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WITH APPLICATIONS TO GENE-SET TESTING

By Song Xi Chen∗, Ying-Li Qin∗

Iowa State University and Peking University, Iowa State University†

We proposed a two sample test for means of high dimensional
data when the data dimension is much larger than the sample size.
The classical Hotelling’s T 2 test does not work for this “large p, small
n” situation. The proposed test does not require explicit conditions
on the relationship between the data dimension and sample size. This
offers much flexibility in analyzing high dimensional data. An appli-
cation of the proposed test is in testing significance for sets of genes,
which we demonstrate in an empirical study.

1. Introduction. High dimensional data are increasingly encountered
in many applications of statistics, and most prominently in biological and
financial studies. A common feature for high dimensional data is that, while
the data dimension is high, the sample size is relatively small. This is the
so-called “large p, small n” phenomena where p/n → ∞; here p is the data
dimension and n is the sample size. The high data dimension (“large p”)
alone has created needs to renovate and rewrite some of the conventional
multivariate analysis procedures. And these needs only get much greater for
“large-p small-n” situations.

A specific “large p, small n” situation arises in simultaneously testing large
number of hypotheses, which is largely motivated in identification of signifi-
cant genes in microarray and genetic sequence studies. A natural question is
how many hypotheses can be tested simultaneously. This paper tries to an-
swer this question in the context of two sample simultaneous test for means.
Consider two random samples Xi1, · · · ,Xini

∈ Rp for i = 1 and 2, which
have means µ1 = (µ11, · · · , µ1p)

T and µ2 = (µ21, · · · , µ2p)
T , and covariance

matrices Σ1 and Σ2, respectively. We consider testing a high dimensional
hypothesis

(1.1) H0 : µ1 = µ2 versus H1 : µ1 �= µ2.
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DMS-0714978.
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The hypothesis H0 consists of p marginal hypotheses H0l : µ1l = µ2l for
l = 1, · · · , p regarding the means on each data dimension.

There have been a series of important studies on the high dimensional
problem. van der Laan and Bryan (2001) show that the sample mean of p-
dimensional data can consistently estimate the population mean uniformly
across p dimensions if log(p) = o(n) for bounded random variables. In a
major generalization, Kosorok and Ma (2007) consider uniform convergence
for a range of univariate statistics constructed for each data dimension,
which includes the marginal empirical distribution, sample mean and sample
median. They establish the uniform convergence across p dimensions when
log(p) = o(n1/2) or log(p) = o(n1/3) depending on the nature of the marginal
statistics. Fan, Hall and Yao (2007) evaluate approximating the overall level
of significance for simultaneous testing of means. They demonstrate that
the bootstrap can accurately approximate the overall level of significance
if log(p) = o(n1/3) when the marginal tests are performed based on the
normal or the t-distributions. See also Fan, Peng and Huang (2005) and
Huang, Wang and Zhang (2005) for high dimensional estimation and testing
in semiparametric regression models.

In an important work, Bai and Saranadasa (1996) proposed using ||X̄1 −
X̄2|| to replace (X̄1−X̄2)

T S−1
n (X̄1−X̄2) in the Hotelling’s T 2-statistic, where

X̄1 and X̄2 are the two sample means, Sn is the pooled sample covariance
by assuming Σ1 = Σ2 = Σ, and || · || denotes the Euclidean norm in Rp.
They established the asymptotic normality of the test statistics and showed
that it has attractive power property when p/n → c < ∞ and under some
restriction on the maximum eigenvalue of Σ. However, the requirement of p
and n being of the same order is too restrictive to be used in the “large p,
small n” situation.

To allow simultaneous testing for ultra high dimensional data, we con-
struct a test which allows p being arbitrarily large independent of the sample
size, as long as, in the case of common covariance Σ, tr(Σ4) = o{tr2(Σ2)},
where tr(·) is the trace operator of a matrix. The above condition on Σ is
trivially true for any p if either all the eigenvalues of Σ are bounded or the
largest eigenvalue is of smaller order of (p−b)1/2b−1/4 where b is the number
of unbounded eigenvalues. We establish the asymptotic normality of a test
statistic, which leads to a two sample test for high dimensional data.

Testing significance for gene-sets rather than a single gene is a latest
development in genetic data analysis. A critical need for gene-set testing is to
have a multivariate test that is applicable for a wide range of data dimensions
(the number of genes in a set). It requires P -values for all gene-sets to allow
procedures based on either Bonferroni correction or the False Discovery Rate



A TWO SAMPLE TEST FOR HIGH DIMENSIONAL DATA 3

(Benjamini and Hochberg, 1995) to take into account the multiplicity in the
test. We demonstrate in this paper how to use the proposed test for testing
significance for gene-sets. An advantage of the proposed test is in its readily
producing P -values for significance of each gene-set under study so that the
multiplicity of multiple testing can be taken into consideration.

The paper is organized as follows. We outline in Section 2 the framework
of the two sample test for high dimensional data and introduce the proposed
test statistic. Section 3 provides the theoretical properties of the test. How
to apply the proposed test for significance of gene-sets is demonstrated in
Section 4, which includes an empirical study on an Acute Lymphoblastic
Leukemia data set. Results of simulation studies are reported in Section 5.
All the technical details are given in Section 6.

2. Test Statistic. Suppose we have two independent and identically
distributed random samples in Rp:

{Xi1,Xi2, · · · ,Xini
} iid∼ Fi for i = 1 and 2

where Fi is a distribution in Rp with mean µi and covariance Σi. A well
pursued interest in high dimensional data analysis is to test if the two high
dimensional populations have the same mean or not, namely

(2.1) H0 : µ1 = µ2 v.s. H1 : µ1 �= µ2.

The above hypotheses consist of p marginal hypotheses regarding the means
of each data dimension. An important question from the point view of mul-
tiple testing is that how many marginal hypotheses can be tested simulta-
neously. The works of van der Laan and Bryan (2001), Kosorok and Ma
(2007) and Fan, Hall and Yao (2007) are designed to address the question.

The existing results show that p can reach the rate of eαnβ
for some posi-

tive constants α and β. In establishing a rate of the above form, both van
der Laan and Bryan (2001) and Kosorok and Ma (2007) assumed that the
marginal distributions of F1 and F2 are all supported on bounded intervals.

Hotelling’s T 2 test is the conventional test for the above hypothesis when
the dimension p is fixed and is less than n =: n1 + n2 − 2, and when Σ1 =
Σ2 = Σ say. Its performance for high dimensional data is evaluated in Bai
and Saranadasa (1996) when p/n → c ∈ [0, 1), which reveals a decreasing
power as c gets larger. A reason for this negative effect of high dimension
is due to having the inverse of the covariance matrix in the T 2 statistic.
While standardizing by the covariance brings benefits for data with a fixed
dimension, it becomes a liability for high dimensional data. In particular, the
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sample covariance matrix Sn may not converge to the population covariance
when p and n are of the same order. Indeed, Yin, Bai and Krishnaiah (1988)
showed that when p/n → c, the smallest and the largest eigenvalues of the
sample covariance Sn do not converge to the respective eigenvalues of Σ. The
same phenomena, but on the weak convergence of the extreme eigenvalues of
the sample covariance, are found in Tracy and Widom (1996). When p > n,
Hotelling’s T 2 statistic is not defined as Sn may not be invertible.

Our proposed test is motivated by Bai and Saranadasa (1996), who pro-
pose testing hypothesis (2.1) under Σ1 = Σ2 = Σ based on

(2.2) Mn = (X̄1 − X̄2)
′(X̄1 − X̄2) − τtr(Sn)

where Sn = 1
n

∑2
i=1

∑Ni

j=1(Xij − X̄i)(Xij − X̄i)
′ and τ = n1+n2

n1n2
. The key

feature of the Bai and Saranadasa proposal is removing S−1
n in Hotelling’s T 2

since having S−1
n is no longer beneficial when p/n → c > 0. The subtraction

of tr(Sn) in (2.2) is to make E(Mn) = ||µ1−µ2||2. The asymptotic normality
of Mn was established and a test statistic was formulated by standardizing
Mn with an estimate of its standard deviation.

The main conditions assumed in Bai-Saranadasa’s test are

p/n → c < ∞ and λp = o(p1/2);(2.3)

n1/(n1 + n2) → k ∈ (0, 1) and (µ1 − µ2)
′Σ(µ1 − µ2) = o{tr(Σ2)/n}(2.4)

where λp denotes the largest eigenvalue of Σ.
A careful study of Mn statistic reveals that the restrictions on p and n,

and on λp in (2.3) are needed to control terms
∑ni

j=1 X ′
ijXij , i = 1 and 2,

in ||X̄1 − X̄2||2. However, these two terms are not useful in the testing. To
appreciate this point, let us consider

Tn =:
Σn1

i�=jX
′
1iX1j

n1(n1 − 1)
+

Σn2

i�=jX
′
2iX2j

n2(n2 − 1)
− 2

Σn1

i=1Σ
n2

j=1X
′
1iX2j

n1n2

after removing
∑ni

j=1 X ′
ijXij for i = 1 and 2 from ||X̄1 − X̄2||2. Elementary

derivations show that
E(Tn) = ||µ1 − µ2||2.

Hence, Tn is basically all we need for testing. Bai and Saranadasa used tr(Sn)
to offset the two diagonal terms. However, tr(Sn) itself impose demands on
the dimensionality too.

A derivation in the appendix shows that under H1 and the second condi-
tion in (2.4)

V ar(Tn) =

{
2

n1(n1−1) tr(Σ
2
1) + 2

n2(n2−1)tr(Σ
2
2) + 4

n1n2
tr(Σ1Σ2)

}
{1 + o(1)}

where the o(1) term vanishes under H0.
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3. Main Results. We assume, like Bai and Saranadasa (1996), the
following general multivariate model

(3.1) Xij = ΓiZij + µi for j = 1, · · · , ni, i = 1 and 2

where each Γi is a p × m matrix for some m ≥ p such that ΓiΓ
′
i = Σi,

and {Zij}ni

j=1 are m-variate independent and identically distributed (IID)
random vectors satisfying E(Zij) = 0, V ar(Zij) = Im, the m × m identity
matrix. Furthermore, if we write Zij = (zij1, . . . , zijm)′, we assume E(z4

ijk) =
3 + ∆ < ∞, and

(3.2) E
(
zα1

ijl1
zα2

ijl2
· · · zαq

ijlq

)
= E(zα1

ijl1
)E(zα2

ijl2
) · · ·E(z

αq

ijlq
)

for a positive integer q such that
∑q

l=1 αl ≤ 8 and l1 �= l2 �= · · · �= lq. Here
∆ describes the difference between the fourth moments of zijl and N(0, 1).
Model (3.1) says that Xij can be expressed as a linear transformation of a
m-variate Zij with zero mean and unit variance that satisfies (3.2). Model
(3.1) is similar to factor models in multivariate analysis. However, instead
of having the number of factors m < p in the conventional multivariate
analysis, we require m ≥ p. This is to allow the basic characteristics of the
covariance Σi, for instance its rank and eigenvalues, are not affected by the
transformation. The rank and eigenvalues would be affected if m < p. The
fact that m is arbitrary offers much flexibility in generating a rich collection
of dependence structure. Condition (3.2) means that each Zij has a kind of
pseudo-independence among its components {zijl}m

l=1. Obviously, if Zij does
have independent components, then (3.2) is trivially true.

We do not assume Σ1 = Σ2, as it is a rather strong assumption, and most
importantly such an assumption is harder to be verified for high dimensional
data. Testing certain special structures of the covariance matrix when p and
n are of the same order have been considered in Ledoit and Wolf (2002) and
Schott (2005).

We assume

n1/(n1 + n2) → k ∈ (0, 1) as n → ∞(3.3)

(µ1 − µ2)
′Σi(µ1 − µ2) = o[n−1tr{(Σ1 + Σ2)

2}] for i = 1 or 2(3.4)

which generalize (2.4) to unequal covariances. Condition (3.4) is obviously
satisfied under H0 and implies that the difference between µ1 and µ2 is small
relative to n−1tr{(Σ1 +Σ2)

2} so that a workable expression for the variance
of Tn under H0 and the specified local alternative can be derived. It can
be viewed as a high dimensional version of the local alternative hypotheses.
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When p is fixed, if we use a standard test for two population means, for
instance Hotelling’s T 2 test, the local alternative hypotheses has the form
of µ1 − µ2 = τn−1/2 for a non-zero constant vector τ ∈ Rp. The Hotelling’s
test has non-trivial power under such local alternatives (Anderson, 2000). If
we assume each components of µ1 −µ2 is the same, say δ, then the local al-
ternatives imply δ = O(n−1/2) for a fixed p. When the difference is o(n−1/2),
Hotelling’s test has non-power beyond the level of significance.

To gain insight on (3.4) for high dimensional situations, let us assume all
the eigen-values of Σi are bounded above from infinity and below away from
zero so that Σi = Ip is a special case of such regime. Let us also assume
like above each component of µ1 − µ2 is the same as a fixed δ, namely
µ1l − µ2l = δ for l = 1, · · · , p. Then, (3.4) implies δ = o(n−1/2) which is a
smaller order than δ = O(n−1/2) for fixed p case. This can be understood as
the high dimensional data (p → ∞) contain more data information which
allows finer resolution in differentiating the two means in each component
than that in the fixed p case.

To understand the performance of the test when (3.4) is not valid, we
reverse the local alternative condition (3.4) to

(3.5) n−1tr{(Σ1 + Σ2)
2} = o{(µ1 − µ2)

′Σi(µ1 − µ2)} for i = 1 or 2,

implying the Mahanalobis distance between µ1 and µ2 is a larger order than
that of n−1tr{(Σ1+Σ2)

2}. This condition can be viewed as a version of fixed
alternatives. We will establish asymptotic normally of Tn under either (3.4)
and (3.5) in Theorem 1.

The condition we impose on p to replace the first part of (2.3) is

(3.6) tr(ΣiΣjΣlΣh) = o[tr2{(Σ1 + Σ2)
2}] for i, j, l, h = 1 or 2,

as p → ∞. To appreciate this condition, consider the case of Σ1 = Σ2 = Σ.
Then, (3.6) becomes

(3.7) tr(Σ4) = o{tr2(Σ2)}.

Let λ1 ≤ λ2 ≤ ... ≤ λp be the eigenvalues of Σ. If all eigenvalues are bounded,
then (3.7) is trivially true. If, otherwise, there are b unbounded eigenvalues
with respect to p and the remaining p − b eigenvalues are bounded above
by a finite constant M such that (p − b) → ∞ and (p − b)λ2

1 → ∞, then
sufficient conditions for (3.7) are

(3.8) λp = o{(p − b)1/2λ1b
−1/4} or λp = o{(p − b)1/4λ

1/2
1 λ

1/2
p−b+1}
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where b can be either bounded or diverging to infinity and the smallest
eigen-value λ1 can converge to zero. To appreciate these, we note that

tr(Σ4)

tr2(Σ2)
≤

(p − b)M4 + bλ4
p

(p − b)2λ4
1 + b2λ4

p−b+1 + 2(p − b)bλ2
1λ

2
p−b+1

,

Hence, the ratio converges to 0 under either condition in (3.8).

The following theorem establishes the asymptotic normality of Tn.
Theorem 1. Under the assumptions (3.1), (3.2), (3.3), (3.6) and either

(3.4) or (3.5),

Tn − ||µ1 − µ2||2√
V ar(Tn)

d→ N(0, 1) as p → ∞ and n → ∞.

The asymptotic normality is attained without imposing any explicit restric-
tion between p and n directly. The only restriction on the dimension is (3.6)
or (3.7). As the discussion given just before Theorem 1 suggests, (3.7) is
satisfied provided that the number of divergent eigenvalues of Σ are not too
many and the divergence is not too fast. The reason for attaining this in the
case of high data dimension is because the statistic Tn is univariate, despite
the hypothesis H0 is of high dimensional. This is different from using a high
dimensional statistic. Indeed, Portnoy (1986) considers the central limit the-
orem for the p-dimensional sample mean X̄ and finds that the central limit
theorem is not valid if p is not a smaller order of

√
n.

As shown in Section 6.1, V ar(Tn) = σ2
n{1 + o(1)} where, under (3.4)

(3.9) σ2
n =: σ2

n1 = 2
n1(n1−1) tr(Σ

2
1) + 2

n2(n2−1) tr(Σ
2
2) + 4

n1n2
tr(Σ1Σ2),

and under (3.5)

(3.10) σ2
n =: σ2

n2 =
4

n1
(µ1 − µ2)

′Σ1(µ1 − µ2) +
4

n2
(µ1 − µ2)

′Σ2(µ1 − µ2).

In order to formulate a test procedure based on Theorem 1, σ2
n1 in (3.9)

needs to be estimated. Bai and Saranadasa (1996) used the following esti-
mator for tr(Σ2) under Σ1 = Σ2 = Σ:

̂tr(Σ2) = n2

(n+2)(n−1){trS2
n − 1

n(trSn)2}.

Motivated by the benefits of excluding terms like
∑ni

j=1 X ′
ijXij in the for-

mulation of Tn, we propose the following estimator of tr(Σ2
i ) and tr(Σ1Σ2):

̂tr(Σ2
i ) = {ni(ni − 1)}−1tr

{
Σni

j �=k(Xij − X̄i(j,k))X
′
ij(Xik − X̄i(j,k))X

′
ik

}
,
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and

̂tr(Σ1Σ2) = (n1n2)
−1tr

{
Σn1

l=1Σ
n2

k=1(X1l − X̄1(l))X
′
1l(X2k − X̄2(k))X

′
2k

}

where X̄i(j,k) is the i-th sample mean after excluding Xij and Xik, and X̄i(l)

is the i-th sample mean without Xil. These are similar to the idea of cross-
validation, in that when we construct the deviations of Xij and Xik from
the sample mean, both Xij and Xik are excluded from the sample mean

calculation. By doing so, the above estimators ̂tr(Σ2
i ) and ̂tr(Σ1Σ2) can be

written as the trace of sums of products of independent matrices. We also
note that subtraction of only one sample mean per observation is needed in
order to avoid term like ||Xij ||4 which is harder to control asymptotically
without an explicit assumption between p and n.

The next theorem shows that the above estimators are ratio-consistent to
tr(Σ2

i ) and tr(Σ1Σ2), respectively.
Theorem 2. Under the assumptions (3.1)-(3.4) and (3.6), for i = 1 or 2,

̂tr(Σ2
i )

tr(Σ2
i )

p→ 1 and
̂tr(Σ1Σ2)

tr(Σ1Σ2)

p→ 1 as p and n → ∞.

A ratio-consistent estimator of σ2
n1 under H0 is

σ̂2
n1 = 2

n1(n1−1)
̂tr(Σ2

1) + 2
n2(n2−1)

̂tr(Σ2
2) + 4

n1n2

̂tr(Σ1Σ2).

This together with Theorem 1 leads to the test statistic

Qn = Tn/σ̂n1
d→ N(0, 1) as p and n → ∞

under H0. The proposed test with an α level of significance rejects H0 if
Qn > ξα where ξα is the upper α quantile of N(0, 1).

Theorems 1 and 2 allow us to discuss the power properties of the proposed
test. The discussion is made under (3.4) and (3.5) respectively. The power
under the local alternative (3.4) is

(3.11) βn1(||µ1 − µ2||) = Φ

⎛
⎝−ξα +

nk(1 − k)||µ1 − µ2||2√
2tr{Σ̃(k)2}

⎞
⎠ ,

where Σ̃(k) = (1 − k)Σ1 + kΣ2 and Φ is the standard normal distribution
function. The power of Bai-Saranadasa test has the same form if Σ1 = Σ2

and if p and n are of the same order.
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The power under (3.5) is

βn2(||µ1 − µ2||) = Φ

(
−σn1

σn2
ξα +

||µ1 − µ2||2
σn1

)
= Φ

(
||µ1 − µ2||2

σn1

)

as σn1/σn2 → 0. Substitute the expression for σn1, we have

(3.12) βn2(||µ1 − µ2||) = Φ

⎛
⎝nk(1 − k)||µ1 − µ2||2√

2tr{Σ̃(k)2}

⎞
⎠ .

Both (3.11) and (3.12) indicate that the proposed test has non-trivial
power under the two cases of the alternative hypothesis as long as

n||µ1 − µ2||2/
√

tr{Σ̃(k)2}

does not vanish to 0 as n and p → ∞. The flavor of the proposed test is
different from tests formulated by combining p marginal tests on H0l (defined
after (1.1)) for l = 1, . . . , p. The test statistics of such tests are usually
constructed via max1≤l≤p Tnl, where Tnl is a marginal test statistic for H0l.
This is the case of Kosorok and Ma (2007) and Fan, Hall and Yao (2007). A
condition on p and n is needed to ensure (i) the convergence of max1≤l≤p Tnl,
and (ii) p can reach an order of exp(αnβ) for positive constants α and β.
Usually some additional assumptions are needed: for instance, Kosorok and
Ma (2007) assumed each component of the random vector has compact
support for testing means.

Naturally, if the number of significant univariate hypotheses (µ1l �= µ2l)
is a lot less than p, which is the so-called sparsity scenario, a simultaneous
test like the one we propose may encounter a loss of power. This is actually
quantified by the power expression (3.11). Without loss of generality, suppose

that each µi can be partitioned as (µ
(1)′

i , µ
(2)′

i )′ so that under H1 : µ
(1)
1 = µ

(1)
2

and µ
(2)
1 �= µ

(2)
2 , where µ

(1)
i is of p1 dimensional and µ

(2)
i is of p2 dimensional

and p1 + p2 = p. Then, ||µ1 − µ2|| = p2δ
2 for some positive constant δ2.

Suppose that λm0
be the smallest non-zero eigenvalue of Σ̃(k). Then, under

the local alternative (3.4), the asymptotic power is bounded above and below
by

Φ

(
−ξα +

nk(1 − k)p2δ
2

√
2pλp

)
≤ β(||µ1 −µ2||) ≤ Φ

(
−ξα +

nk(1 − k)p2δ
2

√
2(p − m0)λm0

)
.

If p is very large relative to n and p2 under both high dimensionality and
sparsity, so that nk(1 − k)p2η

2/
√

2(p − m0) → 0, the test could endure
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low power. With this in mind, we check on the performance of the test
under sparsity in simulation studies in Section 5. The simulations showed
that the proposed test had a robust power and was in fact can be more
powerful than tests based on multiple comparison with either the Bonferroni
and False Discovery Rate (FDR) procedures. We note here that, due to
the multivariate nature of the test and the hypothesis, the proposed test
cannot identify which components are significant after the null multivariate
hypothesis is rejected. Additional follow-up procedures have to be employed
for that purpose. The proposed test come very handy when the interest is
to identify significant groups of components, like sets of genes as illustrated
in Section 4. The above discussion can be readily extended to the case of
(3.5) due to the similarity in the two power functions.

The proposed two sample test can be modified for paired observations
{(Yi1, Yi2)}n

i=1 where Yi1 and Yi2 are two measurements of p-dimensions on
a subject i before and after a treatment. Let Xi = Yi2 −Yi1, µ = E(Xi) and
Σ = V ar(Xi). This is effectively a one sample problem with high dimensional
data. The hypothesis of interest is

H0 : µ = 0 vs H1 : µ �= 0.

We can use Fn = Σn1

i�=jX
′
iXj/{n(n − 1)} as the test statistic. It is read-

ily shown that E(Fn) = µ
′
µ and V ar(Fn) = 2

n1(n1−1)tr(Σ
2
1){1 + o(1)}

under both H0 and H1 if we assume a condition similar to (3.4) so that
µ

′
Σµ = o{n−1tr(Σ2)}. And the asymptotic normality of Fn by adding

tr(Σ4) = o{tr2(Σ2)}, a variation of (3.6), can be established by utilizing
part of the proof on the asymptotic normality of Tn. The tr(Σ2) can be

ratio-consistently estimated with n1 replaced by n in ̂tr(Σ2
1), which leads to

a ratio-consistent variance estimation for Fn. Then, the test and its power
can be written out in similar ways as those for the two sample test.

When p = O(1), which may be viewed as having finite dimension, the
asymptotic normality as conveyed in Theorem 1 may not be valid anymore.
It may be shown under Conditions (3.1)-(3.4) without (3.6), as condition
(3.6) is no longer relevant when p is bounded, the test statistic (n1 + n2)Tn

converges to
∑2p

l=1 ηlχ
2
1,l, where {χ2

1,l}
2p
l=1 are independent χ2

1 distributed

random variables and {ηl}2p
l=1 is a set of constants. Theorem 2 remains valid

when p is bounded under (3.1)-(3.4). The proposed can still be used for
testing in this situation of bounded dimension with estimated critical values
via estimation of {ηl}2p

l=1. However, people may like to use a test specially
cantered for such case, for instance, the Hotelling’s test.
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4. Gene-set Testing. Identifying sets of genes which are significant
with respect to certain treatments is a latest development in genetics re-
search; see Barry, Nobel and Wright (2005), Recknor, Dettleton and Reecy
(2007), Efron and Tibshrini (2007) and Newton et.al (2007). Biologically
speaking, each gene does not function individually in isolation. Rather, one
gene tends to work with other genes to achieve certain biological tasks.

Suppose that S1, · · · ,Sq be q sets of genes, where the gene-set Sg consists
of pg genes. Let F1Sg and F2Sg be the distribution functions corresponding
to Sg under the treatment and control, and µ1Sg and µ2Sg be their respective
means. The hypothesis of interest is

H0g : µ1Sg = µ2Sg for g = 1, · · · , q.

The gene sets {Sg}q
g=1 can overlap as a gene can belong to several functional

groups, and pg, the number of genes in a set, can range from a moderate
to a very large number. So, there are issues of both multiplicity and high
dimensionality in gene-set testing.

We propose applying the proposed test for significance of each gene-set
Sg when pg is large. When pg is of low dimension, the Hotelling’s test may
be used. Let pvg, g = 1, · · · , q be the P-values obtained from these tests.
To control the overall family-wise error rate, we can employ the Bonferroni
procedure; to control FDR, we can use Benjamini and Hochberg (1995)’s
method or its variations as in Benjamini and Yekutieli (2001) and Storey,
Taylor and Siegmund (2004). These lead to control of the family-wise error
rate or FDR in the context of gene-sets testing. In contrast, tests based on
univariate testing have difficulties in producing P-values for gene-sets.

Acute Lymphoblastic Leukemia (ALL) is a form of leukemia, a cancer of
white blood cells. The ALL data (Chiaretti et al., 2004) contains microar-
ray expressions for 128 patients with either T-cell or B-cell type Leukemia.
Within the B-cell type leukemia, there are two sub-classes representing two
molecular classes: the BCR/ABL class and NEG class. The data set has
been analyzed by Dudoit, Keles and van der Laan (2006) using a different
technology.

Gene-sets are technically defined in Gene Ontology (GO) system that
provides structured and controlled vocabularies producing names of gene-
sets (also called GO terms). There are three groups of Gene ontologies of
interest: Biological Processes (BP), Cellular Components (CC) and Molecu-
lar Functions (MF). We carried out preliminary screening for gene-filtering
using the approach in Gentleman et al. (2005), which left 2391 genes for
analysis. There are 575 unique GO terms in BP category, 221 in MF and
154 in CC for the ALL data. The largest gene-set contains 2059 genes in
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BP, 2112 genes in MF and 2078 genes in CC; and the GO terms of the three
categories share 1861 common genes. We are interested in detecting differ-
ences in the expression levels of gene-sets between the BCR/ABL molecular
sub-class (n1 = 42) and the NEG molecular sub-class (n2 = 37) for each of
the three categories.

We applied the proposed two sample test with 5% significant level to
test each of the gene-sets in conjunction with the Bonferroni correction to
control the family-wise error rate at 0.05 level. It was found that there were
259 gene-sets declared significant in the BP group, 110 in the MF group and
53 in the CC group. Figure 1 displays the histograms of the P-values and the
values of test statistic Qn for the three gene-categories. It shows a strong
non-uniform distribution of the P-values with a large number of P-values
clustered near 0. At the same time, the Qn-value plots indicate the average
Qn-values were much larger than zero. These explain the large number of
significant gene-sets detected by the proposed test.

The number of the differentially expressed gene-sets may seem to be high.
This was mainly due to overlapping gene-sets. To appreciate this point, we
computed for each (say i-th) significant gene-set, the number of other sig-
nificant gene-sets which overlapped with it, say bi; and obtained the average
of {bi} and their standard deviation. The average number of overlaps (stan-
dard deviation) for BP group was 198.9(51.3), 55.6 (25.2) for MF, and 41.6
(9.5) for CC. These number are indeed very high and reveals the gene-sets
and their P-values were highly dependent.

Finally, we carried out back-testing for the same hypothesis by randomly
splitting the 42 BRC/ABL class into two sub-class of equal sample size and
testing for mean differences. This set-up led to the situation of H0. Figures 2
reports the P-values and Qn-values for the three Gene Ontology groups. We
note that the distributions of the P-values were much closer to the uniform
distribution than Figure 1. It is observed that the histograms of Qn-values
were centered close to zero and were much closer to the normal distribution
than their counterparts in Figure 1, which were reassuring.

5. Simulation Studies. In this section, we report results from simula-
tion studies which were designed to evaluate the performance of the proposed
two sample test for high dimensional data. For comparison, we also con-
ducted the test proposed by Bai and Saranadasa (1996) (BS test), and two
tests based on multiple comparison procedures by employing the Bonferroni
and the FDR control ( Benjamini and Hochberg, 1995). Both procedures
control the family-wise error rate at a level of significance α which coincides
with the significance for the proposed test and the BS test. In the two mul-
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tiple comparison procedures, we conducted univariate two sample t-tests for
univariate hypotheses H0l : µ1l = µ2l versus µ1l �= µ2l for l = 1, 2, · · · , p.

Two simulation models for Xij were considered. One had a moving av-
erage structure that allows a general dependent structure; the other could
allocate the the alternative hypotheses sparsely which enable us to evaluate
the performance of the tests under sparsity.

5.1. Moving Average Model. The first simulation model has the following
moving average structure:

Xijk = ρ1Zijk + ρ2Zijk+1 + · · · + ρpZijk+p−1 + µij

for i = 1 and 2, j = 1, 2, · · · , ni and k = 1, 2, · · · , p, where {Zijk} were
respectively IID random variables. We considered two distributions for the
innovations {Zijk}. One was a centralized Gamma(4, 1) so that it has zero
mean, and the other was N(0, 1).

For each distribution of {Zijk}, we considered two configurations of de-
pendence among components of Xij . One had weaker dependence with
ρl = 0 for l > 3. This prescribed a “two dependence” moving average
structure where Xijk1

and Xijk2
are dependent only if |k1 − k2| ≤ 2. The

{ρl}3
l=1 were generated independently from U(2, 3), which were ρ1 = 2.883,

ρ2 = 2.794 and ρ3 = 2.849 and were kept fixed throughout the simula-
tion. The second configuration had all ρl’s generated from U(2, 3), and were
again keep fixed throughout the simulation. We call this the “full dependence
case”. The above dependence structures assigned equal covariance matrices
Σ1 = Σ2 = Σ and allows a meaningful comparison with BS test.

Without loss of generality, we fixed µ1 = 0 and chose µ2 in the same fash-
ion as Benjamini and Hochberg (1995). Specifically, the percentage of true
null hypotheses µ1l = µ2l for l = 1, · · · , p were chosen to be 0%,25%,50%,75%,
95% and 99% and 100% , respectively. Experimenting 95% and 99% was de-
signed to gain information on the performance of the test when µ1l �= µ2l

were sparse. It provided empirical checks on the potential concerns on the
power of the simultaneous high dimensional test as made at the end of Sec-
tion 3. At each percentage level of true null, three patterns of allocation
were considered for the non-zero µ2l in µ2 = (µ21, · · · , µ2p)

′: (i) the equal
allocation where all the non-zero µ2l were equal; (ii) linearly increasing and
(iii) linearly decreasing allocations as specified in Benjamini and Hochberg
(1995). To make the power comparable among the configurations of H1, we
set η =: ||µ1 − µ2||2/

√
tr(Σ2) = 0.1 throughout the simulation. We chose

p = 500 and 1000 and n = [20 log(p)] = 124 and 138, respectively.
Tables 1 and 2 report the empirical power and size of the four tests with

Gamma innovations at 5% nominal significance level or family-wise error
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rate or FDR based on 5000 simulations. The results for the Normal innova-
tions had similar pattern, and are not reported here. The simulation results
in Tables 1 and 2 can be summarized as follows. The proposed test was
much more powerful than Bai-Saranadasa test for all cases considered in
the simulation, while maintaining a reasonable size approximation to the
nominal 5% level. Both the proposed test and Bai-Saranadasa test were
more powerful than the two tests based on the multiple univariate testing
using the Bonferroni and FDR procedures. This is a little expected as both
the proposed and Bai-Saranadasa test are designed to test for the entire
p-dimensional hypotheses while the multiple testing procedures are targeted
at the individual univariate hypothesis. What is surprising is that when the
percentage of true null was high at 95% and 99%, the proposed test still
were much more powerful than the two multiple testing procedures for all
three allocations of the non-zero components in µ2. It is observed that the
sparsity (95% and 99% true null) does reduce the power of the proposed
test a little. However, the proposed test still enjoyed good power, especially
comparing with the other three tests. We also observe that when there was
more dependence among multivariate components of the data vectors in the
full dependence model, there was a drop in the power for each of the test.
The power of the tests based on the Bonferroni and FDR procedures were
alarmingly low and were only slightly larger than the nominal significance
level.

We also collected information on the quality of tr(Σ2) estimation. Table 3

reports empirical averages and standard deviation of ̂tr(Σ2)/tr(Σ2). It shows
that the proposed estimator for tr(Σ2) has much smaller bias and standard
deviation than those proposed in Bai and Saranadasa (1996) in all cases,
and provides an empirical verification for Theorem 2.

5.2. Sparse Model. An examination of the previous simulation setting
reveals that the strength of the “signals” µ2l − µ1l corresponding to the
alternative hypotheses were low relative to the level of noise (variance),
which may not be a favorable situation for the two tests based on multiple
univariate testing. To gain more information on the performance of the tests
under sparsity, we considered the following simulation model such that

X1il = Z1il and X2il = µl + Z2il for l = 1, . . . , p

where {Z1il, Z2il}p
l=1 are mutually independent N(0, 1) random variables,

and the “signals”

µl = ε
√

2 log(p) for l = 1, . . . , q = [pc] and µl = 0 for l > q
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for some c ∈ (0, 1). Here q is the number of significant alternative hypotheses.
The sparsity of the hypotheses is determined by c: the smaller the c is, the
more sparse the alternative hypotheses with µl �= 0. This simulation model
is similar to the one used in Abramovich, Benjamini, Donoho and Johnstone
(2006).

According to (3.11), the power of the proposed test has asymptotic power

β(||µ||) = Φ

(
−ξα +

np(c−1/2)ε2log(p)

2
√

2

)

which indicates that the test has a much reduced power if c < 1/2 with
respect to p. We, therefore, chose p = 1000 and c = 0.25, 0.35, 0.45 and
0.55 respectively, which led to q = 6, 11, 22, and 44 respectively. We call
c = 0.25, 0.35 and 0.45 the sparse cases.

In order to prevent trivial powers of α or 1 in the simulation, we set
ε = 0.25 for c = 0.25 and 0.45; and ε = 0.15 for c = 0.35 and 0.55. Table 4
summarizes the simulations results based on 500 simulations. It shows that in
the extreme sparse cases of c = 0.25, the FDR and Bonferroni tests did had
lower power than the proposed test. The power were largely similar among
the three tests for c = 0.35. However, when the sparsity was moderated
to c = 0.45, the proposed test started to surpass the FDR and Bonferroni
procedures. The gap in power performance was further increased when c =
0.55. Table 5 reports the quality of the variance estimation in Table 5, which
shows the proposed variance estimators incurs very little bias and variance
for even very small sample sizes of n1 = n2 = 10.

6. Technical Details.

6.1. Derivations for E(Tn) and V ar(Tn). As

Tn =
Σn1

i�=jX
′
1iX1j

n1(n1 − 1)
+

Σn2

i�=jX
′
2iX2j

n2(n2 − 1)
− 2

Σn1

i=1Σ
n2

j=1X
′
1iX2j

n1n2
,

it is straight forward to show that E(Tn) = µ′
1µ1+µ′

2µ2−2µ′
1µ2 = ||µ1−µ2||2.

Let P1 =
Σ

n1

i�=j
X′

1i
X1j

n1(n1−1) , P2 =
Σ

n2

i�=j
X′

2i
X2j

n2(n2−1) and P3 = −2
Σ

n1

i=1
Σ

n2

j=1
X′

1i
X2j

n1n2
. It can

be shown that

V ar(P1) =
2

n1(n1 − 1)
tr(Σ2

1) +
4µ′

1Σ1µ1

n1
,

V ar(P2) =
2

n2(n2 − 1)
tr(Σ2

2) +
4µ′

2Σ2µ2

n2
and
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V ar(P3) =
4

n1n2
tr(Σ1Σ2) +

4µ′
2Σ1µ2

n1
+

4µ′
1Σ2µ1

n2
.

Because two samples are independent, Cov(P1, P2) = 0. Also,

Cov(P1, P3) = −4µ′
1Σ1µ2

n1
and Cov(P2, P3) = −4µ′

1Σ2µ2

n2
.

In summary,

V ar(Tn) =
2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2
tr(Σ1Σ2)

+
4

n1
(µ1 − µ2)

′Σ1(µ1 − µ2) +
4

n2
(µ1 − µ2)

′Σ2(µ1 − µ2).

Thus, under H0

V ar(Tn) = σ2
n1 =:

2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2
tr(Σ1Σ2).

Under H1 : µ1 �= µ2, with (3.4),

V ar(Tn) = σ2
n1{1 + o(1)};

and with (3.5),
V ar(Tn) = σ2

n2{1 + o(1)}
where σn2 = 4

n1
(µ1 − µ2)

′Σ1(µ1 − µ2) + 4
n2

(µ1 − µ2)
′Σ2(µ1 − µ2).

6.2. Asymptotic Normality of Tn. We note that Tn = Tn1 + Tn2 where

Tn1 =
Σn1

i�=j(X1i − µ1)
′(X1j − µ1)

n1(n1 − 1)
+

Σn2

i�=j(X2i − µ2)
′(X2j − µ2)

n2(n2 − 1)

−2
Σn1

i=1Σ
n2

j=1(X1i − µ1)
′(X2j − µ2)

n1n2
.(6.1)

and

Tn2 =
Σn1

i=1(X1i − µ1)
′(µ1 − 2µ2)

n1
+

Σn2

i=1(X2i − µ2)
′(µ2 − 2µ1)

n2

+ µ′
1µ1 + µ′

2µ2 − 2µ′
1µ2.

It is easy to show that E(Tn1) = 0 and E(Tn2) = ||µ1 − µ2||2, and

V ar(Tn2)

= 4n−1
1 (µ1 − µ2)

′Σ1(µ1 − µ2) + 4n−1
2 (µ2 − µ1)

′Σ2(µ2 − µ1).
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Let σ2
n be the leading order V ar(Tn) as given in the subsection 6.1.

Under (3.4), as

V ar(
Tn2 − ||µ1 − µ2||2

σn1
) = o(1),

(6.2)
Tn − ||µ1 − µ2||2√

V ar(Tn)
=

Tn1

σn1
+ op(1).

Under (3.5),

(6.3)
Tn − ||µ1 − µ2||2√

V ar(Tn)
=

Tn2 − ||µ1 − µ2||2
σn2

+ op(1).

As Tn2 are independent sample averages, its asymptotic normality is read-
ily attainable as showed later. The main task of the proof is for the case un-
der (3.4) when Tn1 is the contributor of the asymptotic distribution. From
(6.1), in the derivation for the asymptotic normality of Tn1, we can assume
without loss of generality µ1 = µ2 = 0.

Let Yi = X1i for i = 1, · · · , n1 and Yj+n1
= X2j for j = 1, · · · , n2, and for

i �= j

φij =

⎧
⎪⎪⎨
⎪⎪⎩

n−1
1 (n1 − 1)−1Y ′

i Yj, if i, j ∈ {1, 2, · · · , n1},
− n−1

1 n−1
2 Y ′

i Yj , if i ∈ {1, 2, · · · , n1} and j ∈ {n1 + 1, · · · , n1 + n2},
n−1

2 (n2 − 1)−1Y ′
i Yj, if i, j ∈ {n1 + 1, · · · , n1 + n2}.

Define Vnj =
∑j−1

i=1 φij for j = 2, 3, · · · , n1 +n2, Snm =
∑m

j=2 Vnj and Fnm =
σ{Y1, Y2, · · · , Ym} which is the σ algebra generated by {Y1, Y2, · · · , Ym}. Now

Tn = 2
n1+n2∑

j=2

Vnj .

Lemma 1: For each n, {Snm,Fnm}n
m=1 is the sequence of zero mean and

a square integrable martingale.

Proof. It’s obvious that Fnj−1 ⊆ Fnj , for any 1 ≤ j ≤ n and Snm is of
zero mean and square integrable. We only need to show E(Snq|Fnm) = Snm

for any q ≥ m. We note that
If j ≤ m ≤ n, then E(Vnj |Fnm) = Σj−1

i=1E(φij |Fnm) = Σj−1
i=1φij = Vnj .

If j > m, then E(φij |Fnm) = E(Y ′
i Yj |Fnm).

If i > m, as Yi and Yj are both independent of Fnm,

E(φij |Fnm) = E(φij) = 0.
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If i ≤ m,E(φij |Fn,m) = E(Y ′
i Yj|Fn,m) = YiE(Y ′

j ) = 0. Hence,

E(Vnj |Fn,m) = 0.

In summary, for q > m, E(Snq|Fnm) = Σq
j=1E(Vnj |Fnm) = Σm

j=1Vnj =
Snm. This completes the proof of the lemma.

Lemma 2: Under Condition (3.4),

Σn1+n2

j=2 E[V 2
nj |Fn,j−1]

P→ 1
4σ2

Tn
.

Proof. Note that

E(V 2
nj |Fnj−1) = E{(

j−1∑

i=1

Y ′
i Yj)

2|Fnj−1} = E(
j−1∑

i1,i2=1

Y ′
i1YjY

′
j Yi2 |Fnj−1)

=
j−1∑

i1,i2=1

Y ′
i1E(YjY

′
j |Fnj−1)Yi2 =

j−1∑

i1,i2=1

Y ′
i1E(YjY

′
j )Yi2

=
j−1∑

i1,i2=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2

where Σ̃j = Σ1, ñj = n1, for j ∈ [1, n1] and Σ̃j = Σ2, ñj = n2, if j ∈
[n1 + 1, n1 + n2].
Define

ηn =
n1+n2∑

j=2

E(V 2
nj |Fnj−1)

Then,

E(ηn) =
tr(Σ2

1)

2n1(n1 − 1)
+

tr(Σ2
2)

2n2(n2 − 1)
+

tr(Σ1Σ2)

(n1 − 1)(n2 − 1)

= 1
4σ2

Tn
.(6.4)

Now consider

E(η2
n) = E{

n1+n2∑

j=2

j−1∑

i1,i2=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2}2

= E{2
n1+n2∑

2≤j1<j2

j1−1∑

i1,i2=1

j2−1∑

i3,i4=1

Y ′
i1

Σ̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

Σ̃j2

ñj2(ñj2 − 1)
Yi4(6.5)

+
n1+n2∑

j=2

j−1∑

i1,i2=1

j−1∑

i3,i4=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2Y

′
i3

Σ̃j

ñj(ñj − 1)
Yi4}

= 2E(A) + E(B), say,
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where

A =
n1+n2∑

2≤j1<j2

j1−1∑

i1,i2=1

j2−1∑

i3,i4=1

Y ′
i1

Σ̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

Σ̃j2

ñj2(ñj2 − 1)
Yi4 ,

B =
n1+n2∑

j=2

j−1∑

i1,i2=1

j−1∑

i3,i4=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2Y

′
i3

Σ̃j

ñj(ñj − 1)
Yi4.(6.6)

Derivations given in Chen and Qin (2008) show

2E(A) =

{
tr2(Σ2

1)

4n2
1(n1 − 1)2

+
tr2(Σ2

2)

4n2
2(n2 − 1)2

+
tr(Σ2

1)tr(Σ1Σ2)

n2
1(n1 − 1)(n2 − 1)

+
tr(Σ2

2)tr(Σ1Σ2)

(n1 − 1)n2(n2 − 1)
+

tr2(Σ2Σ1)

n1n2(n1 − 1)(n2 − 1)

+
tr(Σ2

1)tr(Σ
2
2)

2n1(n1 − 1)n2(n2 − 1)

}
{+o(1)}.

and E(B) = o(σ2
Tn

). Hence, from (6.5) and (6.6),

E(η2
n) =

{
tr2(Σ2

1)

4n2
1(n1 − 1)2

+
tr2(Σ2

2)

4n2
2(n2 − 1)2

+
tr(Σ2

1)tr(Σ1Σ2)

n2
1(n1 − 1)(n2 − 1)

+

+
tr(Σ2

2)tr(Σ1Σ2)

(n1 − 1)n2(n2 − 1)
+

tr2(Σ2Σ1)

n1n2(n1 − 1)(n2 − 1)

+
tr(Σ2

1)tr(Σ
2
2)

2n1(n1 − 1)n2(n2 − 1)

}
+ o(σ4

Tn
).(6.7)

Based on (6.4) and (6.7),

V ar(ηn) = E(η2
n) − E2(ηn) = o(σ4

Tn
).(6.8)

Combine (6.4) and (6.8), we have

σ−2
Tn

E

{
Σn1+n2

j=1 E(V 2
nj |Fn,j−1)

}
= σ−2

Tn
E(ηn) = 1

4 , and

σ−4
Tn

V ar

{
Σn1+n2

j=1 E(V 2
nj |Fn,j−1)

}
= σ−4

Tn
V ar(ηn) = o(1).

This completes the proof of Lemma 2.

Lemma 3 Under the condition (3.4),

n1+n2∑

j=2

σ−2
Tn

E{V 2
njI(|Vnj | > ǫσTn)|Fnj−1}

p−→ 0.
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Proof. We note that
n1+n2∑

j=2

σ−2
Tn

E{V 2
njI(|Vnj | > ǫσTn)|Fnj−1} ≤ σ−q

Tn
ǫ2−q

n1+n2∑

j=1

E(V q
nj |Fnj−1);

for some q > 2. By choosing q = 4, the conclusion of the lemma is true if we
can show

E{
n1+n2∑

j=2

E(V 4
nj |Fnj−1)} = o(σ4

Tn
).(6.9)

We notice that

E{
n1+n2∑

j=2

E(V 4
nj |Fnj−1)} =

n1+n2∑

j=1

E(V 4
nj) =

n1+n2∑

j=1

E(
j−1∑

i=1

Y ′
i Yj)

4

=
n1+n2∑

j=2

j−1∑

i1,i2,i3,i4

E(Y ′
i1YjY

′
i2YjY

′
i3YjY

′
i4Yj).

The last term can be decomposed as 3Q + P where

Q =
n1+n2∑

j=2

j−1∑

s �=t

E(Y ′
j YsY

′
sYjY

′
j YtY

′
t Yj)

and P = Σn1+n2

j=2 Σj−1
s=1E(Y ′

sYj)
4. Now (6.9) is true if 3Q + P = o(σ4

Tn
).

Note that

Q =
n1+n2∑

j=2

j−1∑

s �=t

E{tr(YjY
′
j YtY

′
t YjY

′
j YsY

′
s)}

= O(n−4){
n1∑

j=2

j−1∑

s �=t

E(Y ′
j Σ1YjY

′
j Σ1Yj) +

n1+n2∑

j=n1+1

j−1∑

s �=t

E(Y ′
j ΣtYjY

′
j ΣsYj)} = o(σ4

Tn
).

The last equation follows the similar procedure in Lemma 2 under (3.4).
It remains to show P = Σn1+n2

j=2 Σj−1
s=1E(Y ′

sYj)
4 = o(σ4

Tn
). Note that

P =
n1+n2∑

j=2

j−1∑

s=1

E(Y ′
sYj)

4 =
n1∑

j=2

j−1∑

s=1

E(Y ′
sYj)

4 +
n1+n2∑

j=n1+1

j−1∑

s=1

E(Y ′
sYj)

4

= O(n−8){
n1∑

j=2

j−1∑

s=1

E(X ′
1sX1j)

4 +
n1+n2∑

j=n1+1

n1∑

s=1

E(X ′
1sX2j−n1

)4

+
n1+n2∑

j=n1+1

j−1∑

s=n1+1

E(X ′
2s−n1

X2j−n1
)4}

= O(n−8)(P1 + P2 + P3),
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where P1 =
∑n1

j=2

∑j−1
s=1 E(X ′

1sX1j)
4, P2 =

∑n1+n2

j=n1+1

∑n1

s=1 E(X ′
1sX2j−n1

)4

and

P3 =
n1+n2∑

j=n1+1

j−1∑

s=n1+1

E(X ′
2s−n1

X2j−n1
)4.

Let us consider E(X ′
1sX2j−n1

)4. Define Γ′
1Γ2 =: (vij)m×m and note the

following facts which will be used repeatedly in the rest of the appendix,

m∑

i,j=1

v4
ij ≤ (

m∑

i,j=1

v2
ij)

2 = tr2(Γ′
1Γ2Γ

′
2Γ1) = tr2(Σ2Σ1),

m∑

i=1

m∑

j1 �=j2

(v2
ij1v

2
ij2) ≤ (

m∑

i,j=1

v2
ij)

2 = tr2(Σ2Σ1),

m∑

i1 �=i2

m∑

j1 �=j2

vi1j1vi1j2vi2j1vi2j2 ≤
m∑

i1 �=i2

v
(2)
i1i2

v
(2)
i1i2

≤
m∑

i1i2=1

v
(2)
i1i2

v
(2)
i1i2

,

m∑

i1i2=1

v
(2)
i1i2

v
(2)
i1i2

=
m∑

i1=1

v
(4)
i1i1

= tr(Γ′
1Σ2Γ1Γ

′
1Σ2Γ1) = tr(Σ2Σ1)

2,

where Γ′
1Σ

′
2Γ1 = (v

(2)
ij ) and (Γ′

1Σ2Γ1)
2 = (v

(4)
ij )m×m.

From (3.1),

E(X ′
1sX2j−n1

)4 =
m∑

i=1

m∑

j′=1

(3 + ∆)2v4
ij′ +

m∑

i=1

(3 + ∆)
m∑

j1 �=j2

v2
ij1v

2
ij2

+
m∑

j′=1

(3 + ∆)
m∑

i1 �=i2

v2
i1jv

2
i2j + 9

m∑

i1 �=i2

m∑

j1 �=j2

vi1j1vi1j2vi2j1vi2j2

= O{tr2(Σ2Σ1)} + O{tr(Σ2Σ1)
2}.

Then we conclude

O(n−8)P2 =
n1+n2∑

j=n1+1

n1∑

s=1

[
O{tr2(Σ2Σ1)} + O{tr(Σ2Σ1)

2}
]

= O(n−5)

[
O{tr2(Σ2Σ1)} + O{tr(Σ2Σ1)

2}
]

= o(σ4
Tn

).

We can also prove that O(n−8)P1 = o(σ4
Tn

) and O(n−8)P3 = o(σ4
Tn

) by going
through the similar procedure. This completes the proof of the lemma.
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6.3. Proof of Theorem 1.

Proof. We note equations (6.2) and (6.3) under conditions (3.4) and
(3.5) respectively. Based on Corollary 3.1 of Hall and Heyde (1980), Lemma

1, Lemma 2 and Lemma 3, it can be concluded that Tn1/σn1
d→ N(0, 1). This

implies the desired asymptotic normality of Tn under (3.4). Under (3.5), as
Tn2 is the sum of two independent averages, its asymptotic normality can be
attained by following the standard means. Hence the theorem is proved.

6.4. Proof of Theorem 2.

Proof. We only present the proof for the ratio consistency of ̂tr(Σ2
1) as

the proofs of the other two follow the same route. We want to show

(6.10) E{ ̂tr(Σ2
1)} = tr(Σ2

1){1 + o(1)} and V ar{ ̂tr(Σ2
1)} = o{tr2(Σ2

1)}.
For notation simplicity, we denote X1j as Xj and Σ1 as Σ, since we are
effectively in a one sample situation.

Note that

̂tr(Σ2)

= {n(n − 1)}−1tr[
n∑

j �=k

{
(Xj − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′

−2(X̄(j,k) − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′
}

+
n∑

j �=k

{
2(Xj − µ)µ′(Xk − µ)(Xk − µ)′ − 2(X̄(j,k) − µ)µ′(Xk − µ)(Xk − µ)′

}

+
n∑

j �=k

{
(X̄(j,k) − µ)(Xj − µ)′(X̄(j,k) − µ)(Xk − µ)′

}

−
n∑

j �=k

{
2(Xj − µ)µ′(X̄(j,k) − µ)(Xk − µ)′

−2(X̄(j,k) − µ)µ′(X̄(j,k) − µ)(Xk − µ)′
}

+
n∑

j �=k

{
(Xj − µ)µ′(Xk − µ)µ′ − 2(X̄(j,k) − µ)µ′(Xk − µ)µ′

}

+
n∑

j �=k

{
(X̄(j,k) − µ)µ′(X̄(j,k) − µ)µ′

}
]

=:
10∑

l=1

tr(Al), say.
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It is easy to show that E{tr(A1)} = tr(Σ2), E{tr(Ai)} = 0 for i = 2, · · · , 9
and E{tr(A10)} = µ′Σµ/(n − 2) = o{tr(Σ2)}. The last equation is based
on (3.4). This leads to the first part of (6.10). Since tr(A10) is non-negative
and E{tr(A10)} = o{tr(Σ2)}, we have tr(A10) = op{tr(Σ2)}. However, to
establish the orders of other terms, we need to derive V ar{tr(Ai)}. We shall
only show V ar{tr(A1)} here. Derivations for other V ar{tr(Ai)} are given
in Chen and Qin (2008).

Note that

V ar{tr(A1)} + tr2(Σ2)

=E[
1

n(n − 1)
tr

{ n∑

j �=k

(Xj − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′
}
]2

=
1

n2(n − 1)2
E[tr

{ n∑

j1 �=k1

(Xj1 − µ)(Xj1 − µ)′(Xk1
− µ)(Xk1

− µ)′
}

× tr
{ n∑

j2 �=k2

(Xj2 − µ)(Xj2 − µ)′(Xk2
− µ)(Xk2

− µ)′
}
].

It can be shown, by considering the possible combinations of the subscripts
j1, k1, j2 and k2, that

V ar{tr(A1)} = {n(n − 1)}−1E
{
(X1 − µ)′(X2 − µ)

}4
+

4(n − 2)

n(n − 1)
E

{
(X1 − µ)′Σ(X1 − µ)

}2
+ o{tr2(Σ2)}

=:
2

n(n − 1)
B11 +

4(n − 2)

n(n − 1)
B12 + o{tr2(Σ2)},(6.11)

where

B11 = E(Z ′
1Γ

′ΓZ2)
4 = E(

m∑

s,t=1

z1sνstz2t)
4

= E(
m∑

s1,s2,s3,s4,t1,t2,t3,t4=1

νs1t1νs2t2νs3t3νs4t4z1s1
z1s2

z1s3
z1s4

z2t1z2t2z2t3z2t4)

and

B12 = E(Z ′
1Γ

′ΓΓ′ΓZ1)
2 = E(

m∑

s,t=1

z1sustz1t)
2

= E(
m∑

s1,s2,t1,t2=1

us1t1us2t2z1s1
z1s2

z1t1z1t2).
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Here νst and ust are respectively the (s, t) element of Γ′Γ and Γ′ΣΓ.
Since tr2(Σ2) = (

∑m
s,t=1 ν2

st)
2 =

∑m
s1,s2,t1,t2=1 ν2

s1t1ν
2
s2t2 and tr(Σ4) =∑m

t1,t2=1 u2
t1t2 . It can be shown that A11 ≤ c tr2(Σ2) for a finite positive

number c and hence {n(n − 1)}−1B11 = o{tr2(Σ2)}. It may also be shown
that

B12 = 2
m∑

s,t=1

u2
st +

m∑

s,t=1

ussutt + ∆
m∑

s=1

u2
ss

= 2tr(Σ4) + tr2(Σ2) + ∆
m∑

s=1

u2
ss

≤ (2 + ∆)tr(Σ4) + tr2(Σ2).

Therefore, from (6.11)

V ar{tr(A1)} ≤ 2

n(n − 1)
ctr2(Σ2) +

4(n − 2)

n(n − 1)

{
(2 + ∆)tr(Σ4) + tr2(Σ2)

}

+
(n − 2)(n − 3)

n(n − 1)
tr2(Σ2) − tr2(Σ2)

= o{tr2(Σ2)}.

This completes the proof.
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Fig 1. Two sample tests for differentially expressed gene-sets between BCR/ABL and NEG
class ALL: Histograms of P-values (left panels) and Qn values (right panels) for BP, CC
and MF gene categories.
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Fig 2. Back-testing round 2 for differentially expressed gene-sets between two randomly
assigned BCR/ABL groups: Histograms of P-values (left panels) and Qn values (right
panels) for BP, CC and MF gene categories.
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Table 1. Empirical Power and Size for the 2-Dependence Model
with Gamma Innovation

Type of % of p = 500, n = 124 p = 1000, n = 138

Allocation True Null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% .511 .399 .13 .16 .521 .413 .11 .16
25% .521 .387 .14 .16 .518 .410 .12 .16
50% .513 .401 .13 .17 .531 .422 .12 .17
75% .522 .389 .13 .18 .530 .416 .11 .17
95% .501 .399 .14 .16 .500 .398 .13 .17
99% .499 .388 .13 .15 .507 .408 .15 .18
100%(size) .043 .043 .040 .041 .043 .042 .042 .042

Increasing 0% .520 .425 .11 .13 .522 .409 .12 .15
25% .515 .431 .12 .15 .523 .412 .14 .16
50% .512 .412 .13 .15 .528 .421 .15 .17
75% .522 .409 .15 .17 .531 .431 .16 .19
95% .488 .401 .14 .15 .500 .410 .15 .17
99% .501 .409 .15 .17 .511 .412 .15 .16
100%(size) .042 .041 .040 .041 .042 .040 .039 .041

Decreasing 0% .522 .395 .11 .15 .533 .406 .09 .15
25% .530 .389 .11 .15 .530 .422 .11 .17
50% .528 .401 .12 .17 .522 .432 .12 .17
75% .533 .399 .13 .18 .519 .421 .12 .17
95% .511 .410 .12 .15 .508 .411 .15 .18
99% .508 .407 .14 .15 .507 .418 .16 .17
100%(size) .041 .042 .041 .042 .042 .040 .040 .042
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Table 2. Empirical Power and Size for the Full-Dependence Model
with Gamma Innovation

Type of % of p = 500, n = 124 p = 1000, n = 138

Allocation True Null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% .322 .120 .08 .10 .402 .216 .09 .11
25% .318 .117 .08 .10 .400 .218 .08 .11
50% .316 .115 .09 .11 .409 .221 .09 .10
75% .307 .113 .10 .12 .410 .213 .09 .13
95% .233 .128 .11 .14 .308 .215 .10 .13
99% .225 .138 .12 .15 .316 .207 .11 .12
100%(size) .041 .041 .043 .043 .042 .042 .040 .041

Increasing 0% .331 .121 .09 .12 .430 .225 .10 .11
25% .336 .119 .10 .12 .423 .231 .12 .12
50% .329 .123 .12 .14 .422 .226 .13 .14
75% .330 .115 .12 .15 .431 .222 .14 .15
95% .219 .120 .12 .13 .311 .218 .14 .15
99% .228 .117 .13 .15 .315 .217 .15 .17
100%(size) .041 .040 .042 .043 .042 .042 .040 .042

Decreasing 0% .320 .117 .08 .11 .411 .213 .08 .10
25% .323 .119 .09 .11 .408 .210 .08 .11
50% .327 .120 .11 .12 .403 .208 .09 .10
75% .322 .122 .12 .12 .400 .211 .12 .13
95% .217 .109 .12 .15 .319 .207 .12 .15
99% .224 .111 .13 .16 .327 .205 .11 .13
100%(size) .042 .043 .039 .041 .042 .211 .040 .041
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Table 3. Empirical averages of ̂tr(Σ2)/tr(Σ2) with standard deviations in
the parentheses.

Type of Type of p = 500, n = 124

Innovation Dependence NEW BS tr(Σ2)

Normal 2-Dependence 1.03 (0.015) 1.39 (0.016) 3102
Full-Dependence 1.008 (0.00279) .1.17 (0.0032) 35911

Gamma 2-Dependence 1.03 (0.006) 1.10 (0.007) 14227
Full-Dependence 1.108 (0.0019) 1.248 (0.0017) 152248

p = 1000, n = 138

NEW BS tr(Σ2)

Normal 2-Dependence 0.986 (0.0138) 1.253 (0.0136) 6563
Full-Dependence 0.995 (0.0026) 1.072 (0.0033) 76563

Gamma 2-Dependence 1.048 (0.005) 1.138 (0.006) 32104
Full-Dependence 1.088 (0.00097) 1.231 (0.0013) 325879
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Table 4. Empirical Power and Size for the Sparse Model.

Sample ε=.25 ε=.15

Size c=.25 c=.45 c=.35 c=.55

(n1 = n2) Methods Power Size Power Size Power Size Power Size

10 FDR .084 .056 .180 .040 .044 .034 .066 .034
Bonf .084 .056 .170 .040 .044 .034 .062 .032
New .100 .046 .546 .056 .072 .064 .344 .064

20 FDR .380 .042 .855 .044 .096 .036 .326 .058
Bonf .368 .038 .806 .044 .092 .034 .308 .056
New .238 .052 .976 .042 .106 .052 .852 .046

30 FDR .864 .042 1 .060 .236 .048 .710 .038
Bonfe .842 .038 .996 .060 .232 .048 .660 .038
New .408 .050 .998 .058 .220 .054 .988 .042

Table 5. Average ratios of σ̂2
M/σ2

M and their Standard Deviation (in
parenthesis) for the Sparse Model

Sample True ε=.25 ε=.15

Size σ2

M
c=0.25 c=0.45 c=0.35 c=0.55

n1 = n2=10 84.4 1.003(.0123) 1.005 (.0116) .998 (.0120) .999(.0110)
n1 = n2=20 20.5 1.003(.0033) 1.000 (.0028) 1.003(.0028) 1.002(.0029)
n1 = n2=30 9.0 .996(.0013) .998(.0013) 1.004(.0014) .999(.0013)
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