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Abstract

We consider testing for two-sample means of high dimensional populations by thresh-

olding. Two tests are investigated, which are designed for better power performance

when the two population mean vectors differ only in sparsely populated coordinates.

The first test is constructed by carrying out thresholding to remove the non-signal

bearing dimensions. The second test combines data transformation via the preci-

sion matrix with the thresholding. The benefits of the thresholding and the data

transformations are showed by a reduced variance of the test thresholding statistics,

the improved power and a wider detection region of the tests. Simulation experi-

ments and an empirical study are performed to confirm the theoretical findings and

to demonstrate the practical implementations.
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Thresholding.
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1. INTRODUCTION

Modern statistical data in biological and financial studies are increasingly high di-

mensional, but with relatively small sample sizes. This is the so-called “large p, small

n” phenomenon. If the dimension p increases as the sample size n increases, many

classical approaches originally designed for fixed dimension problems (Hotelling’s test

and the likelihood ratio tests for the covariances) may no longer be feasible. New

methods are needed for the “large p, small n” setting.

An important high dimensional inferential task is to test the equality of the mean

vectors between two populations, which represent two treatments. Let Xi1 · · · ,Xini

be an independent and identically distributed sample drawn from a p-dimensional

distribution Fi, for i = 1 and 2 respectively. The dimensionality p can be much larger

than the two sample sizes n1 and n2 so that p/ni → ∞. Let µi and Σi be the means

and the covariance of Fi. The primary interest is testing

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (1.1)

Hotelling’s T 2 test has been the classical test for the above hypotheses for fixed

dimension p and is still applicable if p ≤ n1 + n2 − 2. However, as shown in Bai

and Saranadasa (1996), Hotelling’s test suffers from a significant power loss when

p/(n1 + n2 − 2) approaches to 1 from below. When p > n1 + n2 − 2, the test is not

applicable as the pooled sample covariance matrix, say Sn, is no longer invertible.

There are proposals which modify Hotelling’s T 2 statistic for high dimensional

situations. Bai and Saranadasa (1996) proposed the following alteration

Mn = (X̄1 − X̄2)
T (X̄1 − X̄2)− tr(Sn)/n, (1.2)

by removing the inverse of the sample covariance matrix S−1
n from the Hotelling’s

statistic, where n = n1n2/(n1 + n2). Chen and Qin (2010) considered a linear combi-
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nation of U-statistics

Tn =
1

n1(n1 − 1)

n1∑

i 6=j

XT
1iX1j +

1

n2(n2 − 1)

n2∑

i 6=j

XT
2iX2j −

2

n1n2

n1∑

i

n2∑

j

XT
1iX2j, (1.3)

and showed that the corresponding test can operate under much relaxed regimes

regarding the dimensionality and sample size constraint and without assuming Σ1 =

Σ2. Srivastava, Katayama and Kano (2013) proposed using the diagonal matrix of

the sample variance matrice to replace Sn under the normality. These three tests are

basically all targeted on a weighted L2 norms between µ1 and µ2. In a development

in another direction, Cai, Liu and Xia (2014) proposed a test based on the max-norm

of marginal t-statistics. More importantly, they implemented a data transformation

which is designed to increase the signal strength under sparsity as discovered early

in Hall and Jin (2010) in their innovated higher criticism test for the one sample

problem.

The L2 norm based tests are known to be effective in detecting dense signals in

the sense that the differences between µ1 and µ2 are populated over a large number

of components. However, the tests will encounter power loss under the sparse signal

settings where only a small portion of components of the two mean vectors are dif-

ferent. To improve the performance of these tests under the sparsity, we propose a

thresholding test to remove the non-signal bearing dimensions. The idea of threshold-

ing has been used in many applications, as demonstrated in Donoho and Johnstone

(1994) for selecting significant wavelet coefficient and Fan (1996) for testing the mean

of random vectors with IID normally distributed components. See also Ji and Jin

(2012) for variable selection in high dimensional regression model. We find that the

thresholding can reduce the variance of the Chen and Qin (2010) (CQ) test statistic,

and hence increases the power of the test under sparsity for non-Gaussian data. We

also confirm the effectiveness of the precision matrix transformation in increasing the

signal strength of the CQ test. The transformation is facilitated by an estimator

3



of the precision matrix via the Cholesky decomposition with the banding approach

(Bickel and Levina, 2008a, 2008b). It is shown that the test with the thresholding

and the data transformation has a lower detection boundary than that without the

data transformation, and can be lower than the detection boundary of an Oracle test

without data transformation.

The rest of the paper is organized as follows. We analyze the thresholding test

and its relative power performance to the CQ test and the Oracle test in Section 2.

A multi-level thresholding test is proposed in Section 3 for detecting faint signals.

Section 4 considers a data transformation with an estimated precision matrix. Sim-

ulation results are presented in Section 5. Section 6 reports an empirical study to

select differentially expressed gene-sets for a human breast cancer data set. Section

7 concludes the paper with discussions. All technical details are relegated to the

Appendix.

2. THRESHOLDING TEST

We first outline the CQ statistic before introducing the thresholding approach. The

statistic (1.3) can be written as Tn =
∑p

k=1 Tnk where

Tnk =
1

n1(n1 − 1)

n1∑

i 6=j

X
(k)
1i X

(k)
1j +

1

n2(n2 − 1)

n2∑

i 6=j

X
(k)
2i X

(k)
2j

− 2

n1n2

n1∑

i

n2∑

j

X
(k)
1i X

(k)
2j , (2.1)

and X
(k)
ij represents the k-th component of Xij. It can be readily shown that Tnk is

unbiased to (µ1k − µ2k)
2, which may be viewed as the amount of signal in the k-th

dimension.

To facilitate simpler notations, we modify the test statistic Tn by standardizing

each Tnk by σ1,kk/n1+σ2,kk/n2, the variance of X̄
(k)
1 − X̄

(k)
2 , if both σ1,kk and σ2,kk are

known. If σ1,kk and σ2,kk are unknown, we can use σ̂1,kk/n1+ σ̂2,kk/n2 where σ̂1,kk and
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σ̂2,kk are the usual sample variance estimates at the k-th dimension. This will make

the CQ test invariant under the scale transformation; see Feng, Zou, Wang and Zhu

(2013) for a related investigation. To expedite our discussion, we assume σ2
i,kk are

known and equal to one without loss of generality. This leads to a modified version

of the CQ statistic

T̃n = n

p∑

k=1

Tnk, (2.2)

where n = n1n2/(n1+n2). Under the same setting, a modified version of the Bai and

Saranadasa (BS) test statistic is

M̃n = n

p∑

k=1

Mnk − p, (2.3)

where Mnk = (X̄
(k)
1 − X̄

(k)
2 )2.

Let δk = µ1k − µ2k and Sβ = {k : δk 6= 0} be the set of locations of the signals

δk such that |Sβ| = p1−β where β ∈ (0, 1) is the sparsity parameter. Basically, the

sparsity of the signal increases as β is closer to 1. Under the sparsity, an overwhelming

number of Tnk carry no signals. However, including them increases the variance of

the test statistic, and dilutes the signal to noise ratio of the test; and thus hampers

the power of the test.

Let us now analyze the standardized CQ test under the sparsity. Define

ρkl = Cov

{√
n(X̄

(k)
1 − X̄

(k)
2 ),

√
n(X̄

(l)
1 − X̄

(l)
2 )

}
= n(σ1,kl/n1 + σ2,kl/n2). (2.4)

Similar to the derivation in Chen and Qin (2010), the variance of T̃n under H0 is

σ2
T̃n,0

= 2p+ 2
∑

i 6=j

ρ2ij,

and that under H1 is

σ2
T̃n,1

= 2p+ 2
∑

i 6=j

ρ2ij + 4n
∑

k,l∈Sβ

δk δl ρkl. (2.5)
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It can be seen that σ2
T̃n,1

≥ σ2
T̃n,0

since the last term of σ2
T̃n,1

is nonnegative due to

R = (ρij)p×p being non-negative definite.

Under a general multivariate model and some conditions on the covariance matri-

ces, the asymptotic normality of T̃n can be established (Chen and Qin, 2010):

T̃n − ||µ1 − µ2||2
σT̃n,1

d−→ N(0, 1), as p → ∞ and n → ∞.

This implies the modified CQ test that rejects H0 if T̃n/σ̂T̃n,0
> zα where zα is the

upper α quantile of N(0, 1) and σ̂T̃n,0
is a consistent estimator of σT̃n,0

.

Let δ̄2 =
∑

k∈Sβ
n δ2k/p

1−β represent the average standardized signal. The power

of the test is

βT̃n
(||µ1 − µ2||) = Φ

(
−

σT̃n,0

σT̃n,1

zα +
p1−β δ̄2

σT̃n,1

)
,

where Φ(·) is the distribution function of N(0, 1). Since σ2
T̃n,1

≥ σ2
T̃n,0

, the first term

within Φ(·) is bounded. Then, the power of the test is largely determined by the

second term

SNRT̃n
=:

p1−β δ̄2√
2p+ 2

∑
i 6=j ρ

2
ij + 4n

∑
k,l∈Sβ

δk δl ρkl
, (2.6)

which is called the signal to noise ratio of the test since the numerator is the average

signal strength and the denominator is the standard deviation of the test statistic

under H1. An inspection reveals that while the numerator of SNRT̃n
is contributed

only by those signal bearing dimensions, the standard deviation in the denominator

is contributed by all Tnk including those with non-signals.

Specifically, if Σ1 = Σ2 = Ip,

SNRT̃n
=

p1−β δ̄2√
2p+ 4p1−β δ̄2

.

Hence, if the sparsity β > 1/2 and the average signal δ̄ = o(pβ/2−1/4), SNRT̃n
= o(1).

Then, the test has little power beyond the significant level. A reason for the power
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loss is that the variance of T̃n is much inflated by including those non-signal bearing

Tnk.

To put the above analysis in prospective, we consider an Oracle test which has

the knowledge of the possible signal bearing set Sβ (with slight abuse of notation),

which is much smaller than the entire set of dimensions. The Oracle is only a semi-

Oracle as he does not know the exact dimensions of the signals other than that they

are within Sβ.

The Oracle test statistic is

On = n
∑

k∈Sβ

Tnk, . (2.7)

Similar to the derivation of (2.5), the variance of On under H0 is

σ2
On,0 = 2p1−β + 2

∑

i 6=j∈Sβ

ρ2ij,

and that under H1 is

σ2
On,1 = 2p1−β + 2

∑

i 6=j∈Sβ

ρ2ij + 4n
∑

k,l∈Sβ

δk δl ρkl. (2.8)

Comparing σ2
On,1

with σ2
T̃n,1

in (2.5), we see that the first term of σ2
On,1

is much smaller

than that of σ2
T̃n,1

. It may be shown that under the same conditions that establish

the asymptotic normality of T̃n,

On − ||µ1 − µ2||2
σOn,1

d−→ N(0, 1), as p → ∞ and n → ∞,

which leads to the Oracle test that rejects H0 if On/σ̂On,0 > zα where σ̂On,0 is a ratio

consistent estimator of σOn,0.

The asymptotic normality implies that the power of the Oracle test is

βOn
(||µ1 − µ2||) = Φ

(
− σOn,0

σOn,1

zα +
p1−β δ̄2

σOn,1

)
.
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It is largely determined by

SNROn
=:

p1−β δ̄2√
2p1−β + 2

∑
i 6=j∈Sβ

ρ2ij + 4n
∑

k,l∈Sβ
δk δl ρkl

, (2.9)

which is much larger than SNRT̃n
since σ2

On,1
≪ σ2

T̃n,1
. If Σ1 = Σ2 = Ip,

SNROn
=

p1−β δ̄2√
2p1−β + 4p1−β δ̄2

=
p

1−β

2 δ̄2√
2 + 4δ̄2

, (2.10)

that tends to infinity for β > 1/2 as long as δ̄ is a large order of pβ/4−1/4, which is

much smaller than pβ/2−1/4 for the CQ test, indicating the test is able to detect much

fainter signal.

The reason that the Oracle test has better power is that all the excluded dimen-

sions are definitely non-signal bearing and those included have much smaller dimen-

sions. In reality, the locations of those non-signal bearing dimensions are unknown.

However, thresholding can be carried out to exclude those non-signal bearing dimen-

sions. Based on the large deviation results (Petrov, 1995), we use a thresholding level

λn(s) = 2slogp for s ∈ (0, 1) to strike a balance between removing non-signal bearing

Tnk while maintaining those with signals. The thresholding test statistic is

L1(s) =

p∑

k=1

nTnkI

{
nTnk + 1 > λn(s)

}
, (2.11)

where I(·) is the indicator function.

We can also carry out the thresholding on BS test statistic (2.3), which leads to

L2(s) =

p∑

k=1

{
n(X̄

(k)
1 − X̄

(k)
2 )2 − 1

}
I

{
n(X̄

(k)
1 − X̄

(k)
2 )2 > λn(s)

}
. (2.12)

As we will show later, both L1(s) and L2(s) have very similar properties. Therefore,

we choose Ln(s) to refer to either L1(s) or L2(s).

Before we show that the thresholding can reduce the variance contributed from

those non-signal bearing dimensions without harming the signals, we introduce the
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notion of α-mixing to quantify the dependence among the components of the random

vector X = (X(1), · · · , X(p))T .

For any integers a < b, define FX,(a,b) to be the σ-algebra generated by {X(m) :

m ∈ (a, b)} and define the α-mixing coefficient

αX(k) = sup
m∈N ,A∈FX,(1,m),B∈FX,(m+k,∞)

|P (A ∩ B)− P (A)P (B)|.

The following conditions are assumed in our analysis.

(C1): As n → ∞, p → ∞ and logp = o(n1/3).

(C2): Let Xij = µi + Wij. There exists a positive constant H such that for

h ∈ [−H,H]2, E{ehT ·[(W (k)
ij )2,(W

(l)
ij )2]} < ∞ for k 6= l.

(C3): The sequence of random variables {X(l)
ij }pl=1 is α-mixing such that αX(k) ≤

Cαk for some α ∈ (0, 1) and a positive constant C, and ρkl defined in (2.4) are

summable such that
∑p

l=1 |ρkl| < ∞ for any k ∈ {1, · · · , p}.

Condition (C1) specifies the growth rate of dimension p relative to n under which

the large deviation results can be applied to derive the means and variances of the

test statistics. Condition (C2) assumes that (X
(k)
ij , X

(l)
ij ) has a bivariate sub-Gaussian

distribution, which is more general than the Gaussian distribution. Condition (C3)

prescribes weak dependence among the column components of the random vector,

which is commonly assumed in time series analysis.

Derivations given in Appendix leading to (A.1) and (A.2) show that the mean of

the thresholding test statistic Ln(s) is

µLn(s) =

(
2√
2π

(2slogp)
1
2p1−s +

∑

k∈Sβ

{n δ2kI(n δ2k > 2slogp)

+(2slogp)Φ̄(η−k )I(n δ2k < 2slogp)}
)
{1 + o(1)}, (2.13)
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and the variance is

σ2
Ln(s) =

(
2√
2π

{(2slogp) 3
2 + (2slogp)

1
2}p1−s +

∑

k,l∈Sβ

(4nδkδlρkl + 2ρ2kl)

× I(nδ2k > 2slogp)I(n δ2l > 2slogp) +
∑

k∈Sβ

(2slogp)2Φ̄(η−k )

× I(n δ2k < 2slogp)

)
{1 + o(1)}, (2.14)

where Φ̄ = 1− Φ and η−k = (2slogp)1/2 − n1/2δk.

Theorem 1. Assume Conditions (C1)-(C3). For any s ∈ (0, 1),

σ−1
Ln(s)

{
Ln(s)− µLn(s)

} d−→ N(0, 1).

Let µLn(s),0 and σLn(s),0 be the mean and variance under H0 which can be obtained

by ignoring the summation terms in (2.13) and (2.14). Then, Theorem 1 implies an

asymptotic α level test that rejects H0 if

Ln(s) > zασ̂Ln(s),0 + µ̂Ln(s),0, (2.15)

where µ̂Ln(s),0 and σ̂Ln(s),0 are consistent estimators of µLn(s),0 and σLn(s),0 satisfying

µLn(s),0 − µ̂Ln(s),0 = o{σLn(s),0} and σ̂Ln(s),0/σLn(s),0
p→ 1. (2.16)

If all the signals δ2k are strong such that n δ2k > 2logp, choosing s = 1− such that

(1− s) log(p) = o(1) leads to

µLn(s) =

{
2√
2π

(2logp)
1
2 +

∑

k∈Sβ

n δ2k

}
{1 + o(1)},

and

σ2
Ln(s) =

(
2√
2π

{(2logp) 3
2 + (2logp)

1
2}+

∑

k,l∈Sβ

(4n δk δl ρkl + 2ρ2kl)

)
{1 + o(1)}.

Except for a slowly varying logarithm function of p, σ2
Ln(s)

has the same leading order

variance of the Oracle statistic

σ2
On,1 =

∑

k,l∈Sβ

(
4n δk δl ρkl + 2ρ2kl

)
,

10



indicating the effectiveness of the thresholding under the strong signal situation. With

the same choice of s for strong signals case, µLn(s),0 and σ2
Ln(s),0

can be respectively

estimated by

µ̂Ln,0 =
2√
2π

(2logp)
1
2 and σ̂2

Ln,0 =
2√
2π

{(2logp) 3
2 + (2logp)

1
2}.

It can be shown that (2.16) is satisfied under (C1) and thus can be employed in the

formulation of a test procedure.

The asymptotic power of the thresholding test (2.15) is

βLn
(||µ1 − µ2||) = Φ

(
−zασLn(s),0

σLn(s),1

+
µLn(s),1 − µLn(s),0

σLn(s),1

)
,

which, similar to the CQ and the Oracle tests, is largely determined by

SNRLn
=:

µLn(s),1 − µLn(s),0

σLn(s),1

=
p1−β δ̄2√

2Lp + 2p1−β + 2
∑

k 6=l∈Sβ
ρ2kl + 4n

∑
k,l∈Sβ

δk δl ρkl
, (2.17)

which is much larger than that of the CQ test in (2.6) and differs from that of the

Oracle test given in (2.9) only by a slowly varying multi-logp function Lp. This

echoes that established in Fan (1996) for Gaussian data with no dependence among

the column components of the data.

3. MULTI-LEVEL THRESHOLDING

It is shown in Section 2 that if all the signals are strong such that nδk > 2logp, a single

thresholding with s = 1− improves significantly the power of the test and attains

nearly the power of the Oracle test. However, if some signals are weak such that

n δ2k = 2rlogp with r < 1 for some k ∈ Sβ, the thresholding has to be administrated

at smaller levels 2slogp for s ∈ (0, 1). In this case, the single-level thresholding

does not work well. One approach that provides a solution to such situation is the
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higher criticism test (Donoho and Jin, 2004) which effectively combines many levels

of thresholding together to formulate a higher criticism (HC) criterion. Zhong, Chen

and Xu (2013) proposed a more powerful test procedure than the HC test under

sparsity and data dependence. Both Donoho and Jin (2004)’s HC test and the test

proposed in Zhong et al. (2013) are for one sample, and both did not provide much

details on the power performance.

The multi-level thresholding statistic is

MLn
= max

s∈(0,1−η)

Ln(s)− µ̂Ln(s),0

σ̂Ln(s),0

. (3.1)

Maximizing over the thresholding statistics at multiple levels allows faint and un-

known signals to be captured. Since both µ̂Ln(s),0 and σ̂Ln(s),0 are monotonically

decreasing and Ln(s) contains indicator functions, provided (2.16) is satisfied, it

can be shown that the maximization in (3.1) is attained over Sn = {sk : sk =

n(X̄
(k)
1 − X̄

(k)
1 )2/(2logp), for k = 1, · · · , p} ∩ (0, 1− η) so that

MLn
= max

s∈Sn

Ln(s)− µ̂Ln(s),0

σ̂Ln(s),0

. (3.2)

The following theorem shows that MLn
is asymptotically Gumbel distributed.

Theorem 2. Assume Conditions (C1)-(C3) and condition (2.16) is satisfied.

Then under H0,

P

{
a(logp)MLn

− b(logp, η) ≤ x

}
→ exp(−e−x),

where functions a(y) = (2logy)
1
2 and b(y, η) = 2logy + 2−1loglogy − 2−1log{ 4π

(1−η)2
}.

The theorem implies that a two-sample multi-level thresholding test of asymptotic

α level rejects H0 if

MLn
≥ Gα = {qα + b(logp, η)}/a(logp), (3.3)

where qα is the upper α quantile of the Gumbel distribution exp(−e−x).
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Define

̺(β) =





β − 1
2
, 1

2
≤ β ≤ 3

4
;

(1−
√
1− β)2, 3

4
< β < 1.

(3.4)

Ingster (1997) shows that r = ̺(β) is the optimal detection boundary for uncorrelated

Gaussian data in the sense that when (r, β) lays above the phase diagram r = ̺(β),

there are tests whose probabilities of type I and type II errors converge to zero simul-

taneously as n → ∞, and if (r, β) is below the phase diagram, no such test exists.

Donoho and Jin (2004) showed that the HC test attains r = ̺(β) as the detection

boundary when Xi are IID N(µ, Ip) data. Zhong et al. (2013) showed that the L1

and L2-versions of the HC tests also attain r = ̺(β) as the detection boundary for

non-Gaussian data with column-wise dependence, and have more attractive power for

(r, β) further above the detection boundary.

Theorem 3. Assume Conditions (C1)-(C3) and µ̂Ln(s),0 and σ̂Ln(s),0 satisfy

(2.16). If r > ̺(β), the sum of type I and II errors of the multi-level thresholding

test converges to zero when α = Φ̄{(logp)ǫ} → 0 for an arbitrarily small ǫ > 0 as

n → ∞. If r < ̺(β), the sum of type I and II errors of the multi-level thresholding

test converges to 1 as α → 0 and n → ∞.

Theorem 3 implies that the two-sample multi-level thresholding test also attains

r = ̺(β) as the detection boundary in the current two-sample test setting of non-

parametric distributional assumption. This means that the test can asymptotically

distinguish H1 from H0 for any (r, β) above the detection boundary. If the mean and

variance estimators µ̂Ln(s),0 and σ̂Ln(s),0 do not satisfy (2.16), the detection boundary

will be higher just like what will happen in Theorem 6 given in Section 4 when we

consider testing via data transformation with estimated precision matrix.
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4. TEST WITH DATA TRANSFORMATION

We consider in this section another way for power improvement, which involves en-

hancing the signal strength by data rotation, inspired by the works of Hall and Jin

(2010) and Cai, Liu and Xia (2014). We will show in this section that the signal en-

hancement can be achieved by transforming the data via an estimate of the inverse of

a mixture of Σ1 and Σ2. Transforming data to achieve better power has been consid-

ered in Hall and Jin (2010) in their innovated higher criticism test under dependence

and Cai, Liu and Xia (2014) in their max-norm based test. The transformation used

in Hall and Jin (2010) was via a banded Cholesky factor, and that adopted in Cai,

Liu and Xia (2014) was via the CLIME estimator of the inverse of the covariance

matrix (the precision matrix) proposed in Cai, Liu and Luo (2011).

Consider a bandable covariance matrix class

V (ǫ0, C, α) =

{
Σ : 0 < ǫ0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ ǫ−1

0 , α > 0,

|σij| ≤ C(1 + |i− j|)−(α+1) for all i, j : |i− j| ≥ 1

}
.

This class of matrices satisfies both the banding and thresholding conditions of Bickel

and Levina (2008b). Hall and Jin (2010) also considered this class when they proposed

the innovated higher criticism test under dependence.

(C4): Both Σ1 and Σ2 belong to the matrix class V (ǫ0, C, α).

Although both (C3) and (C4) assume the weak dependence among the column

components of the random vector Xij, imposing (C4) ensures that the banding esti-

mation of the covarianvce matrix which makes the transformed data are still weakly

dependent. To appreciate this, let Ω = {(1 − κ)Σ1 + κΣ2}−1 = (ωij)p×p. We first

assume Ω is known to gain insight on the test. Rather than transforming the data

via Ω, we transform it via

Ω(τ) =

{
ωijI(|i− j| ≤ τ)

}

p×p

,
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a banded version of Ω for an integer τ between 1 and p − 1. There are two reasons

to use Ω(τ). One is that the signal enhancement is facilitated mainly by elements of

Ω close to the main diagonal. Another is that the banding maintains the α-mixing

structure of the transformed data provided k− 2τ → ∞. Since both Σ1 and Σ2 have

their off-diagonal entries decaying to zero at polynomial rates, Ω has the same rate of

decay as well (Jaffard, 1990; Sun, 2005; Gröchenig, and Leinert, 2006), which ensures

that the transformed data are still weakly dependent.

The two transformed samples are

{Z1j(τ) = Ω(τ)X1j : 1 ≤ j ≤ n1} and {Z2j(τ) = Ω(τ)X2j : 1 ≤ j ≤ n2}.

Let ̟kk(τ) = Var{√n(Z̄
(k)
1 (τ)−Z̄

(k)
2 (τ))} be the counterpart of n(σ1,kk/n1+σ2,kk/n2)

for the transformed data where Z̄
(k)
i (τ) = n−1

i

∑nj

j=1 Z
(k)
ij (τ) for i = 1, 2. Lemmas 5

and 7 in Appendix show that there exists a constant C > 1 such that

̟kk(τ) = ωkk +O(τ−C) and ωkk > 1. (4.1)

We have two ways to construct the transformed thresholding test statistic by

replacing Xij with Zij(τ) in either (2.11) or (2.12). Alhough both have similar

properties, the latter which has the form

Jn(s, τ) =

p∑

k=1

{
n(Z̄

(k)
1 (τ)− Z̄

(k)
2 (τ))2

̟kk(τ)
− 1

}
I

{
n(Z̄

(k)
1 (τ)− Z̄

(k)
2 (τ))2

̟kk(τ)
> λn(s)

}
(4.2)

is easier to work with, which we will present in the following.

Let δΩ(τ) = (δΩ(τ),1, · · · , δΩ(τ),p)
T where

δΩ(τ),k =
∑

l

Ωkl(τ)δl =
∑

l∈Sβ

ωklδlI(|k − l| ≤ τ) (4.3)

denotes the difference between the transformed means in the k-th dimension. Similar
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to (2.13) and (2.14), the mean and variance of the transformed statistic Jn(s, τ) are

µJn(s,τ) =

(
2√
2π

(2slogp)
1
2p1−s +

∑

k∈SΩ(τ),β

{n
δ2
Ω(τ),k

̟kk(τ)
I(n

δ2
Ω(τ),k

̟kk(τ)
> 2slogp)

+ (2slogp)Φ̄(η−
Ω(τ)k)I(n

δ2
Ω(τ),k

̟kk(τ)
< 2slogp)}

)
{1 + o(1)}, (4.4)

and

σ2
Jn(s,τ) =

(
2√
2π

{(2slogp) 3
2 + (2slogp)

1
2}p1−s +

∑

k,l∈SΩ(τ),β

(4n
δΩ(τ),k

̟
1/2
kk (τ)

δ̟(τ),l

̟
1/2
ll (τ)

ρΩ,kl

+ 2ρ2
Ω,kl)I(n

δ2
Ω(τ),k

̟kk(τ)
> 2slogp)I(n

δ2
Ω(τ),l

̟ll(τ)
> 2slogp)

+
∑

k∈SΩ(τ),β

(2slogp)2Φ̄(η−
Ω(τ)k)I(n

δ2
Ω(τ),k

̟kk(τ)
< 2slogp)

)
{1 + o(1)}, (4.5)

where SΩ(τ),β = {k : δΩ(τ),k 6= 0} is the set of locations of the non-zero signals δΩ(τ),k,

η−
Ω(τ)k = (2slogp)1/2 − n1/2δΩ(τ),k/̟kk(τ)

1/2 and

ρΩ,kl = Cov

{√
n(Z̄

(k)
1 (τ)− Z̄

(k)
2 (τ))√

̟kk(τ)
,

√
n(Z̄

(l)
1 (τ)− Z̄

(l)
2 (τ))√

̟ll(τ)

}
.

In practice, the precision matrix Ω is unknown and needs to be estimated. We

consider the Cholesky decomposition and the banding approach similar to that in

Bickel and Levina (2008a). Define Ykl = X1k − √
κ

1−κ
X2l for k = 1, · · · , n1 and

l = 1, · · · , n2, where κ = lim
n→∞

n1/(n1 + n2). Then Var(Ykl) = Σw ≡ Σ1 +
κ

1−κ
Σ2.

Thus, to estimate Ω = (1− κ)−1Σ−1
w , we only need to estimate Σ−1

w .

Let Y be an IID copy of Ykl for any fixed k and l such that Y = (Y (1), · · · , Y (p))T .

For j = 1, · · · , p, define Ŷ (j) = aT
j W

(j) where aj = {Var(W(j))}−1Cov(Ŷ (j),W(j))

and W(j) = (Y (1), · · · , Y (j−1))T . Let ǫj = Y (j) − Ŷ (j) and d2j = Var(ǫj), and A be the

lower triangular matrix with the j-th row being (aT
j ,0p−j+1) andD = diag(d21, · · · , d2p)

where 0s means a vector of 0 with length s. Then, the population version of Cholesky

decomposition is Σ−1
w = (I −A)TD−1(I −A).

The banded estimators for A and D (Bickel and Levina, 2008a) can be used in the

case of p > min{n1, n2}. Specifically, let Yn,kl = X1k−
√

n1

n2
X2l := (Y

(1)
n,kl, · · · , Y

(p)
n,kl)

T .
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Given a τ , regress Y
(j)
n,kl on Y

(j)
n,kl,−τ = (Y

(j−τ)
n,kl , · · · , Y (j−1)

n,kl )T to obtain the least square

estimate of aj,τ = (aj−τ , · · · , aj−1)
T :

âj,τ = (

n1∑

k=1

n2∑

l=1

Y
(j)
n,kl,−τY

(j)T

n,kl,−τ )
−1

n1∑

k=1

n2∑

l=1

Y
(j)
n,kl,−τY

(j)
n,kl.

Put âT
j = (0T

τ−1, â
T
j,τ ,0

T
p−j+1) be the j-th row of a lower triangular matrix Âτ and

D̂τ = diag(d21,τ , · · · , d2p,τ ) where d2j,τ = 1
n1n2

∑n1

k=1

∑n2

l=1(Y
(j)
n,kl − âT

j,τY
(j)
n,kl,−τ )

2. Thus,

the estimator of Σ−1
w is

Σ̂−1
w = (I − Âτ )

T D̂−1
τ (I − Âτ ), (4.6)

which results in Ω̂τ = {1− n1/(n1 + n2)}−1Σ̂−1
w .

The consistency of Ω̂τ to Ω basically follows the proof of Theorem 3 in Bickel and

Levina (2008a) with a main difference that replaces the exponential tail inequality

for a sample mean in Lemma A.3 of their paper to an exponential inequality of a

two-sample U-statistics. Moreover, if the banding parameter τ ≍ (n−1logp)−
1

2(α+1)

and n−1logp = o(1), it can be shown that

||Ω̂τ −Ω|| = Op

{
(logp/n)

α
2(α+1)

}
,

where ‖ · ‖ is the spectral norm.

The transformed thresholding test statistic based on {Ẑ1i = Ω̂τX1i : 1 ≤ i ≤ n1}

and {Ẑ2i = Ω̂τX2i : 1 ≤ i ≤ n2} is

Ĵn(s, τ) =

p∑

k=1

{
n(

¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2

ω̂kk

− 1

}
I

{
n(

¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2

ω̂kk

> λn(s)

}
. (4.7)

To consistently estimate Ω, we require that τ ≍ (n−1logp)−
1

2(α+1) . This require-

ment leads to a modification on the range of the thresholding level s as shown in the

next theorem.

Theorem 4. Assume Conditions (C1)-(C4). If p = n1/θ for 0 < θ < 1 and

τ ≍ (n−1logp)−
1

2(α+1) , then for any s ∈ (1− θ, 1),

σ−1
Jn(s,τ),0

{
Ĵn(s, τ)− µJn(s,τ),0

}
d−→ N(0, 1).
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The restriction on the thresholding level s in Theorem 4 is to ensure the estimation

error of Ω̂τ is negligible. Similar restriction is provisioned in Delaigle et al. (2011) and

Zhong et al. (2013). Note that if θ is arbitrarily close to 0, p will grow exponentially

fast with n.

A single-level thresholding test based on the transformed data rejects H0 if

Ĵn(s, τ) > zασ̂Jn(s,τ),0 + µ̂Jn(s,τ),0,

where µ̂Jn(s,τ),0 and σ̂2
Jn(s,τ),0

are, respectively, consistent estimators of

µJn(s,τ),0 =

{
2√
2π

(2slogp)
1
2p1−s

}
{1 + o(1)},

and

σ2
Jn(s,τ),0 =

{
2√
2π

{(2slogp) 3
2 + (2slogp)

1
2}p1−s

}
{1 + o(1)},

satisfying µJn(s,τ),0 − µ̂Jn(s,τ),0 = o{σJn(s,τ),0} and σ̂Jn(s,τ),0/σJn(s,τ),0
p→ 1.

From Theorem 4, the asymptotic power of the transformed thresholding test is

βĴn(s,τ)
(||µ1 − µ2||) = Φ

(
−zασJn(s,τ),0

σJn(s,τ),1

+
µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

)
,

which is determined by

SNRĴn(s,τ)
=:

µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

.

Therefore, to compare with the thresholding test without transformation, it is equiva-

lent to compare SNRĴn(s,τ)
to SNRLn

. To this end, we assume the following regarding

the distribution of the non-zero δk in Sβ.

(C5): The elements of Sβ are randomly distributed among {1, 2, · · · , p}.

Under Conditions (C1)-(C5), Lemma 8 in the Appendix shows that with proba-

bility approaching to 1,

SNRĴn(s,τ)
≥ SNRLn

, (4.8)
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which holds for both strong and weak signals. Hence, the transformed threshold-

ing test is more powerful regardless of the underlying signal strength for randomly

allocated signals.

Similar toMLn
defined in (3.2) for weaker signals, a multi-level thresholding statis-

tic for transformed data is

MĴn
= max

s∈Tn

Ĵn(s, τ)− µ̂Jn(s,τ),0

σ̂Jn(s,τ),0

, (4.9)

where Tn = {sk : sk = n(
¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2/(2logpω̂kk) for k = 1, · · · , p} ∩ (1 − θ, 1 − η⋆)

for arbitrarily small η⋆. The asymptotic distribution of MĴn
is given in the following

Theorem.

Theorem 5. Assume Conditions (C1)-(C4), p = n1/θ for 0 < θ < 1 and

τ ≍ (n−1logp)−
1

2(α+1) . Then under H0,

P

{
a(logp)MĴn

− b(logp, θ − η⋆) ≤ x

}
→ exp(−e−x),

where functions a(·) and b(·, ·) are defined in Theorem 2.

The theorem implies an asymptotically α level test that rejects H0 if

MĴn
≥ {qα + b(logp, θ − η⋆)}/a(logp). (4.10)

It is expected that the above test as well as the thresholding test without the

data transformation will encounter size distortion. The size distortion is caused by

the generally slow convergence to the extreme value distribution. It may be also due

to the second order effects of the data dependence. Our analyses have shown that

the data dependence has no leading order effect on the asymptotic variance of the

thresholding test statistics. However, a closer examination on the variance shows that

the second order term is not that smaller than the leading order variance. This can

create a discrepancy when approximating the distribution of the multi-level thresh-

olding statistics by the Gumbel distribution. To remedy the problem, we proposed a
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parametric bootstrap approximation to the null distribution of the multi-level thresh-

olding statistics with and without the data transformation. We first estimate Σi by

Σ̂i for i = 1, 2 through the Cholesky decomposition which can be obtained by invert-

ing the one-sample version of (4.6) based on the samples {X1j}n1
j=1 and {X2j}n2

j=1,

respectively. Bootstrap resamples are generated repeatedly from N(0, Σ̂i) which al-

lows us to obtain the bootstrap copies of the statistic MLn
defined in (3.2), namely

M
∗,(1)
Ln

(s), · · · ,M∗,(B)
Ln

(s), after B repetitions. We use {M∗,(b)
Ln

}Bb=1 to obtain the empir-

ical null distribution of the multi-level thresholding statistic. The same parametric

bootstrapping method can be also applied to the transformed multi-level thresholding

statistic.

We have shown that the transformed thresholding test has a better power perfor-

mance than the thresholding test without the transformation. We are to show that

the transformed multi-level thresholding test has lower detection boundary than the

multi-level thresholding test without transformation.

To define the detection boundary of the transformed multi-level thresholding test,

let

ω = limp→∞

(
min
1≤k≤p

ωkk

)
and ω̄ = limp→∞

(
max
1≤k≤p

ωkk

)
.

Results in (4.1) imply that ω and ω̄ ≥ 1. Define

̺θ(β) =





(
√
1− θ −

√
1− β − θ

2
)2, 1

2
≤ β ≤ 3−θ

4
;

β − 1
2
, 3−θ

4
≤ β ≤ 3

4
;

(1−
√
1− β)2, 3

4
< β < 1.

(4.11)

Theorem 6. Assume Conditions (C1)-(C5).

(a) When Ω is known, if r < ω̄−1 · ̺(β), the sum of type I and II errors of the

transformed multi-level thresholding test converges to 1 as α → 0 and n → ∞;

if r > ω−1 · ̺(β), the sum of type I and II errors of the transformed multi-level
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thresholding test converges to zero when α = Φ̄{(logp)ǫ} → 0 for an arbitrarily

small ǫ > 0 as n → ∞.

(b) When Ω is unknown and p = n1/θ for 0 < θ < 1, then if r < ω̄−1 · ̺θ(β),

the sum of type I and II errors of the transformed multi-level thresholding test

converges to 1 as α → 0 and n → ∞; if r > ω−1 ·̺θ(β), the sum of type I and II

errors of the transformed multi-level thresholding test converges to zero when

α = Φ̄{(logp)ǫ} → 0 for an arbitrarily small ǫ > 0 as n → ∞.

Hall and Jin (2010) has shown that utilizing the dependence can lower the de-

tection boundary r = ̺(β) for Gaussian data with known covariance matrix. We

demonstrate in Theorem 6 that the detection boundary can be lowered respectively

for the transformed multi-level thresholding test with Ω being known or unknown for

sub-Gaussian data with estimated precision matrix. The theorem shows that there

is a cost associated with using the estimated precision matrix in terms of a higher

detetction boundary and more restriction on the p and n relationship.

5. SIMULATION STUDY

In this section, the simulation was designed to confirm the performance of the two

multi-level thresholding tests defined in (3.2) and (4.9) without and with transfor-

mation. We also experimented the test of Chen and Qin (2010) given in (1.3), the

Oracle test in (2.7), and two tests proposed by Cai, Liu and Xia (2014). The latter

tests are based on the max-norm statistics

G(I) = max
1≤k≤p

n(X̄
(k)
1 − X̄

(k)
2 )2 and G(Ω̂) = max

1≤k≤p

n(
¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2

ω̂kk

,

without and with transformation, where ω̂kk were estimates of the diagonal elements of

Ω. Cai, Liu and Xia (2014) showed thatG(I) andG(Ω̂) converge to the type I extreme

value distribution with cumulative distribution function exp(− 1√
π
exp(−x/2)), which
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was used to formulate the test procedures based on the two max-norm statistics.

Cai, Liu and Xia (2014) employed the CLIME estimator based on a constrained l1

minimization estimator of Cai, Liu and Luo (2011) to estimate Ω. Since we use the

Cholesky decomposition with banding to estimate Ω in the transformed thresholding

test, we used the estimated ω̂kk from the approach in the formulation of the max-norm

statistics.

In the simulation experiments, the two random samples {X1j}n1
j=1 and {X2j}n2

j=1

were generated according to the following multivariate model

Xij = Σ
1/2
i Zij + µi,

where the innovations Zij are IID p-dimensional random vectors with independent

components such that E(Zij) = 0 and Var(Zij) = Ip. We considered two types

of innovations: the Gaussian where Zij ∼ N(0, Ip) and the Gamma where each

component of Zij is standardized Gamma(4, 0.5) such that it has zero mean and unit

variance. For simplicity, we assigned µ1 = µ2 = 0 under H0; and under H1, µ1 = 0

and µ2 had [p1−β] non-zero entries of equal value, which were uniformly allocated

among {1, · · · , p}. Here [a] denotes the integer part of a. The values of the nonzero

entries were
√

2rlogp/n for a set of r-values ranging evenly from 0.1 to 0.4. The

covariance matrices Σ1 = Σ2 =: Σ = (σij) where σij = ρ|i−j| for 1 ≤ i, j ≤ p and

ρ = 0.6. The dimension p was 200 and 600, respectively and the sample sizes n1 = 30

and n2 = 40.

The banding width parameter τ in the estimation of Ω was chosen according to

the data-driven procedure proposed by Bickel and Levina (2008a), which is described

as follows. For a given data set, we divided it into two subsamples by repeated

(N times) random data split. For the l-th split, l ∈ {1, · · · , N}, we let Σ̂
(l)
τ =

{(I− Â
(l)
τ )′}−1D̂

(l)
τ (I− Â

(l)
τ )−1 be the Cholesky decomposition of Σ obtained from the

first subsample by taking the same approach described in previous section for Â
(l)
τ
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and D̂
(l)
τ . Also we let S

(l)
n be the sample covariance matrix obtained from the second

subsample. Then the banding parameter τ is selected as

τ̂ = min
τ

1

N

N∑

l=1

||Σ̂(l)
τ − S(l)

n ||F , (5.1)

where || · ||F denotes the Frobenius norm.

Table 1 reports the empirical sizes of the multi-thresholding tests with the data

transformation (Mult2) and without the data transformation (Mult1), and Cai, Liu

and Xia’s max-norm tests with (CLX2) and without (CLX1) the data transforma-

tion. It also provides the empirical sizes for Mult1 and Mult2 with the bootstrap

approximation of the critical values as described in Section 4. We observe that the

empirical sizes of the two threshodling tests tended to be larger than the nominal

5% level due to a slow convergence to the extreme value distribution. The proposed

parametric bootstrap calibration can significantly improve the size.

To make the power comparison fair, we pre-adjusted the nominal significant levels

of all tests such that their empirical sizes were all close to 0.05. We obtain the

average empirical power curves (called power profiles) plotted with respect to r and

β under each of the simulation settings outlined above based on 1000 simulations.

We observed only some very small change in the power profiles when the underlying

distribution was switched from the Gaussian to the Gamma, which confirmed the

nonparametric nature of the tests considered. Due to the space limitation, we only

display in the following the power profiles based on the Gaussian data, and those for

the Gamma innovations are given in the supplementary material.

Figure 1 displays the empirical power profiles of the proposed multi-thresholding

tests with data transformation (Mult2) and without data transformation (Mult1), and

Cai, Liu and Xia’s max-norm tests with (CLX2) and without (CLX1) data transfor-

mation with respect to the signal strength r at two given level of sparsity (β = 0.5

and 0.6) and ρ = 0.6 for Gaussian data. Figures 2-3 provide alternative views of
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the power profiles of these tests where the powers are displayed with respect to the

sparsity β at four levels of signal strength r = 0.1, 0.2, 0.3 and 0.4 for Gaussian data.

These figures also report the powers of Chen and Qin (2010)’s test (CQ) and the

Oracle test to provide some bench marks for the performance.

The basic trend of Figure 1 was that the powers of all the tests were increasing as

the signal strength r was increased, and that of Figures 2-3 is that the powers were

decreasing as the sparsity was increased. These are all expected. It is also expected

to see in each figure that the Oracle test had the best power among all the tests since

all the dimensions bearing noise were removed in advance. A careful examination

of the power profiles reveals that the two tests that employed data transformation

(Mult2 and CLX2) were the top two performers among the non-Oracle tests, indi-

cating the effectiveness of the data transformation. The thresholding test with data

transformation (Mult2) had the best performance among all the non-Oracle tests.

This together with the observed performance of the thresholding test without trans-

formation (Mult1) and the CLX2 shows that the combining the data transformation

with the thresholding leads to a quite powerful test performance. The CQ test and

the max-norm test without data transformation (CLX1) had the least power among

the tests, with the CLX1 being more powerful than the CQ for the more sparse situ-

ation (large β) and vice versa for the faint signal case (smaller r). The CQ test was

not designed for the sparse and faint signal settings of the simulation, although it is a

proper test under ultra high dimensionality in the sense that the size of the test can

be attained and with reasonable power in non-sparse settings. The above features

became more pronounced when we increase the dimensionality to p = 600 as shown

in Figures 1 and 3.
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6. EMPIRICAL STUDY

In this section, we demonstrate the performance of the multi-level thresholding test

defined in (4.9) on a human breast cancer dataset, available at http://www.ncbi.nlm.

nih.gov. The data have been analyzed by Richardson et al. (2006) to provide insight

into the molecular pathogenesis of Sporadic basal-like cancers (BLC), a distinct class

of human breast cancers. The original microarray gene expression data consist of

7 normal specimens, 2 BRCA-associated breast cancer specimens, 18 sporadic BLC

specimens and 20 non-BLC specimens. Since the most of interests on this data set

is to display the unique characteristics of BLC relative to non-BLC specimens, we

formed two samples. One consists of n1 = 18 BLC cases and another consists of

n2 = 20 non-BLC specimens for analysis which form two samples respectively.

Biologically speaking, each gene does not function individually in isolation. Rather,

genes tend to work collectively to perform their biological functions. Gene-sets are

technically defined in Gene Ontology (GO) system that provides structured vocabu-

laries which produce names of gene-sets (also called GO terms), see Ashburner et al.

(2000) for more details.

There were 9918 GO terms, which were obtained from the original data set af-

ter we excluded some GO terms with missing information. To accommodate high

dimensionality, we further removed those GO terms with the number of genes less

than 20 and the number of remaining GO terms varied by chromosomes. In order

to take advantage of the inter-gene correlation, we first selected genes from one of

23 chromosomes and then ordered them by their locations on the chromosome. By

doing this, genes with adjacent locations are more strongly correlated than genes far

away from each other. This would also facilitate the bandable assumption for the

covariance matrices. A major motivation in our analysis is to identify sets of genes

which are significantly different between the BLC and the non-BLC specimens.
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As discussed in Richardson et al. (2006), BLC specimens display X chromosome

abnormalities in the sense that most of the BLC cases lack markers of a normal

inactive X chromosome, which are rare in non-BLC specimens. Moreover, single

nucleotide polymorphism array analysis demonstrated loss of heterozygosity (loss of

a normal and functional allele at a heterozygous locus) in chromosome 14 and 17 was

quite frequent in BLC specimens, a phenomenon largely missing among non-BLC

specimens. Therefore, our main interest was on chromosomes X, 14 and 17.

We applied the multi-level thresholding test based on the data transformation

on each of gene-sets in chromosomes X, 14 and 17 by first transforming the data

with estimated Ω through the Cholesky decomposition discussed in Section 4. We

also applied the CQ test to serve as contrasts. By controlling the false discovery

rate (Benjamini and Hochberg, 1995) at 0.05, the CQ test declared 81 GO terms

significant on chromosome X, 80 out of which were also declared significant by the

multi-level thresholding test. However, the multi-thresholding test found 4 more

significant GO terms not found significant by the CQ test. Similarly, on chromosome

14, CQ test declared 76 GO terms significant which were all included by the 86 GO

terms declared significant by the multi-level thresholding test. On chromosome 17, 5

out of 166 GO terms declared significant by the CQ test were not declared significant

by the multi-level thresholding test. On the other hand, 14 out of 175 GO terms

declared significant by the multi-level thresholding test were not declared significant

by the CQ test.

Table 2 lists the top ten most significant GO terms declared by the multi-level

thresholding test on the three chromosomes, respectively. The table also marks those

gene-sets which were not tested significant by the CQ test. There were three gene-sets

in the top ten which were not declared significant by the CQ test in chromosomes X

and 14, and two gene-sets in chromosomes 17. These empirical results support our
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theoretically findings that the multi-level thresholding test with data transformation

is more powerful than the CQ test by conducting both thresholding and utilizing data

dependence.

7. DISCUSSION

Our analysis in this paper shows that the thresholding combined with the data trans-

formation via the estimated precision matrix leads to a very powerful test procedure.

The analysis also shows that thresholding alone is not sufficient in lifting the power

when there is sufficient amount of dependence in the covariance, and the data trans-

formation is quite crucial. The latter confirms the benefit of the transformation

discovered by Hall and Jin (2010) for the higher criticism test and Cai, Liu and Xia

(2014) for the max-norm based test. The proposed test of thresholding with data

transformation can be viewed as a significant improvement of the test of Chen and

Qin (2010) for sparse and faint signals. The CQ test is similar to the max-norm

test without data transformation, except that it is based on the L2 norm. Gener-

ally speaking, the max-norm test works better for more sparse and stronger signals

whereas the CQ test is for denser but fainter signals. These aspects were confirmed

by our simulations. A reason for the proposed test (with both thresholding and data

transformation) having better power than the test of Cai, Liu and Xia (2014) with

data transformation is due to the thresholding conducted on the L2 formulation of

the test statistics since the proposed test has both thresholding and data transforma-

tion whereas CLX test has only the data transformation. The max-norm formulation

does not accommodate the need to threshold. This reveals an adavntage of the L2

formulation.

The results that the proposed test with the estimated covariance can produce lower

detection boundary than that of the standard higher criticism test using asymptotic
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p-values (Delaigle et al., 2011) is another advantage of the proposal. We want to

point out that the study carried out in this paper is not a direct extension from

that in Zhong, Chen and Xu (2013). Zhong et al. (2013) considered an alterna-

tive L2-formulation to the higher criticism (HC) test of Donoho and Jin (2004) for

one-sample hypotheses. They showed that, although the L2 formulation attains the

same detection boundary as the HC test, the L2 formulation is more advantageous

to the HC when the sparsity and signal strength combination (β, r) is above the de-

tection boundary. However, Zhong et al. (2013) did not study the specific benefits

of the thresholding in improving the power of the high dimensional multivariate test

and the relative performance to the Oracle test; nor did they considered the data

transformation via the precision matrix.

APPENDIX: TECHNICAL DETAILS.

Throughout the Appendix, we assume n1 → ∞, n2 → ∞ and let n = n1n2

n1+n2
.

A.1. Lemmas

Lemma 1. We denote δk = µ1k − µ2k. As x = o(n
1
3 ), Tnk in (2.1) satisfies

P(nTnk + 1 > x) = {1 + o(1)}I(
√
n|δk| >

√
x)

+

[
Φ̄(

√
x−

√
n|δk|) + Φ̄(

√
x+

√
n|δk|)

]
{1 +O(n−1/6)

+ O(
x3/2

n1/2
)}I(

√
n|δk| <

√
x).

Lemma 2. Assume Conditions (C1)-(C2). The mean of the thresholding test

statistic Ln(s) is

µLn(s) =
∑

i∈Sc
β

E{Ln,i(s)}+
∑

k∈Sβ

E{Ln,k(s)}

=

(
2√
2π

√
2slogpp1−s +

∑

k∈Sβ

[
n δ2kI

{
n δ2k > λn(s)

}

+ (2slogp)Φ̄(η−k )I

{
n δ2k < λn(s)

}])
{1 + o(1)}. (A.1)
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Lemma 3. Assume Conditions (C1)-(C3). The variance of the thresholding test

statistic Ln(s) is

σ2
Ln(s),1 =

(
2√
2π

[(2slogp)
3
2 + (2slogp)

1
2 ]p1−s + 4pΦ̄(

√
2slogp)

+
∑

k,l∈Sβ

(4n δk δl ρkl + 2ρ2kl)I

{
n δ2k > λn(s)

}
I

{
n δ2l > λn(s)

}

+
∑

k∈Sβ

(2slogp)2Φ̄(η−k )I

{
n δ2k < λn(s)

})
{1 + o(1)}. (A.2)

Lemma 4. Suppose {Zi}pi=1 is a sequence of α-mixing random variables with

zero mean and satisfying

M2l+δ = supi

[
E(Zi)

2l+δ

]1/(2l+δ)

< ∞,

for δ > 0 and l ≥ 1. Let α(i) be α-mixing coefficient. Then,

E(

p∑

i=1

Zi)
2l ≤ Cpl

[
M2l

2l +M2l
2l+δ

∞∑

i=1

il−1α(i)δ/(2l+δ)

]
,

where C is a finite constant positive constant depending only on l.

Lemma 5. Under condition (C4), the following relationship holds:

̟kk(τ) = ωkk +O(τ−C), for C > 1,

where ωkk = {(1− κ)Σ1 + κΣ2}−1
kk and ̟kk(τ) = Var{√n(Z̄

(k)
1 (τ)− Z̄

(k)
2 (τ))}.

Lemma 6. If β > 1/2 and the banding parameter τ = Lp for a slowly varying

function Lp, then under condition (C5), with probability approaching 1,

δΩ(τ),k ≈ ωkkδk for k ∈ Sβ,

Lemma 7. For any positive definite matrix Ap,p = (aij)p×p and its inverse Bp,p =

(bij)p×p, the following inequality holds

aii · bii ≥ 1 i = 1, · · · , p.
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Lemma 8. Under the conditions assumed in Theorem 4 and condition (C5), with

probability approaching to 1,

βĴn(s,τ)
≥ βLn(s).

A.2. Proofs of Theorems 1, 2 and 3

The proofs are two-sample extension of Theorems 1, 2 and 3 in Zhong, Chen and

Xu (2013). We include them in the supplementary material.

A.3. Proof of Theorem 4

We first derive the mean and variance of the transformed thresholding test statis-

tics. Note that by the relationship Zij(τ) = Ω(τ)Xij and
∑

l |ωkl| < ∞, for a given

constant C, Z
(k)
ij (τ) =

∑
l ωklX

(l)
ij I(|k − l| < τ). Since X

(l)
ij is sub-Gaussian for any

l = 1, · · · , p, Z(l)
ij (τ) is sub-Gaussian by using Hölder inequality and mathematical

induction. Hence, the large derivation results can be applied to derive the mean and

variance of the transformed thresholding test statistic defined in (4.2) by following

the similar steps when we derive the mean and variance of the thresholding step.

Therefore, to obtain the mean and variance of the transformed thresholding test, we

can simply replace δk by δΩ(τ),k and Sβ by SΩ(τ),β in (2.13) and (2.14), respectively,

where after the transformation, nonzero signals δk becomes δΩ(τ),k and the set Sβ

including these nonzero signals becomes SΩ(τ),β.

We first establish the asymptotic normality of transformed thresholding test de-

fined in (4.2) where the banding parameter t is chosen to be a slowly varying function.

To this end, we first show that both {Z(k)
1i (t)}pk=1 and {Z(k)

2i (t)}pk=1 are α-mixing se-

quences. By condition (C3), {X(k)
1j }pk=1 and {X(k)

2j }pk=1 are α-mixing sequences. Then

any event A ∈ σ(F (1)
X,(1,a),F

(2)
X,(1,a)) and B ∈ σ(F (1)

X,(a+k,∞),F
(2)
X,(a+k,∞)),

|P (A ∩ B)− P (A)P (B)| → 0 as k → ∞.
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By the relationship between Z1i(t) and X1i, for any t,

Z
(a)
1i (t) ∈ σ(F (1)

X,(a−t,a+t)), and Z
(a+k)
1i (t) ∈ σ(F (1)

X,(a+k−t,a+k+t)).

Then as long as k − 2t → ∞, |P (A′ ∩ B′) − P (A′)P (B′)| → 0 for any A′ ∈

σ(F (1)
Z,(1,a),F

(2)
Z,(1,a)) and B′ ∈ σ(F (1)

Z,(a+k,∞),F
(2)
Z,(a+k,∞)). It follows that

αZ1(t)(k) = αX1(k − 2t) if k > 2t.

Therefore, αZ1(t)(k) → 0 as k − 2t → ∞ where αZ1(t) is the α-mixing coefficient

for the sequence {Z(k)
1j (t)}pk=1. Similarly, it can be shown that αZ2(t)(k) → 0 as

k−2t → ∞. Thus, both {Z(k)
1i (t)}pk=1 and {Z(k)

2i (t)}pk=1 are α-mixing sequences. Then

the asymptotic normality of Jn(s, t) can be established by applying the Bernstein’s

blocking method as we have done in the proof of Theorem 1. To further establish the

normality of Ĵn(s, τ), we note that our Ĵn can be written as

Ĵn = Jn +

p∑

k=1

(
Ŝnk

ω̂kk

− Snk

̟kk

)I(
Snk

̟kk

> λn) +

p∑

k=1

(
Snk

̟kk

+ 1)[I(
Ŝnk

ω̂kk

> λn)

− I(
Snk

̟kk

> λn)] +

p∑

k=1

(
Ŝnk

ω̂kk

− Snk

̟kk

)[I(
Ŝnk

ω̂kk

> λn)− I(
Snk

̟kk

> λn)]

= Jn + I + II + III,

where Ŝnk = n(
¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2 and Snk = n(Z̄

(k)
1 (t)− Z̄

(k)
2 (t))2. To show the asymptotic

normality of Ĵn under H0, we only need to show that I/σJn,0 = op(1) and II/σJn,0 =

op(1) since III is smaller order of I or II.

We first consider I, which can be bounded by

I ≤ max1≤k≤p|
Ŝnk

ω̂kk

− Snk

̟kk

|
p∑

k=1

I(
Snk

̟kk

> λn).

Using E{
∑p

k=1 I(
Snk

̟kk
> λn)} =

∑p
k=1 P(

Snk

̟kk
> λn), and from Lemma 1,

p∑

k=1

P(
Snk

̟kk

> λn) = O(
p1−s

√
2slogp

),
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we have
∑p

k=1 I(
Snk

̟kk
> λn) = Op(

p1−s√
2slogp

). Recall that Ŝnk = n{∑l ω̂kl(X̄
(l)
1 − X̄

(l)
2 )}2

and Snk = n{
∑

l ωkl(t)(X̄
(l)
1 − X̄

(l)
2 )}2. Then,

max
k

| Ŝnk

ω̂kk

− Snk

̟kk

| ≤ max
l

n(X̄
(l)
1 − X̄

(l)
2 )2 max

k

(
∑

l ωkl)
2

ω2
kk

|ω̂kk − ωkk|{1 + o(1)}

+ max
l

n(X̄
(l)
1 − X̄

(l)
2 )2 max

k

∑
l |ωkl +

√
ωkk

̟kk
ωkl(t)|

ωkk

{∑

l

|ω̂kl − ωkl|

+
∑

l

|ωkl −
√

ωkk

̟kk

ωkl(t)|
}

≤ M max
l

n(X̄
(l)
1 − X̄

(l)
2 )2 max

k

{ p∑

l=1

|ω̂kl − ωkl|+ t−a +O(t−C)

}
,

whereM > 0, a > 0 and we use the fact that̟kk = ωkk+O(t−C) from Lemma 5. From

the fact that max
l

n(X̄
(l)
1 − X̄

(l)
2 )2 = Op(logp) and maxk

∑p
l=1 |ω̂kl−ωkl| = Op[(

logp
n
)q/2]

for any q such that 1/(α + 1) < q < 1 (See Bickel and Levina, 2008b), we know

maxk|
Ŝnk

ω̂kk

− Snk

̟kk

|
p∑

k=1

I(
Snk

̟kk

> λn) = Op{Lpp
1−sn−q/2 + logp(t−a + t−C)},

where Lp and t are slowly varying functions. We can choose t such that logp(t−a +

t−C) = o(1). Therefore, we have I = Op(Lpp
1−sn−q/2). By assumption that p = n1/θ

and s > 1− qθ, then I/σJn,0 = op(1).

For the second term II, we have

II ≤ max
k

| Snk

̟kk

+ 1|
p∑

k=1

|I( Ŝnk

ω̂kk

> λn)− I(
Snk

̟kk

> λn)|

≤ max
k

| Snk

̟kk

+ 1|max
k

I

{
Ŝnk

ω̂kk

> λn

} p∑

k=1

I

{
| Ŝnk

ω̂kk

− Snk

̟kk

| > | Snk

̟kk

− λn|
}

+ max
k

| Snk

̟kk

+ 1|maxkI

{
Snk

̟kk

> λn

} p∑

k=1

I

{
| Snk

̟kk

− Ŝnk

ω̂kk

| > | Snk

̟kk

− λn|
}

:= II1 + II2.

Because the proofs for II1 and II2 are similar, we only show II2 in the following.

First, we note that

max
k

| Snk

̟kk

+ 1| ≤ 1 + max
k

(
∑

l ωkl(t))
2

̟kk

max
l

n(X̄
(l)
1 − X̄

(l)
2 )2 = Op(logp).
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And,

p∑

k=1

I

{
| Ŝnk

ω̂kk

− Snk

̟kk

| > | Snk

̟kk

− λn(s)|
}

≤
p∑

k=1

I(| Ŝnk

ω̂kk

− Snk

̟kk

| > h) +

p∑

k=1

I(| Snk

̟kk

− λn(s)| < h). (A.3)

The second indicator function on the right above can be evaluated by the following:

E

{ p∑

k=1

I(| Snk

̟kk

− λn(s)| < h)

}
=

p∑

k=1

P(| Snk

̟kk

− λn(s)| < h)

=

p∑

k=1

{
Φ̄(

√
λn(s)− h)− Φ̄(

√
λn(s) + h)

}

=
h√

2slogp
p1−s.

Therefore, in (A.3),
∑p

k=1 I(| Snk

̟kk
− λn(s)| < h) = Op(

h√
2slogp

p1−s). To evaluate

∑p
k=1 I(| Ŝnk

ω̂kk
− Snk

̟kk
| > h) in (A.3), we use the same approach. First, notice that

| Ŝnk

ω̂kk

− Snk

̟kk

| ≤ M max
l

n(X̄
(l)
1 − X̄

(l)
2 )2

{ p∑

l=1

|ω̂kl − ωkl|
}
+ o(1).

Then,

E(

p∑

k=1

I(| Ŝnk

ω̂kk

− Snk

̟kk

| > h))

≤
p∑

k=1

P

{
M max

l
n(X̄

(l)
1 − X̄

(l)
2 )2

p∑

l=1

|ω̂kl − ωkl| > h

}

≤
p∑

k=1

P(

p∑

l=1

|ω̂kl − ωkl| >
h

MnT 2
) +

p∑

k=1

P(max
l

|X̄(l)
1 − X̄

(l)
2 | > T ),

where, if we choose T = C
√

logp/n,
∑p

k=1 P(max
l

|X̄(l)
1 − X̄

(l)
2 | > T ) ≤ p2−C → 0, for

sufficient large C. If h = C∗logp( logp
n

)q/2, there exists a a > 0 such that

p∑

k=1

P(

p∑

l=1

|ω̂kl − ωkl| >
h

MnT 2
) =

p∑

k=1

P(

p∑

l=1

|ω̂kl − ωkl| > M ′(
logp

n
)q/2) ≤ p1−a.

Therefore, by choosing C∗ large enough such that a > qθ/2,
∑p

k=1 I(| Ŝnk

ω̂kk
− Snk

̟kk
| >

h) = Op(p
1−a) = op(pn

−q/2) for p = n1/θ. Under the choice h = C∗logp( logp
n

)q/2,
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∑p
k=1 I(| Snk

̟kk
−λn(s)| < h) = Op(Lpn

− q

2p1−s). In addition, we know that maxkI{ Snk

̟kk
>

λn(s)} = Op(p
−s). Therefore, we know that II2 = op(Lpp

1−sn−q/2). Similarly, one can

show that II1 = op(Lpp
1−sn−q/2). In summary, II/σJn,0 = op(I/σJn,0) = op(1). This

completes the proof of Theorem 4.

A.4. Proof of Theorem 5

The proof of Theorem 5 is similar to that of Theorem 2. We omit it.

A.5. Proof of Theorem 6

We first consider Ω is known. We know that the power of the transformed thresh-

olding test is determined by

SNRJn(s,τ) =
µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

.

Recall that for k ∈ Sβ, ωδ
2
k ≤ δ2

Ω(τ),k

̟kk(τ)
≤ ω̄δ2k. Then, we have the following inequality

µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

≥ M1

V1

, (A.4)

where M1 =
∑
k∈Sβ

{
nωδ2kI(nωδ

2
k > 2slogp) + (2slogp)Φ̄(η−k )I(nωδ

2
k < 2slogp)

}
and

V 2
1 =

2√
2π

{(2slogp) 3
2 + (2slogp)

1
2}p1−s

+
∑

k,l∈Sβ

(4nω2δk δl ρΩ,kl + 2ρ2
Ω,kl)I(nωδ

2
k > 2slogp)I(nωδ2l > 2slogp)

+
∑

k∈Sβ

(2slogp)2Φ̄(η−k )I(nωδ
2
k < 2slogp).

Note that M1/V1 is the signal-to-noise ratio of the thresholding test without the

transformation. But the signal nωδ2k = 2ωrlogp. From the proof of Theorem 3, we

know that M1/V1 → ∞ as long as s is properly chosen and ωr > ̺(β). Therefore,

µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

→ ∞,

as long as ωr > ̺(β). This establishes the upper bound of the detectable region.
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To show the second statement in part (a) of Theorem 6, we notice that the maximal

transformed thresholding test is of asymptotic α level. Therefore, it is sufficient to

show that its power tends to 1 above the detection boundary as n → ∞ and α → 0.

To this end, we notice that

P(MJn ≥ Gα|H1) ≥ P

(
Jn(s, τ)− µJn(s,τ),0

σJn(s,τ),0

≥ Gα|H1

)

= Φ

(
− σJn(s,τ),0

σJn(s,τ),1

Gα +
µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

)

≥ Φ

(
− σJn(s,τ),0

σJn(s,τ),1

Gα +
M1

V1

)
.

Then, we can choose αn = Φ̄{(logp)ǫ} → 0 as p → ∞ for any small number ǫ > 0

such that Gα = O{(loglogp)1/2}. If ωr > ̺(β), we can find a s satisfying one of cases

given in the proof of Theorem 3 such that the second term in Φ(·) dominates and

tends to infinity, which leads to Φ(·) → 1.

Then we consider the first statement in part (a) of Theorem 6. Note that

µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

≤ M2

V2

,

where M2 =
∑
k∈Sβ

{
nω̄δ2kI(nω̄δ

2
k > 2slogp) + (2slogp)Φ̄(η−k )I(nω̄δ

2
k < 2slogp)

}
and

V 2
2 =

2√
2π

{(2slogp) 3
2 + (2slogp)

1
2}p1−s

+
∑

k,l∈Sβ

(4nω̄2δk δl ρΩ,kl + 2ρ2
Ω,kl)I(nω̄δ

2
k > 2slogp)I(nω̄δ2l > 2slogp)

+
∑

k∈Sβ

(2slogp)2Φ̄(η−k )I(nω̄δ
2
k < 2slogp).

We also note that M2/V2 is the signal-to-noise ratio of the thresholding test with

nω̄δ2k = 2ω̄rlogp, which converges to 0 for any s if ω̄r < ̺(β), i.e.,

µJn(s,τ),1 − µJn(s,τ),0

σJn(s,τ),1

→ 0.

Similar to the proof for the second statement of Theorem 3, we can show that

MJn = max
s∈Tn

J̃n(s){1 + op(1)},
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where J̃n(s) = (Jn(s)− µJn(s,τ),1)/σJn(s,τ),1. Since

P{a(logp)max
s∈Tn

J̃n(s)− b(logp, c) ≤ x} → exp(−e−x),

where c = max(η − r + 2r
√
1− η − β, η)I(r < 1 − η) + max(1 − β, η)I(r > 1 − η).

Then, similar to the proof in Theorem 3, we have

P(MJn ≥ Gα|H1) = α{1 + o(1)} → 0,

which implies that the type II error tends to 1 as α → 0.

Next we consider Ω is unknown. Let G⋆
α = {qα + b(logp, η⋆ − θ)}/a(logp). If

we choose αn = Φ̄{(logp)ǫ} → 0 as p → ∞ for any small number ǫ > 0, G⋆
α =

O{(loglogp)1/2}. We only show that if r > ω−1̺θ(β), the sum of type I and II of MĴn

converges to 0, since the proof that the sum of type I and II of MĴn
tends to 1 if

r < ω̄−1̺θ(β) is similar to the proof for MJn . We notice that

P(MĴn
≥ G⋆

α|H1) ≥ P

(
Ĵn(s, τ)− µ̂Jn(s,τ),0

σ̂Jn(s,τ),0

≥ G⋆
α|H1

)

= P

{(
Jn(s, τ)− µJn(s,τ),0

σJn(s,τ),0

+
µJn(s,τ),0 − µ̂Jn(s,τ),0

σJn(s,τ),0

+ op(1)

)
σJn(s,τ),0

σ̂Jn(s,τ),0

≥ G⋆
α|H1

}
, (A.5)

where we have used the fact that if p = n1/θ for 0 < θ < 1, (Ĵn(s, τ)−µJn(s,τ),0)/σJn(s,τ),0

= (Jn(s, τ) − µJn(s,τ),0)/σJn(s,τ),0 + op(1) given in the proof of Theorem 5. Moreover,

as shown in Zhong, Chen and Xu (2013), with p = n1/θ for 0 < θ < 1,

µJn(s,τ),0 − µ̂Jn(s,τ),0

σJn(s,τ),0

→ 0, and
σJn(s,τ),0

σ̂Jn(s,τ),0

→ 1.

Then the probability in (A.5) is determined by

Jn(s, τ)− µJn(s,τ),0

G⋆
ασJn(s,τ),0

=

(
Jn(s, τ)− µJn(s,τ),1

G⋆
ασJn(s,τ),1

+
µJn(s,τ),1 − µJn(s,τ),0

G⋆
ασJn(s,τ),1

)
σJn(s,τ),1

σJn(s,τ),0

,

where (Jn(s, τ)−µJn(s,τ),1)/(G
⋆
ασJn(s,τ),1) = op(1), and σJn(s,τ),1 > σJn(s,τ),0. Therefore,

as long as we can show (µJn(s,τ),1−µJn(s,τ),0)/(G
⋆
ασJn(s,τ),1) → ∞, (A.5) tends 1. From
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inequality (A.4), we only need to show that with properly chosen s, M1/(G
⋆
αV1) →

∞. As we have shown in Theorem 5, we need to choose the level of the threshold

s ∈ (1− θ, 1) if Ω is unknown such that the asymptotic normality of the transformed

thresholding test with Ω̂ can be established. The modification on the detection

boundary can be derived by adding the additional restriction s > 1 − θ on the four

cases in the proof of Theorem 3. Similar to the result in Delaigle, Hall and Jin

(2011), and Zhong, Chen and Xu (2013), the modified detection boundary is given

by (4.11). As a result, we know that M1/(G
⋆
αV1) → ∞ if ωr > ̺θ(β). This shows

that if r > ω−1̺θ(β), the power of MĴn
tends to 1.
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Table 1: Empirical sizes of the proposed multi-thresholding tests with (Mult2) and

without data transformation (Mult1), Cai, Liu and Xia’s max-norm tests with (CLX2)

and without (CLX1) data transformation, Chen and Qin’s test (CQ) and the Oracle

test for Gaussian and Gamma data. Parametric bootstrapping was conducted in

Mult1* and Mult2* to calibrate the size distortion of Mult1 and Mult2.

p (n1, n2) Oracle CQ CLX1 CLX2 Mult1 (Mult1*) Mult2 (Mult2*)

Normal

200 (30, 40) 0.068 0.052 0.039 0.022 0.094 (0.057) 0.044 (0.049)

(60, 80) 0.067 0.065 0.048 0.026 0.099 (0.059) 0.033 (0.035)

(90, 120) 0.066 0.063 0.042 0.032 0.103 (0.064) 0.063 (0.037)

400 (30, 40) 0.059 0.055 0.040 0.031 0.091 (0.063) 0.082 (0.058)

(60, 80) 0.059 0.064 0.040 0.023 0.093 (0.051) 0.046 (0.052)

(90, 120) 0.062 0.066 0.038 0.027 0.093 (0.071) 0.051 (0.041)

600 (30, 40) 0.058 0.053 0.037 0.054 0.095 (0.057) 0.129 (0.112)

(60, 80) 0.050 0.049 0.047 0.033 0.080 (0.064) 0.061 (0.051)

(90, 120) 0.054 0.054 0.043 0.036 0.098 (0.066) 0.072 (0.042)

Gamma

200 (30, 40) 0.068 0.062 0.034 0.027 0.097 (0.064) 0.056 (0.056)

(60, 80) 0.065 0.063 0.036 0.022 0.103 (0.069) 0.031 (0.029)

(90, 120) 0.061 0.055 0.040 0.027 0.084 (0.057) 0.046 (0.035)

400 (30, 40) 0.065 0.053 0.051 0.032 0.108 (0.050) 0.092 (0.078)

(60, 80) 0.057 0.055 0.042 0.036 0.110 (0.051) 0.064 (0.043)

(90, 120) 0.073 0.049 0.038 0.038 0.092 (0.047) 0.055 (0.042)

600 (30, 40) 0.068 0.054 0.041 0.059 0.114 (0.054) 0.134 (0.121)

(60, 80) 0.057 0.056 0.039 0.031 0.090 (0.052) 0.061 (0.060)

(90, 120) 0.059 0.052 0.041 0.037 0.099 (0.059) 0.073 (0.058)
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Figure 1: Average Power with respect to the signal strength r of the proposed multi-

thresholding tests with (Mult2) and without data transformation (Mult1), Cai, Liu

and Xia’s max-norm tests with (CLX2) and without (CLX1) data transformation,

Chen and Qin’s test (CQ) and the Oracle test for Gaussian data with n1 = 30 and

n2 = 40.
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Figure 2: Average Power with respect to the sparsity β of the proposed multi-

thresholding tests with (Mult2) and without data transformation (Mult1), Cai, Liu

and Xia’s max-norm tests with (CLX2) and without (CLX1) data transformation,

Chen and Qin’s test (CQ) and the Oracle test for Gaussian data with p = 200,

n1 = 30 and n2 = 40.
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Figure 3: Average Power with respect to the sparsity β of the proposed multi-

thresholding tests with (Mult2) and without data transformation (Mult1), Cai, Liu

and Xia’s max-norm tests with (CLX2) and without (CLX1) data transformation,

Chen and Qin’s test (CQ) and the Oracle test for Gaussian data with p = 600,

n1 = 30 and n2 = 40.
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Table 2: Top ten most significant GO terms by the multi-level thresholding test on

chromosomes X, 14 and 17 with false discovery rate at 0.05, where ∗ refers to GO

terms not being declared significant by the CQ test.

Chromosome X Chromosome 14 Chromosome 17

GO ID GO term name GO ID GO term name GO ID GO term name

0005524 ATP binding 0005524 ATP binding 0005524 ATP binding

0000166 nucleotide binding 0000166 nucleotide binding 0000166 nucleotide binding

0005515 protein binding 0005515 protein binding∗ 0005515 protein binding

0004872 receptor activity 0016740 transferase activity∗ 0004872 receptor activity∗

0016020 membrane 0006468 protein amino acid 0016740 transferase activity

phosphorylation

0005634 nucleus 0005576 extracellular region∗ 0006468 protein amino acid

phosphorylation

0003677 DNA binding 0016020 membrane 0005576 extracellular region

0003700 transcription factor 0005634 nucleus 0005887 integral to plasma

activity ∗ membrane

0007165 signal transduction∗ 0003677 DNA binding 0016020 membrane

0046872 metal ion binding∗ 0003700 transcription factor 0005654 nucleoplasm∗

activity
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