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Abstract

In this paper we consider the issue of optimal information aggregation for timing decision

making. In each period, a decision maker may choose an action which delivers an uncertain

payoff, or wait until the next period, in which new information will arrive. The information is

provided by a committee of experts. Each member in each period receives a signal correlated

to the state. We obtain an optimal rule for aggregating information for each period.
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1 Introduction

In this paper we consider the issue of optimal information aggregation for timing decision making.

In each period, a decision maker may choose an action which delivers an uncertain payoff, or

wait until the next period, in which new information will arrive. The information is provided non-

strategically by a committee of experts. The reader may think in the following highly stylized

situation: in each period a project may be profitable (good project) or worthless (bad project), but

the true state is not known in advance. Instead, each member of a committee of experts in each

period receives a signal correlated to the state, which varies along time in a Markovian way. That

is, the probability that a project is a good one in some period depends on whether it was a good

one in the previous period. When the project is undertaken, the decision maker gets a reward equal

to the profits of the project and the game ends. The purpose of this chapter is to obtain an optimal

rule for aggregating information for each period.

We build on Ben-Yashar and Nitzan (1997), who consider a committee whose task is to approve

or reject projects. In their model, on a periodical basis, each expert receives a signal correlated to

the profitability of the project. Basically, the committee faces the same problem every period; thus,

Ben-Yashar and Nitzan (1997)’s optimal rule is static. Their model is able to capture situations in

which there is no possibility to postpone the execution of the project (either because the opportunity

disappears or because in the future new information will not arrive making the waiting worthless

for impatient decision-makers). Beside investment decisions of the type “accept or reject”, their

result is of significance to jury decision making and other political, legal, economical and medical

applications in which the choice is dichotomous and cannot be postponed. However, there are

many situations in which waiting is possible and it has a value because new information may be

coming and more importantly, because project’s execution is irreversible (otherwise, the optimal

rule would always be undertaking the project and revert if the project turns to be bad). For example,

oil drilling can be postponed if a rise in prices is likely to happen. Similarly, an entrepreneur facing

uncertain demand may prefer to wait before introducing a new product or brand to the market.

Even in some medical treatments, a committee of experts may prefer to wait for the appearance

of new symptoms, in order to make a more accurate diagnosis and minimize the risk of choosing

a wrong treatment. A monetary policy committee may prefer to wait for the resolution of some
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uncertainty (the magnitude of a supply or demand shock or of the output gap, or the resolution of

a wage bargaining round), before changing the policy instrument. In short, these “accept or wait”

situations seem to be almost as pervasive as the “accept or reject” ones mentioned above. The

optimal rule derived in this chapter may be suitable in all these settings.

The rest of the paper is organized as follows: section two presents the setup; in section three

the optimal rule is derived. I conclude in the last section.

2 The model

We consider a decision maker (DM) whose whose task is to make a decision regarding the time

of execution of a project, the returns of which depend on a changing environment. At each pe-

riod, a committee of N experts make a report about the state of the world. N denotes the set

of experts. There are two states of the world: in the high state, the project is profitable, with

positive net present value, normalized to ϑ = 1. In the low state, the project is worthless, with

ϑ = 0. The state of the world follows a first order Markov process, with transition probabilities

λ1 = Pr (ϑt+1 = 1|ϑt = 1) , λ0 = Pr (ϑt+1 = 1|ϑt = 0) . Let α ≡ Pr (ϑ0 = 1) denote the prior

probability that the project is a good one. In order to focus exclusively on the timing decision,

we assume that the net present value is always nonegative, so it is never unprofitable to reject the

project. At each t, available actions to DM are “undertake the project” (U ) or “delay decision”

(D). Let A = {D,U}.

The state of the process is not observable. Instead, each expert i receives a private signal Si
t of

the net present value of the project if undertaken at t.

Assumption 1. Si
t depends only on the state ϑt.

Let Si
t ∈ {−1, 1}∀i ∈ N . For each i, denote θi1 = Pr (Si

t = 1|ϑt = 1) , θi0 = Pr (Si
t = −1|ϑt = 0) ,

the precision of the signals. We assume that signals are independent among experts, and that

θi0, θ
i
1 ≥ 1/2 which means that signals are informative. We may also interpret Si

t as expert i’s

assessment of the state of the process at t. The model is of limited communication: at each time

t each expert only reports the signal Si
t to the decision maker. Let St ≡ {Si

t}
N
i=1 denote a report

profile at time t, let X denote the set of possible report profiles and let Ht ≡ {Sτ}
t
τ=1 denote a

history of report profiles.
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Timing

The sequence of events after DM selects at = D is the following one: (i) the state changes (ϑt →

ϑt+1) according to the transition probabilities λ1and λ0; (ii) experts independently observe signals

Si
t+1 and report them to DM, who uses the profile St+1 to update the information used for decision

making, and selects at+1. If at+1 = U is selected, a reward equal to ϑt+1 is received.

DM’s task at each time is to select an action at ∈ A based on the information available at t,

mainly the history of report profiles Ht. A decision rule ft at time t is a function that maps every

report at time t to the action set A = {U,D}, ft : X
t → A. The problem addressed in the present

paper is to find an optimal rule for each t.1 Conditional probability that net present value at period

t is ϑt = 1 is denoted pt = Pr (ϑt = 1|Ht). If the state transits from ϑt−1 to ϑt, DM observes St

and updates the probability pt−1 → pt using Bayes’ rule.

Let g (Ht|ϑt = j) be the conditional probability density function of the random variable Ht.

Assume that a prior p̃t = Pr (ϑt = 1|Ht−1) is known and let Pr (St = S|ϑt = j) ≡ RjS . We

define the function T (Ht) = St, that is, T picks the last signal from the history Ht of signals.

Regard ϑt as a parameter that takes values in the parameter space {0, 1}. ϑt is unobserved, but a

history of signals Ht = {S1, ..., St} is observed and it is available for making inferences relating

to the value of ϑt. If in order to be able to compute the posterior distribution of ϑt from any prior

distribution, only T (Ht) is needed, then T is a sufficient statistic2.

Lemma 1. T (Ht) = St is a sufficient statistic for the family {g (·|ϑt = j)}j=0,1.

Proof. If p̃t characterizes the prior distribution for ϑt (p̃t = Pr (ϑt = 1|Ht−1)), then the posterior

distribution pt = Pr (ϑt = 1|Ht) is, by Bayes rule,

Pr (ϑt = 1|Ht) = Pr (ϑt = 1|St, Ht−1) =
Pr (St = S|ϑt = 1, Ht−1)× Pr (ϑt = 1|Ht−1)

Pr (St = S|Ht−1)

=
Pr (St = S|ϑt = 1)× Pr (ϑt = 1|Ht−1)

Pr (St = S|Ht−1)

where the last equality results from assumption 1. The prior is Pr (ϑt = 1|Ht−1) = p̃t. Straight-

1A more general rule should map every history of reports to the action set. Due to the Markov assumption made

above, restricting the domain of the function ft to the current report involves no loss in generality, as it is shown below.
2See for example De Groot (1970).
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forward computation gives Pr (St = S|Ht−1) = R1S p̃t +R0S (1− p̃t) so

Pr (ϑt = 1|Ht) =
R1S p̃t

R1S p̃t +R0S (1− p̃t)
.

Thus, in order to compute Pr (ϑt = 1|Ht) from the prior p̃t, only the value of St is needed, and

T (Ht) = St is a sufficient statistic for the family {g (·|ϑt = j)}j=0,1. Finally, note that p̃t =

λ0 (1− pt−1) + λ1pt−1 ≡ Γ (pt−1). Then,

pt =
R1SΓ (pt−1)

R1SΓ (pt−1) +R0S (1− Γ (pt−1))

which only depends on pt−1 and S.

From lemma 1, it results that in order to calculate pt, the only pertinent information that DM

uses is St and pt−1, so history Ht−1 does not provide more information than pt−1We refer to pt

as the information state at period t. Let γ (S, p) ≡ R0S (1− Γ (p)) + R1SΓ (p) and Φ (S, p) ≡

R1SΓ(p)
R0S(1−Γ(p))+R1SΓ(p)

. γ (S, p) is the likelihood of S and Φ (S, p) is the bayesian update of p, made

after the observation of S. At period t, given that the project has not been undertaken yet, expected

net present value of undertaking the project is pt, and if the project is not undertaken, expected

net present value is β
∑

S∈X γ (St, pt)Vt+1 (Φ (S, pt)) where 0 < β < 1 is DM’s discount factor.

Using definitions above, functional equation associated to DM’s problem is

Vt (p) = max

{

p, β
∑

S∈X

γ (S, p)Vt+1 (Φ (S, p))

}

, t = 1, ..., T − 1 (1)

VT (p) = p

A solution to problem (1) maps each possible value of pt, to an action a ∈ {U,D}, for each t.

3 Optimal aggregation of information

Let Ut denote the subset of [0, 1] for which the optimal action at t is a∗t = U , that is, Ut =

{p ∈ [0, 1] : Vt (p) = p}. The following result characterizes the solution to problem (1). Its proof

is provided in the appendix.

Proposition 1.

(i) 1 ∈ Ut∀t
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(ii) Ut is convex

(iii) U1 ⊂ U2 ⊂ ... ⊂ Ut ⊂ ... ⊂ UT = [0, 1]

From Proposition 1, each Ut has the form [p∗t , 1]. Then, there exist threshold values {p∗t}
T
t=1

such that, for each t, the following policy is optimal:

a∗t =







D if pt < p∗t

U if pt ≥ p∗t

Assume that at t − 1 the decision has been to delay and denote with f ∗
t an optimal decision

rule, and let −1 correspond to decision to delay (D) and +1 correspond to decision to undertake

(U ).

Theorem 1.

f ∗

t (S) = sign

(

N
∑

i=1

wixi (S) + bt

)

where

sign (a) =







1 if a ≥ 0

−1 if a < 0
; wi =

1
2

(

ln
θ0
i

1−θ0
i

+ ln
θ1
i

1−θ1
i

)

;

xi (S) =







1 if Si = 1

−1 if Si = −1
; bt (S) = ξt + φt + ψ;

ξt = ln Γ(pt−1)
1−Γ(pt−1)

; φt = ln
1−p∗

t

p∗
t

;

ψ = 1
2

∑N

i=1

(

ln
θ1
i

θ0
i

+ ln
1−θ1

i

1−θ0
i

)

.

and pt−1 is computed recursively as

pt−1 =
R1St−1

Γ (pt−2)

R1St−1
Γ (pt−2) +R0St−1

(1− Γ (pt−2))
, p0 = α,

with

R1St−1
= Pr (St−1|ϑt−1 = 1) , R0St−1

= Pr (St−1|ϑt−1 = 0) .
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Proof. DM uses the profile S to update the state pt−1 to pt = Φ (S, pt−1). Then, decision is to

undertake if Φ (S, pt−1) ≥ p∗t , that is, if

R1SΓ (pt−1)

R0S (1− Γ (pt−1)) +R1SΓ (pt−1)
≥ p∗t , (2)

which taking logs and using definitions of φt and ξt above, can be expressed as ln R1S

R0S

+φt+ξt ≥ 0.

Denoting by 1 (S) the subset of experts that report Si = 1, and by −1 (S) the subset of experts that

report Si = −1, when the profile is S, it is straightforward to show that the log likelihood ratio is

ln
R1S

R0S

=
∑

i∈1(S)

ln
θi1

(

1− θi0
) +

∑

i∈−1(S)

ln

(

1− θi1
)

θi0
.

Using definitions of wi, xi (S), and ψ above, we get ln R1S

R0S

=
∑N

i=1wixi (S) + ψ, so condition (2)

becomes
∑N

i=1wixi (S) + ψ + φt + ξt ≥ 0,or equivalently sign
(

∑N

i=1wixi (S) + bt

)

= 1. By a

similar procedure, it is shown that

Φ (S, pt−1) < p∗t ⇔ sign

(

N
∑

i=1

wixi (S) + bt

)

= −1.

4 Conclusions

In this paper we used a simple model to show that in time-varying environments with an unob-

servable state, a decision maker that faces irreversible costs of making decisions, and assigns a

positive value to the option to wait, should use a time varying information aggregation rule in or-

der to determine the optimal period to undertake a project. If the timing decision is decentralized

to a common interest committee (that is, a committee in which every member has the same ex-post

payoff) who decides using a quota rule, then the committee will be better off using a time vary-

ing quota. If the rule aggregates information optimally, then there exists an equilibrium in which

each member votes sincerely, that is, according to the private signal. (McLennan (1998), Theorem

1). The optimal quota rule can be expressed as a weighted majority rule with a time varying bias

component.
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Appendix

Proof of Proposition 1

The proof requires the following lemmata, which are standard in the literature of partially observ-

able Markov processes. (for example, Bertsekas (1995), Degroot (2004), Smallwood and Sondik

(1973).)

Lemma 2. (i) Vt (p) ≤ 1 for every t; (ii) for every p, Vt (p) is non increasing in t;

Proof. (i) By assumption, the NPV of the project is 1 or 0 and is perceived only in the period in

which action U is selected. Thus, Vt (p) ≤ 1. (ii) Note that

VT−1 (p) = max

{

p, β
∑

S∈X

γ (S, p) Φ (S, p)

}

= max

{

p, β
∑

S∈X

R1SΓ (p)

}

= max {p, βΓ (p)} ≥ p = VT (p)

where the first equality follows because optimal action at period T is to undertake the project

(a∗T = U ) and then, VT (p) = p, the second equality follows from the expressions for γ (S, p)

and Φ (S, p) and the third equality follows because
∑

S∈X R1S =
∑

S∈X Pr (S | NPVt = 1) = 1.

Suppose that Vt (p) ≥ Vt+1 (p) for some t and for all p ∈ [0, 1]. To complete the proof, note that

Vt−1 (p) = max

{

p, β
∑

S∈X

γ (S, p)Vt (Φ (S, p))

}

≥ max

{

p, β
∑

S∈X

γ (S, p)Vt+1 (Φ (S, p))

}

= Vt (p)

where the inequality follows from the induction hypothesis.

Lemma 3. Let V D
t−1 (p) = β

∑

S∈X γ (S, p)Vt (Φ (S, p)) and suppose that Vt (p) is convex. Then

V D
t−1 (p) is also convex.

Proof. Let ξ and v ∈ [0, 1] and let p = µξ + (1 − µ)v, 0 < µ < 1; we need to show that

V D
t−1 (p) ≤ µV D

t−1 (ξ) + (1− µ)V D
t−1 (ν); note that

γ (S, p) = γ (S, µξ + (1− µ)v) = µγ (S, ξ) + (1− µ)γ (S, v)
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and

Φ (S, p) =
R1SΓ (µξ + (1− µ)v)

γ (S, µξ + (1− µ)v)

=
µγ (S, ξ)

µγ (S, ξ) + (1− µ) γ (S, ν)
Φ (S, ξ) +

(1− µ) γ (S, ν)

µγ (S, ξ) + (1− µ) γ (S, ν)
Φ (S, ν)

It follows from the convexity of Vt (p) that

γ (S, p)Vt (Φ (S, p)) ≤ µγ (S, ξ)Vt (Φ (S, ξ)) + (1− µ) γ (S, ν)Vt (Φ (S, ν))

hence

V D
t−1 (p) = β

∑

S∈X

γ (S, p)Vt (Φ (S, p))

≤ µβ
∑

S∈X

γ (S, ξ)Vt (Φ (S, ξ)) + (1− µ) β
∑

S∈X

γ (S, ν)Vt (Φ (S, ν))

= µV D
t−1 (ξ) + (1− µ)V D

t−1 (ν)

thus V D
t−1 (p) is convex.

Lemma 4. Vt (p) is convex for t = 1, ..., T .

Proof. We proceed by induction. Suppose that V D
t (p) is convex, t ≤ T − 1. Then, Vt (p) ≡

max
{

p, V D
t (p)

}

is convex since it is the maximum of two convex functions, and V D
t−1 (p) ≡

β ES Vt (Φ (p)) is also convex (Lemma 3). This implies that Vt−1 (p) ≡ max
{

p, V D
t−1 (p)

}

is

convex in p. To complete the proof, note that V D
T (p) = 0 and V U

T (p) = p are linear functions, so

VT (p) ≡ max
{

p, V D
T (p)

}

is convex, and by Lemma 3, V D
T−1 (p) is also convex.

Proof of Proposition 1. (i) 1 ∈ UT because VT (1) = 1. Then, Vt (1) = 1 ∀t < T because for

each p, Vt (p) is non increasing in t (Lemma 2) and for each t, is bounded above by 1 (Lemma 2).

We conclude that 1 ∈ Ut∀t. (ii) Suppose p and p′ are in Ut. Let p′′ = νp + (1− ν) p′ for some

ν ∈ (0, 1). Then, Vt (p
′′) ≤ νVt (p) + (1 − ν)Vt (p

′) = νp + (1 − ν)p′ = p′′ where the inequality

is a result of convexity of value function (Lemma 4) and the first equality results because p and p′

belong to Ut. But, by definition of the value function, Vt (p
′′) ≥ p′′ so we conclude that Vt (p

′′) = p′′

and thus p′′ ∈ Ut. (iii) Suppose p ∈ Ut. Then p = Vt (p) ≥ Vt+1 (p) (Lemma 2) and by definition

of the value function, Vt+1 (p) ≥ p . Thus p = Vt+1 (p), so p ∈ Ut+1.
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