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Abstract 

 

The bitter experience of the subprime crisis of 2007, the Global Financial crisis of 2008, and the 

extremely slow and painful ensuing recovery, has raised systemic risk to the center stage of 

global economic discourses. The crisis has brought home the urgent need for a thorough 

assessment of the dependence and interaction between banking sectors, from which most of the 

trouble began. This study investigates patterns and trends in absolute and tail dependence over 

time using daily returns for banking sectors from 12 Asian economies during the period 2000-

2012. Static and time-varying Copula models, Gaussian copula, Symmetrized Joe-Clayton 

copulas, are employed to study the tail co-movements among the selected markets. The paper 

assumes a skew-t distribution for the innovation process of the marginal models. The results of 

the marginal models suggest strong volatility persistence in all twelve markets. There is high 

persistence in the absolute dependence of among market pairs. The evidence from the empirical 

analysis suggests that the cross-sectional average copula correlations generally remain at 

moderate levels with slight upward trend for all twelve markets. Correlation among the banking 

sectors of the advanced Asian markets economies are generally higher compared with the 

Emerging markets economies. The tail dependence is asymmetric across most of the market 

pairs; tail dependence at the lower side of the joint distributions is mostly higher than tail 

dependence at the upper side of the joint distributions. The results show that tail dependence is 

not upward trending for most of the pairs examined. However, the tail co-movements show 

significant spikes in response to financial stress in the global economy, which implies that there 

could be joint crashes in the regional banking system during extreme negative events. The fact 

that the region has not been the epicenter for most of the crisis periods covered in this study, yet 

responds significantly, makes it necessary for adoption of policies that maximize resilience to 

shocks. The study concludes that time-varying copulas are best suited for modeling the 

dependence structure of the Asian banking sector indices compared with static copula. 
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1. Introduction and Literature Review 

The bitter experience of the subprime crisis of 2007, the Global Financial crisis of 2008, and the 

extremely slow and painful ensuing recovery, has raised systemic risk to the center stage of 

global economic discourses. The crisis has brought home the urgent need for a thorough 

assessment of the dependence and interaction between banking sectors, from which most of the 

trouble began. The need to understand the relationship between different markets is of broader 

importance to international diversification, which seeks to minimize the risk of assets through 

optimal allocation. It is generally accepted that the degree of asset dependence is key to realizing 

the benefits from international diversification (Samuelson, 1967; Ibragimov, Jaffee, & Walden, 

2009; Shin, 2009; Veldkamp and Van Nieuwerburgh, 2010; and Bai and Green, 2010) and 

markets with high positive dependence do not provide risk reduction benefits to investors. 

Moreover, international investors depend on measures of dependence and tail risk so that they 

can manage risks of their portfolio. Therefore, it is necessary to uncover the dependence between 

diverse markets.  

This study investigates patterns and trends in absolute and tail dependence over time among 

banking sectors in Asian markets in light of recent developments in the global financial market.  

Assessing the comovement of Asian bank stock return is important for understanding the 

probability of financial shocks as well as its impact on the economies in the region. Besides, 

knowledge of the dependence across the banking sectors is of interest to regulators and policy 

makers whose duty includes ensuring a healthy and robust financial system. Apart from the size 

(as measured by market capitalization) and idiosyncratic risk, the interconnectedness among 

banking sectors is a key determinant of their systemic risk contribution or exposure. In this 

regard, the paper sheds light on whether there is any potential systemic risk within the Asian 

banking sector.  

There is a grand literature on financial market dependence in both regional and inter-regional 

studies. The seminal contributions of Grubel (1968) on gains from international portfolio 

diversification served as a springboard for subsequent contributions in that line of research. 

Grubel (1968) pointed out that investors could obtain welfare gains by diversifying their 

portfolio internationally, where the gains hinges primarily on the correlation between stocks. 

Other early works on comovement and gains from diversification include Levy and Sarnat 
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(1970), Agmon (1972) and Solnik (1974) who documented that diversifying internationally 

could lead to greater benefits than investing locally. Subsequent works studying the comovement 

of international stock prices include King, Sentana and Sushil (1994), Lin, Engle and Ito (1994), 

Longin and Solnik (1995, 2001), Karolyi and Stulz (1996), Forbes and Rigobon (2002), Brooks 

and Del Negro (2005, 2006). Most of these studies present evidence that stock return 

comovement varies with time. For instance, Brooks and Del Negro (2004), Kizys and Pierdzioch 

(2009) Rua and Nunes (2009) found evidence that international comovement has been on an 

upward trend, particularly among developed markets.  

Most of the previous studies focus on the linkages across different stock markets (see Rahman 

and Yung, 1994; Li, Yang, Hsia and Chang, 2005;Chiang and Jeon, 2007; Tai, 2007; Cho and 

Parhizgari, 2008; Kizys and Pierdzioch, 2009; Ozdemir, 2009; Khan and Park, 2009; 

Huyghebaert and Wang, 2010; Jayasuriya, 2011). However, there is still scope for more 

empirical investigations on banking sector return comovement within the region. To begin with, 

research in this area has focused particularly on assessing the comovement of stock returns 

through the correlation coefficient, which can only provide evidence on the linear association 

between the variables, whereas the dynamic properties have been studied through a rolling 

window correlation coefficient (see, for instance, Brooks and Del Negro (2004)). In cases where 

an attempt has been made to capture the non-linear dependence, the focus has mostly been on 

developed markets in Europe, North America with a few Asian markets (see Chollete, Peña and 

Lu, 2011; Bhatti and Nguyen, 2012; Reboredo, 2013). Moreover, the dataset employed have 

mostly been national or aggregate stock market indices rather than specific sectors of the 

financial market. Studies on that focus on the linkages across the banking sectors of Asia, which 

is of prime importance to the health of the financial system, are lacking. It is also rare to find 

studies that combine different measures of dependence. Thus, this paper sheds some light on 

these aspects. 

Examining the dependence between markets calls for proper statistical models as applying 

models with a bad fit can cause suboptimal portfolios and imprecise calculation of risk 

exposures. The most familiar measure of dependence in finance is correlations. Researchers in 

the past have resorted to the Pearson correlation coefficient as a means of measuring dependence 

between random variables, owing to its tractability. This traditional approach shows the linear 
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relation between two sets of data and it is computed as the covariance divided by the product of 

standard deviations. As to the application of the Pearson correlation to financial markets, a 

number of arguments have been proffered against it. For instance, it is affected when a 

monotonic transformation is applied to it. In other words, correlation between two return series 

may change if the returns are squared.  Another weakness of the Pearson correlation is that the 

weight given to both positive and negative returns are same. In addition, large and small 

outcomes are not distinguished in terms of weight. Moreover, it tends to underestimate the risk 

from joint extreme events (Poon, Rockinger, & Tawn, 2004; and Tastan, 2006).   

To avoid these drawbacks, some previous studies (Ang and Chen, 2002; Tastan, 2006; and 

Dungey and Martin, 2007), have relied on Multivariate-GARCH models with as an alternative to 

model the dependence between returns. Other studies (Ang and Bekaert, 2002; and Ang and 

Chen, 2002) consider Hamilton’s regime-switching models as an alternative approach to model 

the dependence structure of returns. However, one major weakness from these previous works is 

the assumption that return innovations are characterized by a symmetric multivariate normal or 

Student-t distribution (Patton, 2006b; Garcia and Tsafack, 2011; and Wang, Wu and Lai, 2013).   

Even though Multivariate GARCH models, such as the example in Longin and Solnik (1995) 

overcomes the drawbacks of rolling correlation, it is subject to dimensionality problems when 

large datasets are used (Solnik and Roulet, 2000; Christoffersen, Errunza, Jacobs, & Langlois, 

2011). Due to this drawback, some studies on cross-country correlation (King, Sentana, and 

Wadhwani, 1994; Brooks and Del Negro, 2003; Forbes and Rigobon, 2002; Carrieri, Errunza, 

and Hogan, 2007; Goetzmann, Li, and Rouwenhorst, 2005; Baele and Inghelbrecht, 2009) have 

mostly relied on factor models, which also have the potential of bias inference (Christoffersen, 

Errunza, Jacobs, & Langlois, 2011). 

Thus, this paper examines the dependence structure among banking sector stocks in 12 Asian 

economies and thereby contribute to our understanding of the cross-country dependence in a 

number of ways. First, the paper implements the static and dynamic Gaussian copula model and 

further estimates time-varying non-linear dependence between the banking sectors of 12 Asian 

markets. Financial returns usually exhibit fat-tails; thus, it is not enough to capture the absolute 

dependence but also to focus on the dependence between tail events. The paper employs both 

static and time-varying copula models – time-varying Gaussian, static and time-varying 
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symmetric Joe-Clayton copula – to capture the nonlinear tail dependence structure across the 

banking sectors and hence foretell whether there is potential for systemic risk within the region. 

Copula models provide a way of capturing the dependence structure of a joint distribution, while 

separating the behaviour of the marginal distributions. It allows much flexibility in forming a 

joint distribution, which is made up of different types of marginal distributions that are able to 

capture nonlinear dependence between variables (Heinen & Valdesogo, 2012). It is a ―pure‖ 

measure of dependence and not affected by strictly increasing transformations of data; that is, it 

is ―scale invariant‖ (Nelsen 2006). In addition, it is able to capture serial dependence and 

asymmetric dependence, which is a common stylized fact of financial returns. By combining 

these econometric methods, we are able to measure the comovement between the banking sectors 

at various sides of the joint distributions. In analysing the dependence structure across the Asian 

banking sector, this paper aims to contribute to policy makers’ attempts in attaining and 

sustaining a stable financial system. 

The second contribution of the paper lies in its use of industry level data rather than aggregate 

equity returns. We focus on daily closing Banking sector indices for 12 Asian economies, both 

Developed and emerging markets over the period January 4, 2000 to December 31, 2012. 

Analysing comovement at industry level broadens our knowledge on the pattern of correlation 

across the Asian countries. This part of the of the chapter contributes to the strand of literature 

that examine whether differences in equity return co-movements are linked to differences in 

industrial structure; Griffin and Karolyi (1998), Heston and Rouwenhorst (1994) and Roll 

(1992).  

The results of the marginal models show strong volatility persistence in all the twelve Markets. 

There is also high persistence in the absolute dependence of among market pairs.The evidence 

from the empirical analysis suggests that the cross-sectional average copula correlations 

generally remain at moderate levels with slight upward trend for all twelve markets. Dependence 

among the banking sectors of the advanced Asian markets economies are generally higher 

compared with the Emerging markets economies. In addition, the dependence between the Asian 

banking sector pairs tends to rise during financial turmoil and remains low during tranquil 

periods. This finding indicates the possibility of contagious shocks spreading easily across the 

regional banking sector.    
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The results, based on quantile dependence, show more dependence in the lower tail observations 

than in the upper tail observations for most of the market pairs. Results from dynamic SJC 

copula do not indicate upward trend in tail risk for most of the pairs. However, we find that tail 

dependence is asymmetric across the region, which suggest that investors react more towards bad 

news than good news in other markets.  

There is also evidence that the market pairs tend to have significant lower tail dependence during 

extreme negative events compared with upper tail dependence; that is, asymmetric tail 

dependence. The dynamic path for the tail dependence shows sharp spikes in response to 

financial crises, suggesting that there could be joint crashes in the regional banking system 

during extreme negative events. Considering the fact that most of the past major financial crises 

– subprime crisis, and Eurozone Debt Crisis – did not begin from Asia, the broader implication 

of this finding is that the banking sectors across the region can face major disruptions jointly 

crash in response to external shocks.  This makes it necessary for adoption of policies that 

maximize resilience to shocks. 

The paper proceeds as follows. Section 2 presents a brief discussion of copula theory. Section 3 

highlights the empirical application of copula models while section 4 presents the data and 

summary statistics of the markets under this study. Section 5 presents the empirical results on 

absolute and tail dependence across the markets. Section 6 concludes.    

2. Copula Dependence Theory  

Traditional measures of correlation as a measure of dependence are only appropriate when we 

assume an elliptical distribution – multivariate Gaussian or Student-t. In other words, correlation 

is reliable only when there is a linear relation between the returns. However, when nonlinear 

relationships exist between the returns, correlation could be misrepresentative (Embrechts et al, 

2001; Heinen & Valdesogo, 2012), thus calling for alternative statistical tools. Since financial 

returns usually exhibit fat-tails, this study employs Copula models, which are known to provide a 

way of capturing the dependence between random variables in a more flexible way. Copula also 

provides a flexible way of capturing dependence at the tails of the joint distribution. 
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2.1. Sklar’s Theorem 

Sklar’s theorem (Sklar, 1959) forms the basis for copula theory. Sklar (1959) showed that a joint 

distribution with n-dimension can be decomposed into its n marginal distributions and an n-

dimensional copula, which fully captures the dependence between the variables. As a result, one 

can apply different models for the marginal distributions and later construct a valid multivariate 

distribution that is consistent with the marginals, thus circumventing the common assumption of 

normality which is mostly the case in most studies.   

Define a continuous n-variate cumulative distribution function as          , whose univariate 

margins are        , i=1, ...,n, where                     . Given these conditions, Sklar 

(1959) showed that there exist a function C, known as a copula, mapping [0,1]
n
 into [0,1] such 

that             [               ].      (15) 

By differentiating the above equation once with respect to all arguments, we obtain the joint 

density function, which is given by the product of the copula density and the n marginal densities 

                      ∏         [               ]                  
                                    

Further, if we define            [   ], i=1,…,n as the probability integral transformations 

(PIT) variables of the marginal models, then the unconditional copula will be defined as the 

multivariate distribution with uniform [0,1] margins 

                    (                   )              (17) 

Thus, given n random variables, whose marginal distributions are uniform on the interval from 

zero to one, copulas allow an easy mapping of these univariate marginal distributions to their n-

variate distribution, supported on [0,1]
n
. This approach holds irrespective of the degree of 

dependence among the variables (Heinen & Valdesogo, 2012). A detailed review of 

unconditional copulas can be found in Joe (1997), Cherubini, Luciano, & Vecchiato (2004) and 

Nelsen (2006).  
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2.2. Conditional Copula 

The conditional form of Sklar’s theorem is due to Patton (2006b) who formulates the parameters 

of the marginal distribution as a time-varying process. Since the marginal distribution for returns 

of financial series exhibit time-varying means and volatility, the conditional copula, serves as a 

useful tool in capturing the dependence in that regard. Define the conditional copula as                        [                             ]     (18) 

where     denotes all previous multivariate process up to time    . Denoting the probability 

integral transformations (PIT) variables of the marginal models, as            [   ], i=1,…,n 

, the conditional copula can be further defined as n-variate distribution                      (                                 )                (19) 

An important step required in applying Sklar’s theorem to conditional distribution is to ensure 

that the conditioning information be same for all marginal distributions and the copula.  The 

common practice is to assume that the marginal models depend only on their respective past 

information whereas the copula can be conditioned on past information of all series.   

2.3. Parameter Estimation 

Estimation of the copula parameters can be carried out within two alternative frameworks.  The 

log-likelihood function, obtained by differentiating and taking log of Eq.(18), is given by 

           ∑                    
                                             

with    denoting the parameters of the marginals and     the copula parameter. Following 

Eq.(16), the log-likelihood function can be divided into two parts:    as the as the part 

containing the marginal densities and    as the part containing the dependence structure. Hence,                                  ,             (21)  

         ∑∑     (               )  
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            ∑    (  (               )     (               )        )  
                            

It is assumed in Eq. (22) that each variable   depends only on its own past information                       . It is important to note that the log-likelihood for the marginal models,   , is 

defined as function of the parameter vector                  which contains the estimated 

parameters of each one of the n marginal densities   . On the other hand, the log-likelihood for 

the copula defined directly as a function of the copula parameter   , and depends indirectly on 

the marginal density parameters, via the distribution function     (Heinen & Valdesogo, 2012). 

2.2.3.1 Exact Maximum Likelihood 

Drawing on exact maximum likelihood procedure, the parameters of the copulas can be easily 

estimated. This procedure involves maximizing the joint likelihood with respect to all 

parameters. Hence, the maximum likelihood estimator is given as   ̂     ̂                                                   (24) 

All parameters are collected into a vector  ̂     ̂     ̂    . Under regularity conditions for 

maximum likelihood, we have  √   ̂        (         )                                               (25) 

with       as the Fisher transformation matrix and    as the true value of the parameter. 

Computational difficulties arises whenever the number of parameters is very large, thus 

rendering the exact maximum likelihood inappropriate for large samples (Heinen & Valdesogo, 

2012). 

2.2.3.2 Inference for the Margins (IFM) 

An alternative approach to the exact maximum likelihood is the inference for the margins (IFM) 

proposed by Joe and Xu (1996). This is a two-stage estimation procedure that is appropriate 

when the parameters to be estimated are large.  

The first stage consists of estimating the n separate parameters of the marginal distributions from 

univariate time series, under the assumption that the marginal models are independent of each 

other. Hence,  
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 ̂              ∑     (               )  
                                             

where parameters from the first stage are collected in a vector  ̂  ( ̂       ̂   )  Given the 

parameter estimated of the marginal models, the copula parameter(s) are then estimated in the 

second stage as   ̂                ̂     .                                                     (25) 

Under the usual regularity conditions, the following holds for the collection of the marginal and 

copula parameters  ̂  ( ̂   ̂ ) √   ̂       (         )                                      (26) 

where the Godambe information matrix is defined as                  with    *         + 
and    [         ], where      (            ̂        ). The IFM method is the common 

approach used in the copula literature, although it leads to loss of efficiency compared to the 

exact maximum likelihood (Heinen & Valdesogo, 2012). 

 

3. Empirical Application of Copulas 

As spelled out in the previous section, copula functions allow the joining of multiple univariate 

distributions into a single multivariate distribution. This section explains the empirical 

application, that is, the fitting of appropriate marginal models and the subsequent application of 

the selected copula models.  

3.1 Models for the Marginal Distributions 

Before fitting a bivariate copula model, we must first specify a model for each of the marginal 

distributions. Given that financial time series exhibit some well documented characteristics such  

as long-memory, fat-tails, and conditional heteroskedasticity, it is appropriate that we capture 

these characteristics with an autoregressive (AR) and a generalized autoregressive conditional 

heteroskedasticity (GARCH) model. In this regard, we fit an AR(k)-GARCH(p,q) model given 

as follows:         ∑                   ,        (20) 
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          ,                      ∑                ∑                                   (21) 

where    is the log-difference of the     banking sector at time  ,     is the real-valued discrete 

time stochastic process for banking sector   at time t, with      as an unobservable random 

variable belonging to an i.i.d. process,      denote the conditional variance of      where  ,    and      are the constant, ARCH parameter and GARCH parameter respectively. The subscripts     

and   are the order of autoregressive terms, ARCH terms and GARCH terms, in that order. In 

estimating the marginal models, we assumed the skewed-t distribution of Hansen (1994) for     .  
The skewed-t distribution comes with two ―shape parameters‖: the degree of freedom parameter,       ], which captures the tail thickness, and an skewness parameter,         , which 

determines the degree of asymmetry in the distribution. When     it becomes a skewed 

Normal distribution, when     we obtain the standard Student’s t distribution, and when     and     it becomes        (Patton, 2012).  

3.2. Copula Models for Bivariate Distributions 

There are numerous bivariate copulas that capture the different patterns of dependence such as 

Gaussian, Student-t, Clayton, Gumbel, rotated Gumbel, Symmetrized Joe-Clayton, and a lot 

more. For the purpose of modelling the joint distribution of Asian banking sector indices, we 

apply three joint copulas: the Gaussian copula, the static Symmetrized Joe-Clayton and time-

varying Joe-Clayton copulas. The subsequent subsections discuss the two copulas used in this 

study. 

In terms of application of copula dependence, earlier studies, including Longin and Solnik 

(2001), Ang and Chen (2002), Hu (2006),  Bhatti and Nguyen (2012) and Basher, Nechi, & Zhu 

(2014), have found asymmetric tail dependence in the markets they studied, which suggest a 

higher joint probability of downturn or upturn across the markets. Patton (2006b) also finds 

asymmetric dependence between the Deutschemark and the yen.  Jondeau et al. (2007), Peng and 

Ng (2012) finds evidence of financial contagion and asymmetric tail dependence coefficient 

between the major international stock markets. Recently, Reboredo (2013) finds evidence of 

symmetric tail dependence between gold and USD exchange rates. Delatte and Lopez (2013) 
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also document that ―the dependence between commodity and stock markets is time-varying, 

symmetrical and occurs most of the time‖.  

3.2.1. Gaussian Copula 

Let    and   as the cumulative density functions of the standardized residuals from the marginal 

models. We define the dependence structure between the margins by the following copula 

function: 

       ∫ ∫    √          
  

      
     {                       }            

                                      ,                       (23) 

where   denotes the univariate cumulative distribution of the standard normal;    denote the 

bivariate cumulative distribution of the standard normal; and   is the correlation coefficient 

between the two random variables.  Earlier works on the time-varying copula models include 

Patton (2004), Patton (2006a), Patton (2006b), and Jondeau and Rockinger (2006). The usual 

specification of time-varying copula models is to come up with a dynamic equation for the 

dependence parameter while maintaining a fixed structure for the functional form of the copula 

(Bhatti & Nguyen, 2012). Here, the difficulty arises when specifying a ―forcing variable‖ for the 

evolution equation of the dependence parameter (Heinen & Valdesogo, 2012). The dynamic 

evolution of the Gaussian copula parameters is modelled in line with the form defined in Patton 

(2006b) as follows: 

    (              ∑[   (    )    (    )]  
   )                              

Where             ⁄  denote the normalized form of the inverse Fisher transformation 

(modified logistic transformation), which forces the    within the interval (-1,1);    and    are 

the probability integral transformations (PIT) of the marginal.  

3.2.2. Symmetrised Joe-Clayton Copula 

The symmetrized Joe-Clayton copula is a modified version of the ―BB7‖ copula of Joe (1997) 

(Patton, 2006b). The model is built as a Laplace transformation of the Joe-Clayton copula which 

is given by  
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                 {   [        ]   [      ]         }     (25) 

where                ,                , and           ,          
The Joe-Clayton copula has the unique feature of capturing both upper tail (  ) and lower tail 

(    tail dependence. The upper tail dependence is expressed as follows 

           [       ]          [       ]                                            

If the above limit exists, then the copula   shows upper tail dependence if         ] and no 

upper tail dependence if      . Likewise, the lower tail dependence is expressed as  

           [       ]          [       ]                                          

If the above limit exists, then the copula   shows lower tail dependence if         ] and no 

lower tail dependence if      .  

Although the Joe-Clayton copula captures  dependence in the upper  and lower tails of the 

distribution, its functional form imposes some degree of asymmetry even when the two tail 

dependence are same.  Due to this drawback, Patton ( 2006b) proposed the ―symmetrized‖ Joe-

Clayton, which is allows the tail dependence measures to ―determine the presence or absence of 

asymmetry‖. The SJC is defined as follows                     [                                       ]  (28) 

The SJC becomes symmetric only when       . However, its  specification does not force 

symmetric dependence on the  variables. 

The time evolution for the upper and lower tail dependence parameters, as defined in Patton 

(2006b), is expressed as  follows 

     (                  ∑             
   )                                
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     (                  ∑             
   )                                  

where             is the logistic transformation which keeps the parameters (       within 

the interval of (0,1). The time varying parameter is the upper and lower tail dependence for the 

joint distribution.  

The evolution of     and     is defined like a restricted ARMA (1,10) process where the 

autoregressive terms ,          and           captures persistence while a forcing variables,       ∑                 , captures variation in the dependence. The forcing variable – defined as 

the absolute difference between    and    over the previous 10 observation – has an inverse 

relationship with the dependence, since it is zero under a perfect positive dependence, equals 1/3 

under independence, and 1/2 under perfect negative dependence Patton (2006b).   

3.2.3. Selecting the Best Model 

It is crucial that we select the most adequate model after estimating various competing copula 

models. Several criteria have been proposed in the literature for this purpose; see for instance, 

Fermanian (2005), Chen and Fan (2005), Genest et al. (2006), Hans (2007), Berg (2009) and 

Bhatti et al. (2006). The most common test used for this purpose is the Akaike Information 

Criterion (AIC), which is defined as:                          ,where k is the number of 

parameters in the model.  

Alternatively, the Bayesian Information Criterion (BIC) can be used to select the optimal copula. 

It is defined as                                 , where n is the number of observation 

and k is as defined earlier. The optimal copula is the one with the lowest AIC or BIC. 

4. Data and Summary Statistics 

The data set employed for this study consist of  daily closing Banking sector indices for 12 Asian 

economies, both Developed and Emerging markets as follows: Hong Kong, Japan, Singapore, 

South Korea, Taiwan, China, Malaysia, India, Philippines, Indonesia, Thailand and Sri Lanka
1
. 

                                                           
1
 Developed markets (DMs) include Hong Kong, Singapore, Japan & South-Korea whereas the Emerging markets 

(EMs) include China, Philippines, Malaysia, India, Taiwan, Indonesia, Thailand, Sri Lanka 
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The data is collected from DataStream and comprise of 3390 daily observations from January 4, 

2000 to December 31, 2012. Figure 1 shows the price level of the Banking Sector Indices over 

the period January 2000 to December 2012, normalized to 100 at the start of the sample period. 

Figure 2 shows the daily log returns on the various indices, which indicates that all the markets 

exhibit large volatilities between 2007 and 2009 during which the global financial crisis hit the 

world’s financial markets. Figure 2 also shows that all the markets exhibit volatility clustering, 

which is confirmed by the ARCH-LM test in table 1. The similarity in the return volatilities 

indicates how the markets respond to a common shock.  

 

Figure 1: The Figure shows the price level of the Banking Sector Indices over the period 

January 2000 to December 2012, normalized to 100 at the start of the sample period.  
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Figure 2: The lower panel shows the daily log returns of the Banking Sector Indices over the 

period January 2000 to December 2012. 

 

Table 1 shows the summary statistics of the banking sector returns for the twelve markets. With 

the exception of Japan, all the markets show positive expected returns with India having the 

highest (0.07%) followed by Sri Lanka (0.06%), and Malaysia (0.03%). In terms of volatility 

(standard deviation), the Korean-banking sector ranks higher with (2.44%) while Malaysian-

banking sector emerges with the lowest risk (1.04%). The markets generally do not follow the 

standard risk-return trade-off where high standard deviation is expected to be accompanied by 

high returns. For instance, Malaysia has the lowest standard deviation although it ranks third in 

terms of returns whereas Korea has the highest standard deviation although it ranks fourth in 

terms of returns.  

The fourth and fifth columns of the table present the skewness and kurtosis coefficients for the 

markets. The skewness and kurtosis have important implications for risk management, asset 

allocation, option pricing and other financial market activities. Investors generally prefer stocks 

with low negative skewness and low kurtosis (Kim and White 2004). The markets with negative 

skewness include Hong Kong, India, Malaysia, Singapore and Thailand; the remaining markets 

have positive skewness. Reasons for high negative skewness include relatively high turnover and 

uncommon high returns over previous periods. The degree of skewness is also related to stock 
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capitalization (Hashmi and Tay, 2012). The kurtosis coefficients provide evidence of fat-tail in 

the return distributions. In view of the presence of kurtosis in stock returns, Bollerslev (1987) 

proposed the t-distribution for the conditional distribution of standard residuals of returns to 

capture the conditional leptokurtosis. The skewed-t of Hansen (1994) also takes care of the 

asymmetry in the conditional distribution. Both the t and skewed-t are later employed in the 

GARCH modelling in the subsequent sections. The Jarque-Bera statistic strongly rejects the null 

hypothesis of normality in the return distributions. Finally, the ARCH-LM test of order 10 

strongly confirms the presence of ARCH-effects in the individual series, which makes it valid to 

employ GARCH models for the conditional variance of the returns.  

Table 2 shows the correlation coefficients for all the market pairs. The correlation ranges as 

follows: -0.0057 – 0.5114 for Pearson correlations, shown in panel A; 0.0007 – 0.3388 for 

Kendall’s tau, as shown in panel B; and 0.001– 0.4737 for spearman’s correlation, shown in 

panel C. On the average, the Pearson correlation is higher compared with the Kendall’s tau and 

Spearman’s measure. This observation could possibly be as a result of outliers in the returns, as 

buttressed by the high kurtosis shown in table 1.  In general, the dependence between the 

banking sectors is not at high levels, as observed by the relatively low correlation coefficients. 

Table 1 Summary statistics of log returns of Banking Sector Indices 

 Mean Std.Dev. Skewness Kurtosis Jarque-Bera ARCH-LM Obs 

(10 Lags) 

China 0.0001 0.0178 0.3243 7.6014 3050.1450*** 16.8604 3390 

Sri Lanka 0.0006 0.0155 1.1326 36.8655 162720.3000*** 15.0053 3390 

Hong Kong 0.0000 0.0154 -0.8687 27.4858 85113.5800*** 79.8774 3390 

Indonesia 0.0001 0.0235 0.2182 9.1720 5407.5600*** 40.2053 3390 

India 0.0007 0.0208 -0.1555 8.0089 3557.5560*** 42.6971 3390 

Japan -0.0003 0.0189 0.0892 7.5209 2891.4150*** 66.2720 3390 

Korea 0.0002 0.0244 0.0727 8.8949 4911.3690*** 53.9004 3390 

Malaysia 0.0003 0.0104 -0.3253 9.4672 5967.5420*** 35.5439 3390 

Philippines 0.0002 0.0129 0.2312 13.3744 15232.6400*** 9.3816 3390 

Singapore 0.0001 0.0149 -0.0144 7.4463 2792.6270*** 62.7885 3390 

Taiwan 0.0001 0.0197 0.0407 5.0605 600.6608*** 31.1757 3390 

Thailand 0.0002 0.0192 -0.3215 11.1037 9334.1660*** 29.9480 3390 

Note: The table reports the summary statistics for the log returns of the 12 Asian Banking indices at daily frequency 

from January 2000 to December 2012. 

 

 Table 2 Correlation coefficients for Banking Sectors 
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 China Sri 

Lanka 

Hong 

Kong 

Indonesia India Japan Korea Malaysia Philippines Singapore Taiwan 

Panel A: Pearson Correlation 

Sri Lanka -0.0057           

Hong 

Kong 

0.2243 0.0452          

Indonesia 0.1172 0.0085 0.2458         

India 0.1588 0.0301 0.3138 0.2029        

Japan 0.1599 0.0220 0.3866 0.2189 0.1886       

Korea 0.1666 0.0319 0.4052 0.1985 0.2389 0.3361      

Malaysia 0.1369 0.0470 0.3018 0.2123 0.2064 0.2329 0.2375     

Philippines 0.1182 0.0523 0.2785 0.2286 0.1673 0.2563 0.2160 0.2632    

Singapore 0.1796 0.0519 0.5114 0.2629 0.3436 0.3265 0.3972 0.3489 0.2364   

Taiwan 0.1337 0.0424 0.3313 0.1901 0.1975 0.2520 0.3321 0.2373 0.2191 0.2973  

Thailand 0.1455 0.0525 0.3615 0.2176 0.2683 0.2444 0.2707 0.2961 0.2263 0.3766 0.2471 

Panel B: Kendall's tau 

Sri Lanka 0.0007           

Hong 

Kong 

0.1399 0.0517          

Indonesia 0.0756 0.0178 0.1884         

India 0.0957 0.0288 0.1919 0.1352        

Japan 0.0866 0.0361 0.2371 0.1414 0.1015       

Korea 0.1127 0.0310 0.2874 0.1557 0.1461 0.2395      

Malaysia 0.0880 0.0266 0.2158 0.1515 0.1239 0.1399 0.1658     

Philippines 0.0694 0.0364 0.1558 0.1504 0.0882 0.1395 0.1342 0.1586    

Singapore 0.1201 0.0317 0.3388 0.1918 0.2072 0.1898 0.2443 0.2128 0.1335   

Taiwan 0.0895 0.0291 0.2243 0.1287 0.1178 0.1619 0.2145 0.1629 0.1417 0.1960  

Thailand 0.0970 0.0449 0.2522 0.1631 0.1701 0.1503 0.1956 0.1726 0.1363 0.2358 0.1743 

Panel C: Spearman rank-order 

Sri Lanka 0.0010           

Hong 

Kong 

0.2057 0.0765          

Indonesia 0.1113 0.0261 0.2704         

India 0.1402 0.0422 0.2789 0.1961        

Japan 0.1275 0.0528 0.3426 0.2061 0.1492       

Korea 0.1658 0.0461 0.4102 0.2249 0.2139 0.3457      

Malaysia 0.1288 0.0403 0.3116 0.2161 0.1820 0.2039 0.2401     

Philippines 0.1012 0.0547 0.2286 0.2205 0.1306 0.2046 0.1982 0.2322    

Singapore 0.1761 0.0470 0.4737 0.2739 0.3002 0.2741 0.3493 0.3045 0.1957   

Taiwan 0.1325 0.0434 0.3230 0.1860 0.1728 0.2350 0.3079 0.2362 0.2084 0.2820  

Thailand 0.1423 0.0666 0.3633 0.2339 0.2485 0.2189 0.2841 0.2487 0.2009 0.3394 0.2526 

Note: The table presents the estimated correlations between the Asian banking sector indices over the period January 

2000 to December 2012. Panel A presents the Pearson Correlation; panel B presents the Kengall’s tau; and panel C presents 

the Spearman rank correlations. 
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The quantile dependence plots, for   [           ], are presented in the left panel of Figure 

3, whereas the difference between the upper and lower parts are shown in the right panel of 

Figure 3
 2

.The red dashes represent the corresponding 90% pointwise iid boostrap confidence 

bands. The confidence bands constricts for values of q close to 0.5 (centre of the distribution) 

and widens when q is close to 0 or 1 (tails of the distribution). Estimating for all the pairs will 

result in 66 individual pairs, which is infeasible to present here due to space availability so, we 

present for just some selected pairs.  

The right panel of Figure 3 indicates that the quantile dependence at the upper tail is relatively 

higher compared with the dependence at the lower tail for a few pairs such as: China-Hong 

Kong, China-Japan, China-Korea, and China-Singapore but the difference between the upper and 

lower quantile dependence probabilities is below 0.1. However, for majority of the pairs, there is 

more dependence in the lower tail observations than in the upper tail observations. For instance, 

the difference between the quantile dependence probabilities is above 0.1 for the following pairs: 

Hong Kong-India, Hong Kong- Indonesia, Hong Kong-Japan, Hong Kong-Korea, Hong Kong-

Singapore, and Hong Kong-Taiwan.   

 

 

 

 

                                                           
2
 Estimation was carried out with the MATLAB Code provided by Patton  
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Figure 3a: The left panel presents the estimated quantile dependence between the 

standardized residuals for the banking sector indices, along with 90% iid bootstrap 

confidence intervals. The right panel shows the difference between the upper and lower tail 

quantile dependence, along with a 90% iid boostrap confidence interval.   



 
 

20 

 

 

 

  

 

 

Figure 3b: The left panel presents the estimated quantile dependence between the 

standardized residuals for the banking sector indices, along with 90% iid bootstrap 

confidence intervals. The right panel shows the difference between the upper and lower 

tail quantile dependence, along with a 90% iid boostrap confidence interval.   
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Figure 3c: The left panel presents the estimated quantile dependence between the 

standardized residuals for the banking sector indices, along with 90% iid bootstrap 

confidence intervals. The right panel shows the difference between the upper and lower tail 

quantile dependence, along with a 90% iid boostrap confidence interval.   
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Figure 3d: The left panel presents the estimated quantile dependence between the 

standardized residuals for the banking sector indices, along with 90% iid bootstrap 

confidence intervals. The right panel shows the difference between the upper and 

lower tail quantile dependence, along with a 90% iid boostrap confidence interval.   
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Figure 3e: The left panel presents the estimated quantile dependence between the 

standardized residuals for the banking sector indices, along with 90% iid bootstrap 

confidence intervals. The right panel shows the difference between the upper and 

lower tail quantile dependence, along with a 90% iid boostrap confidence interval.   
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Figure 3f: The left panel presents the estimated quantile dependence between the 

standardized residuals for the banking sector indices, along with 90% iid bootstrap 

confidence intervals. The right panel shows the difference between the upper and lower tail 

quantile dependence, along with a 90% iid boostrap confidence interval.   
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5. Empirical Analysis and Results 

The econometric analysis in this chapter relies on copula models to explore the bivariate tail 

dependence across the various markets, both in static and time-varying terms. A total of three 

copulas – one eliptical copula namely, time-varying Gaussian copula and two Archimedian 

copulas, symetrised Joe Clayton (SJC) and time-varying symmetrised Joe Clayton copulas.  The 

selected copulas are chosen to represent various portfolio shapes considered in the finance 

literature – thin tails represented by the gaussian copula; heavy tails and asymmetric tails as 

captured by the SJC.  The results are discussed in the ensuing sub-sections.  

5.1. Results for the Marginal Models 

Before proceeding to the DCC estimation, we have to specific appropriate models for the 

conditional means and variances of the respective series. In line with this, each of the banking 

sector return series was fitted with an AR-model for the mean equation. The residuals from this 

model have an expected return of zero, and free of autocorrelation, which is required for the 

further estimations.  We assume that the residuals are free of common factors but rather contain 

only the bank specific factors and as a result, we can confidently associate changes in the 

conditional correlation with changes in the cross-country risk of the banking sector (Schröder & 

Schüler, 2003). Next, we determine the optimal lag length for the univariate GARCH-models, 

and fit a GARCH (1,1) model with a skewed-t distribution (Hansen (1994) distribution to the 

standard errors, which takes care of the presence of skewness in the series. Thus, for each 

marginal model we obtain seven parameters: two parameters (     for the conditional mean 

equation, three parameters (         for the conditional variance equation, and two 

distributional parameters,   and   for tail and asymmetry respectively.   

Table 3 shows the estimated parameters for ARMA-GARCH models employed to shape the 

return series. All the series are fitted with an ARMA(1,0)-GARCH(1,1) model. The inclusion of 

the autoregressive terms is to explain the turbulence caused during the early 2000s and subprime 

crisis. According to Bollerslev (1986), the following inequality restrictions must be satisfied to 

ensure that the GARCH (1,1) model is not misspecified: (i)        (ii)      (iii)      (iv)         . In this regard, all the estimated coefficients (see Table 5) satisfy the standard 

conditions. The volatility updating parameter,   , ranges between 0.0584 to 0.3499 whereas the 

autoregressive variance parameter,   , ranges from 0.65 to 0.9416. The parameter estimates 
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indicate that the GARCH model captures the high volatility persistence in the 12 banking 

sectors. The sum of the ARCH and GARCH coefficients,      , indicates that shocks to 

volatility have a persistent effect on the conditional variance. In other words, periods of high 

volatility in the prices will last for a long time. The tail parameter, , for the innovations is 

significant for all markets whereas the asymmetry parameter,  , is insignificant for some 

markets.   
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Table 3 Marginal Models 

 China Hong Kong Malaysia Sri Lanka Indonesia India Japan Korea Philippines Singapore Taiwan Thailand 

Panel A: Conditional Mean 

   0.0000 0.0003 0.0005b 0.0001 0.0009 b 0.0011 b 0.0000 0.0005 0.0004 0.0003 0.0002 0.0008 b 

 (0.167) (1.4521) (4.2573) (0.5865) (2.9104) (3.9011) (0.0015) (1.4311) (1.7968) (1.2128) (0.7653) (2.7756)   -0.0100 0.0186 0.0864 b 0.0959 b -0.0007 0.0943 b 0.0815 b 0.0647 b 0.0755 b -0.0092 -0.0592 b 0.0488 b 

 (-1.1062) (1.3809) (4.9666) (5.4939) (-0.0559) (5.2172) (4.5293) (3.8776) (3.9915) (-0.1737) (-3.5879) (2.4525) 

 

Panel B: Conditional Variance 
   0.0000 0.0000 0.0000 0.0000 b 0.0000 b 0.0000 b 0.0000 0.0000 0.0000 b 0.0000 0.0000 0.0000 b 

 (0.7221) (0.0551) (1.6026) (4.0669) (2.4764) (2.6506) (.9499) (1.8347) (3.6989) (1.1854) (1.6632) (2.2031)            0.0752 0.0484 b 0.0747 b 0.3499 b 0.1275 b 0.1156 b 0.1033 b 0.0839 b 0.1452 b 0.1467 b 0.0652 b 0.1054 

 (1.7146) (5.0866) (3.4912) (6.2288) (4.6426) (5.8294) (2.2766) (3.6248) (5.7285) (3.2498) (5.2362) (4.8129)        0.9062 a 0.9416 a 0.9153 a 0.6500 a 0.8625 0.8553 a 0.8805 a 0.8991 a 0.7825 a 0.8233 a 0.9294 a 0.8686 a 

 (12.9044) (79.4972) (34.7022) (11.3802) (31.9449) (29.946) (14.0006) (29.4041) (21.5594) (11.5372) (56.4708) (27.9727)             0.9814 0.9900 0.9900 0.9999 0.99000 0.9709 0.9838 0.9830 0.9277 0.9700 0.9946 0.9740 

 

Panel C: Distributional Parameters 
 

   3.7383 a 4.5470 a 4.3295 a 2.8173 a 4.5687 a 6.1805 a 6.6480 a 5.4539 a 4.0340 a 7.3201 a 4.8406 a 5.1776 a 

 (13.3400) (11.7700) (14.9581) (22.8878) (9.263) (8.8426) (6.6982) (8.3019) (10.7935) (5.998) (13.4923) (7.7326)   0.0382 b -0.0092 0.0064 0.0308 0.0222 0.0145 0.0532 0.0532 0.0326 0.0087 0.0331 0.0905 

 (2.037) (-0.4973) (0.3473) (1.8361) (0.8521) (1.8491) (2.2931) (2.9031) (1.1378) (0.1288) (1.3586) (4.346) 

Note: The table presents results for daily returns on the Asian banking sector indices over the period January 2000 to December 2012. The top panel presents the 

parameter estimates for the conditional mean, modelled by an AR(1) model; the second panel presents parameter estimates from GARCH(1,1) models for the 

conditional variance, along with the parameter estimates  skewed-t models for the distribution of the standardized residuals. Figures shown in parenthesis are the 

t-values. 
a 
and

  b 
denote statistical significance at 5%  and 10%  respectively 
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After fitting the required marginal models, we proceed, by using the IFM method, to transform 

the standardized iid residuals from the GARCH filtration to uniform margins. In order to test for 

goodness-of-fit for the marginal models, we carry out the Breusch-Godfrey Serial Correlation 

LM Test at 20 lags for four moments of the PITs (u) of the standardized residuals from the 

marginal models; that is     ̅   for          .  

The p-values from the BGLM test, shown in Table 4, mostly exceed the 5% critical level, which 

indicate the absence of serial correlation in the PITs. The few exceptions are the four moments 

for Sri Lanka, second moment and fourth moment for Malaysia, third moment for Philippines 

and Taiwan. The estimates generally indicate that the marginal models are rightly fitted and 

hence the PITs can be used in estimating the bivariate copula.   

Table 4: Goodness of Fit Tests 

Breusch-Godfrey Serial Correlation LM Test p-value 

 First 

moment 

Second 

moment 

Third 

moment 

Fourth 

moment 

China 0.3214 0.5448 0.2444 0.8486 

Sri Lanka 0.0000 0.0391 0.0000 0.2319 

Hong Kong 0.6678 0.7222 0.7464 0.7784 

Indonesia 0.6805 0.0971 0.5859 0.2003 

India 0.6892 0.8215 0.1104 0.8453 

Japan 0.5209 0.6631 0.5842 0.7462 

Korea 0.2719 0.7978 0.2254 0.7227 

Malaysia 0.5807 0.0237 0.0734 0.0042 

Philippines 0.0561 0.8569 0.0087 0.9404 

Singapore 0.4674 0.6912 0.4681 0.1065 

Taiwan 0.2839 0.2815 0.0468 0.4932 

Thailand 0.3607 0.3277 0.0827 0.6896 

Note: The table presents p-values from test for serial correlation in the standardized residuals of the Asian banking 

sector indices, based on the Breusch-Godfrey Serial Correlation LM at 20 lags. The test is carriedout for four 

moments, which are shown in the columns accordingly.  
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5.2. Average Copula Correlations across all markets  

The copula estimations were carried out on bivariate data sets for the Asian banking sector 

stocks indices. Figure 4 presents the time series equal-weighted averages of the pairwise 

dynamic copula dependence across the 12 Asian countries from January 4, 2000 to December 31, 

2012. The top panel shows results for the absolute dependence, the middle and lower panel 

shows the lower and upper tail dependence, respectively, estimated from the symmetrized Joe 

Clayton copula across all the Asian markets from January 4, 2000 to December 31, 2012. For 

each panel, the average across all 12 markets in shown by the black line whereas the lower tail 

and upper tail dependence are shown by the light grey and deep grey, respectively.   

The average dynamic copula dependence in Figure 4 show considerable variations over time and 

the dependence mostly spike up during periods of financial crisis. The top panel shows that 

average absolute dependence, estimated with the Gaussian copula across all markets, increased 

from approximately 0.134 in the second week of October 2008 to approximately 0.383 in the 

third week of October 2008. Other notable spikes for the average absolute dependence are 0.272 

in September 2001, 0.323 in May 2004, 0.344 in August 2007 and 0.341 in October 2011, all of 

which coincide with major crisis in the global financial markets. The panel also shows that 

developed markets in Asia have been more association than the emerging markets over the years. 

The middle panels show that lower tail correlations are higher than in developed markets than in 

emerging markets over all periods. The evolution path however is similar across all the 

groupings and the peaks are all recorded in May 2004. The effect of the previous crises events –

both early and late 2000s –  are also clearly reflected with significant peaks.  

The lower panel of Figure 4 presents the upper tail SJC correlations.  Regarding the market 

grouping, it can be seen that developed markets are more correlated at the upper tails than 

emerging markets over the years, even though the evolution path is somewhat similar.  

Figure 4 also indicates that dependence at the tail ends is generally lower compared with the 

absolute dependence. For instance, the SJC lower tail peaks at approximately 0.171 whereas the 

upper tail peaks at 0.117, all of which was recorded in May 2004. Over all, figure 4 shows that 
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dependence, from all sides of the joint distribution, has not been trending up across the banking 

sector in Asia. 

 

 

Figure 4: Gaussian and SJC Copula Dependence for All Markets, 2000-2012 
 

5.3. Cross-Sectional Variations in Copula Dependence 

Having explained the average dependence across all markets in the previous sections, we now 

explore the correlation dynamics for each country. The analyses in this section examines whether 

there are differences in the evolution path of copula dependence across the Asian banking 

sectors. For each market, we compute equal-weighted averages of corresponding pairwise 

dependence with the remaining markets and the results are highlighted in Figure 5.  

Figure 5 presents the dynamic copula dependence for the banking sector indices from the 12 

Asian markets for the period January 4, 2000 to December 31, 2012. For each country we report 

the average Gaussian copula dependence with 11 remaining countries (light grey line), lower tail 

dependence of symmetrized Joe-Clayton copula (dark grey line) and upper tail dependence of the 

symmetrized Joe-Clayton copula ( black line).  With the results presented in Table 5, it is evident 
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that an upward trend in dependence is not so conspicuous, although there are sharp rises and falls 

during and after crisis events. For instance, the higher amplitudes observed in the dynamic 

dependence from mid-2007 to last quarter of 2008 was occasioned by the sub-prime crisis and 

global financial crisis. A similar pattern is observed during the latter end of 2011 and early 2012, 

which is attributable to the European Debt crisis.  Most of the crisis periods captured in this 

instance were caused by markets outside the Asian region, specifically USA and European 

markets. Therefore, this increase in dependence among Asian banking sectors in response to 

financial crisis caused outside their geographical region indirectly shows how vulnerable the 

region is to external shocks, which eventually has the potential of causing systemic risk in the 

region.  

The plots contained in Figure 5 also indicate that absolute dependence, estimated with the 

Gaussian copula, is always higher than the tail end dependence, computed from the SJC copula.  

Regarding dependence in joint probability distribution at tails, dependence in the lower tails is 

generally larger than that of the upper tails for all countries, except Sri Lanka where the tail 

dynamics are too low to display. Lower tail is related with losses and is the major concern for 

risk managers.  Thus, it would be desirable for investors to make allowance for the comovement 

at the lower tails of the join distribution when selecting assets for ones portfolio.  
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Figure 5: Average Pairwise Dependence for Asian Banking Sectors, Jan 00-Dec 12 

5.4. Results from Gaussian Copula for Selected Pairs 

From the previous sections, we have uncovered the average pattern of dependence across the all 

markets. Results presented in Figures 4 and 5, although informative, do provide all the needed 

information much about the market-by-market dependence. It could be that although the 

aggregated correlation does not show any upward trend, individual pairs might give a different 

picture. This section  reports the results from the copula estimations for selected pairs of 

countries
3
. It is not feasible to present all the 66 pairs and so we select a few which are worth 

highlighting.  Tables 5-8 presents the estimated paramers, along with AIC, BIC and log-

likelihood for the selected copula models. Panel A of Tables 5-8 presents the paramter estimates 

                                                           
3
 The copula models were estimated using the Copula Toolbox provided by Andrew Patton and the Dynamic Copula 

Toolbox 3.0 provided by Manthos Vogiatzoglou. All estimations were done with Matlab software. 
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for the time-varying  Gaussian joint copulas. The parameters α and β define the evolution of the 

copula dependence for the various pairs. For all the country pairs, the persistence parameter,  β, 

is relatively larger compared to the variation coefficient, α; that is, ranges from 0.904 for HK-

MY (table 6) to 0.997 for CH-JP (table 5). This effect is reflected in the correlation dynamics 

overtime shown in upper panels of Figures 6-22.  

The top panels of Figures 6-22 presents the time path of the dependence structures shown by the 

blue lines along with the constant Gaussian copula dependence, shown by the red horizontal 

lines.  Some comments on a few of the upper panels of Figures 6-22 are in order. The time path 

for CH-HK pair (Fig 6) fluctuates around a constant Gaussian copula of 0.2. It rises fiercely (0.4) 

in November 2001 (shown by the 500 tick on the horizontal axis), reaches its highest peak (0.5) 

in the first quarter of 2008 concurrently with the Global Financial crisis, and have since been 

around 0.3. The CH-JP pair ranges between -0.09 – 0.4 with a constant Gaussian copula 

dependence of 0.13. Noticeably, it peaks at 0.32 around first quarter of 2004, 0.4 around first 

quarter of 2008 and 0.39 around October 2008 coinciding with the Global Financial crisis.  The 

time path for HK-IN Gaussian dependence reaches its peak (0.6) in 2001, which happens to be 

the year of the crash of the dot com bubble. HK-JP pair also fluctuates widely, ranging between 

0.01-0.65 around a constant of 0.35. The HK-SG pair also reaches its highest peak (0.68).  

It can be noticed that the dependence structure varies considerably over time around the constant 

Gaussian copula and most often rising fiercely during turbulent times. On the contrary, the 

banking sectors across the markets seem have a relatively low correlation during tranquil market 

periods.  It is worth noting that, most of these financial turmoils did not originate from Asia but 

from markets in Europe and North America. Therefore, the fact that Asian markets respond 

together to such external events signals the extent of their overall dependence on external shocks.  

5.5. Symmetrised Joe-Clayton for Selected Pairs 

The parameter estimates of  upper tail (  ) and lower tail (  ) dependence based on the  static 

SJC copula are presented  panel B1 of  Tables 5-8.   In general the lower tail dependence tend to 

be statistically significant compared to the upper tail dependence. The upper tail dependence 

spans from 0.0088 (CH-HK) through 0.2325 (HK-SG) whereas the lower tail dependence range 

from 0.0255 (CH-HK) to 0.2278 (KO-JP).  
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The joint copula parameters for some market pairs have higher lower tail dependence compared 

with upper tail dependence. For instance, lower tail dependence for CH-HK (0.0255) is more 

than twice higher than the upper tail; HK-ID has 0.0955 lower tails against 0.0851 upper tails; 

HK-TA shows 0.1269 at lower tail as against 0.1009; KOR-JP 0.2278 lower tail versus 0.1208 

upper tail; SG-JP has lower tail dependence of 0.197, which is over 3 times higher than the upper 

tail dependence. This observation of left tail dependence in extreme events implies that these 

Asian market pairs are more likely to crash together.  Moreover, this finding is in line with 

Longin and Solnik’s (2001) who propose that the relatively higher lower tail correlation implies 

that the increasing dependence across the markets is due to a bear market state rather than 

volatility. 

On the contrary, some of the market pairs display higher upper tail dependence compared to 

lower tail dependence. For instance, HK-JP show    value of 0.1236 compared with     of 

0.1277; HK-KO shows 0.1901 and  0.177 for    and    respectively; HK-SG displays 0.2325 

and 0.2255 for    and    in that order; and HK-MY shows  0.1373    compared with 0.1101 for   . This result implies that there is a higher possibility of joint extreme events in a rising markets 

rather than in a falling market.   

Some market pairs – CH-JP, CH-KO, CH-SG, HK-PH and HK-TH do not have significant right 

tail dependence, implying that they are not susceptible to joint extreme events during bull 

markets. HK-CY pair does not show significant tail dependence.  

Panel B2 of Tables 5-8 presents the parameter estimates for the time-varying SJC. The 

corresponding  dependence time paths are shown in the second and third panels of Figures 6-22.  

We see a different picture for the market pairs, which previously had higher constant left tails as 

opposed to right tails. For instance, the time path for HK-ID looks like a white noise process that 

is generally below 0.3 with somewhat lower the evolution of the right tail dependence. Similarly, 

KO-JP pair has left tail copula evolution akin to a white noise process with 0.5 as the highest 

peak. The HK-TA shows a similar path for both upper and lower tail dependence. SG-JP pair 

shows a similar trend whereas CH-HK lower tail mostly remains low but peaks at 0.7 in 2012. 

Similarly, the pairs that had higher upper tail comparatively show mixed results in the time path 

of the tails. For instance, the HK-MY pair shows relatively higher peak for lower tail compared 
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to the upper tail, which is generally below 0.4. HK-SG comparable time path for both tails 

whereas upper tail for HK-JP remains below 0.4, upper tail for HK-KO ranges  between 0.1 to 

0.4 with peaks during 2006 , 2008, 2012.  

There is consistency for those pairs which had only left tail dependence via the static SJC. The 

CH-JP and CH-KO time paths shows only lower tail dependence without any upper tail 

dependence time path.  The CH-SG pair has lower tail dependence peaking at 0.5 at end of 2005, 

0.45 in the first quarter of 2006 and 2008, 0.65 in early 2012. The upper tail remains very low 

but with high peaks (0.8) in 2005  and early 2012.  HK-PH upper tail remains below 0.1. The 

lower tail is low as well but peaks at 0.2 in first half of 2012. Other pairs such as HK-CY 

continue to shows no lower tail dependence overtime. HK-ID also shows peaks in lower tail in 

2006 (0.5) and early 2012 (0.45) whereas HK-IN peaks around 0.45 in 2010.  

Overall, most of the pairs show higher values for    
 compared with    , which implies that the 

extent of dependence in the lower tail of the distributions is substantially greater than the extent 

of dependence in the positive extremes. These findings show that the Asian regional banking 

system could be prone to systemic risk, which involves extreme negative events.  

The results also show an asymmetric dependence structure across the region;        . This 

coroborates the findings based on the quantile dependence shown in Figure 3. It is also in line 

with previous studies (Erb, Harvey, & Viskanta, 1994; Longin and Solnik, 2001; Ang and 

Bekaert, 2002; Ang and Chen, 2002; Das and Uppal, 2004; and Patton, 2004) which find 

overwhelming evidence of asymmetric dependence in international stock markets. According to 

Hu (2006) this asymmetry arises because investors react more towards bad news than good news 

in other markets. The results from the time-varying SJC to a large extent have shown substantial 

evidence of dependence in both the lower and upper tail distributions of the Asian banking 

sectors which suggests possible similarities in how banking activities are carried out in the 

region.  In particular, the evidence of lower tail dependence should be a concern as it could aid in 

the easy spread of contagious shocks across the regional banking system.  

Using the Akaike Information Criterion (AIC), the optimal copula model was found to be the 

time-varying Gaussian copula for all the estimated pairs.  The next best fitted turns out to be the 
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time-varying SJC copula for most cases, an indication that the time-varying models can better 

capture the dependence structure between the banking sector indices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Estimation of Joint copula Parameters 
 

  CH-HK CH-JP CH-KO CH-SG 

Panel A: Time-varying  Gaussian  Copula 

   0.0079 0.0031 0.0042 0.0051 

  (.005)  (.001)  (.001)  (.001)          0.9915 0.9967 0.9958 0.9949 

  (.006)  (.001)  (.000)  (.000)  

AIC -206.9615 -77.7167 -135.4497 -141.0529 

BIC -194.7043 -65.4595 -123.1925 -128.7957 

         105.481 40.858 69.725 72.526 
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Panel B1: Static SJC 

    0.0088 0.0000 0.0007 2.30E-03 

  (.0000)  (.0000)  (.002)  (.004)  

    0.0255 0.0415 0.064 0.0477 

  (.011)  (.018)  (.02)  (.02)  

AIC -107.6376 -56.9351 -90.4526 -77.4169 

BIC -95.3804 -44.6779 -78.1954 -65.1598 

         55.819 30.468 47.226 40.708 

 

Panel B2: Time-varying  SJC 

   (upper tail) -9.9946 0.3086 -9.9915 -9.9888 

  (5.268)  (.362)  (1.213)  (115.654)  

    0.1457 -1.2034 -3.8514 0.1113 

  (.09)  (.657)  (392.183)  (138.702)  

    10 1.2688 9.9678 9.9925 

  (5.846)  (.406)  (6.231)  (16.874)  

   
 (lower tail) 0.3428 0.7346 -1.2747 0.1224 

  (.165)  (.339)  (1.504)  (.028)  

    -1.7545 -5.7559 -9.9999 -0.5256 

  (.913)  (1.875)  (.012)  (.125)  

    0.9724 0.7274 -0.678 0.9906 

  (.016)  (.076)  (.678)  (.003)  

AIC -125.8151 -59.6811 -88.6853 -94.7901 

BIC -89.0436 -22.9096 -51.9138 -58.0186 

         68.908 35.841 50.343 53.395 

Note: The table presents the estimated parameters of five copulas. Figures in bold are statistically significant at 5% 

level. The asymptotic standard errors are presented in the parentheses.  AIC and BIC are the Akaike and Bayes 

Information Criteria. The value of the copula log-likelihood (LL) at the optimum is also presented.   and   are the 

coefficients of the time varying process for the Gaussian copula;  and    refers to the upper and lower tail 

paramters of the SJC copula.. The parameters    and    correspond to the upper and lowe tail of the time varying 

SJC,    and    correspond to the coefficient for the time varying process of the SJC copula at upper tail whereas     and    apply to the lower tail. CH, China; HK, Hong Kong; JP, Japan; KO, Korea; SG, Singapore.  

 

Table 6: Estimation of Joint copula Parameters 

  HK-JP HK-KO HK-SG HK-MY 

Panel A: Time-varying  Gaussian  Copula 

   0.0144 0.0138 0.0097 0.0355 

  (0.0060)  (0.0050)  (0.009)  (0.0210)          0.9783 0.974 0.9838 0.9037 

  (0.0110)  (0.0080)  (0.0200)  (0.0950)  

AIC -519.391 -702.295 -914.9632 -367.73 

BIC -507.134 -690.038 -902.706 -355.473 

         261.696 353.148 459.482 185.865 

 

Panel B1: Static SJC 
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    0.1236 0.1901 0.2325 0.1373 

  (0.0250)  (0.0070)  (0.0290)  (0.0320)  

    0.1277 0.177 0.225 0.1101 

  (0.0250)  (0.0260)  (0.0300)  (0.0310)  

AIC -392.205 -593.591 -765.4817 -268.863 

BIC -379.948 -581.334 -753.2245 -256.605 

         198.102 298.796 384.741 136.431 

 

Panel B2: Time-varying  SJC 

   (upper tail) 0.1698 0.1607 0.5951 0.295 

  (0.0250)  (0.0280)  (63953.46)  (0.8510)  

    -0.9003 -0.8863 -10 -7.2241 

  (0.0180)  (0.0340)  (32284.21)  (2.8880)  

    0.9662 0.9592 -0.958 0.1402 

  (0.0150)  (0.0140)  (6025.88)  (0.4390)  

   (lower tail) -0.6465 -0.0242 0.9015 1.082 

  (2.1500)  (1.2950)  (98984.44)  (0.6570)  

    -9.9983 -8.7199 -9.9998 -9.9999 

  (8.2110)  (7.4520)  (539867.9)  (3.2860)  

    -0.9747 -0.7507 -0.5456 0.1432 

  (0.0740)  (0.0830)  (82508.97)  (0.2640)  

AIC -438.167 -623.234 -791.2689 -294.74 

BIC -401.396 -586.463 -754.4974 -257.969 

         225.084 317.617 401.634 153.37 

Note: The table presents the estimated parameters of five copulas. Figures in bold are statistically significant at 5% 

level. The asymptotic standard errors are presented in the parentheses.  AIC and BIC are the Akaike and Bayes 

Information Criteria. The value of the copula log-likelihood (LL) at the optimum is also presented.   and   are the 

coefficients of the time varying process for the Gaussian copula;  and    refers to the upper and lower tail 

paramters of the SJC copula.. The parameters    and    correspond to the upper and lowe tail of the time varying 

SJC,    and    correspond to the coefficient for the time varying process of the SJC copula at upper tail whereas     and    apply to the lower tail. HK, Hong Kong; JP, Japan; KO, Korea; SG, Singapore; MY, Malaysia.  

 

Table 6: Estimation of Joint copula Parameters 

  HK-ID HK-TA HK-IN HK-PH 

Panel A: Time-varying  Gaussian  Copula 

   0.0179 0.0145 0.0211 0.0085 

  (0.0070)  (0.0120)  (0.0060)  (0.0040)          0.9772 0.9764 0.9592 0.9879 

  (0.0110)  (0.0270)  (0.0160)  (0.0060)  

AIC -423.909 -467.84 -324.54 -260.624 

BIC -411.652 -455.583 -312.283 -248.367 

         213.955 235.92 164.27 132.312 

 

Panel B1: Static SJC 
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    0.0851 0.1009 0.0744 0.0261 

  (0.0030)  (0.0230)  (0.0220)  (0.0200)  

    0.0955 0.1269 0.0643 0.0751 

  (0.0200)  (0.0240)  (0.0200)  (0.0200)  

AIC -294.015 -382.294 -230.705 -195.116 

BIC -281.758 -370.037 -218.448 -182.859 

         149.007 193.147 117.353 99.558 

 

Panel B2: Time-varying  SJC 

   (upper tail) 0.2193 0.2606 0.1675 0.2909 

  (0.0180)  (0.0750)  (0.0140)  (0.0690)  

    -1.1975 -1.4368 -0.8287 -1.7665 

  (0.0870)  (0.4660)  (0.0630)  (0.3900)  

    0.9621 0.9533 0.9792 0.9466 

  (0.0060)  (0.0230)  (0.0040)  (0.0170)  

   (lower tail) 0.7249 0.2624 0.8189 -1.0329 

  (0.6120)  (1.9080)  (0.7600)  (0.6350)  

    -9.8781 -9.9998 -9.991 -4.7603 

  (7.8840)  (17.6140)  (4.1610)  (2.3250)  

    0.056 -0.4548 0.2703 -0.0285 

  (1.1180)  (1.8490)  (0.1590)  (0.2930)  

AIC -342.542 -417.326 -265.294 -201.882 

BIC -305.77 -380.554 -228.522 -165.11 

         177.271 214.663 138.647 106.941 

Note: The table presents the estimated parameters of five copulas. Figures in bold are statistically significant at 5% 

level. The asymptotic standard errors are presented in the parentheses.  AIC and BIC are the Akaike and Bayes 

Information Criteria. The value of the copula log-likelihood (LL) at the optimum is also presented.   and   are the 

coefficients of the time varying process for the Gaussian copula;  and    refers to the upper and lower tail 

paramters of the SJC copula.. The parameters    and    correspond to the upper and lowe tail of the time varying 

SJC,    and    correspond to the coefficient for the time varying process of the SJC copula at upper tail whereas     and    apply to the lower tail. HK, Hong Kong; ID, Indonesia; TA, Taiwan; IN, India; PH, Philippines.  

 

Table 7: Estimation of Joint copula Parameters 

  HK-TH HK-CY SG-KO SG-JP KO-JP 

Panel A: Time-varying  Gaussian  Copula 

   0.0085 0.003 0.009 0.0204 0.0192 

  (0.004)  (0.0020)  (0.0050)  (0.0120)  (0.0050)          0.9879 0.9898 0.9832 0.9687 0.972 

  (0.006)  (0.0060)  (0.0110)  (0.022)  (0.0090)  

AIC -260.624 -16.3278 -541.17 -388.964 -534.988 

BIC -248.367 -4.0707 -528.912 -376.707 -522.731 

         132.312 10.164 272.585 196.482 269.494 

 

Panel B1: Static SJC 
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    0.0261 0.0001 0.1862 0.0563 0.1208 

  (0.020)  (3385.239)  (0.0230)  (0.0230)  (0.0260)  

    0.0751 0.0002 0.1872 0.197 0.2278 

  (0.020)  (1845.591)  (0.0220)  (0.0210)  (0.0220)  

AIC -195.12 -12.4762 -521.723 -349.715 -475.902 

BIC -182.86 -0.219 -509.466 -337.458 -463.645 

         99.558 8.238 262.862 176.858 239.951 

 

Panel B2: Time-varying  SJC 

      (upper tail) 0.2909 -9.9285 0.2779 1.0953 0.1942 

  (0.069)  (20.405) (0.5800)  (1.2820)  (0.0590)  

    -1.7665 4.45 -3.5179 -9.9997 -0.9921 

  (0.390)  (107.197) (4.967)  (11.8400)  (0.3150)  

    0.9466 9.9938 0.4376 0.338 0.9679 

  (0.017)  (1.818) (0.662)  (0.8390)  (0.0100)  

     (lower tail) -1.0329 -9.3195 -0.2245 -0.0879 1.1164 

  (0.635)  (7.737) (0.5070)  (0.4530)  (0.7400)  

    -4.7603 -2.1819 -1.0897 -4.321 -9.9939 

  (2.325)  (56.266) (0.6870)  (1.5190)  (3.5640)  

    -0.0285 9.4561 0.5487 -0.1347 -0.5014 

  (0.293)  (7.161) (0.3590)  (0.2340)  (0.1690)  

AIC -201.882 -6.2313 -524.023 -368.445 -527.379 

BIC -165.11 30.5402 -487.251 -331.673 -490.608 

         106.941 9.116 268.011 190.222 269.69 

Note: The table presents the estimated parameters of five copulas. Figures in bold are statistically significant at 5% 

level. The asymptotic standard errors are presented in the parentheses.  AIC and BIC are the Akaike and Bayes 

Information Criteria. The value of the copula log-likelihood (LL) at the optimum is also presented.   and   are the 

coefficients of the time varying process for the Gaussian copula;  and    refers to the upper and lower tail 

paramters of the SJC copula.. The parameters    and    correspond to the upper and lowe tail of the time varying 

SJC,    and    correspond to the coefficient for the time varying process of the SJC copula at upper tail whereas     and    apply to the lower tail. HK, Hong Kong; TH, Thailand; CY, Sri Lanka; SG, Singapore; KO, Korea; JP, 

Japan.  

 

5.3. Implications for Portfolio Diversification and Systemic Risk  

The dependence among markets is of crucial importance in quantifying market risk, credit risk as 

well as a critical determinant of systemic risk.  Systemic risk can be considered as the risk of an 

entire financial system or financial markets failing in manner that can potential disrupt the real 

economy. We dwell on the dependence results to address the issue of whether there is systemic 

risk potential among the banking sectors of the twelve markets examined. 
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The analysis from the previous sections illustrates how knitted the banking sectors from the 

twelve economies are. The evidence for the dynamic path of country average copula 

dependences, shown in Figure 4, indicates that cross-country heterogeneity in the copula 

correlations/ tail dependence is not so prevalent. In general, the market pairs have not shown any 

significant upward trends, which suggest that integration has not fully materialized among the 

Asian markets.  This is particularly useful to investors in the sense that gains can be made by 

holding assets from the Asian banking sectors, which could reduce portfolio risk, particularly 

during the benign periods.  

However, the findings suggest that lower tail dependence is more prevalent than upper tail 

dependence. Most importantly, Figure 4 indicates that at the height of the crisis in 2008, 

dependencies across all markets pairs increases more strongly. This finding highlights the 

importance of proper financial management because portfolios that are deemed well diversified 

in calm periods could experience sharp increases in correlation, which will result in unexpected 

loss owing to the combined, highly correlated decline of several stocks during turbulent times. 

Moreover, the large increases in tail correlations owning to crisis to financial crises, which did 

not have Asian markets as its epicentre, suggest that the banking sectors across the region can be 

hard-hit or face simultaneous disruption in response to external contagious shocks.   

6. Conclusion 

This study examines the dependence structure across banking sectors in 12 selected Asian 

economies including Hong Kong, Singapore, Japan, China, Taiwan, India, Indonesia, Korea, 

Malaysia, Philippines, Thailand and Sri Lanka. Three copula models – time varying Gaussian 

Copula, static symmetrized Joe-Clayton and time-varying SJC – are applied to model the entire 

dependence structure, along with the tail dependence. The marginal are fitted with AR-GARCH 

models with a skewed-t distribution for the standardized residuals. A number of findings and 

implications from the above analysis are worth highlighting.  

To begin with, the level of lower tail dependence is fairly higher than upper tail dependence, 

indicating asymmetry in dependence. However, the dynamic paths as defined by the SJC copula 

do not trend upwards. Rather, the tail dependence increases significantly – shows sharp spikes – 

in response to financial crises, suggesting that there could be joint crashes in the regional 
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banking system during extreme negative events. Considering the fact that most of the past major 

financial crises – subprime crisis, and Eurozone Debt Crisis – did not begin from Asia, the 

broader implication of this finding is that the banking sectors across the region can be rendered 

fragile simultaneously or jointly crash in response to external shocks.   

Given the significant absolute and tail dependence across the regional banking sector, policies 

that maximize resilience to shocks while exploring the benefits of greater integration (such as 

risk sharing) are worth pursuing. With the high synchronization of the banking sectors pairs 

during crisis times, shown by the estimated tail dependence, it is likely that shocks could affect 

individuals markets easily or spillover to the region as whole.  In the event that it happens, there 

could be concurrent external financing pressures depending on the type of shocks. This can be 

mitigated by having a regional body that provides safety nets to ensure stability within the 

financial system. An example is the Chiang Mai Initiative Multilateralisation, set up by the 

ASEAN economies (IMF, 2014). 

Furthermore, the results of the marginal models suggest strong volatility persistence in all twelve 

markets. The Gaussian copula parameters also indicate high persistence in the absolute 

dependence of among market pairs. The findings also suggest that time-varying copulas are best 

suited for modelling the dependence structure of the Asian banking sector indices compared with 

static copula. As expected, both the AIC and BIC shows the two best fitting copula models to be 

of time-varying structure. Fitting a time-varying copula provides better insight into the 

dependence structure between the sectors and particularly shows how it varies during tranquil 

and crises periods.  

Generally, the result from this study is sufficient to conclude that absolute and tail dependence is 

not trending up much across the banking sectors; it remains at moderate levels. Although tail 

dependence is generally low, it increases rapidly during financial crises. Dependence has been of 

essential importance to economics particularly following the introduction of the Capital Asset 

Pricing Model (CAPM) and mathematical theory of portfolio allocation. The findings from this 

paper are of importance for international diversification, cross-sector risk management, asset 

pricing, which hinges on understanding dependence in order to minimize the risk of specific 

assets through optimal resource allocation.   
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Figure 6: Evolution of time varying copulas of China and Hong Kong  

 

 

 

Figure 7: Evolution of time varying copulas of China and Japan  
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Figure 8:  Evolution of time varying copulas of China and Korea  

 
 

Figure 9: Evolution of time varying copulas of China and Singapore  
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Figure 10: Evolution of time varying copulas of China and Indonesia 

 

 

Figure 11: Evolution of time varying copulas of Hong Kong and India  
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Figure 12: Evolution of time varying copulas of Hong Kong and Japan  

 

Figure 13:  Evolution of time varying copulas of Hong Kong and Korea  
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Figure 14: Evolution of time varying copulas of Hong Kong and Malaysia  

 

 

Figure 15: Evolution of time varying copulas of Hong Kong and Philippines  
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Figure 16: Evolution of time varying copulas of Hong Kong and Singapore  

 
 

Figure 17: Evolution of time varying copulas of Hong Kong and Taiwan  
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Figure 18: Evolution of time varying copulas of Hong Kong and Thailand 

 
 

Figure 19: Evolution of time varying copulas of Hong Kong and Sri Lanka  
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Figure 20:  Evolution of time varying copulas of Korea and Japan  

 

Figure 21: Evolution of time varying copulas of Singapore and Japan  
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Figure 22: Evolution of time varying copulas of Singapore and Korea  
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