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1 Introduction

The literature on time series of counts is becoming increasingly abundant, with applications in

numerous domains (see e.g. the monographs by Christou (2013) and Liu (2012), and the ref-

erences therein). It is common to assume a conditional Poisson distribution with the intensity

parameter depending on the past values. This leads to models that are quite tractable1, but

extremely constrained, since their conditional variance and conditional mean coincide. Many ex-

tensions and alternative conditional distributions have been proposed, but either the conditional

distribution remains relatively constrained or it contains extra parameters that are difficult to

estimate and interpret.

In the present paper we adopt a semi-parametric approach, in which only the conditional

mean is specified. Since the works of Wedderburn (1974), White (1982), McCullagh (1983) and

Gourieroux et al. (1984), it is known that certain maximum likelihood estimators (MLEs) can

be consistent and asymptotically normal (CAN) for the parameters of the conditional mean

and variance, even if the actual conditional distribution is not that assumed by the MLE. In

particular, the Gaussian quasi-maximum likelihood estimator (QMLE), in which the conditional

mean and variance parameters are estimated by maximizing a pseudo-likelihood written as if

the condition mean were Gaussian, is the method of choice for estimating ARMA-GARCH type

models. For time series of counts, the Poisson QMLE (PQMLE) can be employed to identify

the conditional mean.

In this paper, we give general regularity conditions under which the PQMLE is CAN. We

also consider the case where the above-mentioned regularity conditions are violated because the

parameter stands at the boundary of the parameter space. In that case the asymptotic distribu-

tion is not Gaussian. This situation must be considered for testing the nullity of some conditional

mean parameters. For important classes of time series of counts, such as the INGARCH models,

the significance test statistics are not asymptotically distributed as a standard chi-square, but

as chi-bar-square. The general results are applied to specific models, namely the integer-valued

autoregressive (INAR) and the integer-valued GARCH (INGARCH) and the log-linear models,

with different specifications of the conditional distribution.

Thus, the main contribution of the present paper is threefold. Firstly, the asymptotic theory

of the PQMLE is developed. To our knowledge, this is the first time a QMLE is studied for

1even if the probabilistic structure, in particular the ergodicity, of these models is not easy to derive

(see Tjøstheim (2012, 2014) and the references therein)
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general count time series models. This allows for obtaining optimal predictions without having to

specify entirely the conditional distribution. Second, the asymptotic distribution of the estimator

is obtained without positivity constraint on the coefficients, which is also new for count time

series. Third, Wald-type significance tests are proposed. Due to boundary effects, the asymptotic

distribution of these tests is not standard, but they can however be easily implemented and are

obviously useful to model identification. These theoretical results are illustrated by Monte Carlo

simulations and applications on financial data.

The paper is organized as follows. Section 2 contains the main results concerning the asymp-

totic behavior of the Poisson QMLE and of the related significance tests. Section 3 applies the

general results to particular observation-driven and parameter-driven models (according to the

nomenclature introduced by Cox et al. (1981). Section 4 studies the finite sample properties of

the PQMLE and of the significance tests, via a set of Monte Carlo experiments. In Section 5,

we use the PQMLE to fit INGARCH(p, q) models on daily series of the number of transactions

of stocks. Section 6 concludes, and the proofs are collected in Section 7.

2 Asymptotic distribution of the Poisson QMLE

Assume that we have observations X1, . . . ,Xn of a times series valued in N, such that

E (Xt | Xu, u < t) = λ(Xt−1,Xt−2, . . . ; θ0), (2.1)

where

λ is a measurable function valued in (ω,+∞) for some ω > 0 (2.2)

and θ0 is an unknown parameter belonging to some parameter space Θ ⊂ R
d. The marginal

distribution is assumed to have a moment slightly greater than 1

EX1+ε
t < ∞, for some ε > 0, (2.3)

which entails the existence of the conditional mean (2.1). For all θ ∈ Θ, x0 ∈ N and t ≥ 1, let

λt(θ) = λ(Xt−1,Xt−2, . . . ; θ) and λ̃t(θ) = λ(Xt−1,Xt−2, . . . ,X1, x0, x0, . . . ; θ).

Note that λ̃t(θ) will serve as a proxy for λt(θ). It is obtained by setting to some integer x0 the

unknown initial values X0,X−1, . . . involved in λt(θ). This value x0 can either be a fixed integer,

for instance x0 = 0, or a value depending on θ, or a value depending on the observations. For

example, when λt(θ) = ω+αXt−1+βλt−1(θ) with θ = (ω,α, β), one can take λ̃t(θ) = ω+αXt−1+
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βλ̃t−1(θ) with λ̃1(θ) = ω/(1− β) (which corresponds to x0 = 0), or with λ̃1(θ) = ω/(1− α− β)

(which corresponds to x0 = ω/(1 − α − β)), or with λ̃1(θ) = X5 (the average of the working

days of the first week, for daily data). It will be shown that the choice of x0 is asymptotically

unimportant, provided we have a.s.

lim
t→∞

at = 0 and lim
t→∞

Xtat = 0, where at = sup
θ∈Θ

∣∣∣λ̃t(θ) − λt(θ)
∣∣∣ , (2.4)

and

λ̃t(θ) ≥ ω, ∀t ≥ 1, ∀θ ∈ Θ. (2.5)

Assuming that

θ 7→ λt(θ) is almost surely continuous and Θ is a compact set, (2.6)

a Poisson Quasi Maximum Likelihood Estimator of θ0 is defined as any measurable solution of

θ̂n = arg max
θ∈Θ

L̃n(θ), L̃n(θ) =
1

n

n∑

t=s+1

ℓ̃t(θ), (2.7)

where ℓ̃t(θ) = −λ̃t(θ) + Xt log λ̃t(θ) and s is an integer. The value of s is asymptotically

unimportant, but it can affect the finite sample behavior of the PQMLE by reducing the impact

of the initial value x0. Note that θ̂n is equal to the maximum likelihood estimator (MLE) of θ0

if the conditional distribution of Xt is Poisson with parameter λt(θ0). Since we do not make any

specific assumption on the conditional distribution of Xt, the estimator is called "quasi" MLE

(QMLE). The reader is referred to Gourieroux et al. (1984) for a general reference on QMLE.

2.1 Consistency of the PQMLE

As shown by the following theorem, the essential assumption required for the consistency of the

PQMLE is that the conditional mean be well specified. Obviously, the following identifiability

assumption is also required:

λ1(θ) = λ1(θ0) almost surely if and only if θ = θ0. (2.8)

Theorem 2.1 Assume that (Xt) is an ergodic strictly stationary sequence valued in N, satisfying

(2.1)-(2.6) and (2.8). Then the PQMLE defined by (2.7) satisfies

θ̂n → θ0 a.s. as n → ∞.
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In the sequel, K and ρ denote generic constants, or random variables depending on {Xu, u ≤ 0},
such that K > 0 and ρ ∈ (0, 1). It is often assumed that λt(θ) is a linear function of the past

values. In that case, the regularity conditions become much simpler.

Remark 2.1 (linear conditional mean) Assume that Θ is a compact subset of (0,∞) ×
[0,∞)p+q, that θ0 = (ω0, α01, . . . , β0p), and that

λt(θ0) = ω0 +

q∑

i=1

α0iXt−i +

p∑

j=1

β0jλt−j(θ0). (2.9)

Assume also that for all θ = (ω,α1, . . . , βp) ∈ Θ, we have
∑p

i=1 βi < 1. Noting that the equation

(2.9) is similar to that satisfied by the volatility in a GARCH(p, q) model, it is easy to show (by

for instance the arguments used to show (7.30) in Francq and Zakoian (2010), denoted hereafter

FZ) that at ≤ Kρt. The first condition in (2.4) directly follows. To show the second convergence

of (2.4), it suffices to use the Borel-Cantelli lemma and P (ρtXt ≥ ε) ≤ ρtEXt/ε, for ε > 0.

The conditions (2.2) and (2.4)-(2.6) are thus satisfied without any additional constraint. Let the

polynomials Aθ(z) =
∑q

i=1 αiz
i and Bθ(z) = 1 −∑p

i=1 βiz
i. As in the proof of (b) Page 157 in

FZ, the identifiability condition (2.8) is satisfied by assuming that

if p > 0, Aθ0
(z) and Bθ0

(z) have no common root,

at least one αi 6= 0 for i = 1, . . . , q, and βp 6= 0 if αq = 0. (2.10)

In the case q = 1, the conditions (2.10) simply amount to assuming α01 > 0.

The stationarity and ergodicity issues will be discussed for particular classes of count models in

Section 3.

2.2 Asymptotic distribution

As expected, under mild regularity conditions, the Poisson QMLE turns out to be asymptotically

normal when the parameter belongs to the interior of the parameter space. In the more general

situation where the parameter may lie at the boundary of the parameter space, its asymptotic

distribution is the projection of a Gaussian random vector on a convex cone. Estimators with

similar asymptotic distributions have been studied by e.g. Andrews (1999), Francq and Zakoïan

(2009) and the references therein.
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2.2.1 When θ0 belongs to the interior of Θ

To give conditions for the asymptotic normality of the PQMLE, we need to assume the existence

of

E
(
X2

t | Xu, u < t
)

:= vt(θ0) + λ2
t (θ0), (2.11)

the existence of continuous second-order derivatives for λt(·) and λ̃t(·), as well as the existence

of the information matrices

J = E
1

λt(θ0)

∂λt(θ0)

∂θ

∂λt(θ0)

∂θ′
, I = E

vt(θ0)

λ2
t (θ0)

∂λt(θ0)

∂θ

∂λt(θ0)

∂θ′
. (2.12)

It is easy to see that the matrix J is invertible when

c′
∂λt(θ0)

∂θ
= 0 a.s. ⇒ c = 0. (2.13)

We also assume that there exists a neighborhood V (θ0) of θ0 such that, for all (i, j) ∈ {1, . . . , d},

E sup
θ∈V (θ0)

∣∣∣∣
∂2

∂θi∂θj
ℓt(θ)

∣∣∣∣ < ∞. (2.14)

Assume also that, a.s.,

bt, btXt and atdtXt are of order O(t−κ) for some κ > 1/2, (2.15)

where

bt = sup
θ∈Θ

∥∥∥∥∥
∂λ̃t(θ)

∂θ
− ∂λt(θ)

∂θ

∥∥∥∥∥ , dt = sup
θ∈Θ

max

{∥∥∥∥
1

λt(θ)

∂λt(θ)

∂θ

∥∥∥∥ ,

∥∥∥∥∥
1

λ̃t(θ)

∂λ̃t(θ)

∂θ

∥∥∥∥∥

}
.

Theorem 2.2 Assume that (Xt) satisfies the conditions of Theorem 2.1. Assume also (2.11)-

(2.14) and (2.15). If θ0 ∈
◦

Θ, where
◦

Θ denotes the interior of Θ, then

√
n(θ̂n − θ0)

d→ N
(
0,Σ := J−1IJ−1

)
as n → ∞.

Note that when the distribution of Xt conditional to its past is Poisson, we have I = J , and

thus Σ = J−1, as established in Ferland et al. (2006).

It can be shown that, under the assumptions of Theorem 2.2, the asymptotic variance of the

PQMLE can be consistently estimated by Σ̂ = Ĵ−1Î Ĵ−1 with

Ĵ =
1

n

n∑

t=s+1

1

λ̃t(θ̂n)

∂λ̃t(θ̂n)

∂θ

∂λ̃t(θ̂n)

∂θ′
, (2.16)

Î =
1

n

n∑

t=s+1

(
Xt

λ̃t(θ̂n)
− 1

)2
∂λ̃t(θ̂n)

∂θ

∂λ̃t(θ̂n)

∂θ′
. (2.17)
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Remark 2.2 (alternative conditions to (2.12) and (2.14)) Note that

∂2

∂θi∂θj
ℓt(θ) =

(
Xt

λt(θ)
− 1

)
∂2

∂θi∂θj
λt(θ) − Xt

λ2
t (θ)

∂

∂θi
λt(θ)

∂

∂θj
λt(θ). (2.18)

Using Hölder’s inequality and (2.3), one can thus obtain (2.14) by showing that

E sup
θ∈V (θ0)

∣∣∣∣
∂2

∂θi∂θj
λt(θ)

∣∣∣∣ < ∞, (2.19)

and

E sup
θ∈V (θ0)

∣∣∣∣
1

λt(θ)

∂

∂θi
λt(θ)

∣∣∣∣
r

< ∞, E sup
θ∈V (θ0)

∣∣∣∣
1

λt(θ)

∂2

∂θi∂θj
λt(θ)

∣∣∣∣
r

< ∞ (2.20)

for all r > 0. Note also that (2.20) entails the existence of J . For the existence of I an extra

assumption is needed. In particular, (2.12) is obtained under the conditions (2.20) and

E

(
vt(θ0)

λt(θ0)

)1+ε

< ∞, for some ε > 0, (2.21)

Remark 2.3 (linear conditional mean) Let us come back to the framework of Remark 2.1.

Because the roots of the polynomial Bθ(z) are outside the unit disk, we have λt(θ) = π0(θ) +
∑∞

k=1 πk(θ)Xt−k where

∞∑

k=1

πk(θ)zk = B−1
θ (z)Aθ(z) and sup

θ∈Θ
|πk(θ)| ≤ Kρk.

We also have

∂2

∂θi∂θj
λt(θ) = π

(i,j)
0 (θ) +

∞∑

k=1

π
(i,j)
k (θ)Xt−k with sup

θ∈Θ
|π(i,j)

k (θ)| ≤ Kρk.

Under the moment assumption (2.3), the condition (2.19) is thus satisfied, whatever the neigh-

borhood V (θ0) included in Θ. One can show (2.20) by the arguments used to prove (7.54) in FZ.

We thus obtain (2.14), and (2.12) under (2.21).

Now, note that bt ≤ Kρt and that dt admits moments at any order, by arguments already

given. We thus have E|tκbtXt| ≤ Ktκρt and E|tκatdtXt| ≤ Ktκρt, which entails (2.15) by the

Borel-Cantelli lemma and the Markov inequality.

Finally, note that (2.13) is a consequence of (2.10), by the arguments used to show (b) Page

162 in FZ.

2.2.2 When θ0 stands at the boundary of Θ

For the computation of the PQMLE it is obviously necessary to have λ̃t(θ) > 0 almost surely,

for any θ ∈ Θ. For that reason, the parameter space Θ must be constrained. Very often,
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one or several components of θ are constrained to be positive or equal to zero. For example,

when we have an INGARCH(1,1) model of the form λt(θ) = ω + αXt−1 + βλt−1(θ) then θ =

(ω,α, β) ∈ Θ ⊂ [ω,∞)× [0,∞)2. Following the celebrated Box-Jenkins time series methodology,

it is often interesting to test if the model can be simplified. For the INGARCH(1,1) example,

it is of interest to test if the true parameter is of the form θ0 = (ω0, α0, 0), i.e if the DGP is

an INARCH(1). Theorem 2.2 does not apply because, in that situation, θ0 6∈
◦

Θ. Moreover

the asymptotic distribution of
√

n
(
θ̂n − θ0

)
is not Gaussian because the positivity constraints

entail that
√

n
(
β̂n − β0

)
≥ 0 with probability one when β0 = 0.

We now come back to the general model. The component i of the parameter θ is said to be

positively constrained if the i-th section of Θ is of the form [0, θi] with θi > 0. For example, for

the linear model of Remark 2.1, the first component is not positively constrained, but the other

components are. Let d2 = d−d1 ∈ {0, . . . , d} be the number of positively constrained components

of θ. Without loss of generality, assume that these d2 constrained components are the last ones.

The parameter θ0 can belong to
◦

Θ even if one or several of its first d1 components are equal to

zero. However if one of the last d2 components of θ0 is equal to zero, then Theorem 2.2 does

not apply because θ0 stands at the boundary of Θ. We assume that Θ − θ0 is large enough to

contain an hypercube of the form
∏d

i=1[θi, θi] where, for all i ∈ {1, . . . , d}, θi = 0 if θ0i = 0 with

i > d1, θi < 0 otherwise, and θi > 0. Under this assumption we have

lim
n→∞

√
n(Θ − θ0) = C, (2.22)

where C =
∏d

i=1 Ci, in which Ci = R when i ≤ d1 or θ0i > 0 and Ci = [0,+∞) when i > d1 and

θ0i = 0.

Similarly to (2.15), assume that, a.s.,

lim
t→∞

ct + Xt

(
atet + ct + atd

2
t + btdt

)
= 0, (2.23)

where

ct = sup
θ∈Θ

∥∥∥∥∥
∂2λ̃t(θ)

∂θ∂θ
− ∂2λt(θ)

∂θ∂θ′

∥∥∥∥∥ ,

et = sup
θ∈Θ

max

{∥∥∥∥
1

λt(θ)

∂2λt(θ)

∂θ∂θ′

∥∥∥∥ ,

∥∥∥∥∥
1

λ̃t(θ)

∂2λ̃t(θ)

∂θ∂θ′

∥∥∥∥∥

}
.

Note that, in the framework of Remarks 2.1 and 2.3, the condition (2.23) is always satisfied.

Since J is positive definite, one can consider the norm ‖x‖2
J = x′Jx and the scalar product

〈x, y〉J = x′Jy for x, y ∈ R
d. With this metric, the projection of a vector Z ∈ R

d on the convex
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cone C is defined by

ZC = arg inf
C∈C

‖C − Z‖J

or equivalently by

ZC ∈ C and
〈
Z − ZC, C − ZC

〉
J
≤ 0, ∀C ∈ C. (2.24)

Theorem 2.3 Assume the conditions of Theorem 2.2 (except that θ0 ∈
◦

Θ) and (2.22), (2.23).

Then, as n → ∞,

√
n(θ̂n − θ0)

d→ ZC = arg inf
C∈C

‖C − Z‖J , where Z ∼ N (0,Σ) .

Note that, when θ0 ∈
◦

Θ we have C = R
d and ZC = Z. In that case, we retrieve the CAN of the

PQMLE, as stated in Theorem 2.2. When θ0 6∈
◦

Θ, the conditions required for the existence of

the information matrices I and J can however be more demanding in terms of moments of Xt.

Remark 2.4 (alternative conditions to (2.12) and (2.14)) When θ does not belong to the

interior of Θ, the conditions (2.20) generally impose restrictive moment conditions on the ob-

served process. For example, in the linear case considered in Remark 2.1 they may impose the

existence of EXr
t . By (2.18) and Hölder’s inequality, (2.14) can be obtained by showing (2.19),

(2.20) for r = 3 and EX3
t < ∞. In the linear case of Remark 2.1 this is equivalent to EX3

t < ∞.

For (2.12), in particular the existence of I, the additional moment condition Ev3
t (θ0) < ∞ on

the conditional distribution of Xt can be imposed. Alternatively, one can impose Ev2
t (θ0) < ∞

and (2.20) for r = 4.

Note that the matrices I and J are still estimated by (2.16) and (2.17). As an application of

Theorem 2.3, let us assume d2 > 0 and consider the testing problem

H0 : θ0d = 0 against H1 : θ0d > 0.

Denote by θ̂nd the last component of θ̂n and denote by χ2
k(α) the α-quantile of a chi-squared

distribution with k degrees of freedom χ2
k. If one also assume that, under the null, only the last

component of θ0 is at the boundary (see Example 8.2 and Section 8.3.3 in FZ), then the test of

rejection region {
nθ̂2

nd

Σ̂(d, d)
≥ χ2

1(1 − 2α)

}
(2.25)

has the asymptotic level α. Note that when the last component is not positively constrained

(i.e. when d2 = 0) the PQMLE has a normal asymptotic distribution and the critical value of
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the test is χ2
1(1 − α). Another application of Theorem 2.3 is given in the following corollary.

Denote by δ0 the Dirac mass at 0 and denote by p0δ0 +
∑q

i=1 piχ
2
ki

the mixture of δ0 and of

χ2
ki

-distributions, with the mixture weights p0, . . . , pq.

Corollary 2.1 (testing for constant conditional mean) Consider an ergodic strictly sta-

tionary process (Xt) with a linear conditional mean of the form λt(θ) = ω +
∑q

i=1 αiXt−i.

Assume that the conditional distribution of Xt depends on the past only through λt(θ). If

θ0 = (ω0, 0, . . . , 0)
′ ∈ Θ, where Θ is a compact subset of (0,∞)× [0,∞)q , and if EX4

t < ∞, then

the statistic

Sn = n

q∑

i=1

α̂2
ni

d→ 1

2q
δ0 +

q∑

i=1

(
q

i

)
1

2q
χ2

i as n → ∞, (2.26)

where µ̂2 and ω̂0 denote consistent estimators of µ2 = EX2
1 and ω0 = EX1, and α̂ni = θ̂n,i+1.

The asymptotic distribution is known as a chi-bar-square distribution, and has been tabulated.

By simply choosing µ̂2 = n−1
∑n

i=1 X2
t and ω̂0 = n−1

∑n
i=1 Xt, on can reject the constant

conditional mean assumption at the asymptotic level α if {Sn > cq,α}, where the critical value

cq,α can be found in Table 8.2 of FZ.

3 Application to particular models

We now show that the regularity conditions required for the asymptotic results of the pre-

vious section can be made explicit for the most popular classes of observation-driven and

parameter-driven models for time series of counts (see Cox et al. (1981) for the distinction be-

tween observation-driven and parameter-driven models).

3.1 Poisson INGARCH model

One of the most natural count time series model is the Poisson INGARCH model, which has been

studied by Ferland et al. (2006). This model is also called Autoregressive Conditional Poisson

in Heinen (2003). The INGARCH(p, q) model is obtained by assuming that the conditional

distribution of Xt given its past values is Poisson with intensity parameter of the linear form

(2.9). Ferland et al. (2006) showed that there exists a stationary process (Xt) satisfying the

INGARCH model, with second-order moments, under the assumption

r∑

i=1

α0i + β0j < 1 (3.1)
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with r = max{p, q} and the convention α0i = 0 when i > q and β0i = 0 when i > p. As

shown in Tjøstheim (2012, 2014), the ergodicity of the stationary solution is a difficult is-

sue. Fokianos et al. (2009) showed that this model can be approximated by an ergodic pro-

cess, and applied this result to the likelihood inference. By using different techniques and

different frameworks encompassing the Poisson INARCH model, Neumann et al. (2011), Liu

(2012), Davis and Liu (2012) and Christou and Fokianos (2013) showed the ergodicity. Un-

der (3.1) and the assumptions of Remark 2.1, Theorem 2.1 thus establishes the strong con-

sistency of the PQMLE. Since (3.1) also entails the existence of moments of any order (see

Christou and Fokianos, 2013), the condition (2.21) is obviously verified, and Remark 2.3 entails

that the conclusion of Theorem 2.2 holds true when θ0 belongs to the interior of the parameter

space. This was quite expected because the PQMLE is actually the MLE in the framework of

this section. Similarly, the regularity conditions required for Theorem 2.3 and Corollary 2.1 are

satisfied. To our knowledge, the asymptotic behaviour of the MLE had never been studied for

count time series models with parameter at the boundary of the parameter space.

3.2 Negative binomial INGARCH model

As an alternative to the conditional Poisson distribution, Zhu (2011) and Christou and Fokianos

(2013) considered the Negative Binomial distribution NB(r, pt) with parameters r > 0 and

pt = r/(λt + r) where λt is, for instance, of the form (2.9). We still have E(Xt | Xu, u < t) = λt,

but the conditional variance λt +λ2
t /r is larger than the conditional variance of the Poisson case,

which reflects the conditional overdispersion that is suspected to be present on real series (see

Christou and Fokianos, 2013). From Proposition 3.4.1 in Liu (2012), Condition (3.1) entails the

existence of an ergodic and strictly stationary solution (Xt). In the case (p, q) = (1, 1), it can be

shown (see Christou and Fokianos, 2013), that the stationary solution is such that EX2
t < ∞ if

and only if

(α0 + β0)
2 +

α2
0

r
< 1, (3.2)

writing α0 and β0 instead of α01 and β01. Always in the case (p, q) = (1, 1), it can be shown

(see the appendix), that EX4
t < ∞ if and only if

(α0 + β0)
4 +

6α2
0(α0 + β0)

2

r
+

α3
0(11α0 + 8β0)

r2
+

6α4
0

r3
< 1. (3.3)

The conditions ensuring the existence of EX2
t are much more complicated for general orders

p and q (see Theorem 2 in Zhu, 2011). The regularity conditions required for Theorems 2.1
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and 2.2 are thus explicit, at least in the case (p, q) = (1, 1). Christou and Fokianos (2013) had

already noted that the Poisson QMLE is consistent in the case of a Negative binomial conditional

distribution. To our knowledge the result stated in Theorem 2.3 and Corollary 2.1 are however

new.

3.3 Double-Poisson INGARCH model (DACP model)

Count time series often exhibit over-dispersion, i.e. the variance larger than the mean, but

the opposite phenomenon may be encountered. The Poisson and negative binomial INGARCH

models can not take into account the under-dispersion. To tackle the problem, Heinen (2003)

proposes a model based on the Double-Poisson distribution of Efron (1986). This distribution,

which has two parameters λ > 0 and γ > 0, is defined by

P (X = x | λ, γ) = c(λ, γ)

(
e−xxx

x!

)(
eλ

x

)γx

, x = 0, 1, . . . .

where c(λ, γ) is a normalization constant. We then use the notation X ∼ DP(λ, γ). Efron (1986)

shows that the mean of the DP(λ, γ) distribution is λ, and that its variance is approximately

equal to λ/γ. The Double-Poisson INGARCH model is defined by assuming that the conditional

distribution of Xt given its past values is DP(λt, γ) with parameters λt of the form (2.9). For

(p, q) = (1, 1), according to Propositions 3.1 and 3.2 in Heinen (2003), the condition (3.1) entails

the existence of a stationary solution (Xt) such that

E(Xt) =
ω0

1 − α0 − β0
, Var(Xt) =

1 − (α0 + β0)
2 + α2

0

1 − (α0 + β0)2
E[Xt]

γ
.

In view of Remark 2.1, the consistency result of Theorems 2.1 thus holds true in the case (p, q) =

(1, 1) when α01 + β01 < 1 and α01 > 0. Similarly, the conditions required for Theorems 2.2 and

2.3 are explicit in the INGARCH(1,1) case.

3.4 Log-linear model

One drawback of the previous models is that their coefficients are positively constrained, which

entails statistical difficulties when a coefficient is equal to zero (see Theorem 2.3) and makes

difficult to add exogenous explanatory variables to λt. Another drawback is that the autoco-

variances cov(Xt,Xt−h) are nonnegative at any lag h (see Christou and Fokianos (2013) for the

explicit expression of these autocovariances for first-order models). To tackle these problems,

Fokianos and Tjøstheim (2011) proposed a model in which the conditional distribution of Xt

12



given its past values is Poisson with intensity parameter λt = eυt , where

υt = ω0 + α0 log(Xt−1 + 1) + β0υt−1. (3.4)

Under the conditions |β0| < 1 and

|α0 + β0| < 1 when α0 > 0 and |β0||α0 + β0| < 1 when α0 < 0, (3.5)

Fokianos and Tjøstheim (2011) showed that a slightly perturbed version of the log-linear model

defined by (3.4) has a stationary and ergodic solution admitting moments of any order. Similar

perturbed versions have been introduced by Fokianos et al. (2009) for INGARCH models. In

view of the recent results on the stationarity and ergodicity of the INGARCH models, (see

Neumann et al., 2011, Liu, 2012, Davis and Liu, 2012 and Christou and Fokianos, 2013), one

can conjecture that the log-linear model itself admits a stationary and ergodic solution with

moments of any order under (3.5). If this is the case, it is easy to verify that all the assumptions

required for Theorems 2.1, 2.2 and 2.3, as well as for Corollary 2.1, are satisfied under the

conditions α0 6= 0 and (3.5).

3.5 INAR

One of the most popular count time series model is the integer-valued autoregressive (INAR)

process. Contrary to the previous models, the INAR is parameter-driven. Since it is not obvious

to compute the MLE of a parameter-driven model, the PQMLE model seems particularly attrac-

tive in this framework. The INAR(1) defines Xt as the convolution of a binomial distribution

B(Xt−1, α0) (with the convention B(Xt−1, α0) = 0 when Xt−1 = 0) with a distribution ǫt on the

integers. One can interpret B(Xt−1, α0) as the number of survivors from the population Xt−1

and ǫt as the number of new arrivals, which is assumed to be independent of Xt−1. With this

model we have (2.1) with λt = ω0 + α0Xt−1 and ω0 = Eǫ1, obviously under the assumption

that the expectation exists. In this case, and when the sequence (ǫt) is iid and α0 < 1, (Xt)

is always stationary and EX1 = Eǫ1/(1 − α0). If Eǫ1 6= 0, one can choose Θ such that (2.5)

holds true. It is easy to see that the identifiability condition (2.8) is satisfied when the con-

ditional distribution of Xt is not degenerated, which is the case when α0 6= 0 or Var(ǫ1) > 0.

Now, note that vt(θ0) = α0(1 − α0)Xt−1 + Var(ǫ1), with θ0 = (ω0, α0). Therefore (2.11) is

satisfied. The information matrices I and J in (2.12) exist because we have |vt(θ0)/λt(θ0)| ≤ c0,∥∥∥ 1
λt(θ0)

∂λt(θ0)
∂θ

∂λt(θ0)
∂θ′

∥∥∥ ≤ c0 +c1X1 for some constants c0 and c1. We show (2.13) by the argument

used to show (2.8). The second-order derivatives of λt(θ) being equal to zero, (2.14) is easily
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verified. Since at = bt = ct = dt = et = 0 for t ≥ 2, the conditions (2.4), (2.15) and (2.23) are

trivially satisfied.

4 Numerical illustrations

The first part of this section examines the finite sample behaviour of the PQMLE. The second

part presents a simulation study concerning the test of nullity of one coefficient and the test of

constant conditional mean. All the results of this section are based on N = 1000 independent

replications of Monte Carlo simulations of different sample sizes n. For each simulation, the first

100 observations are omitted, so that the process approaches its stationary regime.

4.1 Finite sample behaviour of the PQMLE

The PQML function L̃n, defined in (2.7), is optimized numerically, using the PORT routine

(implemented by the function nlminb() of R).

The first Monte Carlo experiments concern the INAR(1) model. When the innovation ǫt

follows a Poisson P(λ) distribution, then the conditional mean is λt = ω0 +α0Xt−1 with ω0 = λ.

When ǫt follows the geometric distribution G(p) with parameter p ∈ (0, 1), then ω0 = (1− p)/p.

When ǫt ∼ NB(r, p) then ω0 = rp/(1−p). We also simulated INGARCH(1,1) and Log-linear(1,1)

models, with Poisson, Double-Poisson and binomial negative conditional distributions.

The means of the estimated values of θ0 are given in the rows "PQMLE" of Table 1. This

table also gives four different estimators of the root-mean-square deviation

√
E
(
θ̂n − θ0

)2
: the

empirical standard error (ESE), the estimated standard error based on the asymptotic theory

(ASE), the theoretical standard error based on the asymptotic theory (TSE), and the Poisson

standard error based on the asymptotic theory assuming a Poisson conditional distribution

(PSE). The ESE is equal to the root mean square error of estimation over the N replications.

The ASE of the estimator of the i-th parameter is equal to the empirical mean of the estimated

standard errors

√
Σ̂(i, i)/n, where Σ̂ is obtained from (2.16) and (2.17). The TSE is defined like

the ASE, except that Σ̂ is replaced by Σ computed from a very large simulation (n = 5000). The

PSE is equal to the empirical mean of

√
Ĵ−1(i, i)/n (noting that Σ = J−1 when the conditional

distribution is Poisson). The ESE offers the best view of the finite sample standard error of the

PQMLE but, on real data series, only ASE and PSE are computable.

Table 1 shows that, for all the models, the means of the estimated parameters are satisfac-
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Table 1: Finite sample behaviour of the PQMLE

INAR(1)

ǫt ∼ P(2) ǫt ∼ G(0.5) ǫt ∼ NB(2, 0.5)

n ω0=2 α0=0.9 ω0=1 α0=0.9 ω0=2 α0=0.9

500 PQMLE 2.159 0.892 1.075 0.892 2.173 0.892

ESE 0.412 0.021 0.232 0.023 0.442 0.022

ASE 0.404 0.020 0.225 0.022 0.425 0.020

TSE 0.409 0.020 0.229 0.022 0.424 0.021

PSE 0.895 0.046 0.340 0.037 0.713 0.037

1000 PQMLE 2.066 0.897 1.048 0.895 2.070 0.896

ESE 0.286 0.014 0.169 0.016 0.287 0.014

ASE 0.283 0.014 0.159 0.016 0.294 0.015

TSE 0.285 0.014 0.161 0.016 0.297 0.015

PSE 0.620 0.032 0.236 0.025 0.497 0.026

INGARCH(1,1)

P(λt) DP(λt, 0.5) NB(3, pt)

n ω0= 2 α0= 0.3 β0= 0.6 ω0= 2 α0= 0.3 β0= 0.6 ω0= 2 α0= 0.3 β0= 0.6

500 PQMLE 2.229 0.296 0.592 2.194 0.297 0.592 2.239 0.292 0.595

ESE 0.703 0.039 0.059 0.658 0.038 0.058 0.758 0.045 0.064

ASE 0.653 0.038 0.057 0.630 0.038 0.057 0.643 0.047 0.064

TSE 0.619 0.038 0.056 0.616 0.038 0.056 0.667 0.047 0.063

PSE 0.658 0.038 0.058 0.236 0.015 0.021 0.445 0.027 0.041

1000 PQMLE 2.134 0.298 0.595 2.087 0.297 0.593 2.168 0.298 0.596

ESE 0.476 0.026 0.040 0.448 0.026 0.040 0.496 0.033 0.046

ASE 0.444 0.027 0.040 0.435 0.027 0.040 0.481 0.032 0.045

TSE 0.438 0.027 0.039 0.427 0.027 0.039 0.468 0.033 0.044

PSE 0.446 0.027 0.040 0.167 0.010 0.015 0.313 0.019 0.028

Log-Linear(1,1)

P(λt) DP(λt, 0.5) NB(3, pt)

n ω0= 2 α0= 0.3 β0= -0.6 ω0= 2 α0= 0.3 β0= -0.6 ω0= 2 α0= 0.3 β0= -0.6

500 PQMLE 1.946 0.304 -0.570 1.958 0.302 -0.586 1.976 0.301 -0.596

ESE 0.214 0.048 0.116 0.203 0.047 0.107 0.217 0.052 0.116

ASE 0.206 0.049 0.108 0.196 0.047 0.099 0.208 0.050 0.106

TSE 0.205 0.050 0.105 0.146 0.047 0.062 0.177 0.051 0.084

PSE 0.208 0.049 0.105 0.131 0.032 0.066 0.140 0.034 0.070

1000 PQMLE 1.975 0.303 -0.587 1.976 0.301 -0.595 1.990 0.300 -0.598

ESE 0.150 0.035 0.076 0.142 0.034 0.072 0.155 0.037 0.079

ASE 0.146 0.035 0.073 0.138 0.033 0.070 0.148 0.036 0.075

TSE 0.146 0.035 0.073 0.111 0.033 0.050 0.136 0.036 0.067

PSE 0.146 0.035 0.074 0.093 0.023 0.046 0.099 0.024 0.050
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torily close to their theoretical values, especially for large sample sizes. Moreover the first three

estimations of the standard deviations, the ESE, ASE and TSE, are very similar. The ASE and

TSE are close because Σ is well estimated by (2.16)–(2.17). The closeness between ESE and ASE

means that the asymptotic theory provides a reliable view on the actual standard error of the

PQMLE. As expected, the standard errors decrease as the sample sizes increase. It is important

to note that the PSE is different from the other estimators when the conditional distribution

is not Poisson (i.e. for all the models but the two ones of the first columns of INGARCH(1,1)

and Log-Linear(1,1)). The fact that PSE may be more than twice smaller or larger than the

ESE demonstrates that, for a valid inference based on the PQMLE, it is crucial to rely on the

asymptotic variance Σ = J−1IJ−1 instead of Σ = J−1. From Table 1, we can thus draw the

conclusion that ASE is a much more robust estimator of the PQMLE standard deviation than

PSE.

Figures 4.1 displays the boxplot and histogram of the N = 1000 values of the PQMLE

(centred and reduced) for simulations of lenght n = 3000 of an INAR(1) with ǫ1 ∼ NB(3, 0.6)

and α0 = 0.9. In agreement with Theorem 2.2, the empirical distribution of the estimator

resembles the standard Gaussian law. Other simulation experiments, not presented here for sake

of conciseness, reveal similar behaviors for other models and other values of parameters, provided

they are sufficiently far from zero. Indeed, in accordance with Theorem 2.3, the empirical

distribution of the PQMLE moves away the Gaussian when the parameter gets closer to the

boundary of the parameter space. Table 2 gives the p-values of the Kolmogorov-Smirnov test of

normality for the N values of the PQMLE, computed on simulations of size n = 3000 of each of

the models considered in Table 1. The normality assumption is never rejected.

Table 2: p-values of the Kolmogorov-Smirnov test of normality of the PQMLE

INAR(1) INGARCH(1,1) Log-Linear(1,1)

P(2) G(0.5) NB(2, 0.5) P(λt) DP(λt, 0.5) NB(3, pt) P(λt) DP(λt, 0.5) NB(3, pt)

ω̂ 0.244 0.395 0.302 0.396 0.080 0.257 0.936 0.961 0.385

α̂ 0.318 0.449 0.768 0.542 0.707 0.841 0.756 0.487 0.584

β̂ 0.848 0.384 0.851 0.658 0.890 0.969
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Figure 1: Boxplot and histogram of the standardized distribution of θ̂ = (ω̂ , α̂) for

an INAR(1) model with negative binomial innovations. Superimposed is the standard

normal density function.
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4.2 Significance tests based on the PQMLE

We now report a Monte Carlo experiment for examining the performance of two adequacy tests

for the conditional mean: the test that one coefficient is equal to zero, and the test of constant

conditional mean. The simulation is implemented to obtain the sizes and the powers of the tests

for different sample sizes. The tests are carried out at asymptotic level α = 5%.

4.2.1 Empirical behavior of the tests under the null

For the test of nullity of one coefficient, we consider two different classes of DGPs. The first

DGP’s are INGARCH(1,1) models with (ω0, α0, β0) =(2, 0.5, 0) and three different conditional

distributions, a Poisson, a negative binomial and a double-Poisson. On each of the N = 1000

simulations, we fit an INGARCH(1,1) model by PQMLE, and carry out the test of H0 : β0 =

0 against H1 : β0 > 0. The null is rejected for large values of the test statistic nβ̂2
n/Σ̂(3, 3). As

the parameters of the INGARCH(1,1) are positively constrained, according to (2.25), we use

the critical value χ2
1(1 − 2α). The second class of DGP’s is that of the Log-Linear(1,1) models

with (ω0 , α0, β0) =(2, -0.5, 0). We test the same hypotheses and use the same test statistic.

However, as the regression parameters of the Log-Linear model are not positively constrained,

we use the usual critical value χ2
1(1−α). The relative rejection frequencies are shown in Table 3.

Recall that, over N = 1000 independent replications of a test having the exact level 5%, the

relative rejection frequency should vary between 3.6% and 6.4% with probability 95%. For the

sample size n = 1000, the empirical sizes of the tests are thus in perfect agreement with the

nominal level α = 5%.

Table 3: Size of the test of nullity of β0

INGARCH(1,1)

n P(λt) NB(3, pt) DP(λt, 0.5)

100 6.6 6.3 7.1

1000 4.1 3.8 5.2

Log-Linear(1,1)

n P(λt) NB(3, pt) DP(λt, 0.5)

100 16 18.4 14.4

1000 6.1 5.26 5.4

For the test of constant conditional mean, we simulate INARCH(3) models with (ω0, α01, α02, α03)=
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(2, 0, 0, 0). We then carry out the test of

H0 : α01 = α02 = α03 = 0 against H1 : at least one α0i > 0 for i = 1, 2, 3.

In view of Corollary 2.1, the null is rejected when the statistic Sn = n
(
α̂2

n1 + α̂2
n2 + α̂2

n3

)
exceeds

the α-quantile c3,α = 5.43 of the chi-bar-square distribution. The relative frequencies of rejection

are given in Table 4. We can note that, at least when n = 1000, the observed relative rejection

frequencies of all the tests are not significantly different from the theoretical level 5%.

Table 4: Size of the test of constant conditional mean

INGARCH(1,1)

n P(λt) NB(3, pt) DP(λt, 0.5)

100 3.7 3.2 4.9

1000 3.9 5.7 4.5

4.2.2 Empirical behavior of the tests under the alternative

To study the power of the tests, we now simulate INGARCH(1,1) processes with (ω0, α0)=

(2, 0.3) and β0 ∈ {0.05, 0.2, 0.6}, and Log-Linear(1,1) processes with (ω0, α0)= (2, 0.3) and

β0 ∈ {−0.1, −0.3, −0.6}. We carry out the test of nullity of the coefficient β0 for both kind of

models. Table 5 shows that the test works as expected: the power increases as the sample size

increases and as the value of β0 increases.

For the test of constant conditional mean, we simulate INARCH(3) models with (ω0, α01, α02)=

(2, 0, 0) and α03 ∈ {0.05, 0.1, 0.4}. Table 6 shows that this test also works reasonably well.

A way to visualize the power of a test is to plot the function of the relative rejection fre-

quencies (RRF)

RRF (z) =
1

N

N∑

j=1

I(pj < z), z ∈ [0, 1],

where pj denotes the observed p-value for the j-th replication of the test, and I(pj < z) is

an indicator function that takes the value 1 if its argument is true and 0 otherwise. Figure

2 displays the RRF functions of the test of nullity of one coefficient (2.25) and of the test of

constant conditional mean (2.26), for different sample sizes n. The first test is applied with

the null H0 : β0 = 0 on simulations of the INGARCH(1,1) process with (ω0, α0, β0)= (2, 0.6,

0.1) and the conditional distribution NB(3, pt). The second test is applied to the INARCH(3)

process with the conditional distribution NB(3, pt) and (ω0, α01, α02, α03)= (2, 0, 0, 0.1). In

19



Table 5: Power of the test of nullity of β0

INGARCH(1,1)

n β0 P(λt) NB(3, pt) DP(λt, 0.5)
100 β0 = 0.05 11.9 12.6 12.3

β0 = 0.2 22.3 20.0 21.6
β0 = 0.6 86.4 84.5 85.2

1000 β0 = 0.05 14.2 14.2 11.5
β0 = 0.2 68.2 62.9 65.8
β0 = 0.6 100 100 100

Log-Linear(1,1)

n β0 P(λt) NB(3, pt) DP(λt, 0.5)
100 β0 = −0.1 20.1 18.2 17.3

β0 = −0.3 23.6 26.9 27.7
β0 = −0.6 60.4 65.5 63.7

1000 β0 = −0.1 32.4 16.3 18.8
β0 = −0.3 73.1 78.7 82.8
β0 = −0.6 100 100 100

Table 6: Power of the test of constant conditional mean

INGARCH(1,1)

n θ0 P(λt) NB(3, pt) DP(λt, 0.5)
100 θ0 = (2, 0, 0, 0.05) 5.5 7.7 11

θ0 = (2, 0, 0, 0.1) 13.3 13.1 13.8
θ0 = (2, 0, 0, 0.4) 92.6 90.1 91.1

1000 θ0 = (2, 0, 0, 0.05) 29.9 29 24.5
θ0 = (2, 0, 0, 0.1) 83.3 81.1 76
θ0 = (2, 0, 0, 0.4) 100 100 100

Figure 2, the more concave the shape of a curve is, the better the corresponding test is in terms

of power. Note that, for the first test, RRF (z) does not reach 1 when z = 1. This is due to the

fact that when the test statistic takes the value zero (which appears with non zero probability,

even under the alternative) the p-value is equal to 1 (i.e. the probability that a chi-bar-square

distribution be positive or equal to zero).

5 Real data application

In this section, we report an application of the PQMLE to financial time series data. The

data set is obtained from the QUANDL search engine and it contains the daily number of
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Figure 2: Empirical power of the test of nullity of one coefficient (left plot) and of the

test of constant conditional mean (right plot), measured by the function of the relative

rejection frequencies (RRF)

trades of 6 stocks listed in the NYSE Euronext group, namely CR.FONC.MONACO, SIRAGA,

TECHNOFIRST, SIPAREX CROISSANCE, PROXIMIDIA and ACHMEA (see Figure 3). The

size of the series varies from 1006 to 3633.

Table 7: The dispersion of the data

C.F.M SIRAGA TECHNOFIRST SIPAREX PROXIMIDIA ACHMEA

Mean 2.226 3.589 4.132 10.019 1.736 23.788

Variance 2.963 17.578 19.562 129.730 1.586 234.854

Table 7 shows that the series are overdispersed (their empirical variances are larger than

their means), with the exception of the PROXIMIDIA stock which is underdispersed. For each

series, we fitted INGARCH(3,1), INGARCH(2,1), INGARCH(1,1) and INARCH(1) models. The

estimated parameters are shown in Table 8. This table also gives, into parentheses, the p-values

of the test (2.25) of nullity of the corresponding coefficient. The p-values that are less than 0.05

are underlined. To illustrate the table, take the example of the daily number of transactions of

the CR.FONC.MONACO stock. For the full INGARCH(3,1) model, the parameter β̂3 is not

statistically significant. Constrained INGARCH(3,1) models (assuming β01 = 0, or β02 = 0, or
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even β01 = β02 = 0) have also been tried, but these constrained models do not seen adapted

to this series. The first beta coefficient of the INGARCH(2,1) model does not appear to be

significant, thus a conditional mean of the form λt = 0.340+0.112Xt−1 +0.735λt−2 is retained for

this series. The residuals of the simpler INGARCH(1,1) and INARCH(1) models (not presented

here) present signs of correlatedness. It is interesting to note that, for all the series, the sum

of the estimated values of the α and β coefficients is close to 0.9, which indicates a strong

persistence in the dynamics. This is in accordance with the clusters of high values that are

observed on the series plotted in Figure 3.
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Figure 3: The time series and their sample autocorrelation functions
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Table 8: PQMLE of INGARCH models for the expected number of transactions (and

p-value of the test of nullity of the coefficient)

INGARCH(3,1)

θ̂ C.F.M SIRAGA TECHNOFIRST SIPAREX PROXIMIDIA ACHMEA

ω̂ 0.280 0.187 0.492 0.728 0.165 2.413

α̂ 0.111(0.030) 0.029(0.000) 0.384(0.000) 0.314(0.000) 0.224(0.000) 0.335(0.000)

β̂1 0.075(0.761) 0.469(0.000) 0.123(0.109) 0.435(0.000) 0.453(0.032) 0.433(0.000)

β̂2 0.689(0.000) 0.000(1.000) 0.230(0.004) 0.000(1.000) 0.086(0.756) 0.000(1.000)

β̂3 0.000(1.000) 0.189(0.023) 0.144(0.021) 0.178(0.003) 0.145(0.394) 0.130(0.169)

ω̂ 0.283 0.200 0.522 0.805 0.202 2.646

α̂ 0.111(0.000) 0.307(0.000) 0.397(0.000) 0.341(0.000) 0.261(0.000) 0.357(0.000)

β̂2 0.710(0.000) 0.425(0.000) 0.288(0.000) 0.305(0.000) 0.228(0.141) 0.410(0.000)

β̂3 0.051(0.462) 0.213(0.000) 0.188(0.000) 0.274(0.000) 0.398(0.024) 0.122(0.044)

ω̂ 0.267 0.187 0.482 0.728 0.164 2.413

α̂ 0.096(0.003) 0.290(0.000) 0.368(0.000) 0.314(0.000) 0.221(0.000) 0.335(0.000)

β̂1 0.676(0.001) 0.469(0.000) 0.281(0.000) 0.435(0.000) 0.500(0.000) 0.433(0.000)

β̂3 0.108(0.532) 0.189(0.006) 0.234(0.000) 0.178(0.000) 0.187(0.061) 0.130(0.025)

ω̂ 0.854 0.309 0.657 1.299 0.404 4.126

α̂ 0.122(0.000) 0.333(0.000) 0.408(0.000) 0.376(0.000) 0.285(0.000) 0.401(0.000)

β̂3 0.495(0.001) 0.582(0.000) 0.433(0.000) 0.495(0.000) 0.485(0.000) 0.426(0.000)

INGARCH(2,1)

ω̂ 0.279 0.198 0.522 0.775 0.157 2.686

α̂ 0.111(0.000) 0.278(0.000) 0.377(0.000) 0.308(0.000) 0.202(0.000) 0.338(0.000)

β̂1 0.075(0.410) 0.485(0.000) 0.169(0.013) 0.417(0.000) 0.564(0.012) 0.406(0.000)

β̂2 0.689(0.000) 0.182(0.122) 0.328(0.000) 0.197(0.005) 0.145(0.448) 0.143(0.140)

ω̂ 0.340 0.257 0.657 1.037 0.265 3.416

α̂ 0.112(0.000) 0.298(0.000) 0.404(0.000) 0.335(0.000) 0.221(0.000) 0.372(0.000)

β̂2 0.735(0.000) 0.631(0.000) 0.437(0.000) 0.562(0.000) 0.628(0.000) 0.485(0.000)

INGARCH(1,1)

ω̂ 0.290 0.201 0.567 0.802 0.148 2.842

α̂ 0.090(0.000) 0.278(0.000) 0.343(0.000) 0.288(0.000) 0.184(0.000) 0.326(0.000)

β̂1 0.780(0.000) 0.687(0.000) 0.520(0.000) 0.632(0.000) 0.733(0.000) 0.554(0.000)

INARCH(1)

ω̂ 1.905 1.686 1.948 4.569 1.190 11.458

α̂ 0.145(0.000) 0.531(0.000) 0.529(0.000) 0.545(0.000) 0.315(0.000) 0.518(0.000)
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6 Conclusion

The PQMLE provides a general approach for estimating the conditional mean parameters of time

series of counts. If the conditional mean is correctly specified, under some regularity conditions,

the PQMLE is CAN, even if the conditional distribution is not Poisson. For the asymptotic

variance, it is however important to employ the robust expression Σ = J−1IJ−1 instead of the

expression Σ = J−1 which may be invalid when the conditional distribution is not Poisson. When

the parameter stands at the boundary of the parameter space, the asymptotic distribution of

the PQMLE is no more Gaussian. This is a usual framework which appears, for instance, when

we have an over-identified INGARCH(p, q) model (i.e. p or q is larger than necessary). When

assessing the significance of the estimated parameters, we thus have to take into account the fact

that the PQMLE has a special non Gaussian asymptotic distribution under the null. This leads

to adequacy tests with chi-bar-square distributions instead of usual chi-square distributions.

Note that these particular distributions of the estimator and its related tests also hold for the

MLE (i.e. when the conditional distribution is Poisson).

In view of Fokianos (2012), the INGARCH model admits a weak ARMA representation. The

result still holds true when the conditional distribution is not Poisson. In principle, we could

thus use general diagnostic checking tools of weak ARMA models (as in Francq et al. 2005) for

identifying the orders p and q of a conditional mean of the INGARCH(p, q) form (2.9). The

problem deserves however more thought, and is left for future work. Other possible extensions

of the present work include models for time series valued in Z (see e.g. Kachour and Truquet,

2011 and Andersson and Karlis, 2014) which appear naturally, in particular when a count time

series is differenced, and for which a QMLE could be searched.

7 Proofs

Proof of Theorem 2.1. Let ℓt(θ) and Ln(θ) be the random variables obtained by replacing

λ̃t(θ) by λt(θ) in ℓ̃t(θ) and L̃n(θ), respectively. Using (2.2), (2.5) and the inequality log(1+x) ≤
x, we have

∣∣∣log λ̃t(θ) − log λt(θ)
∣∣∣ =

∣∣∣∣∣log
(

1 +
λ̃t(θ) − λt(θ)

λt(θ)

)∣∣∣∣∣ ≤
at

ω
.

By (2.4), as n → ∞

sup
θ∈Θ

∣∣∣L̃n(θ) − Ln(θ)
∣∣∣ ≤ 1

n

n∑

t=s+1

at + Xt
at

ω
→ 0 a.s. (7.1)
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Now note that, using (2.1), and again log(x) ≤ x − 1 for x > 0,

E {ℓ1(θ) − ℓ1(θ0)} = E

{
λ1(θ0) log

λ1(θ)

λ1(θ0)
− λ1(θ) + λ1(θ0)

}

≤ E

{
λ1(θ0)

(
λ1(θ)

λ1(θ0)
− 1

)
− λ1(θ) + λ1(θ0)

}
= 0

with equality iff θ = θ0 by (2.8).

From (2.2) and (2.3), it can be seen that | log λ1(θ0)| admits moments of any order. Hölder’s

inequality and (2.3) then entail that

E|X1 log λ0(θ0)| ≤ ‖X1‖1+ε‖ log λ1(θ0)‖1+1/ε < ∞.

We thus have E|ℓ1(θ0)| < ∞. Therefore E {ℓ1(θ) − ℓ1(θ0)} belongs a priori to [−∞, 0], and one

can deduce

Eℓ1(θ) < Eℓ1(θ0), ∀θ 6= θ0. (7.2)

For k ∈ N
∗ and θ1 ∈ Θ, let Vk(θ1) be the open ball of center θ1 and radius 1/k. Note that

{
supθ∈Vk(θ1)∩Θ ℓt(θ)

}
t
is an ergodic stationary sequence, as a measurable function of the ergodic

stationary process (Xt). Note also that E supθ∈Vk(θ1)∩Θ ℓt(θ) belongs to R ∪ {−∞}. In view of

(7.1) and the ergodic theorem (see Billingsley, 2008, pp. 284 and 495) we thus obtain

lim sup
n→∞

sup
θ∈Vk(θ1)∩Θ

L̃n(θ) = lim sup
n→∞

sup
θ∈Vk(θ1)∩Θ

Ln(θ) ≤ E sup
θ∈Vk(θ1)∩Θ

ℓ1(θ).

By Beppo Levi’s theorem, E supθ∈Vk(θ1)∩Θ ℓ1(θ) decreases to Eℓ1(θ1) as k → ∞. In view of

(7.2), we have shown that for all θ1 6= θ0 there exists a neighborhood V (θ1) of θ1 such that

lim sup
n→∞

sup
θ∈V (θ1)∩Θ

L̃n(θ) < lim sup
n→∞

L̃n(θ0) = Eℓ1(θ0). (7.3)

The conclusion follows form a standard argument, using the compactness of Θ. ✷

Proof of Theorem 2.2. First consider the impact of the initial values. We have

√
n sup

θ∈Θ

∥∥∥∥
∂

∂θ
L̃n(θ) − ∂

∂θ
Ln(θ)

∥∥∥∥ ≤ 1√
n

n∑

t=s+1

{
bt + Xt

(
at

ω
dt +

bt

ω

)}

= o(1) (7.4)

almost surely, by (2.15). For n large enough, θ̂n does not lie at the boundary of Θ and thus we

have

0 =
√

n
∂

∂θ
L̃n(θ̂n)

o(1)
=

√
n

∂

∂θ
Ln(θ̂n) =

√
n

∂

∂θ
Ln(θ0) − J∗

n

√
n(θ̂n − θ0), (7.5)
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where a
c
= b stands for a = b + c, and J∗

n is a matrix whose generic term is of the form

−∂2Ln(θ∗ij)/∂θi∂θj, for some θ∗ij between θ̂n and θ0. Note that

√
n

∂

∂θ
Ln(θ0) =

1√
n

n∑

t=s+1

Ut, Ut =

(
Xt

λt(θ0)
− 1

)
∂λt(θ0)

∂θ
, (7.6)

where {Ut,Ft} is a stationary martingale difference, Ft denoting the σ-field generated by

{Xu, u ≤ t}. In view of (2.11) and (2.12) we have EUtU
′
t = I. The central limit theorem

of Billingsley (1961) for square-integrable stationary martingale difference then entails that

√
n

∂

∂θ
Ln(θ0)

d→ N (0, I) as n → ∞. (7.7)

Let Vm(θ0) be the ball of center θ0 and radius 1/m. Assume that m is large enough so that

Vm(θ0) is included in the neighborhood V (θ0) defined in (2.14). Suppose that n is sufficiently

large, so that θ∗ij ∈ Vm(θ0). With probability one,

|J∗
n(i, j) − J(i, j)| ≤ 1

n

n∑

t=s+1

sup
θ∈Vm(θ0)

∣∣∣∣
∂2

∂θi∂θj
ℓt(θ) − E

∂2

∂θi∂θj
ℓt(θ0)

∣∣∣∣

→ E sup
θ∈Vm(θ0)

∣∣∣∣
∂2

∂θi∂θj
ℓt(θ) − E

∂2

∂θi∂θj
ℓt(θ0)

∣∣∣∣ (7.8)

as n → ∞. Under (2.14), the Lebesgue dominated convergence theorem entails that

lim
m→∞

E sup
θ∈Vm(θ0)

∣∣∣∣
∂2

∂θi∂θj
ℓt(θ) − E

∂2

∂θi∂θj
ℓt(θ0)

∣∣∣∣ = 0. (7.9)

It follows that

J∗
n → J a.s.

The conclusion follows from (7.5), (7.7) and (2.13). ✷

Proof of Theorem 2.3. For all θ ∈ Θ, a second order Taylor expansion of L̃n(θ) at θ0 yields

L̃n(θ) − L̃n(θ0) =
∂Ln(θ0)

∂θ′
(θ − θ0) −

1

2
(θ − θ0)

′J(θ − θ0) + Rn(θ),

where

Rn(θ) =

{
∂L̃n(θ0)

∂θ′
− ∂Ln(θ0)

∂θ′

}
(θ − θ0) +

1

2
(θ − θ0)

′

(
∂2L̃n(θ∗)

∂θ∂θ′
+ J

)
(θ − θ0),

and θ∗ is between θ and θ0. Note that ∂Ln(θ0)/∂θ′ has to be understood as a vector of right

derivatives. Even if θ0 contains null components, this vector of right-derivatives is well defined,

and is equal to n−1
∑n

t=s+1 Ut, as in (7.6). Introducing the vector

Zn = J−1√n
∂Ln(θ0)

∂θ
,
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we can write

L̃n(θ) − L̃n(θ0) =
1

2n
‖Zn‖2

J − 1

2n

∥∥Zn −√
n(θ − θ0)

∥∥2

J
+ Rn(θ).

Let the projection of Zn on C
ZC

n = arg inf
C∈C

‖C − Zn‖J .

Define also

θZn
= arg inf

θ∈Θ

∥∥√n(θ − θ0) − Zn

∥∥
J

.

In view of (2.22), we have

√
n(θZn

− θ0) = ZC
n for n large enough. (7.10)

By definition of θZn
and θ̂n, and Lemma 7.1 below, we have

0 ≤ ‖√n(θ̂n − θ0) − Zn‖2
J − ‖√n(θZn

− θ0) − Zn‖2
J

= 2n
{

L̃n(θZn
) − L̃n(θ̂n)

}
+ 2n

{
Rn(θ̂n) − Rn(θZn

)
}

≤ 2n
{

Rn(θ̂n) − Rn(θZn
)
}

= oP (1).

By (7.10) it follows that

‖√n(θ̂n − θ0) − Zn‖2
J − ‖ZC

n − Zn‖2
J = oP (1).

In view of (2.24) we have

‖√n(θ̂n − θ0) − Zn‖2
J = ‖√n(θ̂n − θ0) − ZC

n‖2
J + ‖ZC

n − Zn‖2
J

+ 2
〈√

n(θ̂n − θ0) − ZC
n , ZC

n − Zn

〉
J

≥ ‖√n(θ̂n − θ0) − ZC
n‖2

J + ‖ZC
n − Zn‖2

J .

We thus obtain

‖√n(θ̂n − θ0) − ZC
n‖2

J ≤ ‖√n(θ̂n − θ0) − Zn‖2
J − ‖ZC

n − Zn‖2
J = oP (1).

Noting that, by central limit theorem of Billinsgley (1961),

Zn
d→ Z ∼ N

(
0, J−1IJ−1

)
as n → ∞, (7.11)

we have ZC
n

d→ ZC and the conclusion follows. ✷
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Lemma 7.1 Under the assumptions of Theorem 2.3, Rn(θZn
) = oP (n−1) and Rn(θ̂n) = oP (n−1)

as n → ∞.

Proof. First consider the impact of the initial values on the second-order derivatives of the

objective function. We have

sup
θ∈Θ

∥∥∥∥
∂2

∂θ∂θ′
L̃n(θ) − ∂2

∂θ∂θ′
Ln(θ)

∥∥∥∥

≤ 1

n

n∑

t=s+1

{
ct + Xt

(
at

ω
et +

ct

ω
+

at

ω
d2

t +
bt

ω
dt

)}
= o(1) (7.12)

almost surely, by (2.23). In view of (7.4), (7.12) and (7.8)-(7.9), as n → ∞ we have

nRn(θn) = oP

{√
n(θn − θ0)

}
+ oP

{
n‖θn − θ0‖2

}
(7.13)

when θn − θ0 = oP (1). Therefore

nRn(θn) = oP (1) when
√

n(θn − θ0) = OP (1). (7.14)

By definition of θZn
, and since θ0 ∈ Θ, we also have

∥∥√n(θZn
− θ0) − Zn

∥∥
J
≤ ‖Zn‖J .

The Minskowski inequality then entails that

∥∥√n(θZn
− θ0)

∥∥
J
≤
∥∥√n(θZn

− θ0) − Zn

∥∥
J

+ ‖Zn‖J ≤ 2 ‖Zn‖J .

By (7.11), we have ‖Zn‖J = OP (1), and thus
√

n(θZn
− θ0) = OP (1). In view of (7.14), this

entails nRn(θZn
) = oP (1).

It remains to show the second convergence. By definition of θ̂n, we have

0 ≤ 2nL̃n(θ̂n) − 2nL̃n(θ0) = ‖Zn‖2
J −

∥∥∥Zn −√
n(θ̂n − θ0)

∥∥∥
2

J
+ 2nRn(θ̂n).

It follows that

∥∥∥
√

n(θ̂n − θ0)
∥∥∥

2

J
≤ 2

(∥∥∥
√

n(θ̂n − θ0) − Zn

∥∥∥
2

J
+ ‖Zn‖2

J

)

≤ 4 ‖Zn‖2
J + 4nRn(θ̂n).

The consistency of θ̂n and (7.13) entail that nRn(θ̂n) = oP

(∥∥∥
√

n(θ̂n − θ0)
∥∥∥

2

J

)
. It follows that

√
n(θ̂n − θ0) = OP (1), and the conclusion comes from (7.14). ✷

Proof of Corollary 2.1. Note that, because λt(θ0) is fixed, we have µ2 = E(X2
t | Xu, u < t).
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For notational convenience, write the information matrices in the case q = 3. We have

J =
1

ω0




1 ω0 ω0 ω0

ω0 µ2 ω2
0 ω2

0

ω0 ω2
0 µ2 ω2

0

ω0 ω2
0 ω2

0 µ2




and I =
µ2 − ω2

0

ω0
J.

We thus obtain

Σ =




(q − 1)ω2
0 + µ2 −ω0 · · · −ω0

−ω0

... Iq

−ω0




.

By the arguments given in Section 8.3.4 of FZ, the conclusion then follows from Theorem 2.3

and Remarks 2.3 and 2.4. ✷

Sketch of proof of (3.3). The detailed proof, which is long and tedious, is available from

the authors. We only give here the main computations showing that the condition (3.3) is

necessary for the existence of EX4
t . Let ǫt = Xt − λt. Note that for all r ≥ 2, EXr

t < ∞
iff E|ǫt|r < ∞. We have E(ǫ2

t | Ft) = λt + λ2
t /r. Therefore EX2

t < ∞ iff Eλ2
t < ∞. Writing

λt = ω0+α0ǫt−1+(α0+β0)λt−1, and assuming that λt is stationary with second-order moments,

we obtain

Eλ2
t = ω2

0 + α2
0Eǫ2

t−1 + (α0 + β0)
2Eλ2

t−1 + 2ω0(α0 + β0)Eλt−1

=

{
α2

0

r
+ (α0 + β0)

2

}
Eλ2

t + K,

where, here and in the sequel, K denotes a generic positive constant whose value is unimportant.

Therefore EX2
t < ∞ entails (3.2), which was already known from Christou and Fokianos (2013).

Now, from the expression of the centred third and fourth order moments of the negative binomial

distribution, we have

E
(
ǫ3
t | Ft

)
= 2

λ3
t

r2
+ R

(2)
t , E

(
ǫ4
t | Ft

)
= (6 + 3r)

λ4
t

r3
+ R

(3)
t ,

where, for i = 2, 3, R
(i)
t is a polynomial in λt of degree i with positive coefficients. Therefore

EX4
t < ∞ iff Eλ4

t < ∞ and, after some tedious computations,

Eλ4
t = α4

0Eǫ4
t−1 + 8α3

0(α0 + β0)
Eλ4

t−1

r2
+ 6α2

0(α0 + β0)
2 Eλ4

t−1

r
+ (α0 + β0)

4Eλ4
t−1 + K,

and the conclusion follows. ✷
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