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determinacy under an interest rate rule of the Taylor-type and the

implications for optimal monetary policy are considered. We find a

number of results that would not appear in the traditional frame-

work. It is shown that the real balance effect makes the so-called

“Taylor principle” not necessary for determinacy of rational expecta-

tions equilibrium. A relatively “passive” monetary policy is found to

be feasible also in the long run, but not necessarily optimal. In partic-

ular, within a class of policy rules constrained to be a linear function

of state variables, an “active” optimal interest rate rule is more likely

to be verified under commitment rather than under discretion.
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1 Introduction

Much of the modern literature on interest rate rules uses New Keynesian

optimizing models that do not include explicit reference to any monetary ag-

gregate (see, e.g., Rotemberg and Woodford, 1997; Clarida, Gal̀ı and Gertler,

1999, and most of the contributions in Taylor, 1999). A common feature of

these models is that they specify the demand for output as a function of

the real interest rate. The real money stock does not enter the IS relation.

These models therefore limit the influence of monetary policy to output and

inflation to its effect on the real interest rate. With the nominal interest

rate as the policy instrument, it is not necessary specify a money market

equilibrium condition (see Romer, 2000).

This common practice of neglecting monetary aggregates in monetary

policy analysis has recently been questioned by Meltzer (1999), McCallum

(2001), and Nelson (2002, 2003). In particular, McCallum (2001) points out

that while no explicit term involving money appears in the standard New

Keynesian setup, inflation can still be pinned down in the long run by the

economy steady-state nominal money-growth rate. This steady state role for

money is also discussed in detail by Nelson (2003).

Moreover, McCallum (2000, 2001) analyzes the case in which the re-

sources used by consumers in conducting transactions are modelled by a non

separable function of consumption and real money balances1. Meltzer (1999)

argues that changes in real monetary base generate effects on real aggregate

demand not summarized by the real interest rate on short term securities.

Nelson (2003) emphasizes the role of money in the transmission mechanism

both as a proxy for a whole spectrum of rates of return2, and as an indicator

variable, which contains information about the state of the economy3.

The main purpose of this paper is to give micro-foundations for an ex-

plicit role for money in the transmission mechanism of monetary policy in

the current macroeconomic debate. In particular, we derive a real balance

effect that explicitly enters the IS relation within an optimizing general equi-

librium framework of the New Keynesian-type. According to de Scitovszky

(1941), Haberler (1946), Pigou (1943), and Patinkin (1965), the real balance

effect describes a channel through which a change in real money balances

1Monetary models in which the marginal utility of consumption depends on real money

balances are also developed by Andres et al. (2001), Ireland (2001a), and Woodford (2003).
2This view has been first developed by Friedman and Schwartz (1982).
3The idea that real money balances capture many channels of monetary transmission

is also discussed by Meltzer (2001).
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has an impact on the real financial wealth of consumers and therefore affects

consumption and output. Notably, this effect is not considered in traditional

models. There is, in fact, empirical evidence showing that real monetary

base growth is a significant determinant of consumption and output gap in

both the United States and in the United Kingdom4.

The present paper extends the New Keynesian setup with money-in-

the-utility-function by introducing overlapping generations as modelled by

Yaari(1965)-Blanchard (1985). Money in the utility function is the source

of money demand5. Besides our desire to be able to evaluate the role of the

real balance effect, there are good reasons in basing the demand-side of the

economy on a discrete time stochastic version of the Yaari-Blanchard model.

First, this kind of extension allow us to maintain the main characteristics

of the so-called “New Neoclassical Synthesis”6: forward-looking behavior of

optimizing agents and incomplete nominal adjustment of prices featured in

New Keynesian theories. Second, the derivation of the real balance effect

does not require non-separability in the utility function. Thus, the implica-

tions of this effect are analytically more tractable7. Our analysis attempts

to examine whether the presence of an explicit real balance effect in the IS

relation helps to evaluate the role for money in designing monetary policy

rules.

We examine basic issues related to equilibrium determinacy and optimal

monetary policy. Specifically, we investigate whether it is necessary for mon-

etary policy to overreact to inflation by raising the nominal interest rate by

more than the observed increase in inflation in order to rule out equilibrium

multiplicity. It is shown that the real balance effect makes the rational ex-

pectations equilibrium determinate also under a relatively “passive” Taylor

rule (i.e., that has the long run nominal interest rate to increase by less

than point-for-point with inflation). Our result does not imply that the

real balance effect makes a relatively “passive” monetary policy optimal. In

particular, within a class of policy rules that is constrained to be a linear

function of state variables, we demonstrate that the Taylor principle is more

likely to be verified under commitment rather than discretion. Our analysis

4See Chari, Christiano and Eichenbaum (1995), Meltzer (1999), and Nelson (2002).
5Feenstra (1986) establishes an equivalence between money-in-the-utility-function and

cash-in-advance models.
6This term is due to Goodfriend and King (1997).
7For the derivation of the real balance effect in the infinite horizon framework à la Weil

(1991) with separability in utility, see Ireland (2001b). His analysis shows that the real

balance effect eliminates the liquidity trap.
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gives support to the view that the observed instability of the U.S. inflation

and real economic activity during the 1970’s was due not to indeterminacy

of rational expectations equilibrium but to an absence of commitment on the

part of the Fed (see Chari, Christiano and Eichenbaum, 1997).

The paper is structured as follows. Section 2 presents a discrete time

stochastic overlapping generations framework with staggered nominal price

setting. Equilibrium is characterized in Section 3. In Section 4 we study

the conditions for a unique bounded solution under a simple Taylor rule.

The implications for optimal monetary policy are derived and described in

Section 5. Section 6 concludes.

2 An Optimizing IS-LM-AS Model

The objective of this Section is to provide an optimizing general equilibrium

model with overlapping generations and staggered price adjustment.

2.1 Consumers optimization

The demand-side of the economy is based on a discrete-time version of the

Yaari (1965)-Blanchard (1985) overlapping generations model, with no inter-

generational bequest motive8. Three kind of extensions are made. First, the

model includes endogenous labor-leisure and money holding choices. Accord-

ing to Sidrauski (1965) and Brock (1975), money enters the utility function

since it provides transaction services9. Second, the economy is characterized

by a continuum of consumption goods supplied by monopolistically compet-

itive firms10. Third, individuals face uncertainty not only on the duration of

their lives, but also on the future time paths of the economic variables. This

extension allows us to outline a stochastic macroeconomic model suitable for

the evaluation of monetary policy.

All agents have identical preferences, face the same, constant probability

of death ϑ in each period, and there is no population growth. Each good is

produced in a number of varieties or brands indexed by j and defined over

8For a discrete-time version of the Yaari-Blanchard model, see Frenkel and Razin

(1986).
9A monetary version of the Blanchard-Yaari model was first developed by Marini and

van der Ploeg (1988). For a discrete-time version, see Cushing (1999).
10A multi-goods monetary version of the Yaari-Blanchard framework allowing for the

existence of nominal rigidities can be found in Leith and Wren-Lewis (2000). For a discrete-

time version extended to the open economy, see Smets and Wouters (2002).
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the range [0,1]. Each brand is an imperfect substitute in consumption for

all other brands, with constant elasticity of substitution θ > 1. Following

Dixit and Stiglitz (1977), the consumption index of goods at time t for the

representative agent born at time s ≤ t is defined as

cs,t =

[∫ 1

0

cs,t (j)
θ−1

θ dj

] θ
θ−1

, (1)

where cs,t(j) denotes consumption of brand j. The utility-based price of a

consumption bundle of produced goods, denoted by Pt, is derived as11

Pt =

[∫ 1

0

Pt (j)1−θ dj

] 1
1−θ

. (2)

As usual, the intratemporal individual optimization yields the demand for

each brand j as a function of the relative price of j and total consumption

of goods:

cs,t (j) =

[
Pt (j)

Pt

]
−θ

cs,t. (3)

The objective of the representative agent is to maximize the expected utility

Et

∞∑

τ=t

βτ−t (1 − ϑ)τ−t

[
log cs,τ + χ log

ms,τ

Pτ

+ κ log (1 − ls,τ )

]
, (4)

subject to the flow budget constraint

ms,t + bs,t ≤ [ms,t−1 + (1 + it−1) bs,t−1] (1 − ϑ)−1

+ws,tls,t + zs,t − ts,t −
∫ 1

0
Pt (j) cs,t (j) dj,

(5)

where all parameters are positive, 0 < β < 1 represents the subjective dis-

count factor, ls,t, ms,t, bs,t, ws,t, zs,t, ts,t denote labor effort, nominal money

balances, holdings of riskless one-period bonds with a nominal interest rate

it, the nominal wage rate, the share in the profits of firms, and lump-sum net

taxes of an individual born at time s, respectively. Our timing convention

has ms,t and bs,t as agent’s nominal balances and bonds accumulated during

period t and carried over into period t + 1. The short term nominal rate

it is paid at beginning of period t + 1 and is known at time t. Note that

the flow budget constraint incorporates the return on the insurance contract

11The utility-based price index Pt is defined as the minimum expenditure required to

buy one unit of the composite good cs,t, given the prices of the brands.
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as modelled by Blanchard (1985)12, (1 − ϑ)−1. The effective discount factor

of consumers is given by β (1 − ϑ). Labor income, the share of profits and

lump-sum net taxes are assumed to be equally distributed across agents.

The solution to the individual intertemporal maximizing problem yields

the Euler equation and the efficiency conditions on labor supply and money

demand choices, respectively:

1

Ptcs,t

= β (1 + it) Et

(
1

Pt+1cs,t+1

)
, (6)

κ
cs,t

1 − ls,t
=

ws,t

Pt

, (7)

ms,t

Pt

= χ
(1 + it)

it
cs,t. (8)

Define now the variable

Qt,t+1 (s) = β
Pt

Pt+1

cs,t

cs,t+1

, (9)

that can be interpreted as the stochastic discount rate of the representative

agent of generation s. Comparing (9) with (6) we obtain

EtQt,t+1 (s) =
1

1 + it
for each s ∈ (−∞, t]. (10)

In the optimum the flow budget constraint (5) holds with equality in each pe-

riod. We impose a transversality condition precluding private agents’ Ponzi-

game:

lim
τ→∞

EtQt,τ (s) (1 − ϑ)τ−(t+1) [ms,τ + (1 + iτ ) bs,τ ] = 0, (11)

where Qt,τ (s) =
∏τ

k=t+1 Qk−1,k (s). Solving (9) forward, using the budget

constraint and imposing the no-Ponzi-game condition, individual consump-

tion can be written as a fraction of total wealth:

Ptcs,t = Ψ
{
[ms,t−1 + (1 + it−1) bs,t−1] (1 − ϑ)−1 + hs,t

}
, (12)

where Ψ = [1 − β (1 − ϑ)] /1+χ is the propensity to consume out of wealth,

and hs,t is human capital, defined as

hs,t = Et

∞∑

τ=t

Qt,τ (s) (1 − ϑ)τ−t (ws,τ ls,τ + zs,τ − ts,τ ) . (13)

12A perfect insurance market inherits consumers financial wealth contingent on their

death and redistributes this in proportion to financial wealth. As a result, zero profits in

the insurance industry imply that the gross return on the insurance contract is given by

(1 − ϑ)
−1

.
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2.1.1 Aggregation

Aggregate values are the sum across cohorts, weighted by their respective

sizes, and thus are defined as

Xt =
t∑

s=−∞

ϑ (1 − ϑ)t−s xs,t, (14)

where xs,t indicates the corresponding individual variable.

After aggregation over all the cohorts of consumers, we obtain the aggre-

gate budget constraint, the aggregate consumption function, the aggregate

labor supply and the aggregate money demand, respectively:

Mt + Bt = Mt−1 + (1 + it−1) Bt−1 + WtLt + Zt − Tt − PtCt, (15)

PtCt = Ψ [Mt−1 + (1 + it−1) Bt−1 + Ht] , (16)

κ
Ct

1 − Lt

=
Wt

Pt

, (17)

Mt

Pt

= χ
(1 + it)

it
Ct. (18)

Using (15) into (16) yields the dynamic equation for consumption,

Et {Qt,t+1Pt+1Ct+1} = βPtCt − ΓEt {Qt,t+1 [Mt + (1 + it) Bt]} , (19)

where Γ = [ϑ/ (1 − ϑ)] Ψ. Aggregate consumption is a function not only of

expected consumption, but also of aggregate non-human wealth.

2.2 The demand for goods

Private demand for differentiated good j is obtained by aggregating (3) across

individuals:

Ct (j) =

[
Pt (j)

Pt

]
−θ

Ct. (20)

We assume that government spending, Gt, is allocated amongst differentiated

consumption goods in the same manner as individuals’ consumption:

Gt =

[∫ 1

0

gt (j)
θ−1

θ dj

] θ
θ−1

. (21)

It follows that the demand for brand j is

Yt (j) =

[
Pt (j)

Pt

]
−θ

Yt, (22)

where aggregate demand for the composite good is Yt = Ct + Gt.
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2.3 Firms optimization and price setting

The supply-side of the economy has a continuum of monopolistic firms, in-

dexed by j, each producing a differentiated product j. Each firm j faces a

linear production technology,

Yt (j) = AtLt (j) , (23)

where At is an exogenous technological parameter. Following Calvo (1983),

nominal price rigidity is modelled by allowing random intervals between price

changes. Each period a firm adjusts its price with probability 1−φ and keeps

its price fixed with probability φ. The adjustment probability is independent

across time and across firms. Firms that do not adjust prices stand ready to

adjust output to meet demand (assuming the participation constraint that

they operate in a region with a non-negative net markup). In either case,

choosing labor to minimize costs conditional on output yields

MCn
t =

Wt

At

, (24)

where MCn
t denotes the nominal marginal cost, that is identical across firms.

The optimal pricing decision of a firm able to revise its price in period t

is to choose the price Pt (j) to maximize the following objective:

Et

{
∞∑

τ=t

φτ−tQt,τZτ (j)

}
, (25)

where Zτ (j) denotes nominal profits from the sale of good j given by13

Zτ = YτP
θ
τ

[
Pt (j)1−θ − MCn

τ Pt (j)−θ
]
. (26)

The first order condition for the optimal price is

Et

{
∞∑

τ=t

φτ−tQt,τYτP
θ
τ

[
(1 − θ) Pt (j)−θ + θMCn

τ Pt (j)−θ−1
]}

= 0. (27)

Multiplying (27) by Pt (j), dividing by (1 − θ) and then simplifying we obtain

Et

{
∞∑

τ=t

φτ−tQt,τYτP
θ
τ [Pt (j) − µMCn

τ ]

}
= 0, (28)

13The factor φτ−t multiplying the stochastic discount factor indicates the probability

that price Pt (j) will still be charged in period τ .
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where µ = θ
θ−1

is the equilibrium gross markup. Condition (28) implies that

firms set their price equal to a markup over a weighted average of expected

future nominal marginal costs.

In the symmetric equilibrium each producer choosing a new price Pt (j)

in period t will choose the same new price Pt (j) and the same level of output

Yt (j). Then, the price index follows a law of motion given by

Pt =
[
φ (Pt−1)

1−θ + (1 − φ) Pt (j)1−θ
]1/1−θ

. (29)

2.4 Government budget constraint

The government is assumed to run a balanced budget constraint each period:

Tt + (Mt − Mt−1) = PtGt. (30)

For simplicity, let us set Gτ = Ḡ ≥ 0 for all τ ≥ t, in what follows.

3 Equilibrium

In this Section, we characterize the equilibrium conditions. Specifically, in the

aggregate, the nominal money supply must equal nominal money demand,

and bonds must be zero in net supply:

Bt =
t∑

s=−∞

ϑ (1 − ϑ)t−s bs,t = 0. (31)

Given these asset market clearing conditions, one can derive the aggregate

global goods market clearing condition. Specifically, (15), (30) and (31)

together imply the equilibrium requirement that

Ct + Ḡ = Yt =
Wt

Pt

Lt +
Zt

Pt

. (32)

After combining the aggregate labor supply (17), the costs minimization

condition (24), the equilibrium relation (32) and the aggregate production

function,

Yt = AtLt, (33)

the real marginal cost, MCt, takes the following form:

MCt = κ
Yt − Ḡ

At − Yt

. (34)
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Condition (34) states that the real marginal cost depends positively on output

and negatively on the exogenous technological parameter.

To close the model the behavior of prices and monetary policy must be

specified. Section 3.1 examines the global solution under flexible prices. Sec-

tion 3.2 characterizes the case of nominal rigidities, for which it is necessary a

log-linear approximation of the global system around a deterministic steady

state.

3.1 Flexible price equilibrium

Under flexible prices (φ = 0) the firm adjusts each period. In particular, it

will choose the price for its differentiated good as a constant markup over

marginal cost:
Pt (j)

Pt

= µMCt. (35)

Since the symmetric equilibrium implies that all firms choose the same price

(Pt (j) /Pt = 1), the flexible price equilibrium is characterized by a constant

real marginal cost:

MCt =
1

µ
. (36)

Using (36) into (34) yields the natural level of output:

Y n
t =

At + κµḠ

1 + κµ
. (37)

With flexible prices, output is determined independently of monetary factors.

3.2 Equilibrium dynamics under sticky prices

In order to obtain tractable solutions, in this section we develop log-linear ver-

sions of all equilibrium conditions under sticky prices around a non-stochastic

steady state. The deterministic steady state we consider is defined as follows.

3.2.1 Steady state

We refer to a zero inflation non-stochastic steady state where Pt = P̄ ,

(1 + it) = R̄, Wt = W̄ , At = Ā, Lt = L̄, Ct = C̄, Yt = Ȳ , Mt = M̄ ,

and Tt = T̄ . It is straightforward to show that this steady state is also the

flexible price non-stochastic steady state.

Specifically, from (17), (18), (19), (28), (30), (31), (32), and (33) it must

be that κC̄/
(
1 − L̄

)
= W̄/P̄ , M̄/P̄ = χ

(
R̄/R̄ − 1

)
C̄, Q̄ = 1/R̄, βR̄ =

10



1 + ΓM̄/P̄ C̄, MC = 1/µ, T̄ = Ḡ, B̄ = 0, Ȳ = C̄ + Ḡ. It should be noted

that in the general case in which ϑ, χ > 0 we have βR̄ > 1. Only in the

limiting cases of cashless economy (χ = 0) and/or infinite horizon (ϑ = 0)

the standard property, βR̄ = 1, must hold.

3.2.2 The linearized model

We now use the steady state defined above as the point around which to

log-linearize the model. We use lower case variables with an accent above to

denote log-deviations from the deterministic steady state.

On the demand side, log-linear approximations of goods market and

money market equilibrium conditions are given, respectively, by

ŷt = scĉt, (38)

m̂t − p̂t = ĉt − ηı̂t, (39)

where sc =
(
Ȳ − Ḡ

)
/Ȳ , η =

[
1/

(
R̄ − 1

)
− 1

]
, and ı̂t = log [(1 + it) / (1 + ı̄)] .

From (19) (after imposing the bonds market clearing condition (31)), aggre-

gate consumption evolves as

ĉt = −ı̂t +
1

1 + Φ
Etπt+1 +

1

1 + Φ
Etĉt+1 +

Φ

1 + Φ
(m̂t − p̂t) , (40)

where Φ = ΓM̄/P̄ C̄, and πt+1 = log (Pt+1/Pt) is the inflation rate from t to

t + 1.

On the supply side, approximation to the aggregate production function

(33) yields

ŷt = ât + l̂t. (41)

Aggregate supply is obtained combining log-linear versions of optimal price

setting (28) and of the price index (29):

πt = δm̂c +
β

1 + Φ
Etπt+1, (42)

where δ =
(1−φ)(1− φβ

1+Φ)
φ

. Combining the log-linearized version of the relation

(34) involving the real marginal cost and the production function (41), one

obtains

m̂c = υxt, (43)

where υ = ( L̄
1−L̄

+ Ȳ
Ȳ −Ḡ

) and xt = ŷt − ŷn
t denotes the output gap, i.e., the

difference between output and the natural level.
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The system of equations has essentially the structure of an IS-LM-AS

system. Specifically, the IS relation can be obtained substituting (38) into

(40) and using the definition of output gap:

xt = −sc

(
ı̂t −

1

1 + Φ
Etπt+1

)
+

1

1 + Φ
Etxt+1 + sc

Φ

1 + Φ
(m̂t − p̂t)+ ζ̂t, (44)

where ζ̂t =
(

1
1+Φ

Etŷ
n
t+1 − ŷn

t

)
can be modelled as an exogenous disturbance

term. The LM is expressed by (39). The “New Keynesian” Phillips curve

can be derived substituting (43) into (42):

πt = λxt +
β

1 + Φ
Etπt+1, (45)

where λ = υδ.

It should be emphasized that, in the general case in which Φ > 0, the

LM is not recursive to the model since money appears directly in the struc-

tural equation describing aggregate demand determination. In particular,

the relevance of money for aggregate demand comes via a micro-founded real

balance effect: money is net wealth and tends to stimulate consumption.

How to close the model depends on the path for the nominal interest rate

implied by the monetary policy regime.

4 The Taylor Rule and Equilibrium Determi-

nacy

We now consider how the real balance effect may affect the conditions for

rational expectations equilibrium determinacy under an interest rate rule of

the Taylor-type, given by

ı̂t = ρ + φππt + φxxt, (46)

where ρ is an exogenous intercept, and φπ, φx are constant policy coefficients,

indicating the “strength” of monetary policy14. We assume that φπ and φx

are non-negative, with at least one strictly positive. A rational expectations

equilibrium is a set of processes {xτ , πτ , (m̂τ − p̂τ )}
∞

τ=t satisfying (39), (44)

14It is well-known that Taylor has found this kind of interest rate rule as a good char-

acterization of U.S. monetary policy, as discussed in a number of recent papers (see, e.g.,

Taylor, 1993, 1999; Judd and Rudebush, 1998).
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and (45) each period, for any given specification of the interest rate policy

rule (46) and for a given process
{

ζ̂τ

}
∞

τ=t
.

In order to analyze the issue of stability of equilibrium, it is convenient to

use the LM relation (39) to eliminate real balances from the intertemporal

IS equation (44), yielding

xt = −sc [(1 + γ) (̂ıt − r̂n
t ) − Etπt+1] + Etxt+1, (47)

where γ = Φ (1 + η) and r̂n
t = [sc (1 + γ)]−1 {

Etŷ
n
t+1 − ŷn

t

}
represents the de-

viation of the Wicksellian “natural interest rate” from the value consistent

with the defined zero-inflation steady state15. Expression (47) can be inter-

preted as follows. The real balance effect makes even a one-for-one rise in

both expected inflation and the nominal interest rate contractionary. This

extra-effect on aggregate demand is implied by the reduction in real money

demand when an increase in the nominal interest rate occurs.

We now substitute the policy rule (46) into (47), and represent the equilib-

rium system involving the two endogenous variables xt and πt in the following

compact form:

(
xt

πt

)
= A

(
Et {xt+1}

Et {πt+1}

)
+ B (r̂n

t − ρ) , (48)

where

A =
1

1 + sc (1 + γ) λφπ + sc (1 + γ) φx

(
1 sc

[
1 − β(1+γ)φπ

1+Φ

]

λ scλ + β[1+sc(1+γ)φx]
1+Φ

)
,

and B= 1
1+sc(1+γ)λφπ+sc(1+γ)φx

(
sc (1 + γ) sc (1 + γ) λ

)′

. Following Blan-

chard and Khan (1980), a necessary and sufficient condition for the sys-

tem (48) to exhibit a unique bounded solution is that the number of non-

predetermined endogenous variables equal the number of roots of A that lie

inside the unit circle; otherwise the equilibrium will be indeterminate. Since

both xt and πt are free, we can state the following proposition.

Proposition 1 Let φπ, φx ≥ 0, with at least one strictly positive. Under

interest rate rules of the form (46) the necessary and sufficient condition for

15To obtain the natural rate of interest, it should be noted from the Phillips curve that

output equals its natural rate (xt = 0) at all times if πt = 0 at all times. Using these

paths for inflation and output into the IS relation (after substituting the LM curve), it is

straightforward to derive (47) (for this procedure, see Woodford, 2003).
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a rational expectations equilibrium to be unique is that

φπ +

(
1 − β

1+Φ

)

λ
φx >

1

1 + γ
. (49)

Proof. See Appendix A.

The left-hand side of condition (49) represents the long-run increase in

the nominal interest rate prescribed by the policy rule (46) for each unit

permanent increase in the inflation rate. It’s clear that condition (49) does

not verify what Woodford (2001, 2003) calls the “Taylor principle”16: in the

event of a permanent one percent rise in inflation, it is not necessary that the

cumulative increase in the nominal interest rate be more than one percent.

A “passive” monetary policy, that is, a policy that underreacts to inflation

by raising the nominal interest rate by less than the observed increase in

inflation, is feasible also in the long run, provided that (49) is satisfied.

The intuition for this result is as follows. If monetary policy is passive, a

deviation of expected inflation from the rational expectations value leads

to a decrease in the real interest rate which not necessarily increases the

output gap through (47) and then inflation through (45). In fact, the rise in

the nominal interest rate implied by the rule (46) increases the opportunity-

cost of holding real money balances and therefore tends to reduce aggregate

demand through the monetary wealth effect. If condition (49) is satisfied, the

real balance effect operates as an “automatic stabilizer”, leading the economy

towards the unique rational expectations value.

According to estimates of the rule (46) for the U.S. monetary policy (see,

e.g, Clarida, Gal̀ı and Gertler, 1999; Taylor, 1999), monetary policy has

been significantly “passive” during the pre-Volcker era (1960:1-79:4)17: Fed-

eral Reserve policy tended systematically to accommodate rather than fight

increases in inflation. Within the standard “New Keynesian” setup, these es-

timates suggest that equilibrium was indeterminate in the pre-Volcker regime

(see Taylor, 1999; Woodford, 2003). We have shown that the real balance

effect implies that the pre-Volcker regime could have been well determinate.

5 Optimal Interest Rate Rules

In this Section, we investigate the implications for optimal monetary policy

design. In particular, we discuss optimal interest rate rules, both under

16See also Bullard and Mitra (2002).
17In particular, Taylor (1999) estimates for this period φπ = 0.813 and φx = 0.252.
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discretion and under commitment.

In order to introduce a short run trade-off in monetary policy making be-

tween output and inflation, we add an exogenous shock, ut, to the aggregate

supply curve:

πt = λxt +
β

1 + Φ
Etπt+1 + ut. (50)

Following Clarida, Gal̀ı and Gertler (1999), the disturbance term can be

interpreted as a “cost push shock”, representing anything apart from the

output gap that affects marginal costs. We assume that this shock obeys the

following stationary first order process:

ut = νut−1 + εt, (51)

with 0 < ν < 1, and where εt is white noise.

The central bank’s objective function is specified as

max−
1

2
Et

{
∞∑

τ=t

βτ−t
[
αx2

τ + π2
τ

]
}

, (52)

where the parameter α measures the relative weight on output deviations.

5.1 Optimal discretionary policy

Under discretion, the central bank re-optimizes each period and the optimum

is characterized by a “lean against the wind” policy:

xt = −
λ

α
πt. (53)

Substituting the above optimality condition into (50) and solving forward

yields the following reduced forms for inflation and the output gap:

πt =
α

λ2 + α
(
1 − βν

1+Φ

)ut, (54)

xt = −
λ

λ2 + α
(
1 − βν

1+Φ

)ut. (55)

Combining the IS relation (47) with the solutions for πt and xt, one obtains

the optimal feedback rule for the interest rate:

ı̂t = r̂n
t + φ∗

πEtπt+1, (56)
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where φ∗

π = 1
1+γ

[
1 + λ(1−ν)

νscα

]
⋚ 1. The Taylor principle, according to which a

central bank should respond to increases in inflation with a more than one-

for-one increase in the nominal interest rate, is not optimal, in general, in

our framework. To summarize, we have:

Proposition 2 Under discretion, it is optimal to implement the Taylor prin-

ciple if the following condition is satisfied:

γ <
λ (1 − ν)

νscα
. (57)

This condition is certainly verified in the limiting cases of cashless economies

and/or infinite horizon setups, in which Φ = 0 (hence γ = 0). By contrast,

if γ > λ(1−ν)
νσα

, the monetary wealth effect described above makes optimal for

the central bank to implement a passive monetary policy.

5.2 Optimal policy with commitment

Under commitment, the central bank chooses a binding state-contingent rule.

In what follows we distinguish between the ”constrained” and the ”uncon-

strained” commitment.

5.2.1 The “constrained” commitment

Consider the case in which the central bank commits itself to conduct mon-

etary policy according to a linear feedback rule on state variables. This

approach provides a simple way to clarify the difference of the case of com-

mitment relative to discretion. Specifically, under commitment to a feedback

rule of the kind xc
t = −ωut (ω > 0), it is possible to show that the optimal

interest rate is

ı̂t = r̂n
t + φ∗c

π Etπt+1, (58)

with φ∗c
π = 1

1+γ

[
1 + λ(1−ν)

νscα(1− βν

1+Φ)

]
> φ∗

π. In this case, the central bank optimal

policy is to implement a more aggressive response to expected deviations

of inflation from target, due to an improved trade-off between output and

inflation. Thus we have:

Proposition 3 Under commitment to a linear policy rule of the kind xc
t =

−ωut (ω > 0), it is optimal to apply the Taylor principle if the following

condition holds:

γ <
λ (1 − ν)

νscα
(
1 − βν

1+Φ

) . (59)
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Hence, the main prediction of the model is that the Taylor principle is

more likely to be verified under a “constrained” commitment than under

discretion. This seems to suggest the idea that the observed instability of

the U.S. inflation and real economic activity during the 1970’s could be due

not to indeterminacy of rational expectations equilibrium but to an absence

of commitment on the part of the Fed, as argued by Chari, Christiano and

Eichenbaum (1997).

5.2.2 The “unconstrained” commitment

We now discuss the general solution for the optimal interest rate rule under

commitment, which can be derived as follows. In the first stage problem,

the central bank chooses a state contingent policy {xτ , πτ}
∞

τ=t in order to

maximize (52) subject to the aggregate supply curve (50), which holds in

every period τ ≥ t. The solution implies the following optimality conditions:

xτ =
1

1 + Φ
xτ−1 −

λ

α
πτ , (60)

for each τ > t, and

xt = −
λ

α
πt. (61)

Combining (60) with (47), one obtains the optimal interest rate rule:

ı̂t = r̂n
t +

1

1 + γ

[
1 −

λ

scα

]
Etπt+1 +

λΦ

scα (1 + γ) (1 + Φ)
πt. (62)

In the limiting cases of a cashless economy and/or infinite horizon (Φ, γ =

0), it is well known that this kind of rule involves indeterminacy, since the

coefficient associated with expected inflation is less than one18 (see Clarida,

Gal̀ı and Gertler, 1999; Woodford, 1999). In Appendix B we show that

the presence of the real balance effect is not sufficient to make equilibrium

determinate.

6 Calibration

In order to evaluate the foregoing results we calibrate the model to quarterly

data. The baseline parameter configuration is summarized in Table 1.

18A further problem is that the optimal plan (60) and (61) is not time consistent, as

discussed by Clarida, Gal̀ı and Gertler (1999).
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We let the steady state share of government spending in GDP be 0.2,

which is a conventional estimate of the share of government consumption for

the U.S.. The average M2 velocity, P̄ Ȳ /M̄ , is set equal to 0.425, consistent

with an annual value of 1.7. This is in line with estimates obtained for the

U.S. for the period 1960-199519. We set the steady state real interest rate

equal to 0.007 (i.e., 3 per cent per year). Following Leith and Wren-Lewis

(2001), the probability of death between two consecutive periods is set equal

to 0.015. This parameter can be interpreted as a measure of the individual

planning horizon.

The steady state fraction of time in employment is 1/3, according to the

standard eight hours working day. We calibrate the probability of keeping

the price fixed between two consecutive periods to be 0.85. This is consistent

with Gal̀ı and Gertler (1999) estimates.

Furthermore, the cost push shock is assumed to have a standard devi-

ation and an autoregressive coefficient equal to 0.07 and 0.7, respectively.

The presence of a relatively high degree of persistence is consistent with the

estimates of Ireland (2002) obtained for the U.S. during the period 1948-2002.

The remainder of parameters are implied by the steady state relations

defined in Section 3.

In terms of condition (49), using the foregoing parameters it is straightfor-

ward to find equilibrium determinacy if and only if the nominal interest rate

increases more than 0.88 percentage points per percentage point long-run

increase in inflation.

In terms of optimal monetary policy, we now investigate how the “sign” of

optimal monetary policy (“active” or “passive”) is sensitive with respect to

small changes in the parameter values. In particular, we consider the effect

of a variation in the parameter reflecting the central bank relative weight on

output fluctuations, α. Impulse response functions to unit shocks are derived

using the toolkit provided by Gerali and Lippi (2003)20.

Figure 1 shows responses to a unit cost push shock in a discretionary

monetary policy regime with α = 0.05, the value reported by Rotemberg

and Woodford (1997). In this case, it is optimal to apply an active monetary

policy, since the real interest rate increases on impact. However, setting a

value of α = 1/3, in line with Broadbent and Barro (1997), one obtains the

optimality of a passive monetary policy (Figure 2). Under the previous value

19Data source is the Federal Reserve Bank of New York report “Un-

derstanding Open Market Operations”, downloadable from the website

http://www.newyorkfed.org/education/addpub/pdf/ch2.pdf. .
20Thank to the authors, the toolkit is downloadable from their homepages.
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of α, Figures 3 and 4 show that in the limit case of infinite horizon (ϑ = 0)

and in the case of “constrained” commitment, it is optimal to implement the

“Taylor principle”.

7 Conclusions

We have presented a “New Keynesian” setup with the presence of a monetary

wealth effect. This kind of extension makes the LM relation non recursive

to the equilibrium system. The main finding of the paper is that the micro-

founded real balance effect in the IS intertemporal relation has important

implications for the design of monetary policy rules. Specifically, we have

obtained the following results: (i) the “Taylor principle” relies on the strict

assumption of the traditional infinitely-lived representative agent model and

disappears as a necessary condition for equilibrium determinacy as soon as we

introduce an overlapping generations framework, through a rigorous version

of the real balance effect; (ii) this principle is implemented by the central bank

more likely under commitment (within a class of linear feedback rules on state

variables) rather than under discretion. The view that the pre-Volcker era

in the U.S. was not affected by equilibrium indeterminacy but characterized

by an absence of commitment on the part of the Fed has therefore sound

theoretical micro-foundations.
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Appendix A

Proof of Proposition 1

Consider the system (48). The characteristic polynomial of A can be

written as

P (ξ) = ξ2 − tr (A) + det (A) , (A.1)

where

tr (A) =
1 + scλ + β[1+sc(1+γ)φx]

1+Φ

1 + sc (1 + γ) λφπ + sc (1 + γ) φx

, (A.2)

and

det (A) =
scλ + β[1+sc(1+γ)φx]

1+Φ
− scλ + sc

β(1+γ)λφπ

1+Φ

[1 + sc (1 + γ) λφπ + sc (1 + γ) φx]
2 . (A.3)

Conditions for equilibrium determinacy are

|det (A)| < 1, (A.4)

|−tr (A)| < 1 + det (A) . (A.5)

Rearranging (A.3) yields

|det (A)| =

∣∣∣∣∣

β
1+Φ

1 + sc (1 + γ) λφπ + sc (1 + γ) φx

∣∣∣∣∣ . (A.6)

Condition (A.4) requires that

β

1 + Φ
< 1 + sc (1 + γ) λφπ + sc (1 + γ) φx. (A.7)

Given our restrictions about the parameters φπ and φx, this is always verified.

Condition (A.5) requires that

1 + scλ + β[1+sc(1+γ)φx]
1+Φ

1 + sc (1 + γ) λφπ + sc (1 + γ) φx

< 1 +
β

1+Φ

1 + sc (1 + γ) λφπ + sc (1 + γ) φx

,

(A.8)

which is satisfied if and only if condition (49) holds.
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Appendix B

Equilibrium indeterminacy under the ”unconstrained” commitment

Combining (62) with (47) and (50), one can represent the equilibrium

dynamics with the system:

(
xt

πt

)
= AC

(
Et {xt+1}

Et {πt+1}

)
+ BCut, (B.1)

where

AC =
1

1 + λ2Φ
α(1+Φ)

(
1 λ

α

[
1 − Φβ

(1+Φ)2

]

λ β
1+Φ

+ λ2

α

)
,

and BC = 1

1+ λ2Φ
α(1+Φ)

(
− λΦ

α(1+Φ)
1

)′

. We have

tr (AC) =
1 + β

1+Φ
+ λ2

α

1 + λ2Φ
α(1+Φ)

, (B.2)

det (AC) =
β

1+Φ

1 + λ2Φ
α(1+Φ)

. (B.3)

Conditions for equilibrium determinacy are given by (A.4) and (A.5), with

A replaced by AC. Condition (A.4) is always satisfied. Condition (A.5)

requires
1 + β

1+Φ
+ λ2

α

1 + λ2Φ
α(1+Φ)

< 1 +
β

1+Φ

1 + λ2Φ
α(1+Φ)

, (B.4)

which is not verified.
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Table 1 - Baseline Parameter Values

Average Ratios

Ḡ/Ȳ = 0.2

C̄/Ȳ = 0.8

L̄ = 1/3

Baseline Parameter Values

R̄ = 1.007

ϑ = 0.015

φ = 0.85

Implied Parameter Values

χ = 0.02

β = 0.994

Φ = 0.001

γ = 0.14

Cost Push Shock
ν = 0.7

σ = 0.07
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Figure 1: Inflation, Nominal Interest Rate, Output Gap, and Real Interest

Rate Following a Temporary Cost Push Shock: Optimal Monetary Policy

under Discretion (α = 0.05)
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Figure 2: Inflation, Nominal Interest Rate, Output Gap, and Real Interest

Rate Following a Temporary Cost Push Shock: Optimal Monetary Policy

under Discretion (α = 1/3)
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Figure 3: Inflation, Nominal Interest Rate, Output Gap, and Real Interest

Rate Following a Temporary Cost Push Shock: Optimal Monetary Policy

under Discretion (α = 1/3) in the Infinite Horizon Limit Case (ϑ = 0)
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Figure 4: Inflation, Nominal Interest Rate, Output Gap, and Real Interest

Rate Following a Temporary Cost Push Shock: Optimal Monetary Policy

under the “Constrained” Commitment (α = 1/3)
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