of p; — s is the same as a fixed 6, namely
pyy — pg = 0 for L = 1,--- ,p. Then, (3.4) implies § = o(n~12) which is a
smaller order than § = O(n~'/2) for fixed p case. This can be understood as
the high dimensional data (p — oo) contain more data information which
allows finer resolution in differentiating the two means in each component
than that in the fixed p case.

To understand the performance of the test when (3.4) is not valid, we
reverse the local alternative condition (3.4) to

(85) 0 r{(Z1+52)%} = of(u — o) Sils — pa)} for i =1 or 2,

implying the Mahanalobis distance between p; and po is a larger order than
that of n=1tr{(X1 +2)?}. This condition can be viewed as a version of fixed
alternatives. We will establish asymptotic normally of 7;, under either (3.4)
and (3.5) in Theorem 1.

The condition we impose on p to replace the first part of (2.3) is

(3.6) tr(2i2;55,) = oftr*{(X1 + %2)?}] ford,j,l,h =1 or 2,

as p — oo. To appreciate this condition, consider the case of ¥ = Yoy = X.
Then, (3.6) becomes

(3.7 tr(%1) = o{tr}(x?)}.

Let A1 < A2 < ... < A\, be the eigenvalues of X. If all eigenvalues are bounded,
then (3.7) is trivially true. If, otherwise, there are b unbounded eigenvalues
with respect to p and the remaining p — b eigenvalues are bounded above
by a finite constant M such that (p —b) — oo and (p — b)A? — oo, then
sufficient conditions for (3.7) are

(3.8) Ap=of(p—b)Y2\b 1Y or A, =o{(p— b)1/4)‘1/2)‘;1;/—2b+1}
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where b can be either bounded or diverging to infinity and the smallest
eigen-value A\ can converge to zero. To appreciate these, we note that

4 4
(p — b)M* + b

(p—B2A + 02N, +2(p — B)DAINZ |

tr(x4)
tr2(32)

<
Hence, the ratio converges to 0 under either condition in (3.8).

The following theorem establishes the asymptotic normality of 7T;,.
Theorem 1. Under the assumptions (3.1), (3.2), (3.3), (3.6) and either
(3.4) or (3.5),

T — |1 — pal]?
Var(T,)

as p — oo and n — oo.

The asymptotic normality is attained without imposing any explicit restric-
tion between p and n directly. The only restriction on the dimension is (3.6)
or (3.7). As the discussion given just before Theorem 1 suggests, (3.7) is
satisfied provided that the number of divergent eigenvalues of ¥ are not too
many and the divergence is not too fast. The reason for attaining this in the
case of high data dimension is because the statistic 7;, is univariate, despite
the hypothesis Hy is of high dimensional. This is different from using a high
dimensional statistic. Indeed, Portnoy (1986) considers the central limit the-
orem for the p-dimensional sample mean X and finds that the central limit
theorem is not valid if p is not a smaller order of \/n.

As shown in Section 6.1, Var(T,,) = 02{1 + o(1)} where, under (3.4)
(3.9) 0l =102 = —2tr(5) + —2—tr(33) + 2-tr(T1 ),

ni(ni—1) na(nz—1) ning

and under (3.5)

4
(11— p2) Sa(pr — p2).

4
(3.10) o5 =i opg = —(p1 — p2)' 1 (1 — p2) + .

n
In order to formulate a test procedure based on Theorem 1, 02, in (3.9)
needs to be estimated. Bai and Saranadasa (1996) used the following esti-
mator for tr(¥X?) under ¥; = ¥y = %

3 n> 1
Motivated by the benefits of excluding terms like 377, X/, X;; in the for-

mulation of T},, we propose the following estimator of tr(%?) and tr(X1%s):

—

tr(2?) = {ni(ni — D} e {050 (X — X)) Xi; (Xaw — X)) Xk}
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and
tr(E15) = (ning) " r{S, 502 (X1 — X10) X1 (Xoe — Xogy) Xop,}

where XZ-(M) is the i-th sample mean after excluding X;; and X;;, and Xi(l)
is the i-th sample mean without X;;. These are similar to the idea of cross-
validation, in that when we construct the deviations of X;; and Xj;; from
the sample mean, both X;; and X;; are excluded from the sample mean

calculation. By doing so, the above estimators ¢r(X?) and tr(il\Eg) can be
written as the trace of sums of products of independent matrices. We also
note that subtraction of only one sample mean per observation is needed in
order to avoid term like ||X;;|[* which is harder to control asymptotically
without an explicit assumption between p and n.

The next theorem shows that the above estimators are ratio-consistent to
tr(X?) and tr(X1%s), respectively.
Theorem 2. Under the assumptions (3.1)-(3.4) and (3.6), for i = 1 or 2,

r(X2) , tr(Z15) p
1 d ———~% 1 d .
tT(E?) — an t?“(zlzg) — as p ana n — oo

A ratio-consistent estimator of o2, under Hy is

— —

I = e (S + e 1(E3) + g tr(S1%2).

na(na—1 ning

This together with Theorem 1 leads to the test statistic
Qn="T,/0m <, N(0,1) aspandn— oo

under Hy. The proposed test with an « level of significance rejects Hy if
Qn > &, where &, is the upper a quantile of N(0,1).

Theorems 1 and 2 allow us to discuss the power properties of the proposed
test. The discussion is made under (3.4) and (3.5) respectively. The power
under the local alternative (3.4) is

n — _ 2
(3.11) Bra(l[p1 — p2l]) = @ (_ga + k(1 —k)[lp1 — pall ) ’

2tr{>(k)2}
where ¥(k) = (1 — k)¥; + kY3 and ® is the standard normal distribution

function. The power of Bai-Saranadasa test has the same form if X7 = 3o
and if p and n are of the same order.
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The power under (3.5) is

_ 2 . 2
B2 — pial) = @ <_?5a N M) 5 (M)

n2 Onl Onl

as op1/on2 — 0. Substitute the expression for 0,1, we have

(3.12) Bna(||p1 — pal]) = @ (”k(l — k)|l — M2H2) .

2tr{2(k)2}

Both (3.11) and (3.12) indicate that the proposed test has non-trivial
power under the two cases of the alternative hypothesis as long as

nllpn — w2/ tr{E(k)?}

does not vanish to 0 as n and p — oco. The flavor of the proposed test is
different from tests formulated by combining p marginal tests on Hy; (defined
after (1.1)) for [ = 1,...,p. The test statistics of such tests are usually
constructed via maxj<j<, Ty, where T, is a marginal test statistic for Hyy.
This is the case of Kosorok and Ma (2007) and Fan, Hall and Yao (2007). A
condition on p and n is needed to ensure (i) the convergence of maxi<;<, Ty,
and (ii) p can reach an order of exp(an?) for positive constants o and 3.
Usually some additional assumptions are needed: for instance, Kosorok and
Ma (2007) assumed each component of the random vector has compact
support for testing means.

Naturally, if the number of significant univariate hypotheses (u1; # po;)
is a lot less than p, which is the so-called sparsity scenario, a simultaneous
test like the one we propose may encounter a loss of power. This is actually
quantified by the power expression (3.11). Without loss of generality, suppose
that each p; can be partitioned as (,ugl)/, ,u?)/)’ so that under H; : ugl) = ugl)
and ,u(12) =+ ,u(22), where ,ugl) is of p; dimensional and ,u?) is of po dimensional
and p; + p2 = p. Then, |[u1 — pa|| = p20? for some positive constant §2.
Suppose that ), be the smallest non-zero eigenvalue of $(k). Then, under
the local alternative (3.4), the asymptotic power is bounded above and below
by

nk(1 — k)pad> nk(1 — k)pad?
o (-6 I < i ) < 0 (- U,

If p is very large relative to n and po under both high dimensionality and
sparsity, so that nk(1 — k)pan?/+/2(p — mg) — 0, the test could endure
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low power. With this in mind, we check on the performance of the test
under sparsity in simulation studies in Section 5. The simulations showed
that the proposed test had a robust power and was in fact can be more
powerful than tests based on multiple comparison with either the Bonferroni
and False Discovery Rate (FDR) procedures. We note here that, due to
the multivariate nature of the test and the hypothesis, the proposed test
cannot identify which components are significant after the null multivariate
hypothesis is rejected. Additional follow-up procedures have to be employed
for that purpose. The proposed test come very handy when the interest is
to identify significant groups of components, like sets of genes as illustrated
in Section 4. The above discussion can be readily extended to the case of
(3.5) due to the similarity in the two power functions.

The proposed two sample test can be modified for paired observations
{(Yi1,Yi2) }i; where Y;; and Yy are two measurements of p-dimensions on
a subject i before and after a treatment. Let X; = Yo — Y1, p = F(X;) and
Y = Var(X;). This is effectively a one sample problem with high dimensional
data. The hypothesis of interest is

Hy:p=0 vs Hp:p#0.

We can use F,, = X" X!X./{n(n — 1)} as the test statistic. It is read-
iF#j )

ily shown that E(F,) = p'p and Var(F,) = ﬁtr(ﬁ)?){l + o(1)}
under both Hy and H; if we assume a condition similar to (3.4) so that
WSp = o{n~'tr(x?)}. And the asymptotic normality of Fj,, by adding
tr(X4) = o{tr?(%?)}, a variation of (3.6), can be established by utilizing

part of the proof on the asymptotic normality of Tj,. The tr(3?) can be

ratio-consistently estimated with ny replaced by n in tr(¥?), which leads to
a ratio-consistent variance estimation for F;,. Then, the test and its power
can be written out in similar ways as those for the two sample test.

When p = O(1), which may be viewed as having finite dimension, the
asymptotic normality as conveyed in Theorem 1 may not be valid anymore.
It may be shown under Conditions (3.1)-(3.4) without (3.6), as condition
(3.6) is no longer relevant when p is bounded, the test statistic (n; + na)T),
converges to E?ﬁ 1 mxil, where {Xil}?ﬁ , are independent X3 distributed
random variables and {m}?ﬁ | is a set of constants. Theorem 2 remains valid
when p is bounded under (3.1)-(3.4). The proposed can still be used for
testing in this situation of bounded dimension with estimated critical values
via estimation of {771}122 1- However, people may like to use a test specially
cantered for such case, for instance, the Hotelling’s test.
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4. Gene-set Testing. Identifying sets of genes which are significant
with respect to certain treatments is a latest development in genetics re-
search; see Barry, Nobel and Wright (2005), Recknor, Dettleton and Reecy
(2007), Efron and Tibshrini (2007) and Newton et.al (2007). Biologically
speaking, each gene does not function individually in isolation. Rather, one
gene tends to work with other genes to achieve certain biological tasks.

Suppose that S, -+, 8, be ¢ sets of genes, where the gene-set S, consists
of py genes. Let Fis, and Fys, be the distribution functions corresponding
to Sy under the treatment and control, and pys, and pas, be their respective
means. The hypothesis of interest is

Hog : pus, = pas, for g=1,---.q.

The gene sets {Sg}gzl can overlap as a gene can belong to several functional
groups, and pg, the number of genes in a set, can range from a moderate
to a very large number. So, there are issues of both multiplicity and high
dimensionality in gene-set testing.

We propose applying the proposed test for significance of each gene-set
S, when p, is large. When p, is of low dimension, the Hotelling’s test may
be used. Let pvy, g = 1,---,q be the P-values obtained from these tests.
To control the overall family-wise error rate, we can employ the Bonferroni
procedure; to control FDR, we can use Benjamini and Hochberg (1995)’s
method or its variations as in Benjamini and Yekutieli (2001) and Storey,
Taylor and Siegmund (2004). These lead to control of the family-wise error
rate or FDR in the context of gene-sets testing. In contrast, tests based on
univariate testing have difficulties in producing P-values for gene-sets.

Acute Lymphoblastic Leukemia (ALL) is a form of leukemia, a cancer of
white blood cells. The ALL data (Chiaretti et al., 2004) contains microar-
ray expressions for 128 patients with either T-cell or B-cell type Leukemia.
Within the B-cell type leukemia, there are two sub-classes representing two
molecular classes: the BCR/ABL class and NEG class. The data set has
been analyzed by Dudoit, Keles and van der Laan (2006) using a different
technology.

Gene-sets are technically defined in Gene Ontology (GO) system that
provides structured and controlled vocabularies producing names of gene-
sets (also called GO terms). There are three groups of Gene ontologies of
interest: Biological Processes (BP), Cellular Components (CC) and Molecu-
lar Functions (MF). We carried out preliminary screening for gene-filtering
using the approach in Gentleman et al. (2005), which left 2391 genes for
analysis. There are 575 unique GO terms in BP category, 221 in MF and
154 in CC for the ALL data. The largest gene-set contains 2059 genes in
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BP, 2112 genes in MF and 2078 genes in CC; and the GO terms of the three
categories share 1861 common genes. We are interested in detecting differ-
ences in the expression levels of gene-sets between the BCR/ABL molecular
sub-class (n; = 42) and the NEG molecular sub-class (ny = 37) for each of
the three categories.

We applied the proposed two sample test with 5% significant level to
test each of the gene-sets in conjunction with the Bonferroni correction to
control the family-wise error rate at 0.05 level. It was found that there were
259 gene-sets declared significant in the BP group, 110 in the MF group and
53 in the CC group. Figure 1 displays the histograms of the P-values and the
values of test statistic @), for the three gene-categories. It shows a strong
non-uniform distribution of the P-values with a large number of P-values
clustered near 0. At the same time, the @),,-value plots indicate the average
Qn-values were much larger than zero. These explain the large number of
significant gene-sets detected by the proposed test.

The number of the differentially expressed gene-sets may seem to be high.
This was mainly due to overlapping gene-sets. To appreciate this point, we
computed for each (say i-th) significant gene-set, the number of other sig-
nificant gene-sets which overlapped with it, say b;; and obtained the average
of {b;} and their standard deviation. The average number of overlaps (stan-
dard deviation) for BP group was 198.9(51.3), 55.6 (25.2) for MF, and 41.6
(9.5) for CC. These number are indeed very high and reveals the gene-sets
and their P-values were highly dependent.

Finally, we carried out back-testing for the same hypothesis by randomly
splitting the 42 BRC/ABL class into two sub-class of equal sample size and
testing for mean differences. This set-up led to the situation of Hy. Figures 2
reports the P-values and @Q,,-values for the three Gene Ontology groups. We
note that the distributions of the P-values were much closer to the uniform
distribution than Figure 1. It is observed that the histograms of @Q),-values
were centered close to zero and were much closer to the normal distribution
than their counterparts in Figure 1, which were reassuring.

5. Simulation Studies. In this section, we report results from simula-
tion studies which were designed to evaluate the performance of the proposed
two sample test for high dimensional data. For comparison, we also con-
ducted the test proposed by Bai and Saranadasa (1996) (BS test), and two
tests based on multiple comparison procedures by employing the Bonferroni
and the FDR control ( Benjamini and Hochberg, 1995). Both procedures
control the family-wise error rate at a level of significance o which coincides
with the significance for the proposed test and the BS test. In the two mul-
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tiple comparison procedures, we conducted univariate two sample t-tests for
univariate hypotheses Hy; : j11; = poy  versus  pq; # pg for il =1,2,--- | p.

Two simulation models for X;; were considered. One had a moving av-
erage structure that allows a general dependent structure; the other could
allocate the the alternative hypotheses sparsely which enable us to evaluate
the performance of the tests under sparsity.

5.1. Mowing Average Model. The first simulation model has the following
moving average structure:

Xijk = p1Zijk + p2Zijk41 + -+ + PpLijktp—1 + Lij

fori =1and 2, j = 1,2,--- ,n; and k = 1,2,--- ,p, where {Z;;,} were
respectively IID random variables. We considered two distributions for the
innovations {Z;j;}. One was a centralized Gamma(4,1) so that it has zero
mean, and the other was N(0,1).

For each distribution of {Z;;;}, we considered two configurations of de-
pendence among components of X;;. One had weaker dependence with
pr = 0 for [ > 3. This prescribed a “two dependence” moving average
structure where Xj;, and Xjji, are dependent only if |k; — ka| < 2. The
{pi};_, were generated independently from U(2,3), which were p; = 2.883,
p2 = 2.794 and p3 = 2.849 and were kept fixed throughout the simula-
tion. The second configuration had all p;’s generated from U(2,3), and were
again keep fixed throughout the simulation. We call this the “full dependence
case”. The above dependence structures assigned equal covariance matrices
31 = Yo = ¥ and allows a meaningful comparison with BS test.

Without loss of generality, we fixed 1 = 0 and chose pg in the same fash-
ion as Benjamini and Hochberg (1995). Specifically, the percentage of true
null hypotheses 1 = g for i = 1, -+, p were chosen to be 0%,25%,50%,75%,
95% and 99% and 100% , respectively. Experimenting 95% and 99% was de-
signed to gain information on the performance of the test when py; # gy
were sparse. It provided empirical checks on the potential concerns on the
power of the simultaneous high dimensional test as made at the end of Sec-
tion 3. At each percentage level of true null, three patterns of allocation
were considered for the non-zero po; in pg = (p21,-- -, p2p)"s (i) the equal
allocation where all the non-zero ug were equal; (ii) linearly increasing and
(iii) linearly decreasing allocations as specified in Benjamini and Hochberg
(1995). To make the power comparable among the configurations of Hq, we
set n =: ||u1 — p2l|?/+/tr(X?) = 0.1 throughout the simulation. We chose
p = 500 and 1000 and n = [20log(p)] = 124 and 138, respectively.

Tables 1 and 2 report the empirical power and size of the four tests with
Gamma innovations at 5% nominal significance level or family-wise error
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rate or FDR based on 5000 simulations. The results for the Normal innova-
tions had similar pattern, and are not reported here. The simulation results
in Tables 1 and 2 can be summarized as follows. The proposed test was
much more powerful than Bai-Saranadasa test for all cases considered in
the simulation, while maintaining a reasonable size approximation to the
nominal 5% level. Both the proposed test and Bai-Saranadasa test were
more powerful than the two tests based on the multiple univariate testing
using the Bonferroni and FDR procedures. This is a little expected as both
the proposed and Bai-Saranadasa test are designed to test for the entire
p-dimensional hypotheses while the multiple testing procedures are targeted
at the individual univariate hypothesis. What is surprising is that when the
percentage of true null was high at 95% and 99%, the proposed test still
were much more powerful than the two multiple testing procedures for all
three allocations of the non-zero components in uo. It is observed that the
sparsity (95% and 99% true null) does reduce the power of the proposed
test a little. However, the proposed test still enjoyed good power, especially
comparing with the other three tests. We also observe that when there was
more dependence among multivariate components of the data vectors in the
full dependence model, there was a drop in the power for each of the test.
The power of the tests based on the Bonferroni and FDR procedures were
alarmingly low and were only slightly larger than the nominal significance
level.

We also collected information on the quality of ¢r(%?) estimation. Table 3

—

reports empirical averages and standard deviation of ¢tr(X%2) /tr(%?). It shows
that the proposed estimator for t7(%?) has much smaller bias and standard
deviation than those proposed in Bai and Saranadasa (1996) in all cases,
and provides an empirical verification for Theorem 2.

5.2. Sparse Model. An examination of the previous simulation setting
reveals that the strength of the “signals” po; — py; corresponding to the
alternative hypotheses were low relative to the level of noise (variance),
which may not be a favorable situation for the two tests based on multiple
univariate testing. To gain more information on the performance of the tests
under sparsity, we considered the following simulation model such that

Xig =2y and Xojy =+ Zyy forl=1,....p

where {Z1;, Z2y})_, are mutually independent N(0,1) random variables,
and the “signals”

w =¢ey/2log(p) forl=1,...,q=[pand p =0 forl>gq
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for some ¢ € (0,1). Here ¢ is the number of significant alternative hypotheses.
The sparsity of the hypotheses is determined by c¢: the smaller the c is, the
more sparse the alternative hypotheses with p; # 0. This simulation model
is similar to the one used in Abramovich, Benjamini, Donoho and Johnstone
(2006).

According to (3.11), the power of the proposed test has asymptotic power

np(c—1/2)€2l0g(p)>

22

which indicates that the test has a much reduced power if ¢ < 1/2 with
respect to p. We, therefore, chose p = 1000 and ¢ = 0.25,0.35,0.45 and
0.55 respectively, which led to ¢ = 6,11,22, and 44 respectively. We call
c = 0.25,0.35 and 0.45 the sparse cases.

In order to prevent trivial powers of o or 1 in the simulation, we set
e = 0.25 for ¢ = 0.25 and 0.45; and € = 0.15 for ¢ = 0.35 and 0.55. Table 4
summarizes the simulations results based on 500 simulations. It shows that in
the extreme sparse cases of ¢ = 0.25, the FDR and Bonferroni tests did had
lower power than the proposed test. The power were largely similar among
the three tests for ¢ = 0.35. However, when the sparsity was moderated
to ¢ = 0.45, the proposed test started to surpass the FDR and Bonferroni
procedures. The gap in power performance was further increased when ¢ =
0.55. Table 5 reports the quality of the variance estimation in Table 5, which
shows the proposed variance estimators incurs very little bias and variance
for even very small sample sizes of n; = ngy = 10.

5WMD—@<—@+

6. Technical Details.

6.1. Derivations for E(T,,) and Var(T,). As

i#j i#j
nl(nl - 1) ng(ng - 1) ning

B UoXLXy XX Xo; zﬁ?élﬁ?ilX{inj

it is straight forward to show that E(T},) = py i1 +phpe—2ph o = || 1 —pz| %

2MUX X 22 XY, Xo; »M s X Xy
_ i 117 J _ i# 27 J _ i=1 =114 J
Letpl—m,PQ—mandPg——2#.Itcan
be shown that
2 Apy X1
Var(Py) = ——tr(32) + =14
( 1) nl(nl _ 1) ( 1) ny )

2 4
tr(x2) + H22212 4

P)=—"—
V(LT( 2) TLQ(’I?,Q — 1) no
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Aphy 4pi %

Var(Ps) =
nine ny n2

Because two samples are independent, Cov(P;, P») = 0. Also,

Cov(Py, P3) = _dm S and Cov(Py, P3) = —M.
ny ng
In summary,
Var(T,) = #tr(iﬁ) + #tr(Z%) + i757“(2122)
ni(ni —1) na(ng — 1) nin9

4 4
+n—1(M1 — p2)' B1(p1 — p2) + n—2(M1 — p2) Bo (1 — p2).

Thus, under Hy

2 2
Var(T,) = 02, = —————tr(%? — (X2
CLT( n) On1 nl(nl N 1) T( 1) + ng(ng _ 1) T( 2) + ninsg

tr(ElEg).

Under Hy : puy # po, with (3.4),
Var(T,) = 62,{1 + 0o(1)};

and with (3.5),
Var(T,) = 02,{1 + 0(1)}

where o0 = 2 (p1 — p2)'S1(pn — p2) + 75 (1 — p2) Do (p1 — pro).
6.2. Asymptotic Normality of T,,. We note that T,, = Ty1 + 1,2 where

(X — ) (X — ) N Y07 (Xoy — p2) (Xoj — p2)

T, —
n nl(nl — 1) ’I?Q(TLQ — 1)
(6.1) _22?:112}31()(1@‘ — 1) (Xoj — p2)
) s .
and
T, = Y (X1 — pn) (1 — 2p2) N U2 (Xoi — p2) (12 — 2p1)

ni n2
+ i+ pap — 240 pa.

It is easy to show that E(T};) = 0 and E(Ty2) = ||u1 — pel|?, and

Var(T,2)
= dni " (p — p2)' (1 — p2) + 4ng (o — 1) Salpe — ).
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Let 02 be the leading order Var(T},) as given in the subsection 6.1.
Under (3.4), as

Too — |l — o2
VCL’I“( 2 H:ul :UQH ):O(l),

Onl

T —|lm _H2||2 _ T

6.2 = — + 1).
(6.2) Var(T,,) Onl op(1)
Under (3.5),
T — llpa — pol® oo — ||y — pol
6.3 = + 1).
(6:3) Var(T,) Ono op(1)

As T),5 are independent sample averages, its asymptotic normality is read-
ily attainable as showed later. The main task of the proof is for the case un-
der (3.4) when T),; is the contributor of the asymptotic distribution. From
(6.1), in the derivation for the asymptotic normality of 7},1, we can assume
without loss of generality pq = pe = 0.

Let Y; = Xy; forie=1,--- ,ny and Y1, = Xgj for j =1,--- ,no, and for
i

nyt(n — 1)WY, if 4,5 € {1,2,-+ ,n1},
¢ij =< —ny'ny'Y/Y;, ifi€{1,2,- ,m}and j€ {ng+1,-- 1 +na},
nyt(ng — 1)WY, if i, € {n1 4+ 1, g +nal.

Define V,,; = Zg;ll ¢ij for j =2,3,--+ ,ni+ng, Spm = Z;"ZQ Vo and Fopp =
o{Y1,Ys, -+, Y, } which is the o algebra generated by {Y7, Y2, - ,Y,,}. Now

Lemma 1: For each n, {Spm, Fnm }m— is the sequence of zero mean and
a square integrable martingale.

PROOF. It’s obvious that F,,;_1 C F,;, for any 1 < j < n and S, is of
zero mean and square integrable. We only need to show E(Snq|Fnm) = Snm
for any ¢ > m. We note that ‘ ‘

If j > m, then E(¢ij|Fam) = E(Y]Y}|Frm).
If i > m, as Y; and Yj are both independent of F,,,,
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If i < m, E(¢ij|Fom) = E(Y/Y;|Fam) = YiE(Y]) = 0. Hence,
E(Vij|Fnm) = 0.

In summary, for ¢ > m, E(Sp¢|Fnm) = E?ZlE(Vnﬂfnm) = X7,V =
Snm. This completes the proof of the lemma. O

Lemma 2: Under Condition (3.4),
S BV | Fajor] D Lok .

PRrROOF. Note that

E(V;5| Frj-1) E{ZY/YJ |Fnj—1} = E( Z Y, Y;Y[ Y5, | Frjo1)

i1,22=1

S A= X

11,i2=1 i1,12=1
Jj—1 i
/ J
- Z }/;175(75._1)}/;2
i1,i9=1 VAN

where flj = ¥i,n; = nq, for j € [1,n1] and flj = Y9, 1 = nog, if j €
[n1+1,n1+n2].

Define
ni+ng
= Y E(V7|Fnj-1)
=2
Then,
tT(Z%) tT(Z%) tr(ZlEg)
E(nn) =
2n1(ny —1)  2n2(ne—1)  (ng —1)(n2 — 1)
(6.4) = 1o%.
Now consider
) ni+ng j—1 *‘ )
En,) = E{Z Z le_l)Yz‘z}
j=2 i1,i2=1 J
ni+nz Jji—1 jo—1 S f]

65 = B2 Y > Y v- J’l Y, Y, — =2y,
2<j1 <jo i1 in= 1Z3 ig=1 Zlnh Nj, — ) ZBnJ (njz_l)

nit+nz Jj—1 S

. , E
SYY S vs RN

j=2 i1,42=113,i4=1 gy —

= 2E(A)+ E(B), say,
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where
nitnz Jji—1 j2—1 S 3.
A = — i1 Y, Y/ —J2 Yi.,
2<321;]2 “7122: 1Z3Zz4: 1 Zl M1 n]l - ) v nJQ(nJQ 1) “
ni+ngy j—1 3 3.
/
CEPIEED S S SR
7J=2 1i1,02=1143,ia=1 j J
Derivations given in Chen and Qin (2008) show
2(x2 tr2(%3 tr(22)tr(312
o) = { Py Pt
dnf(ny —1)2  4nz(n2 —1)2  ni(ni —1)(ne —1)
tr(33)tr(31%2) tr2(3o3)
(n1 — 1)77,2(77,2 - 1) nlng(nl - 1)(’02 — 1)
tr(29)tr(33) }
+ +o(1)}.
2’01(711 — 1)77,2(77,2 — 1) { ( )}
and E(B) = o(07, ). Hence, from (6.5) and (6.6),
BE(n?) = { r?(23) tr?(23) tr(Z])tr(21%)
)= V2 g — 12 4nd(ne — 12 2y — V)(ng — 1)
tr(22)tr(X13) tr2(39%)
(n1 - 1)77,2(77,2 — 1) nlng(nl - 1)(’02 — 1)

tr(33)tr(33)
2??,1(TL1 — 1)??,2(??,2 -1

Based on (6.4) and (6.7),
(6.8) Var(n) = E(n;) — E*() = o(oT,).
Combine (6.4) and (6.8), we have

(6.7) + )} +o(ok).

QE{E"”"QE(V? | Fnje 1)} =07 E(n,) = 1, and

4Var{2”1+”2E(V2 | Fnj— 1)} = m}f‘/ar(nn) =o(1).
This completes the proof of Lemma 2. O

Lemma 3 Under the condition (3.4),

ni+ng

Z 07 E{Vii1([Vas| > eor, )| Faj1} = 0.
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Proor. We note that

ni1+ne ni+ns2
Z U%QE{ I(|Vaj| > eom, )| Frj— 1}<0Tq€2 T B (Vo Frj-1);
7j=1

for some ¢ > 2. By choosing ¢ = 4, the conclusion of the lemma is true if we
can show

ni+n2

(6.9) B BBy} = oloh,).

We notice that

ni+n2 ni1+n2 ni1+n2

E{ BV, Frj-1)} Z EWV; Z EZYY

ni+nz

= > Z E(Y.Y;Y] VY. Y;Y] ).

127 ] 37 ]

J=2 d1,i2,i3,i4
The last term can be decomposed as 3Q) + P where
ni+ng j—1
Q= Y > BYY.Y.)Y,Y/V,Y]Y))
Jj=2 s#t
and P = S/ S T E(Y]Y;)! Now (6.9) is true if 3Q + P = o(o}, ).
Note that

ni+ng j—1
Q=Y > B{tr(VYY/YY]Y.Y))}
Jj=2 s#t
ny j—1 ni+ng j—1
— 0 Y Y BB YIS )+ > S BB YY/EY)) = ook, ).
J=2 s#t j=n1+1 s#t

The last equation follows the similar procedure in Lemma 2 under (3.4).
It remains to show P = X"3™ 51 E(Y!Y;)* = o(04, ). Note that

ni+ng j—1 ny j—1 nit+ng j—1
P = > S EYY) =YY EVY)'+ > > EYY)!
j=2 s=1 j=2s=1 j=ni+1s=1
ny j—1 nit+nz ni
= O DY EXL X'+ Y. DY EX| Xajn)!
j=2s5=1 j=ni+1s=1

ni+ng

+ Z Z EXQS n1X2_7 nl) }

j=ni1+1s=n1+1
= O(nig)(Pl + P+ Pg),
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where Pi = Y201, Y27 B(X(,X1))Y, Py = S5 SO0 B(X], Xajn,)*
and
ni+ng

Z Z E XQS anQJ nl) .
j=ni1+1s=n1+1
Let us consider E(X{ngj,nl)‘l. Define I'\T's =: (vjj)mxm and note the
following facts which will be used repeatedly in the rest of the appendix,

m
'U4 < (Z U%)Q = tT2(F/1F2F/2F1) = t?“Q(Egzl),

m
1,7=1 1,j=1
m

m m
2N\2 __ 2
> Wivi,) < (3 vy)* =t (Sa%),
i=1j17#j2 i,j=1
m m
Z Z Vi j1 ViyjaVizj1 Vinga < Z U“ZQ 1112 = Z Umz mz’
11702 J17#]2 i1712 i1io=1
m
o /
S o) o) Z o) = (TS0 T 0T ) = tr(£9%0)%,
i1i2=1 11=1

where T{ 4T = (07) and (D) S501)2 = (0 )mscm-

From (3.1),
m m
E(X{sXoj n,) :ZZ?""A ’+23+A va Vijo
1=1j'=1 Jl#h
m
Z B+4) Z UZU m +9 Z Z Vi j1 Viy ja Viaj1 Viggo
Jj'=1 11712 11712 j17#7)2

= O{tr*(%2%1)} + O{tr(22%1)*}.

Then we conclude

ni+nz ni

O P = 3 Z{O{n«?(zﬁl)}+0{tr(2221)2}]

j=ni+1s=1

= O(nﬁf’) |:O{t7”2(2221)} + O{tT(EgEl)Q}] = O(O'f]lwn).

We can also prove that O(n™%)P1 = o(o7, ) and O(n™®)Ps = o(07, ) by going
through the similar procedure. This completes the proof of the lemma. [
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6.3. Proof of Theorem 1.

PRrROOF. We note equations (6.2) and (6.3) under conditions (3.4) and
(3.5) respectively. Based on Corollary 3.1 of Hall and Heyde (1980), Lemma
1, Lemma 2 and Lemma 3, it can be concluded that T,,1/0,,1 <, N(0,1). This
implies the desired asymptotic normality of 7}, under (3.4). Under (3.5), as
Tyo is the sum of two independent averages, its asymptotic normality can be
attained by following the standard means. Hence the theorem is proved. [

6.4. Proof of Theorem 2.

—

PROOF. We only present the proof for the ratio consistency of tr(3?) as
the proofs of the other two follow the same route. We want to show

(6.10)  E{tr(X)} = tr(3$){1 4+ o(1)} and Var{tr(2?)} = o{tr*(X%)}.
For notation simplicity, we denote Xy; as X; and X; as 3, since we are
effectively in a one sample situation.

Note that

—

tr(32)

= {n(n—1D}""erD_{(X; — ) (X5 — ) (Xp — ) (Xp — )’
J#k
—2(X () — (X5 — ) (Xi — ) (Xp — )"}

+> AXGwy — (X = 1) (Xgy — )Xy — )"}
7k

=S {2(X5 — i (X — ) (X — )
7k

—2(X(j ey — )i (X — 1) (X — )}

+ > X — ! (X — ! = 2(X gy — )t (Xp — p)p'}
j7k
+ Z {(X(j,k:) - N)N/(X(j,k:) - M)Ml}]
j7k
10

=: Ztr(Al),say.

=1
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It is easy to show that E{tr(A;)} = tr(3?), E{tr(4;)} =0fori=2,--- 9
and E{tr(Ay)} = u'Sp/(n —2) = o{tr(¥?)}. The last equation is based
on (3.4). This leads to the first part of (6.10). Since tr(Ajp) is non-negative
and E{tr(Aij0)} = o{tr(X?)}, we have tr(Aig) = o,{tr(X?)}. However, to
establish the orders of other terms, we need to derive Var{tr(4;)}. We shall
only show Var{tr(A;)} here. Derivations for other Var{tr(A;)} are given
in Chen and Qin (2008).
Note that

Var{tr(Ay)} + tr?(%?)

=Bt 306 — 1 — ) (X = )X — )}

Ak
LB Y (G, — )X, — ) (X — ) (X — )}
n?(n —1) iz
x tr{ Zn: (X = ) (X — 1) (X — 1) (X — 1)}
JoFke

It can be shown, by considering the possible combinations of the subscripts
j1, k1, jo and ks, that

Var{tr(A))} = {n(n— D} EB{(X — ) (X2 — )} +
4(n —2) , 2
mE{(Xl — ) 5(X1 - H)} +oftr?(¥?)}
(6.11) =: n(n2— 0 B + i((z : ?) B + o{tr?(2%)},

where

m
By = E(Z\T'TZs)" = E( Y. z15vs20)"
s,t=1
m

— E( E Vst Vsoto V83t3 VsytyZ1s1 Z1822183Z18422t1 Z2to Z2t3 22t4)
81,82,83,84,t1,t2,t3,t4=1

and

m
Biy = E(Z{T'TT'TZ1)* = E( ) z15usizu)”
s,t=1
m
= E( Z Usqty Usgty Rlsy Rlsy 21ty thg)-
81,82,t1,t2=1
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Here vy and ust are respectively the (s,t) element of I F and IVXT.
Since tr?(%?) = (D= (V)2 = V2 and tr(¥t) =

S1,Sg,t1,t2—1 51t1 SQtQ
S H =1 Ufp,- It can be shown that Aj; < ctr?(X?) for a finite positive

number ¢ and hence {n(n — 1)}~ By = o{tr?(x?)}. It may also be shown
that

Bio =2 Z ust—l- Z ussutt+AZuss

s,t=1 s,t=1
= 2tr(2Y) + tr3(Z?) + A Z u?,
< (24 A)tr(2h) + tr3(2?).

Therefore, from (6.11)

2 A(n
Var{tr(A;)} < mctr2(22) + m{ (24 A)tr(h) + tr2(3)}
(n—2)(n — 3) 2 2
) — ()
= o{tr*(%?)}.
This completes the proof. ]
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Fic 1. Two sample tests for differentially expressed gene-sets between BCR/ABL and NEG
class ALL: Histograms of P-values (left panels) and Qn values (right panels) for BP, CC
and MF gene categories.
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Fic 2. Back-testing round 2 for differentially expressed gene-sets between two randomly
assigned BCR/ABL groups: Histograms of P-values (left panels) and Qn values (right
panels) for BP, CC and MF gene categories.
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Table 1. Empirical Power and Size for the 2-Dependence Model
with Gamma Innovation

29

Type of % of p=500,n=124 p =1000,n = 138
Allocation  True Null NEW  BS Bonf FDR | NEW BS Bonf FDR
Equal 0% SL11 2399 13 .16 521 413 A1 .16
25% .b21 387 14 .16 518 410 A2 16
50% 513 401 13 A7 D31 422 A2 A7
5% 022 .389 13 18 530 .416 A1 A7
95% 001 399 14 .16 .00 398 13 A7
99% 499 388 13 15 507 408 15 18
100%(size) .043  .043 .040 .041 043 .042 .042 .042
Increasing 0% 520 425 A1 13 522 .409 12 .15
25% 515 431 12 .15 523 412 14 .16
50% D12 412 13 15 528 421 15 A7
5% 522409 15 A7 531 431 16 19
95% 488 401 14 15 500 410 15 A7
99% 501 .409 .15 A7 b11 412 .15 .16
100%(size) 042 .041  .040 .041 .042  .040 .039 .041
Decreasing 0% 022 .395 A1 .15 b33 406 .09 15
25% 530 .389 A1 15 530 422 A1 A7
50% 528 401 12 A7 522 432 12 A7
5% b33 .399 13 A8 519 421 A2 A7
95% Bb11 410 A2 15 508 411 15 A8
99% 508 407 14 15 507 418 16 A7
100%(size) .041 .042 .041 .042 042 .040 .040 .042
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Table 2. Empirical Power and Size for the Full-Dependence Model
with Gamma Innovation

Type of % of p=500,n=124 p =1000,n = 138

Allocation  True Null NEW BS Bonf FDR | NEW BS Bonf FDR

Equal 0% 322 120 .08 .10 402 .216 .09 A1
25% 318 117 .08 .10 400 218 .08 A1
50% 316 115 .09 A1 409 221 .09 .10
5% 307 113 .10 12 410 .213 .09 13
95% 233 128 A1 14 308 215 .10 13
99% 225 138 12 .15 316 .207 A1 12
100%(size) .041 .041 .043  .043 042 .042 .040 .041

Increasing 0% 331 121 .09 12 430 .225 .10 A1
25% 3360 119 .10 12 423 231 12 12
50% 329 123 A2 14 422226 13 14
5% 330 115 A2 .15 431 222 14 .15
95% 219 120 A2 13 311 218 14 .15
99% 228 117 13 .15 315 217 .15 A7
100%(size) .041  .040  .042 .043 042  .042  .040 .042

Decreasing 0% 320 117 .08 A1 411 213 .08 .10
25% 323 119 .09 A1 408 210 .08 A1
50% 327 120 A1 12 403 .208 .09 .10
5% 322 122 12 12 400 211 12 13
95% 217 109 A2 .15 319 207 A2 .15
99% 224 111 13 .16 327 .205 A1 13
100%(size) 042  .043 .039 .041 .042 211  .040 .041
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Table 3. Empirical averages of tr(X2)/tr(X%?) with standard deviations in
the parentheses.

Type of Type of p =500,n =124
Innovation Dependence NEW BS tr(x%?)
Normal 2-Dependence 1.03 (0.015) 1.39 (0.016) 3102
Full-Dependence  1.008 (0.00279)  .1.17 (0.0032) 35911
Gamma 2-Dependence 1.03 (0.006) 1.10 (0.007) 14227
Full-Dependence ~ 1.108 (0.0019) 1.248 (0.0017) 152248

p=1000,n = 138
NEW BS tr(X?)
Normal 2-Dependence 0.986 (0.0138) 1.253 (0.0136) 6563
Full-Dependence  0.995 (0.0026)  1.072 (0.0033) 76563
Gamma 2-Dependence 1.048 (0.005)  1.138 (0.006) 32104
Full-Dependence  1.088 (0.00097) 1.231 (0.0013) 325879




32 SONG XI CHEN AND YING-LI QIN

Table 4. Empirical Power and Size for the Sparse Model.

Sample €=.25 e=.15

Size c=.25 c=.45 c=.35 c=.55

(n1 =n2) Methods Power Size | Power Size | Power Size | Power Size

10 FDR .084 .056 180 .040 .044  .034 .066 .034
Bonf .084 .056 170 .040 .044  .034 062 .032
New .100  .046 546 .056 072 .064 344 .064

20 FDR 380 .042 855 .044 .096 .036 326 .058
Bonf 368 .038 806 .044 092 .034 308 .056
New 238 .052 976 .042 106 .052 852 .046

30 FDR 864 .042 1 .060 236 .048 710 .038
Bonfe 842 .038 996 .060 232 .048 .660 .038
New 408 .050 998 .058 220 .054 988  .042

Table 5. Average ratios of o3,/0%, and their Standard Deviation (in
parenthesis) for the Sparse Model

Sample True | £=.25 e=.15

Size o | ¢=0.25 c=0.45 | ¢=0.35 c=0.55

ni=ny=10 84.4 | 1.003(.0123) 1.005 (.0116) | .998 (.0120)  .999(.0110)

ny =ne=20 20.5 | 1.003(.0033) 1.000 (.0028) | 1.003(.0028) 1.002(.0029)

n = n2=30 0.0 | .996(.0013)  .098(.0013) | 1.004(.0014)  .999(.0013)
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