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Abstract 

Despite ‘joy of giving models’ have been extensively examined in the literature, the 

Ramsey growth model has never been explored under the assumption of a direct 

preference for bequeathing savings that are reinvested. This assumption implies a 

Utility function depending on both consumption and savings, which may also be 

motivated as one that captures a direct preference for thriftiness or wealth 

accumulation arguably involved. The resulting growth model generalizes those 

accounting for the capitalist spirit as Zou (1994), and shows that the restrictive 

standard one is perhaps not the actual optimized version of the Solow model.  
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 “The difficulty lies not in the new ideas, but in escaping the old ones, which ramify, for those brought 

up as most of us have been, into every corner of our minds.”  

J.M.Keynes, New York 1987.  

1.Introduction 

It goes to our mind almost systematically, that the flow of saving should never be included in 

the Utility function along with consumption, to solve the inter-temporal maximization problem of 

the consumer. Two reasons can be stated precisely and may sound a bit obvious only at first 

glance. The first one which is to consider savings as having no intrinsic value for the individual, 

can arguably be contested in some cases. The second, a technical redundancy deduced from 

standard conceptions, can be shown to be misleading, especially in models of accumulation. The 

goal of this paper is to criticize the systematic neutrality of a Utility effect of savings in the 

literature, and to report the relevant implications in the Ramsey growth model where specifically, 

such neutrality is perhaps inappropriate. 

To contest the first reason for excluding savings from Utility in the Ramsey context, it might 

not be necessary to recall the capitalist spirit literature motivating that individuals derive direct 

Utility from wealth accumulation for the status; see for example Weber (1930), Zou (1994), 

Bakshi and Chen (1996), or Carroll (2000). Indeed, by introducing the saving flow in the Utility 

function, not only is the continual seek for a higher capital and status captured, but also a direct 

preference for thriftiness which could be involved if the individual worries about the necessity to 

renovate the depreciated capital, or to accumulate sufficient wealth for the growing household.1 

In life-cycle (LC) or overlapping generations (OLG) models, the neutrality of this direct 

preference for thriftiness or wealth accumulation is systematically constrained every period, such 

that the individual saves only to defer own consumption in the future when ‘profitable’. Because 

of this particularity, alternative models accounting for the bequest motive have been proposed in 

the literature. One type includes for example Barro (1974) or Laitner (1992), where successive 

generations working for only one period value the level of Utility of their children. Another 

consists in “joy of giving models” like for example Andreoni (1990), or more recently Dynan, 

Skinner and Zeldes (2002), where individuals gain satisfaction from bequeathing a part their 

 

1
 This idea can be related to the modern literature of anticipatory feelings, like for example Kuznitz, Kandel and Fos (2008). The individual is 

supposed conscious and can be affected in the present by future situations, even under a deterministic context. In our case, the thrifty individual 

obtains ‘comfort’ when retaining a part of income, by avoiding anxiety. 



lifetime income to the children. Although the second type has been extensively examined in the 

literature, the altruistic Ramsey model has never been explored under the assumption of a direct 

preference for bequeathing savings that are reinvested. It could be supposed for example, that 

each generation working at period t cares about saving for renovating or increasing the capital left 

to the children at t+1, before retiring or eventually dying. From this conceptual viewpoint, a 

direct preference for saving finds a very strong motivation in that framework, aside from a 

plausible preference for thriftiness or wealth accumulation. 

Technically, it may have seemed redundant at first glance to introduce explicitly this preference 

in the model, because the time preference rate already measures the relative preference for 

current consumption, and the dynamics is already such that savings and accumulation occur when 

the interest rate exceeds this time preference rate. However, the time discounter is precisely 

defined by Samuelson (1937) as a degree of impatience that reflects the relative preference for 

current well-being2, and the standard dynamics is specific to the lifetime utility function which 

corresponds by construction to one of a LC model in an infinite-horizon case. Assuming a direct 

preference for saving or accumulating generates a more general dynamics, which also extends 

those of models accounting for the capitalist spirit as Zou (1994). Furthermore, it allows to 

recover logically the basic static properties of the exogenous Solow version. 

Similarly to growth models involving absolute wealth in Utility as Zou (1994), or relative 

wealth as Corneo and Jeanne (2001), the presented model allows to invest more than in the 

standard version by modulating the preference for wealth accumulation. This property is known 

as a plausible way to contrast with the contested lower boundary condition and convergence 

theorem of the traditional theory. It implies for instance that necessary and sufficient conditions 

required to meet the golden rule of accumulation can be specified. Another similarity that might 

also be important to report, is that the effect of the natural growth rate of workers on the steady-

state level of capital per capita appears confirmed. Those common results could eventually be 

interpreted as two steps already made towards a reconciliation with Solow’s static properties of 

the steady-state.  

In contrast with this previous literature however, the proposed preference function generates a 

slower transition, and offers the possibility to reach also lower steady-state levels of capital per 

 

2
 The love of wealth for its own sake (comfort, status, etc.) is independent from the degree of impatience. Precisely, given Utility depends now 

on total income, the time discounter could eventually reflect the relative preference for current income. 



capita than in the standard model by investing less. Aside from allowing to recover a total 

coherence with the basic exogenous version, this second property might complement 

explanations of cross-country differences, and for instance, reconcile more empirical growth facts 

of developing countries with optimal growth theory. 

The proposed Ramsey model is not presented as an augmented version of the standard one 

only, or as a generalization of capitalist spirit growth models, but as being perhaps an appropriate 

formulation that could have been missed because of an eventual misunderstanding of the 

preference for saving. Given such properties of the results indeed, nothing really precludes the 

possibility that the standard model assumes an unsuitable Utility function to optimize the Solow 

version. Precisely, it could for example be necessary to clarify first the goal of the individual in 

the exogenous model, before deciding which preferences would be more appropriate. Does this 

individual want to consume or to accumulate wealth, when choosing a constant saving rate 𝑠 ∈(0,1)? If the answer is ‘both’, which of those two alternatives is most preferred by this ‘saver’?  

The remainder is organized as follows. Section 2 presents conditions under which it might be 

relevant to introduce savings in Utility. Section 3 shows that applying this type of preferences in 

the Ramsey model appears to generate more consistent results than in the standard case. Section 4 

concentrates on a discussion of the transition through a comparative analysis, and Section 5 

concludes. 

2. A Further Formulation of Preferences 

It is highly important to justify in details why individuals could derive direct Utility from 

saving. The first section presents what is meant by a direct preference for thriftiness and wealth 

accumulation. The second concerns ‘joy of bequeathing’. 

A. Preference for Thriftiness and Wealth 

According to its generic definition, the concept of Utility which measures satisfaction or 

welfare is of course not limited to consumption and leisure; examples in the literature are indeed 

gifts, cash-holding or wealth. As soon as a particular individual endowed of personal preferences 

gains satisfaction from actions decided among a set of alternatives, then such actions could 

eventually be arguments of a Utility function of this individual. For example, an individual could 

be endowed of intrinsic preferences for consuming and saving. The question about why this 



individual appreciates to be thrifty, is out of the microeconomic field and relies completely on 

personal reasons it takes as given. Perhaps, it is not necessarily a Utility function including a 

saving effect that needs to be justified, but eventually the assumption that all individuals can 

never feel (instantaneously) better by saving instead of consuming; one evidence that indeed 

contradicts this assumption is at least miserliness (under an extreme case.) 

More particularly, some reasons could be exposed to defend the relevance of controlling a 

saving (or investment) utility effect in neoclassical growth models. 

The conceptual logic of the Solow model is to involve a thrifty agent who saves each time a 

part of income to accumulate or renovate capital in the long run. It could be plausible to consider 

that saving (or investing) causes this individual to feel immediately better because, (i) it removes 

bad anticipatory feelings like anxiety or sadness if future wealth appears insufficient for some 

reasons (welfare of children, renovation of capital, job loss, illness, retirement, bequests, etc.); (ii) 

enhancing wealth is a way to achieve a higher social status, as argued for example by Weber 

(1930) who defines this desire as the spirit of capitalism.  

In real life indeed, reasons why individuals decide to save or invest are not necessarily 

economic. Admittedly, some of the reasons are either psychological or sociological. It may not be 

surprising therefore if the traditional theory involving an agent who derives Utility from the act of 

consuming only, appears limited when applied to real data. For instance, Kenneth Arrow also 

said in 1988: 

 

“The dominant paradigm was that people essentially saved to spend in their lifetime. 

But today the evidence seems to be accumulating that this hypothesis is not true, and 

everybody seems to agree that you cannot explain savings solely on a life cycle basis 

[…] So to conclude, I think that the key thing when it comes to the relationship between 

economics and sociology is the willingness to look at new kinds of data, like in savings. I 

think that once you do that, you are automatically going to be forced to consider social 

elements. Just ask different questions, and I think you are going to be forced into 

considering and drawing upon sociology.”  

(Stanford University, April 1988). 

 

Many research works in various fields of the literature have incorporated factors affecting 

saving decisions or wealth accumulation in preference functions; for example, uncertainty, 



bequests, gifts, and more recently, social status and anticipatory feelings. Notable works follow 

respectively Yaari (1965), Barro (1974), Andreoni (1990), Zou (1994), and Kuznitz, Kandel and 

Fos (2008). 

In the neoclassical growth framework, a direct preference for the stock of capital has been 

introduced by Zou (1994) to formalize the spirit of capitalism of Max Weber3, and proved to be 

relevant for the explanation of several empirical growth facts. In contrast, Corneo and Jeanne 

(2001) have proposed to account for the relative amount of wealth instead, by suggesting that 

individuals care about their relative position in a society. In the presented paper, an alternative 

way to formalize the continual seek for a higher status is proposed through a saving (or 

investment) effect in the flow of Utility, meaning that individuals value the growing of wealth (or 

capital) each time, rather than the absolute or relative stock itself.  

Aside from the status motive or anticipatory feelings, earlier literatures have already considered 

the possibility for individuals to derive Utility from gifts or bequests. It might be worth 

discussing implications of ways to characterize the intergenerational altruism in the Ramsey 

growth model. 

B. Joy of Bequeathing 

Traditional inter-temporal maximization problems of the consumer might be separated into two 

major categories. The first one includes LC or OLG models as developed by Modigliani and 

Brumberg (1954), Modigliani (1986), Diamond (1965), etc. The second is constituted of altruistic 

or inter-dependent generations’ models as in Barro (1974), Laitner (1992), Yaari (1965), etc. 

In the first case, each generation derives utility only from own lifetime consumption and 

dissaves, or ‘plans’ to dissave, entirely during retirement. The second case mainly includes 

models where life-cycle utility can also, either be affected by the welfare of children, or by the 

act of giving or bequeathing (which gave the name of ‘joy-of-giving’ or ‘warm glow’ to this 

literature). 

Recall now the conceptual approach of the altruistic Utility proposed by Barro (1974) that 

serves as a basis to the standard Ramsey model. Assuming each generation lives for only two 

periods, utility of individuals born at time t is expressed as: 

 

3
 More precisely, Zou (1994) recalls a specification introduced initially by Kurz (1968), and motivates strongly its relevance. The love of 

wealth for its own sake is explained by the notoriety, power, and influence it procures. 



(1)   𝑉𝑡 = 𝑈𝑡 + 𝛾𝑉𝑡+1, 

 

where 𝑉𝑡 denotes total Utility of parents, 𝑈𝑡 is the Utility from life-cycle consumption (of both 

periods), 𝑉𝑡+1 is the total Utility of children, and 𝛾 is the discounting factor that measures the 

degree of altruism. Substituting recursively all Utilities up to generation T, gives the following 

dynastic function: 

 (2)  𝑉𝑡 = ∑ 𝛾𝑗−𝑡𝑇−1𝑗=𝑡 𝑈𝑡 + 𝛾𝑇−𝑡𝑉𝑇, 

 

where the term 𝛾𝑇−𝑡𝑉𝑇 vanishes as T tends to infinity. In other words, the resulting specification 

simplifies by construction to one of a LC model in the infinite horizon case. Under this 

assumption, the optimal rule which governs saving decisions is such that individuals save to defer 

consumption only when profitable; ie. only when interest opportunities are more valuable than 

current consumption. In the standard Ramsey model particularly, properties of the production 

technology are such that the agent finds optimal to save and to accumulate up to an equilibrium 

level when starting from below, and to disaccumulate when departing from above. Recalling that 

the time discounting factor is technically bounded downward by the natural growth rate in that 

framework, the inevitable consequence is that the household is ‘condemned to poverty’ if 

marginal productivity of capital, as the unique driving force of the accumulation process, happens 

unfortunately to be low. Many research works in endogenous growth theory have tried to escape 

this constraining rule or ‘lower boundary condition’ by assuming different production 

technologies, but as suggested by Zou (1994), it seems reasonable to revise preferences as well, 

and to admit that individuals could still decide to invest more and grow under such unfavorable 

conditions.  

An alternative conceptual approach to the lifetime Utility of an altruistic household, is one 

which separates Utility from giving, and Utility from the well-being of children which depends 

on their own total income at time t+1. For instance, the previous Utility of a generation born at 

time t could be expressed as: 

(3)  𝑉𝑡 = 𝑈𝑡(𝑐𝑡 , 𝑠𝑡) + 𝛾𝑉𝑡+1, 

 



where 𝑐𝑡 is consumption and 𝑠𝑡 is the bequest. This intergenerational ‘transfer’ of income might 

be a convenient way to measure the degree of altruism in the Ramsey framework, alternatively to 

the time discounting factor only. In that case, the bequest reflects the desire to renovate or to 

increase the capital stock left to the children at time t+1, before retiring or eventually dying. 

Interestingly, this idea may apply to various examples in real life. Aside from business or private 

concerns indeed, the natural environment could also be assimilated as a productive capital for 

which (insufficient) investments and efforts are made today, in order to preserve it for the 

children and future generations. 

3. A Further Formulation of the Ramsey Growth Model 

The first section presents the model which involves an interesting application of the 

Pontryagin’s Maximum Principle. The second discusses the steady-state and Golden Rule. 

A. The Optimal Control Program 

At time t, a representative generation composed of L workers cares about consuming and 

reinvesting a part of income produced. The instantaneous preference function is defined by 𝑈𝑡(𝑐𝑡, 𝑠𝑡), where 𝑐𝑡 denotes per capita consumption at t, 𝑠𝑡 denotes per capita savings (or 

bequests), and 𝜃 ∈ (0,1) is a proportion which measures the degree of preference for 

consumption over savings. The budget constraint of this representative agent is given by 𝑐𝑡 +𝑠𝑡 = 𝑦𝑡, where 𝑦𝑡 denotes income per worker. The production function is supposed of the Cobb-

Douglas form with constant returns to scale, such that 𝑦𝑡 = 𝑓(𝑘𝑡) = 𝑘𝑡𝛼, where 𝑘𝑡 denotes capital 

per worker, and 𝛼 ∈ (0,1). The dynastic Utility function (after substitution of 𝑠𝑡) is denoted by 𝑉{𝑐𝑡, 𝑘𝑡}. It is maximized over an infinite horizon subject to a dynamic constraint of capital 

accumulation (by the social planner): 

(4)  Max𝑐𝑡  𝑉{𝑐𝑡 , 𝑘𝑡} = ∫ 𝑈𝑡(𝑐𝑡, 𝑘𝑡) 𝑒(𝑛−𝛽)𝑡𝑑𝑡∞𝑡0 , 

(5)  s.t.       �̇�𝑡 = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡, 

 



where 𝑛 is the natural growth rate of workers, 𝛽 is the usual degree of impatience and 𝛿 is the 

rate of depreciation of capital. We impose the usual restriction 𝛽 > 𝑛 to ensure a feasible interior 

solution to the problem.  

Some interesting steps of the resolution are worth presenting. For the sake of concreteness, we 

assume a Cobb-Douglas Utility function 𝑈𝑡(𝑐𝑡, 𝑠𝑡) = 𝑐𝑡𝜃𝑠𝑡1−𝜃 and its log-transformation 𝑈𝑡(𝑐𝑡, 𝑠𝑡) = 𝜃ln(𝑐𝑡) + (1 − 𝜃)ln(𝑠𝑡).  

Considering the first specification for example, the Hamiltonian is given by: 

(6)  𝐻𝑡(𝑐𝑡, 𝑠𝑡) = 𝑐𝑡𝜃[𝑓(𝑘𝑡) − 𝑐𝑡]1−𝜃𝑒(𝑛−𝛽)𝑡 + 𝜆𝑡𝑒(𝑛−𝛽)𝑡[𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡], 
 

Following the Pontryagin’s Maximum principle, the first order condition implies 𝜕𝑈𝑡 𝜕𝑐𝑡 =⁄ 𝑈𝑐𝑡 = 𝜆𝑡, which means that the static maximization of 𝐻𝑡 is satisfied under the 

following conditions: 

  𝑐𝑡 = 𝜃𝑓(𝑘𝑡)               𝑖𝑓   𝜆𝑡 = 0 

 𝑐𝑡  ∈  [0; 𝜃𝑓(𝑘𝑡)[     𝑖𝑓   𝜆𝑡 > 0 

 

The Pontryagin’s method requires to substitute a maximizing condition in the expressions that 

serve to derive the dynamic equation of the control. In our case, the homothetic property of the 

instantaneous Utility function allows us to define a convenient maximizing condition by letting 𝑎 ∈ (0,1) such that4: 

 𝜆𝑡 = (𝑐𝑡𝑠𝑡)𝜃 (1−𝑎𝑎 ) ≥ 0   and   𝑐𝑡𝑠𝑡 = 𝑎𝜃1−𝑎𝜃 

 

Letting 𝑓𝑘 = 𝜕𝑓(𝑘𝑡)𝜕𝑘𝑡 , the second condition implies: 

(7)  (1 − 𝜃)𝑐𝑡𝜃𝑠𝑡−𝜃𝑓𝑘 + 𝜆𝑡(𝑓𝑘 − 𝛽 − 𝛿) = −�̇�𝑡, 

 

4An excellent reference explaining substitutions of Pontryagin’s maximizers is H.Schättler and U.Ledzewicz (2012), p.96. Technical details 

about this condition are exposed in Appendix (Figure A1 illustrates this condition) 



A standard resolution that involves the substitution of equation (5) and static equilibrium values 

of the co-state and ratio defined above, leads to the dynamic equation of consumption 𝑐�̇�(𝑐𝑡, 𝑘𝑡 , 𝑎). To simplify notations, we will omit the arguments. 

The resulting differential system is: 

(8)  �̇�𝑡 = 1−𝑎𝜃1−𝜃 [(2 − 𝑎𝜃 − 𝜃)𝑓𝑘 − (1 − 𝑎)(𝛿 + 𝛽)]𝑐𝑡 − 𝑎𝜃(𝑛 + 𝛿)𝑓𝑘𝑘𝑡, 
                �̇�𝑡 = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡. 

 

In clear, there can be multiple dynamical systems depending on the value of 𝑎 ∈ (0,1), which 

satisfy the first necessary conditions. This means that among all admissible values of 𝑎, or 𝜆𝑡 as 

explained by Schättler and Ledzewicz (2012), it remains to determine which one(s) maximize(s) 𝑉𝑡{𝑐𝑡∗, 𝑘𝑡∗}. In that sense, we may now define 𝑎 as being a choice parameter associated to a set of 

controlled trajectories, and 𝑎∗ as being the rational choice associated to the optimal one which 

maximizes total welfare. 

Contrary to the differential equation of consumption (8), the one of the log-transformed Utility 

can admit the value of 𝜃 = 1, in which case it simplifies to the standard Ramsey equation. Its 

expression is given by: 

(9)  
𝑐�̇�𝑐𝑡 = 1−𝑎𝜃1+𝑎𝜃(𝑎−2) [2𝑎(1 − 𝜃)𝑓𝑘 + (1 − 𝑎)(𝑓𝑘 − 𝛽 − 𝛿)] − 𝑎(1−𝜃)1+𝑎𝜃(𝑎−2) (𝑛 + 𝛿)𝛼, 

 

The graphical resolution of the dynamical systems shows that for any 𝑎 ∈ (0,1), there exists a 

unique saddle path in each case leading to a steady state equilibrium denoted by {𝑐𝑇∗ (𝑎), 𝑘𝑇∗ (𝑎)}. 
The phase diagram corresponding to the multiplicative Cobb Douglas case (figure 1), shows that 

the parameter a affects only the convexity of the ‘𝑐�̇� = 0 locus’5. The level of consumption 

increases to the left of this locus, and decreases to the right. For the case of the log-Utility (figure 

2), the phase diagram is identical to the standard one except that the vertical ‘𝑐�̇� = 0 locus’ 

depends now on the parameter 𝑎. 

 

 

5
 It can indeed be shown that the second derivative of the ‘𝑐�̇� = 0 locus’ with respect to 𝑘𝑡 is strictly positive for 𝑎 < 1, and tends to zero 

when 𝑎 tends to 1. 



 

 

Figure 1. Phase Diagram for the Multiplicative Cobb-Douglas Case 

 

 

        

Figure 2. Phase Diagram for the Additive Cobb-Douglas Case 
 

 

Let {𝑐𝑡∗(𝑎), 𝑘𝑡∗(𝑎)} denote any equilibrium (or saddle path) solution that leads to the steady-state 

at 𝑡 = 𝑇. It can easily be noticed that the transversality condition lim𝑡→∞ 𝜆𝑡(𝑎)𝑘𝑡∗(𝑎)𝑒(𝑛−𝛽)𝑡 = 0, is 

fulfilled at equilibrium if 𝛽 > 𝑛 because: 

  lim𝑡→∞ 𝜆𝑡(𝑎) = 𝑈𝑐𝑇∗ (𝑎),  from the first necessary condition, 

 lim𝑡→∞ 𝑘𝑡∗(𝑎)𝑒(𝑛−𝛽)𝑡 = 𝑘𝑇∗ (𝑎). lim𝑡→∞ 𝑒(𝑛−𝛽)𝑡 = 0,   if  𝛽 > 𝑛. 
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Let the control set be defined by: 

  𝑍 = {𝑐𝑡∗(𝑎) ∈ ℝ++ / 𝑐𝑡∗(𝑎) <  𝑦𝑡∗(𝑎) ∀ 𝑎 ∈ (0,1)}, 
 

such that total welfare 𝑉𝑡{𝑐𝑡∗(𝑎), 𝑘𝑡∗(𝑎)} is restricted to the set of real numbers. We can now 

proceed to a formal definition of a feasible optimal solution to the problem. 

 

PROPERTY 1: An admissible controlled trajectory {𝑐𝑡∗(𝑎∗), 𝑘𝑡∗(𝑎∗)} satisfying the necessary 

Pontryagin’s conditions ∀ 𝑎∗ ∈ (0,1), 𝑐𝑡∗(𝑎∗) ∈ 𝑍 and 𝑘𝑡∗(𝑎∗) ∈ ℝ++, is an optimal controlled 

trajectory if and only if 𝑉𝑡{𝑐𝑡∗(𝑎), 𝑘𝑡∗(𝑎)} ≤ 𝑉𝑡{𝑐𝑡∗(𝑎∗), 𝑘𝑡∗(𝑎∗)} ∀ 𝑎 ∈ (0,1) / 𝑎 ≠ 𝑎∗, 𝑐𝑡∗(𝑎) ∈𝑍, 𝑘𝑡∗(𝑎) ∈ ℝ++. 

 

An important result to keep in mind, is that the rational choice of the optimal trajectory is 

determinant for the terminal steady-state {𝑐𝑇∗ (𝑎∗), 𝑘𝑇∗ (𝑎∗)} reached in the long run. 

B. Steady-states and Golden Rule 

Contrary to the multiplicative Cobb Douglas Utility function, the log form allows to derive a 

steady-state solution analytically, which is: 

(10)  𝑘𝑇∗ (𝑎) = [ (1−𝑎𝜃)(1−2𝑎𝜃+𝑎)𝛼𝑎(1−𝜃)(𝑛+𝛿)𝛼+(1−𝑎𝜃)(1−𝑎)(𝛽+𝛿)] 1(1−𝛼)
. 

 

For any non-corner point (𝜃, 𝑎) ∈ (0,1) × (0,1), the steady-state level of capital (or income) per 

worker is a decreasing function of the natural growth rate. Hence, as soon as individuals are 

assumed to gain some Utility from accumulating or saving, the negative impact of population 

growth known from the basic exogenous Solow model is recovered. 

There might be two reasons why this result should actually be defended. First, it seems 

reasonable to expect that an optimized version of the Solow model, which goal focuses only on 

producing an endogenous saving or investment rate along the transition, should preferably 

preserve plausible static properties of the steady-state equilibrium. 



Second, it is well known that ‘wealth-dilution’ is one effect of population growth that has been 

widely admitted and confirmed empirically; for example, Mankiw, Romer and Weil (1992) might 

be one of the most influential contribution in that sense. It seems therefore counterfactual to 

admit that the negative impact of high fertility is entirely compensated by an increase in the 

investment-output ratio, as predicted by the standard Ramsey model.  

Another important static property that plays a crucial role for the dynamics is the one of the 

golden rule from Phelps (1961). The Ramsey growth model, as it is used in most macroeconomic 

studies, is characterized by a steady-state level of capital per worker that remains always lower 

than the consumption maximizing level (and hence, than the over-accumulation one as well). As 

explained previously, this constitutes one of the reasons why alternative capitalist spirit models 

have been proposed in the literature, following for example Zou (1994) and Corneo and Jeanne 

(2001). Before presenting necessary and sufficient conditions for a golden rule steady-state, it 

may be preferable to present first a more general property that concerns any ‘terminal’ or 

constrained steady-state. 

 

PROPERTY 2: Among all feasible controlled trajectories {𝑐𝑡∗(𝜃, 𝑎), 𝑘𝑡∗(𝜃, 𝑎)}  ∈ 𝑍 × ℝ++, 

converging to a particular steady-state solution { 𝑐𝑇∗  ̅̅ ̅̅  , 𝑘𝑇∗̅̅̅̅  }, there exists a preference-choice 

couple (𝜃∗, 𝑎∗) ∈ (0,1) × (0,1) compatible with an optimizing behavior; ie. which satisfies: 𝑉𝑡{𝑐𝑡∗(𝜃, 𝑎), 𝑘𝑡∗(𝜃, 𝑎)} ≤ 𝑉𝑡{𝑐𝑡∗(𝜃∗, 𝑎∗), 𝑘𝑡∗(𝜃∗, 𝑎∗)}, ∀ (𝜃, 𝑎) ∈ (0,1) × (0,1)  /  (𝜃, 𝑎) ≠ (𝜃∗, 𝑎∗) 

 

This property resulting directly from the resolution might be viewed as a reciprocal of the first 

one. Indeed, a steady-state dynamics is an optimal controlled trajectory as soon as there is no 

other ways to reach the same dynamics with a higher total welfare. Suppose for example that the 

constrained terminal state corresponds to the solution of the Solow model: 

  𝑘𝑇∗̅̅̅̅ = ( 𝑠𝑇∗̅̅ ̅𝑛+𝛿) 11−𝛼     where    𝑓𝑘𝑇∗̅̅ ̅̅ = (𝑛+𝛿)𝛼𝑠𝑇∗̅̅ ̅    and   𝑠𝑇∗̅̅ ̅ ∈ (0,1) 

 

The determination of 𝜃 a posteriori for a given 𝑠𝑇∗̅̅ ̅, requires to solve a quadratic equation in 𝜃, 

which implies two admissible sets (𝜃𝑖, 𝑎𝑖), ∀ i=1,2. In some cases, restrictions imposed allow to 

eliminate one of the sets entirely, so that a unique underlying combination of parameters (𝜃𝑖∗, 𝑎𝑖∗) 

that maximizes total welfare can be identified; it is for example the case for relatively high or low 



steady-states. Under cases where both sets offer potential candidates however, the terminal state 

assumed can possibly be generated by two different optimal trajectories (or two different rational 

behaviors). In such a multiple equilibrium context, the goodness of fit to real data may lastly 

decide. 

The golden rule steady-state which maximizes consumption is reached if 𝑠𝑇∗̅̅ ̅ = 𝛼. For the 

multiplicative Cobb-Douglas form, the following condition must hold: 

(11)  [1 + 1−𝜃(1−𝑎𝜃)𝑋 𝑎𝜃(𝑛 + 𝛿)]−1 = 𝛼, 

where  𝑋 = (2 − 𝑎𝜃 − 𝜃)(𝑛 + 𝛿) − (1 − 𝑎)(𝛿 + 𝛽), and for the log-Utility case, 

(12)  
1−𝑎𝜃𝑎(1−𝜃) [1 + 𝑎(1 − 2𝜃) − (1 − 𝑎) 𝛽+𝛿𝑛+𝛿] = 𝛼. 

4. Numerical Analysis of the Dynamics 

This section presents results of numerical simulations. The analysis focuses on the additive log 

Utility function with no loss of generality concerning the Cobb Douglas form. Following the first 

property, the first part analyzes the dynamics of the optimal path. The second addresses the 

question of recovering this path starting from a given steady-state. It also compares the dynamics 

with those of standard growth models and the one proposed by Zou (1994). 

A. General Properties of the Dynamics 

The question that comes first is to know how total welfare changes with respect to the 

parameter a, which has been defined previously as reflecting the choice of an admissible 

trajectory made by the individual. The next interesting step is to understand how the variables 

behave along the optimal path6. 

Numerical simulations show that for a preference parameter 𝜃 that tends to one, the optimal 

value of 𝑎 decreases and the maximum total welfare tends to stabilize for 𝑎 < 𝑎∗. In figure 3 for 

example, when 𝜃 = 0.95, the maximum total welfare attains 𝑉∗ = 241.62 at 𝑎∗ = 0.71, and 

remains almost constant for 𝑎 ≤ 0.71 (precisely, it decreases slowly until 𝑉 = 241.36 at 𝑎 =
 

6
 Numerical computations of saddle paths are made according to the shooting method. A solution 𝑎∗ is considered sufficiently accurate if in its 

neighborhood, changes in total welfare become relatively negligible. In this part, parameters kept constant are assigned the following values: 𝛼 =0.3, 𝛽 = 0.02, 𝑛 = 0, 𝛿 = 0.05, 𝑘0 = 1. For convenience, total welfare is calculated with re-scaled variables (𝑐𝑡 and 𝑠𝑡 are both multiplied by 

100). 



0.01). As 𝜃 decreases, the value of 𝑎∗ increases but at a much lower rate; for instance 𝑎∗ = 0.76 

when 𝜃 = 0.85 and 𝑎∗ = 0.78 when 𝜃 = 0.2. This figure shows also that the choice of the right 

equilibrium co-state (or value of a) matters much more for lower values of 𝜃. For example, the 

size of the welfare gain from an admissible path to the optimal one can exceed 26% in the case 

where 𝜃 = 0.2. 

 

 

Figure 3. Total Welfare by Admissible Path 

 

 

Figure 4. Steady-state Per Capita Capital by Admissible Path 

 

Another result that figure 3 illustrates, is that individuals with different degrees of preference 

for saving (or bequeathing) face different levels of total welfare. When 𝜃 remains relatively high, 

total welfare is lower than in the standard case where individuals value consumption only. As 𝜃 
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decreases below a certain cutoff value, total welfare tends to increase back until reaching higher 

values than in the standard model. Besides the fact that the steady-state saving rate for such 

values of 𝜃 seems unreasonable, as indicated by figure 6, this parameter describing fixed 

preferences is conceptually not to be ‘selected’ so that total welfare or even consumption is 

maximized7. 

In figure 4, it is interesting to notice that accounting for supplementary (social) motives for 

saving, does not always mean a higher steady-state capital per capita than in the standard model. 

For values of 𝜃 that are close to one (0.95 in our example), there are some admissible trajectories 

(for high values of a) which lead to lower steady-state capital per capita than in the standard case. 

This interesting remark will be developed later. 

Concerning transitions towards higher-steady-states, figure 5 shows that (unconstrained) 

optimal trajectories exhibit a faster growth when preferences for saving for social reasons become 

more intense. Interestingly, although the speed of growth increases with such intense preferences, 

thrifty individuals appear less sensitive to variations of the interest rate compared to those who 

care about consumption only. For instance, figure 6 shows that the magnitude of the variation of 

the saving rate along the optimal path increases with 𝜃. 

 

 

Figure 5. Equilibrium Path of Capital Per Capita 

 

 

 

 

7
 The golden rule of capital accumulation is indeed not necessarily what individuals prefer. 

0

10

20

30

40

50

60

0 50 100 150 200 250 300



 

 

 

Figure 6. Equilibrium Path of the Saving Rate 

 

B. Dynamics in Constrained Optimization Cases 

Suppose for example that individuals are endowed of preferences for consuming and 

bequeathing such that future generations benefit from the golden rule steady-state at time T, 

where consumption is maximized. 

It is well known that for this steady-state to be possible under the standard altruistic case, the 

flow of Utility must be augmented to include a direct preference for wealth (or status) as for 

example in Zou (1994). A general specification widespread in this literature is: 

(13)  𝑊{𝑐𝑡 , 𝑘𝑡} = ∫ [𝑢𝑡(𝑐𝑡) + 𝑣𝑡(𝑘𝑡)] 𝑒(𝑛−𝛽)𝑡𝑑𝑡∞𝑡0 , 

 

where 𝑣𝑡(𝑘𝑡) represents the part of utility derived from the capital stock, with 𝑣𝑘 > 0 and 𝑣𝑘𝑘 < 0. 

Preserving same notations as in the presented paper, the resolution of the program under this 

assumption leads to the following rule: 

(14)  𝑓𝑘𝑇 = 𝛿 + 𝛽 − 𝑣𝑘𝑢𝑐, 
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Hence, given the ratio 
𝑣𝑘 𝑢𝑐⁄   is always positive, the steady-state capital per capita in such models 

will always be greater than in the standard one. The alternative Utility function proposed in this 

paper generates a more general version of the neoclassical growth model by contrasting this 

result. 

For a convenient comparative analysis, suppose the flow of Utility of the capitalist spirit model 

of Zou (1994) is given by: 

(15) 𝑢𝑡(𝑐𝑡) + 𝑣𝑡(𝑘𝑡) = 𝑙𝑛(𝑐𝑡) + 𝛾𝑙𝑛(𝑘𝑡), where   𝛾 ∈ [0, ∞). 

 

For 𝑛 = 0, it can be shown that the steady-state capital per capita is given by: 

(16) 𝑘𝑇 = ( 𝛼+𝛾(𝛾+1)𝛿+𝛽) 11−𝛼
, 

 

and is increasing in γ. The value of this parameter can be easily deduced such as to meet the 

golden rule steady-state. 

 

 

 

Figure 7. Equilibrium Path of Capital per Capita 

Notes: Common parameters in each model are assigned the following values:𝛼 = 0.3, 𝛽 = 0.02, 𝑛 = 0, 𝛿 = 0.05, 𝑘0 = 1. The 

steady-state saving rate associated to the golden rule is therefore 0.3. In the presented model, the optimal pair (𝜃, 𝑎∗) is deduced 

accordingly and equals (0.901,0.85) and in the model of Zou (1994), 𝛾 = 0.171. The standard Ramsey results have been included 

in each figure to compare the dynamics; the steady-state level of the saving rate �̂�𝑇∗  equals 0.21 in that model. 
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Figure 8. Equilibrium Path of the Saving Rate 

Notes: Common parameters in each model are assigned the following values:𝛼 = 0.3, 𝛽 = 0.02, 𝑛 = 0, 𝛿 = 0.05, 𝑘0 = 1. The 

steady-state saving rate associated to the golden rule is therefore 0.3 

 

The slowest transition towards the golden rule steady-state in figure 7 and 8, is unsurprisingly 

the Solow one where individuals do not benefit from highest returns initially. In all other cases, 

an optimal decision implies a faster speed of growth which differs depending on the type of 

preferences assumed. It appears clearly that the model of Zou (1994) generates the faster 

transition. In other words, the stock of capital in the Utility function, compared to the 

unconsumed part of income, affects more intensively the willingness to accumulate. 

Clearly, it is not possible a priori, or theoretically, to determine which one of those augmented 

versions of the Ramsey model ensures a superior fit to empirical data. However, every common 

parameters equal, the proposed model offers the possibility to adjust a slower dynamics towards 

the same steady-state. 

An additional particularity of the proposed model shown by figure 4, is to allow for some 

admissible controlled trajectories towards lower steady-states as well. Departing from the 

standard model, this figure indicates that the steady-state level of capital per capita increases with 

the degree of preference for saving (1 − 𝜃) and with the choice parameter 𝑎, except for few cases 

where (1 − 𝜃) is relatively low. Figures 9 and 10 present an example of transition towards a 

lower steady-state. For a ‘terminal’ saving rate �̂�𝑇∗  of 0.15 (versus 0.21 in the standard model), 

two different optimal trajectories are possible. In both cases, the speed of growth remains 

logically greater than in the Solow model. For the case where the value of 𝜃 is higher, the 

corresponding value of ‘𝑎’ leading to the specified steady-state with the maximum welfare is also 
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higher and very close to one. Interestingly, the difference between the values of 𝑎 in each case is 

such that the trajectory of the individual endowed of the higher preference for consumption 𝜃, 

appears faster than the one who values wealth accumulation more intensively. In that case, the 

thriftiest individual is again less sensitive to variations of capital returns. 

 

 

Figure 9. Equilibrium Path of Capital Per Capita 

Notes: Common parameters in each model are assigned the following values:𝛼 = 0.3, 𝛽 = 0.02, 𝑛 = 0, 𝛿 = 0.05, 𝑘0 = 1. The 

steady-state saving rate in the Solow model and in the presented one equals 0.15. Two solutions (𝜃𝑖 , 𝑎𝑖∗) are compatible with an 

optimizing behavior towards this steady-state, (0.999,0.99) and (0.962,0.97). The standard Ramsey results are reported for 

comparisons (in this model, �̂�𝑇∗ = 0.21). 

 

 

 

Figure 10. Equilibrium Path of the Saving Rate 

Notes: Common parameters in each model are assigned the follow values:𝛼 = 0.3, 𝛽 = 0.02, 𝑛 = 0, 𝛿 = 0.05, 𝑘0 = 1. The 

steady-state saving rate in the Solow model and in the presented one equals 0.15  
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The constrained optimization case should perhaps not be interpreted as one where the 

representative household targets the terminal steady-state to reach. Instead, it should simply be 

considered as a convenient way to recover the utility function under the assumption of rationality 

from the observed empirical data. It might eventually be more useful in cases of relatively low 

steady-states like in developing countries, where households can be exposed to constraints 

regarding their saving or investment capacities. 

5. Conclusion 

Is the individual in the Solow model a ‘consumption-lover’ with a saving rate of 50%? Is the 

preference for accumulating implicitly involved in growth models, and should it be taken into 

account independently from personal motives (power, influence, thriftiness, miserliness, gifts, 

bequests, etc.)? 

No matter what answers are, the standard model generates a steady-state level of capital per 

capita bounded by the golden rule level, where the resulting equilibrium saving rate reaches a 

maximum value of ‘𝛼’ (roughly estimated at 30%), when the time preference rate tends to its 

lower bound level n. Another apparent weakness of this model, is that it predicts the 

counterfactual result of a wealth-dilution effect totally absorbed by a reduction in the 

consumption share.  

Capitalist spirit growth models as proposed for example by Zou (1994), offer a reasonable way 

to contrast these constraining and counterfactual properties. However, the love of wealth 

accumulation as formalized in such models, allows to extend the set of possible dynamics to 

efficient and over-accumulation ones only, so that explanations of low GDP levels remain limited 

to the time preference rate essentially. If adjusting the time preference rate in the standard model 

has been inappropriate to explain differences among ‘rich countries’, and if controlling some 

additional willingness to invest has proved necessary, then it seems reasonable to admit that same 

extensions are required for low GDP countries. The proposed model offers the possibility to 

expand the set of steady-states on both sides of the standard version, so that eventual poverty 

traps characterized by insufficient investment can also be reconciled in a same way with optimal 

growth theory.  

Several issues that have been investigated in the literature on the basis of the standard Ramsey 

growth structure, might be worth revisiting within such a more general framework that sounds 



arguably more realistic. An additional advantage that might motivate the use of this model 

particularly, concerns the context of an open-economy. Indeed, it is well-known that the standard 

dynamics presents the counterfactual result of a consumption and wealth that tend to zero in an 

open-economy where the time preference rate exceeds the world interest rate; see for example 

Barro and Sala-i-Martin (1995, chapter 3). A recent suggestion from Hof and Wirl (2008) to 

overcome this problem, is to augment the Utility function by including absolute or relative wealth 

as an argument. Besides the fact that this type of preferences might still be restrictive, as 

explained in this paper, the initial level of capital must be greater than a lower bound level to 

ensure a possible accumulation towards a steady-state where both capital and consumption are 

greater than zero. Such a condition is not required in the proposed model which offers a simpler 

framework. 
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APPENDIX 1: RESOLUTION 

For online publication. 
The social planner solves:                                           Max𝑐𝑡  𝑉{𝑐𝑡 , 𝑘𝑡} = ∫ 𝑈𝑡(𝑐𝑡, 𝑘𝑡) 𝑒(𝑛−𝛽)𝑡𝑑𝑡∞

𝑡0  

                                      s.t.       𝑘�̇� = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡 

 

 

Resolution for the multiplicative Cobb Douglas case:          𝐻𝑡(𝑐𝑡, 𝑠𝑡) = 𝑐𝑡𝜃[𝑓(𝑘𝑡 − 𝑐𝑡)]1−𝜃𝑒(𝑛−𝛽)𝑡 +    𝜆𝑡𝑒(𝑛−𝛽)𝑡[𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡] 
 

The necessary conditions: 𝑖)     𝐻(𝑡, 𝜆0, 𝜆𝑡, 𝑘𝑡, 𝑐𝑡) = max𝜈𝜖(0;𝜃𝑦𝑡) 𝐻(𝑡, 𝜆0, 𝜆𝑡, 𝑘𝑡 , 𝜈) 

𝑖𝑖)   𝜕𝐻𝜕𝑘 (𝑡, 𝜆0, 𝜆𝑡, 𝑘𝑡 , 𝑐𝑡) = 𝜕[𝜆𝑡𝑒(𝑛−𝛽)𝑡]𝜕𝑡  

𝑖𝑖𝑖)   𝜕𝐻𝜕𝜆 (𝑡, 𝜆0, 𝜆𝑡, 𝑘𝑡 , 𝑐𝑡) = 𝑑𝑘𝑡𝑑𝑡 = 𝑘�̇� 

𝑖𝑣)    lim𝑡→∞ 𝜆𝑡𝑒(𝑛−𝛽)𝑡𝑘𝑡 = 0 

 

The first order condition implies: 𝜕𝑈𝑡 𝜕𝑐𝑡 =⁄ 𝑈𝑐𝑡 = 𝜆𝑡. This static maximizing condition is to be 

substituted in the dynamical expressions that serve to derive the differential equation of the 

control. With 𝜆𝑡 ≥ 0 and 𝑈𝑡 homothetic, we can express an explicit condition in a convenient way 

by letting  𝑎 ∈ (0,1) such that: 𝜆𝑡 = (𝑐𝑡𝑠𝑡)𝜃 (1−𝑎𝑎 ) ≥ 0   and   𝑐𝑡𝑠𝑡 = 𝑎𝜃1−𝑎𝜃 

 

 

 

 

 

 

 



 

 

 

 
 

Figure A1. Static Equilibrium Condition in the Multiplicative Cobb-Douglas Case 

 

As explained by Schättler and Ledzewicz (2012) p.96, the substitution of the necessary condition 

for a static maximization corresponds to a weak formulation of the Pontryagin’s Maximum 

Principle. Just like in the standard Ramsey model, it is the necessary condition that is substituted 

in our case (for instance, the equilibrium co-state and ratio). This same resolution allows a direct 

confrontation of both versions. 

 

ii) (1 − 𝜃) (𝑐𝑡𝑠𝑡)𝜃 𝑓′ + 𝜆𝑡[𝑓′ − 𝛿 − 𝛽] = −𝜆�̇� 

(1 − 𝜃) (𝑐𝑡𝑠𝑡)𝜃 𝑓′ + (1 − 𝑎𝑎 ) (𝑐𝑡𝑠𝑡)𝜃 [𝑓′ − 𝛿 − 𝛽] = −𝜆�̇� 

(𝑐𝑡𝑠𝑡)𝜃 [((1 − 𝜃) + 1 − 𝑎𝑎 ) 𝑓′ − 1 − 𝑎𝑎 (𝛿 + 𝛽)] = −𝜆�̇� 

 

Differentiating totally condition (i): 𝜕𝑈𝑐𝜕𝑐𝑡 𝑐�̇� + 𝜕𝑈𝑐𝜕𝑘𝑡 𝑘�̇� = 𝜆�̇� 

𝜃(1 − 𝜃) (𝑐𝑡𝑠𝑡)𝜃 1𝑐𝑡 [(− 𝑠𝑡𝑐𝑡 − 𝑐𝑡𝑠𝑡 − 2) 𝑐�̇� + 𝑓′ (1 + 𝑐𝑡𝑠𝑡) 𝑘�̇�] = 𝜆�̇� 



Constraining the static maximizing condition by substituting 𝜆𝑡 means that the associated 

equilibrium ratio  
𝑐𝑡𝑠𝑡  defined above can be constrained as well. The expression simplifies to: 

𝜃(1 − 𝜃) (𝑐𝑡𝑠𝑡)𝜃 1𝑐𝑡 [(− 1𝑎𝜃(1 − 𝑎𝜃)) 𝑐�̇� + 𝑓′ 11 − 𝑎𝜃 𝑘�̇�] = 𝜆�̇� 

Combining this expression with condition (ii) leads to: 𝜃(1 − 𝜃)𝑎𝜃(1 − 𝑎𝜃) 𝑐�̇�𝑐𝑡 = 𝑓′ 𝜃(1 − 𝜃)1 − 𝑎𝜃 𝑘�̇� 1𝑐𝑡 + [1 − 𝑎𝜃𝑎 𝑓′ − 1 − 𝑎𝑎 (𝛽 + 𝛿)] 

− 𝜃(1 − 𝜃)𝑎𝜃(1 − 𝑎𝜃) 𝑐�̇� + 𝜃(1 − 𝜃)(1 − 𝑎𝜃) 𝑓′𝑘�̇� = − [1 − 𝑎𝜃𝑎 𝑓′ − 1 − 𝑎𝑎 (𝛽 + 𝛿)] 𝑐𝑡 

𝑓′ [1 − 𝑎𝜃𝑎 𝑐𝑡 + 𝜃(1 − 𝜃)1 − 𝑎𝜃 𝑘�̇�] − 1 − 𝑎𝑎 (𝛿 + 𝛽)𝑐𝑡 = (1 − 𝜃)𝑎(1 − 𝑎𝜃) 𝑐�̇� 

Introducing condition (iii): 

𝑓′ [(1 − 𝑎𝜃)𝑐𝑡 + (1 − 𝜃)𝑎𝜃1 − 𝑎𝜃 𝑦𝑡 − (1 − 𝜃)𝑎𝜃1 − 𝑎𝜃 𝑐𝑡 − (1 − 𝜃)𝑎𝜃1 − 𝑎𝜃 (𝑛 + 𝛿)𝑘𝑡] − (1 − 𝑎)(𝛿 + 𝛽)𝑐𝑡 = (1 − 𝜃)(1 − 𝑎𝜃) 𝑐�̇� 
𝑓′ [𝑐𝑡 [(1 − 𝑎𝜃) + (1 − 𝜃)(1 − 𝑎𝜃)1 − 𝑎𝜃 ] − (1 − 𝜃)𝑎𝜃1 − 𝑎𝜃 (𝑛 + 𝛿)𝑘𝑡] − (1 − 𝑎)(𝛿 + 𝛽)𝑐𝑡 = (1 − 𝜃)(1 − 𝑎𝜃) 𝑐�̇� 
The resulting dynamical system is: 

𝑐�̇�(𝑐𝑡, 𝑘𝑡) = 1−𝑎𝜃1−𝜃 [(2 − 𝑎𝜃 − 𝜃)𝑓′ − (1 − 𝑎)(𝛿 + 𝛽)]𝑐𝑡 − 𝑎𝜃(𝑛 + 𝛿)𝑓′𝑘𝑡 

 𝑘�̇�(𝑐𝑡, 𝑘𝑡) = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡 

Resolution for the additive Cobb Douglas case:  
 𝜕𝑈𝑡 𝜕𝑐𝑡⁄ = 0   implies: 

 𝜃𝑐𝑡 − 1 − 𝜃𝑦𝑡 − 𝑐𝑡  = 𝜆𝑡 

 𝜃𝑦𝑡𝑐𝑡(𝑦𝑡 − 𝑐𝑡) − 𝑐𝑡𝑐𝑡(𝑦𝑡 − 𝑐𝑡)  = 𝜆𝑡 
 

Defining  
𝑐𝑡𝑠𝑡 = 𝑎𝜃1−𝑎𝜃  where 𝑐𝑡 = 𝑎𝜃𝑦𝑡  ∈  ]0, 𝜃𝑦𝑡[ , 

 



𝑎𝜃𝑦𝑡𝑎𝑐𝑡(𝑦𝑡 − 𝑐𝑡) − 𝑎𝜃𝑐𝑡(1 − 𝑎𝜃)  = 𝜆𝑡 

 1𝑎(1 − 𝑎𝜃)𝑦𝑡 − 1(1 − 𝑎𝜃)𝑦𝑡  = 𝜆𝑡 
 𝜆𝑡 = 1 − 𝑎𝑎(1 − 𝑎𝜃)𝑦𝑡 

 

Differentiating totally the first order condition gives: 

 [− 𝜃𝑐𝑡2 − 1 − 𝜃(𝑦𝑡 − 𝑐𝑡)2] �̇�𝑡 + (1 − 𝜃)𝑓′(𝑘𝑡)(𝑦𝑡 − 𝑐𝑡)2 �̇�𝑡 = �̇�𝑡 , 
 

The first term in brackets can for example be expressed more conveniently : 

 [− 𝜃𝑐𝑡2 − 1 − 𝜃(𝑦𝑡 − 𝑐𝑡)2] = − 𝜃(𝑎𝜃𝑦𝑡)2𝑐𝑡2(𝑎𝜃𝑦𝑡)2 − (1 − 𝜃)[(1 − 𝑎𝜃)𝑦𝑡]2(𝑦𝑡 − 𝑐𝑡)2[(1 − 𝑎𝜃)𝑦𝑡]2 = − 𝜃(𝑎𝜃𝑦𝑡)2 − (1 − 𝜃)[(1 − 𝑎𝜃)𝑦𝑡]2 

 

Following same simplifying tricks, the differentiated condition can be expressed as: 

 −𝜃(𝑎2𝜃 − 2𝑎𝜃 + 1)(𝑎𝜃)2(1 − 𝑎𝜃)2𝑦𝑡2 �̇�𝑡 + (1 − 𝜃)𝑓′(1 − 𝑎𝜃)2𝑦𝑡2 �̇�𝑡 = −(1 − 𝜃)𝑓′(1 − 𝑎𝜃)𝑦𝑡 − (1 − 𝑎)𝑎(1 − 𝑎𝜃)𝑦𝑡 (𝑓′ − 𝛿 − 𝛽) 
 −(𝑎2𝜃 − 2𝑎𝜃 + 1)𝑎(1 − 𝑎𝜃) �̇�𝑡𝑐𝑡 + (1 − 𝜃)𝑓′ [1 − (𝑛 + 𝛿)𝑘𝑡(1 − 𝑎𝜃)𝑦𝑡] = −(1 − 𝜃)𝑓′ − 1 − 𝑎𝑎 (𝑓′ − 𝛿 − 𝛽) 
 −(𝑎2𝜃 − 2𝑎𝜃 + 1)𝑎(1 − 𝑎𝜃) �̇�𝑡𝑐𝑡 = 𝑓′ [−2(1 − 𝜃) − 1 − 𝑎𝑎 + (1 − 𝜃)(𝑛 + 𝛿)𝑘𝑡(1 − 𝑎𝜃)𝑦𝑡 ] + 1 − 𝑎𝑎 (𝛽 + 𝛿) 
 

The resulting system is therefore: 

 𝑐�̇�𝑐𝑡 = 1 − 𝑎𝜃1 + 𝑎𝜃(𝑎 − 2) [2𝑎(1 − 𝜃)𝑓𝑘 + (1 − 𝑎)(𝑓𝑘 − 𝛽 − 𝛿)] − 𝑎(1 − 𝜃)1 + 𝑎𝜃(𝑎 − 2) (𝑛 + 𝛿)𝛼 

 𝑘�̇� = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX 2: SIMULATION (Not for Publication) 
Coded on R 

 

The main functions that have been used for the numerical experiments are available in two 

separate word files:“Generalized Ramsey (2014)-Constrained-Log Utility” and “Generalized 

Ramsey (2014)-Direct-Log Utility”. In each file, two main functions are designed for the 

calculation of the optimal path. Given it could take time to iterate on values of the parameter 𝑎 ∈(0,1), calculations have been separated into two steps.  

Concerning the computation of the saddle path, the number of iterations and the length of the 

vectors (variable “len”) should be increased for more precision (it becomes necessary when 𝜃 is 

low, like for example 0.2). Indeed, when the steady-state is very high, the quality of the 

convergence is affected. The shooting method is based on the fact that divergence occurs in two 

possible ways; if c(0) is too low, the dynamics diverges in the South-East, and if c(0) is too high, 

in the North-West.   

i) The first function called “localize(𝛼, 𝛿, 𝑛, 𝛽, �̂�∗, 𝑘0)” gives a good idea of the solution quickly 

(< 2 minutes). It calculates the total welfare (from t = 0 to 300) produced by saddle path solutions 

for 10 values of the parameter a (from a=1 to 0.1). It selects the solution that maximizes welfare 

and exports the dynamics in a CSV file (per default on “My Documents”). In the constrained 

case, the saving rate enters as an argument. For example executing the following lines: 

 

localize1 <- localize(0.3,0.05,0,0.02,0.3,1) 

localize1 
 

displays: 

      param_a   root_teta1 tot_welfare1   root_teta2     tot_welfare2 

 [1,]    0.99     1.000142            0          0.85642353     237.0250 

 [2,]    0.90     1.024210            0          0.89801213     239.3556 

 [3,]    0.80     1.118228            0          0.89427204     239.4766 

 [4,]    0.70     1.266442            0          0.86212898     238.4923 

 [5,]    0.60     1.471755            0          0.81157829     236.9400 

 [6,]    0.50     1.762348            0          0.73765246     234.6945 

 [7,]    0.40     2.200000            0          0.62500000     231.2965 

 [8,]    0.30     2.930664            0          0.43600285     225.6182 

 [9,]    0.20     4.393092            0          0.05690752     214.2522 

[10,]    0.10     8.781785           0         -1.08178467       0.0000 

 



Given the solution lies betwwen a = 0.9 and a = 0.7, the second function takes a last argument 

“max_a” to iterate more precisely starting from the upper bound selected (0.9 in this example). 

For example typing: 

calcul1 <- calcul(0.3,0.05,0,0.02,0.3,1,0.9) 

calcul1 

 

displays: 

 

      param_a root_teta1 tot_welfare1 root_teta2 tot_welfare2 

 [1,]    0.89   1.030502            0         0.8998355     239.4675 

 [2,]    0.88   1.037585            0         0.9010512     239.5501 

 [3,]    0.87   1.045428            0         0.9016989     239.6059 

 [4,]    0.86   1.053988            0         0.9018263     239.6380 

 [5,]    0.85   1.063222            0         0.9014840     239.6491 

 [6,]    0.84   1.073089            0         0.9007205     239.6422 

 [7,]    0.83   1.083552            0         0.8995809     239.6195 

 [8,]    0.82   1.094578            0         0.8981045     239.5832 

 [9,]    0.81   1.106144            0         0.8963253     239.5351 

[10,]    0.80   1.118228           0         0.8942720     239.4766 

[11,]    0.79   1.130817           0         0.8919682     239.4088 

[12,]    0.78   1.143900           0         0.8894332     239.3328 

[13,]    0.77   1.157473           0         0.8866825     239.2494 

[14,]    0.76   1.171535           0         0.8837285     239.1590 

[15,]    0.75   1.186086           0         0.8805808     239.0622 

[16,]    0.74   1.201132           0         0.8772468     238.9594 

[17,]    0.73   1.216679           0         0.8737317     238.8509 

[18,]    0.72   1.232739           0         0.8700391     238.7367 

[19,]    0.71   1.249322           0         0.8661713     238.6172 

 

Each function outputs a file containing the dynamics for the maximum welfare. The 

unconstrained solution on the other file works exactly the same. It is the preference parameter 

which enters as an argument in that case. 

 


