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Abstract 

We study jointly the roles of aggregate and idiosyncratic uncertainty shocks in driving business cycle 

fluctuations. By decomposing total stock return volatility of over 20,000 publicly-listed US firms from 

1962 to 2012, we construct separate indices for aggregate and idiosyncratic uncertainty, and run a 

horse race between them in an otherwise standard macroeconomic VAR. We find that idiosyncratic 

uncertainty shocks account for a large fraction of fluctuations in economic activity at business cycle 

frequencies, whereas the impacts of aggregate uncertainty are negligible. Idiosyncratic uncertainty, 

and not aggregate uncertainty, shocks produce the “sharp drop and rapid rebound” response in 

activity characterized in Bloom (2009). Idiosyncratic uncertainty shocks to large firms have more 

powerful macroeconomic impacts than small firms, suggesting “Granular” origins to the role of 

uncertainty in the macroeconomy. We also find evidence of an economy-wide “buffering effect”, in 

which the effects of large and small firms’ shocks exhibit a negative covariance which dampens down 

the aggregate effects of idiosyncratic uncertainty shocks on economic fluctuations. 
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1. Introduction 
 

In recent times, much attention has been paid to the role played by uncertainty in the real 

economy. Of particular concern has been the sluggish nature of the US economy’s recent 

recovery from the Great Recession, which many commentators have attributed in large part 

to heightened levels of uncertainty, with, for example, the September 2012 Federal Open 

Market Committee (FOMC) meeting noting that “a high level of uncertainty regarding the 

European fiscal and banking crisis and the outlook for US fiscal and regulatory policies was 

weighing on confidence, thereby restraining household and business spending,” and former 

Chairmen Ben Bernanke
1
 indicating that “increases in risk aversion and uncertainty, together 

with tight credit conditions, may have impeded the commercial application of new 

technologies and slowed the pace of business formation.” 

Much of the existing debate has centred on the impacts of aggregate (or macroeconomic) 

uncertainty. However, it has long been known that idiosyncratic uncertainty also exhibits 

significant stochastic time variation (notably from the well-known paper of Campbell, 

Lettau, Malkiel and Xu (2001), henceforth referred to as CLMX (2001)). In this paper, we 

study jointly the roles of aggregate and idiosyncratic uncertainty shocks in driving business 

cycle fluctuations. We construct separate indices for aggregate and idiosyncratic 

uncertainty, and run a horse race between them in an otherwise standard macroeconomic 

VAR model. Our results are quite striking – whereas idiosyncratic uncertainty shocks are 

found to be a key driver of the business cycle, accounting for a large fraction of fluctuations 

in economic activity, the effects of aggregate uncertainty shocks are negligible. 

Following the seminal paper of Bloom (2009), a burgeoning recent literature has emerged 

examining the effects of shocks to uncertainty in driving macroeconomic fluctuations
2
. The 

novel contributions of our paper can be outlined as follows. First, the existing literature has 

yielded somewhat inconclusive findings, with numerous papers finding aggregate 

                                                           

1
 Former Chairman of the Federal Reserve Ben Bernanke’s speech at the Economic Club of New York, 

November 20, 2012. 

2
 Other innovations to the conventional approaches of modelling technology, preferences and policy shocks 

have been proposed recently. In particular, in a ground-breaking paper, Angeletos et al. (2014) explore the role 

of variation in “confidence” about the state of the economy, finding it accounts for about one half of GDP 
uncertainty at business-cycle frequencies. 
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uncertainty to be a dominant force in business cycle fluctuations (Alexopoulos and Cohen 

(2009); Baker et al. (2013); Baker and Bloom (2012); Benigno et al. (2012); Bloom (2009), 

Caggiano et al. (2014); Gilchrist et al. (2013); Mumtaz and Surico (2013); Mumtaz and 

Zanetti (2013);  while others find it has little impact at the macroeconomic level (Bachman 

and Bayer (2013); Bachmann et al. (2013); Bekaert et al. (2013); Born and Pfeifer (2014)) 

and yet others more attribute these effects to idiosyncratic, not aggregate, uncertainty 

(Arellano, Bai and Kehoe (2012); Christiano, Motto and Rostagno (2012)). But the majority 

of these papers study the effects of either aggregate uncertainty or idiosyncratic uncertainty 

in isolation. Our paper is different in that we combine both sources of uncertainty in a single 

model and analyze jointly their effects, in order to shed light on their relative importance in 

explaining macroeconomic fluctuations. Bloom et al. (2012)) appears to be the only other 

paper which studies both shocks in tandem. They quantify the impact of time-varying 

uncertainty on the economy in a dynamic stochastic general equilibrium (DSGE) model with 

heterogeneous firms, but they find that both types of uncertainty have significant impacts 

on economic activity. Their approach differs in three respects, first they estimate their 

uncertainty indices by measuring the dispersion of plant-level shocks to total factor 

productivity (TFP), whereas we use stock return data to measure uncertainty. Second, our 

modelling choices differ, they formulate a DSGE model, whereas we estimate VAR models. 

Third, other than the variance of shocks, aggregate and idiosyncratic uncertainty are 

observationally equivalent in their DSGE model, hence they do not allow for potential 

differences in the propagation mechanisms and dynamic responses of the two types of 

uncertainty shocks. 

Our second contribution is to investigate the transmission mechanisms of uncertainty 

shocks to the real economy. The existing literature identifies three key channels – first, in 

Bloom (2009), greater uncertainty increases the real option value to waiting, hence firms 

scale back their investment and hiring plans. This induces a characteristic “sharp drop and 

rapid rebound” profile of responses. There is a sharp drop in activity, as firms scale back 

their plans rapidly (since expectations change with the onset of the uncertainty shock), 

followed by a rapid rebound, as firms address their pent-up demand for labour and capital, 

after the uncertainty shock subsides. Second, in Christiano, Motto and Rostagno (2012) 

(henceforth referred to as CMR), higher idiosyncratic risk induces tighter credit conditions, 
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hence borrowing firms are constrained to scale back their investment plans. Third, in 

Arellano, Bai and Kehoe (2012) (henceforth referred to as ABK), hiring inputs is risky 

because financial frictions limit firms’ ability to insure against shocks that occur between the 

time of production and the receipt of revenues. Hence, an increase in idiosyncratic 

uncertainty induces firms to reduce their inputs to reduce exposure to such risk. But it is 

plausible that smaller firms would be more significantly affected than larger firms under the 

second and third channels. Large firms tend to be more immune to bank credit rationing, 

given that they are better able to draw on internal equity, due to stronger balance sheets 

and liquidity positions, and also able to access the public equity and bond markets
3
, which 

are closed to small firms
4
. 

On both counts, our evidence favours the “Bloom channel”. We find evidence of the 

characteristic “sharp drop and rapid rebound” profile of responses in activity following 

idiosyncratic uncertainty shocks, but interestingly, different to Bloom, not with aggregate 

uncertainty shocks. The effects of these shocks, in contrast, are shallower and more 

protracted in nature. Furthermore, our evidence contradicts the “CMR” and “ABK” channels, 

in that we find that idiosyncratic uncertainty shocks to large firms have a significantly more 

powerful effect on output fluctuations than small firms. 

We build a proxy for idiosyncratic uncertainty using the methodology developed in CLMX 

(2001). Specifically, we measure idiosyncratic returns as the difference between firm-level 

and market returns, using daily data for over 20,000 publicly-listed US firms from 1962 to 

2012. We measure within-month volatility of returns by computing the variance of daily 

returns, which yields a sample of over three million firm-month observations on volatility 

data. We use these to construct the idiosyncratic uncertainty index by aggregating across all 

firms, on a month-by-month basis, by taking the value-weighted average of individual firm 

volatilities. Similarly, we construct an index of aggregate uncertainty by estimating the 

                                                           

3
 Adrian, Colla and Shin (2012) find evidence of such a substitution effect, in that although bank lending to 

firms declined during the recent financial crisis, bond financing actually increased to make up much of the gap. 

4
 It is also plausible that the “sharp drop and rapid rebound” profile of responses would not be observed under 

this channel. Tighter credit conditions tend to bite only with a lag, since firms generally maintain a 

“precautionary” buffer stock of unused credit, and hence can draw down existing, pre-arranged credit lines. A 

rapid recovery is also unlikely, as tighter credit rationing tends to persist until long after the episode of higher 

cashflow uncertainty resulting from the uncertainty shock has subsided. 
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within-month volatility of aggregate returns. We then append both indices to a 

parsimonious macroeconomic VAR, consisting of real industrial production, inflation, and 

the Federal Funds rate, which is estimated on US monthly data from 1962 to 2012, with 

identification imposed via the Cholesky decomposition. 

Next, we decompose the idiosyncratic uncertainty index into two sub-indices, one for large 

and one for small firms. We rank firms on a year-by-year basis according to annual average 

market capitalization, and include only the largest 100 firms in the large firm index (which 

account for approximately 40-50% of the total market over our sample period), and put all 

remaining firms in the small firms index. We then replicate the original VAR model, but 

substitute the whole economy idiosyncratic uncertainty index with the disaggregated 

counterpart for large firms, and then repeat again using the small firms index
5
. 

Our main results are outlined as follows. We find that idiosyncratic uncertainty shocks 

account for approximately 30% of volatility in industrial production at business cycle 

frequencies, larger than the share attributed to monetary policy shocks. Moreover, breaking 

the sample at 1990 to exclude the possibility of structural breaks, this share increases to 

around 45%. They lead to a significant decline in growth in production, which falls rapidly 

over the course of a year, and then rebounds sharply, almost back to trend within the next 6 

months. In contrast, the share attributed to aggregate uncertainty shocks is little more than 

5%. Whereas idiosyncratic uncertainty is a primitive force driving macroeconomic 

fluctuations, fluctuations in aggregate uncertainty are mostly an endogenous response to 

other disturbances in the macroeconomy. Our results are robust to a variety of checks, 

including different orderings of variables in the VAR, existence of structural breaks, de-

trending of volatility series, problems of over-parameterization, and exclusion of the 

Dotcom bubble and Lehman’s collapse. 

Regarding the sectoral decomposition of idiosyncratic uncertainty shocks, we find that for 

large firms, the proportion of fluctuations in growth accounted for is actually higher at 

                                                           

5
 Although it might seem more straightforward to include both the large and small firms uncertainty indices 

simultaneously in the VAR, rather than studying their effects sequentially as we do, this leads to a serious 

problem of over-parameterization, resulting in significant loss of estimation efficiency (with the IRFs having 

large confidence bands, and the FEVDS displaying implausible results. However, for robustness, we include 

both the large and small firms uncertainty series simultaneously in a more parsimonious version of the VAR, 

with some endogenous variables omitted (see section 6 below). 
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approximately 35% after 2 years, whereas for small firms it is lower at approximately 25% at 

a similar forecast horizon. A puzzling finding is that the sum of the contributions of large and 

small firms exceeds significantly that of idiosyncratic uncertainty in the whole economy -

around 30% of output fluctuations is missing. Our resolution of this puzzle is down to the 

existence of an economy-wide “buffering effect” – volatility fluctuations in the large and 

small firms sector appear to co-move with output in opposite directions over certain stages 

of the business cycle, which dampens down the aggregate effects of idiosyncratic 

uncertainty shocks on growth. 

Our results also relate to the well-known “Granular Hypothesis” of Gabaix (2011), which 

shows that if the size distribution of firms is sufficiently fat-tailed, as is documented 

empirically, then even if shocks are independently distributed, the conditions under which 

the Central Limit Theorem hold are no longer satisfied, so that the well-known 

diversification argument no longer holds, and hence idiosyncratic shocks, in particular 

shocks to large firms, can survive in the aggregate. Hence, our results that idiosyncratic 

uncertainty shocks to large firms have more significant aggregate effects than small firms 

suggest there may be granular origins to the role of uncertainty in business cycle 

fluctuations (although the key difference is that whereas Gabaix focusses on time variation 

in the first moment, we focus on time variation in the second moment). 

The remainder of the paper is structured as follows: section 2 details the measurement of 

the aggregate and idiosyncratic uncertainty indices, and describes the volatility data. Section 

3 outlines the model specification, and discusses data and estimation issues. Section 4 

presents the results, whilst section 5 goes into further detail on the disaggregated effects of 

large and small firms’ uncertainty shocks. Section 6 checks the robustness of our results and 

section 7 concludes. 

2. Measurement of aggregate and idiosyncratic uncertainty 
 

We follow the methodology of CLMX (2001), who decompose the total return volatility of an 

individual firm into its constituent components, which has the appealing property that it 

allows us to extract the idiosyncratic component without the need to estimate covariances 

or betas for individual firms. But whereas they disaggregate into three components: 
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aggregate volatility, industry-specific volatility and firm-specific (idiosyncratic) volatility, we 

adhere to the traditional CAPM paradigm and decompose return volatility into only two 

components – aggregate and idiosyncratic volatility
6
. We start off by presenting the 

traditional CAPM decomposition (which requires estimation of betas), then apply the more 

tractable decomposition of CLMX (2001) (which does not). 

Let 𝑅𝑖𝑡 denote the excess return of firm i in period t. Let 𝑤𝑖𝑡 denote the weight of firm i in 

the total market, where weights are defined according to market capitalization. Then the 

excess market return is simply the value-weighted average of the individual firm excess 

returns: 

 𝑅𝑚𝑡 = ∑ 𝑤𝑖𝑡𝑖 𝑅𝑖𝑡  (1) 

Next, from CAPM we can write: 

 𝑅𝑖𝑡 = 𝛽𝑖𝑅𝑚𝑡 + 𝜖�̃�𝑡 (2) 

where 𝛽𝑖 denotes the beta for firm i with respect to the market return and 𝜖�̃�𝑡 denotes the 

firm-specific residual. As is standard in CAPM, 𝜖�̃�𝑡 is orthogonal to the market return, which 

enables the following variance decomposition: 

 𝑉𝑎𝑟(𝑅𝑖𝑡) = 𝛽𝑖2𝑉𝑎𝑟(𝑅𝑚𝑡) + 𝑉𝑎𝑟(𝜖�̃�𝑡) (3) 

Hence, it is clear to see that the CAPM decomposition requires estimation of betas. Next, we 

turn to the CLMX (2001) decomposition.  Let 𝜖𝑖𝑡 be defined as the difference between the 

firm-level return 𝑅𝑖𝑡 and the market return 𝑅𝑚𝑡, i.e. 

 𝑅𝑖𝑡 = 𝑅𝑚𝑡 + 𝜖𝑖𝑡 (4) 

Substituting in from (2) and re-arranging yields: 

 𝜖𝑖𝑡 = 𝜖�̃�𝑡 + (𝛽𝑖 − 1)𝑅𝑚𝑡 (5) 

Hence, computing the variance decomposition of (4) and taking into account (5), yields: 

                                                           

6
 Relating our approach to theirs, it is easily shown that our measure of idiosyncratic volatility simply bundles 

together their measures of firm-specific and industry-specific volatility. 
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 𝑉𝑎𝑟(𝑅𝑖𝑡) = 𝑉𝑎𝑟(𝑅𝑚𝑡) + 𝑉𝑎𝑟(𝜖𝑖𝑡) + 2𝐶𝑜𝑣(𝑅𝑚𝑡, 𝜖𝑖𝑡) 

= 𝑉𝑎𝑟(𝑅𝑚𝑡) + 𝑉𝑎𝑟(𝜖𝑖𝑡) + 2(𝛽𝑖 − 1) 𝑉𝑎𝑟(𝑅𝑚𝑡) 

(6) 

Note that although the variance of individual firm returns contains covariance terms, if we 

aggregate across all firms by taking the weighted average of individual variances: 

 ∑ 𝑤𝑖𝑡𝑖  𝑉𝑎𝑟(𝑅𝑖𝑡) =  𝑉𝑎𝑟(𝑅𝑚𝑡) + ∑ 𝑤𝑖𝑡𝑖  𝑉𝑎𝑟(𝜖𝑖𝑡) = 𝜎𝑚𝑡2 + 𝜎𝜖𝑡2  (7) 

we find that the individual betas drop out given the standard property of CAPM that ∑ 𝑤𝑖𝑡𝛽𝑖𝑚 = 1𝑖 . Thus, we can use the firm-specific residuals 𝜖𝑖𝑡 to construct an index of 

idiosyncratic volatility, without the need to estimate betas. Finally, we show how our 

measure of idiosyncratic volatility relates to the “true” measure based on CAPM. 

Using (5) and computing the variance decomposition of 𝜖𝑖𝑡, we get: 

 𝑉𝑎𝑟(𝜖𝑖𝑡) = (𝛽𝑖 − 1)2 𝑉𝑎𝑟(𝑅𝑚𝑡) + 𝑉𝑎𝑟(𝜖�̃�𝑡) (8) 

Aggregating (8) across all firms yields: 

 𝜎𝜖𝑡2 = �̃�𝜖𝑡2 + 𝐶𝑆𝑉𝑡(𝛽𝑖𝑚)𝜎𝑚𝑡2  (9) 

where �̃�𝜖𝑡2 = ∑ 𝑤𝑖𝑡𝑉𝑎𝑟(𝜖�̃�𝑡)𝑖  is the average variance of the CAPM firm-specific residual 𝜖�̃�𝑡, 

and 𝐶𝑆𝑉𝑡(𝛽𝑖𝑚) = ∑ 𝑤𝑖𝑡(𝛽𝑖 − 1)2𝑖  is the cross-sectional variance of betas across all firms in 

the market. Equation (9) shows that our measure of idiosyncratic volatility contains two 

components, the first term represents the intrinsic measure of idiosyncratic volatility a la 

CAPM, and the second term depends on the cross-sectional variance of individual firm betas 

and market volatility. However, according to CLMX (2001), plausible estimates of cross-

sectional variance in betas are sufficiently small, such that the second component accounts 

for only a small fraction of time variation in the volatility series. Thus, our measure of 

idiosyncratic volatility can be viewed as a decent proxy for the intrinsic measure derived 

from CAPM. 

Estimation 

We use firm-level return data from the Center for Research in Security Prices (CRSP) US 

Stock Database for all firms trading on the NYSE, Amex and Nasdaq exchanges. Our sample 

period runs from July 1962 (daily data from the Amex exchange only goes back this far) to 
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December 2012 (the latest available data point). The total number of firms increases from 

3256 to 5567 over this period, with the coverage peaking at 9837 in 1999.
7
 

We replicate the methodology (with some modifications) of CLMX (2001) to estimate the 

volatility series 𝜎𝜖𝑡2  and 𝜎𝑚𝑡2  (see their paper for a more detailed description). Excess returns 

are defined as the spread over the 30 day Treasury bill rate (computed at the equivalent 

daily rate). We estimate the within-month volatility of excess market returns by computing: 

 𝑀𝐾𝑇𝑡 = ∑(𝑅𝑚𝑠 − 𝜇𝑚)2𝑠∈𝑡  (10) 

where 𝜇𝑚 is defined as the within-month sample mean of the market return 𝑅𝑚𝑠, and 

estimate the within-month volatility of idiosyncratic residuals by computing: 

 �̂�𝜖𝑖𝑡2 = ∑ 𝜖𝑖𝑠2𝑠∈𝑡  (11) 

As explained above, we aggregate across all firms in the sample by computing the value-

weighted average of individual firm volatilities: 

 𝐹𝐼𝑅𝑀𝑡 = ∑ 𝑤𝑖𝑡�̂�𝜖𝑖𝑡2𝑖  (12) 

to give us our idiosyncratic volatility index. 

Descriptive analysis 

It is useful to begin with a descriptive analysis of our volatility time series. Figures 1 to 4 plot 

the four monthly volatility series, which have been annualized (by multiplying by 12). The 

top panels plot the raw data, whereas the bottom panels plot a smoothed series (estimated 

as a 12 month backward moving average). To begin with, we update the results on trends in 

volatility in CLMX (2001)
8
. Consistent with their paper, we find evidence of a clear, upward 

trend in idiosyncratic volatility during the 1960-2000 period (this is more evident in the 

smoothed graph, which strips out the high frequency noise and focusses on the slow-

                                                           

7
 A large number of firms de-list following the shakeouts of the 2000 Dotcom bust and 2008 financial crisis. 

8
 Their time series end in 1997 (the latest available data point at their time of writing), where ours continue to 

2012. 
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moving component). However, from around 2000 onwards, this gives way to a downward 

trend
9
. Furthermore, looking at the disaggregated idiosyncratic volatility series (Figures 3  

 

 

FIGURE 1: ANNUALIZED IDIOSYNCRATIC VOLATILITY 

The top panel shows the annualized variance within each month of daily firm-level returns relative to the 

market, calculated using equations (11) and (12), for the period July 1962 to December 2012. The bottom 

panel shows a backwards 12-month moving average of FIRM. The series have been truncated where volatility 

exceeds 0.5. 

 

                                                           

9
 Zhang (2010) also finds evidence of upward trend in idiosyncratic uncertainty from 1980 until 2000, and a 

downward trend after 2000. 
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FIGURE 2: ANNUALIZED AGGREGATE VOLATILITY 

The top panel shows the annualized variance within each month of daily market returns, calculated using 

equation (10), for the period July 1962 to December 2012. The bottom panel shows a backwards 12-month 

moving average of MKT. The series have been truncated where volatility exceeds 0.4. 

and 4), it is clear that the trend component we observe is almost entirely driven by the small 

firms sector, with large firms exhibiting no obvious trend in volatility. In contrast, aggregate 

volatility exhibits no discernible trend over the entire time series. 
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FIGURE 3: ANNUALIZED IDIOSYNCRATIC VOLATILITY (LARGE FIRMS) 

The top panel shows the annualized variance within each month of daily firm-level returns relative to the 

market, calculated using equations (11) and (12), for the period July 1962 to December 2012, for the largest 

100 firms only (according to market capitalization). The bottom panel shows a backwards 12-month moving 

average of the same series. 

 

A casual inspection (in particular of the smoothed graphs) reveals a high degree of 

comovement between aggregate volatility and idiosyncratic volatility. Both series show 

spikes in the mid-1970s (coinciding with the first oil shock), and also the financial crisis of  
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FIGURE 4: ANNUALIZED IDIOSYNCRATIC VOLATILITY (SMALL FIRMS) 

The top panel shows the annualized variance within each month of daily firm-level returns relative to the 

market, calculated using equations (11) and (12), for the period July 1962 to December 2012, excluding the 

largest 100 firms (according to market capitalization). The bottom panel shows a backwards 12-month moving 

average of the same series. The series have been truncated where volatility exceeds 0.4. 

2008. However, the comovement is less pronounced for some episodes, for example, there 

is a large spike in 1987 for aggregate volatility (due to the stock market crash), but a less 

significant increase for idiosyncratic volatility. Interestingly, the reverse situation occurs 

during the Dotcom Bust of 2000. 
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FIGURE 5: IDIOSYNCRATIC VOLATILITY (DE-TRENDED) 

This shows the annualized variance within each month of daily firm-level returns relative to the market, 

calculated using equations (11) and (12) for the period July 1962 to December 2012, which is then de-trended 

using the Hodrick-Prescott filter (setting the appropriate Ravn-Uhlig value for monthly data of λ = 129,600), 
and smoothed by taking a backwards 12-month moving average. 

 

Moreover, there are some episodes where the series seem to move quite differently. This 

becomes more distinct when we de-trend and smooth the volatility series
10

. For instance, in 

the early 1980s, idiosyncratic volatility increases above trend, but aggregate volatility stays 

muted
11

 (see Figures 5 and 6). We also see the opposite effects occurring around 2011, with 

aggregate volatility ticking up, but idiosyncratic volatility remaining relatively subdued. 

We also observe a very high degree of comovement between the disaggregated volatility 

series (again this is more visible in the de-trended and smoothed graphs, Figures 7 and 8). 

The key difference is that idiosyncratic volatility of small firms is significantly higher than 

that of large firms. 

                                                           

10
 We detrend using the Hodrick-Prescott filter (setting the appropriate Ravn-Uhlig value for monthly data of λ 

= 129,600), and smooth as before by taking a backwards 12 month moving average. 

11
 This episode is particularly unusual as it is one of the few recessionary episodes in which aggregate 

uncertainty does not show a sharp increase. But this might be due to the unusual nature of this recession, in 

that unlike other severe recessions, credit conditions did not tighten significantly (see Bijapur (2010)). Thus, 

small firms, which tend to be more affected by external financing constraints, may have been spared the worst 

effects of the recession, and thus uncertainty was less of a market-wide phenomenon. Indeed, looking at the 

disaggregated series, we find that uncertainty in the large firms sector increases more significantly than the 

small firms sector. 
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FIGURE 6: AGGREGATE VOLATILITY (DE-TRENDED) 

This shows the annualized variance within each month of daily market returns, calculated using equation (10), 

for the period July 1962 to December 2012, which is then de-trended using the Hodrick-Prescott filter (setting 

the appropriate Ravn-Uhlig value for monthly data of λ = 129,600), and smoothed by taking a backwards 12-

month moving average. 

 

 

 
FIGURE 7: IDIOSYNCRATIC VOLATILITY – LARGE FIRMS (DE-TRENDED) 

This shows the annualized variance within each month of daily firm-level returns relative to the market, 

calculated using equations (11) and (12), for the period July 1962 to December 2012, for the largest 100 firms 

only (according to market capitalization), which is then de-trended using the Hodrick-Prescott filter (setting the 

appropriate Ravn-Uhlig value for monthly data of λ = 129,600), and smoothed by taking a backwards 12-month 

moving average. 
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FIGURE 8: IDIOSYNCRATIC VOLATILITY – SMALL FIRMS (DE-TRENDED) 

This shows the annualized variance within each month of daily firm-level returns relative to the market, 

calculated using equations (11) and (12), for the period July 1962 to December 2012, excluding the largest 100 

firms (according to market capitalization), which is then de-trended using the Hodrick-Prescott filter (setting 

the appropriate Ravn-Uhlig value for monthly data of λ = 129,600), and smoothed by taking a backwards 12-

month moving average. 

3. Model specification, data and estimation 
 

We model the macroeconomy using a stylized vector autoregression (VAR) consisting of real 

industrial production, inflation and the policy rate, which we expand to include our 

idiosyncratic and aggregate uncertainty indices. Although admittedly simple, it avoids the 

problem of over-parameterization, and also overcomes the need to make ad hoc identifying 

restrictions which would arise in a more extensive model. Furthermore, given that our main 

objective here is not to undertake a detailed analysis of the transmission mechanisms to an 

exhaustive set of macroeconomic aggregates, but instead to quantify the relative 

contributions of two different sources of uncertainty shocks, we believe our simpler 

approach suffices. 
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We impose identification through the Cholesky decomposition, which boils down to 

specifying the order in which shocks enter the system of equations in the VAR
12

. We specify 

the ordering of endogenous variables in the VAR as: 

 𝑋𝑡 = [𝐼𝑈𝑡, 𝐴𝑈𝑡, 𝑀𝑃𝑡 , 𝜋𝑡 , 𝑦𝑡]′ (13) 

where X denotes our vector of endogenous variables, IU denotes idiosyncratic uncertainty, 

AU denotes aggregate uncertainty, MP denotes the policy rate, π denotes inflation and y 

denotes industrial production. The assumptions underpinning this particular choice of 

ordering are based on Bloom (2009): (i) financial variables should be affected before real 

economy variables due to the efficient nature of financial markets, and (ii) prices tend to 

adjust to the impact of shocks before quantities. To these we add a third assumption: (iii) 

shocks affect idiosyncratic uncertainty first, and then propagate to aggregate uncertainty 

through the general equilibrium effects. We envisage this mechanism arising through the 

Granular Hypothesis of Gabaix (2011), namely shocks to individual, large firms could 

permeate throughout the economy as a whole due to the interconnectedness of firms
13

. We 

check the robustness of our results to a range of different orderings in section 6 below. 

Data and estimation 

Our estimations are based on US monthly data. Variables are specified as follows: real 

industrial production
14

 (seasonally adjusted, annual growth rates), inflation (Consumer Price 

                                                           

12
 The complete structural VAR model can be characterized by three components: (1) the matrix of structural 

parameters (denoted A), (2) the matrices of lag coefficients (denoted Φ), and (3) the variance-covariance 

matrix of the structural innovations (denoted Ω), giving: 

 

 )(,)(  EXLAX ttt  

 

where tX  is the vector of endogenous variables and t  is the vector of structural innovations. The 

exclusion restrictions are applied to matrix A, which through the Cholesky decomposition has lower 

triangular form. 
13

 This choice of ordering is further justified by the results of our Granger causality tests, which indicate 

strongly that idiosyncratic uncertainty leads production, where there is no such unambiguous lead-lag 

relationship between aggregate uncertainty and production. Thus, ordering idiosyncratic uncertainty first 

avoids the possibility that the contribution of these shocks to fluctuations in production are incorrectly 

attributed to aggregate uncertainty shocks. 

14
 given that GDP data is unavailable at a monthly frequency. 
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Index for all urban consumers: all items (seasonally adjusted, annual growth rates), policy 

rate (Federal Funds target rate). All macroeconomic data are taken from the Global Financial 

Data database, and all stock market data from the CRSP database. We estimate the VAR 

over sample period July 1962 – Dec 2012. 

Preliminary inspection of the data reveals spikes in both uncertainty series due to the stock 

market crash of October 1987 and the Dotcom Bust of April 2000. The consensus view in the 

academic and policy literature seems to be that these episodes of turbulence were confined 

to financial markets and did not propagate to the real economy in any significant way. 

Hence, in order to prevent these one-off events from overpowering and distorting the 

estimation results, we exclude these outliers with time dummies. 

We undertake Augmented Dickey Fuller (ADF) tests for unit roots on all variables. Given the 

trade-off between too few lags (giving rise to potential serial correlation and bias of the test 

statistic), and too many lags (decreasing the power of the test), we test using both 1 and 9 

lags on the differences. In both cases, we reject the null of non-stationarity at the 1 per cent 

level for all variables, with the exception of the inflation variable and Federal Funds Rate, 

which are therefore de-trended using the Hodrick-Prescott filter (setting the appropriate 

Ravn-Uhlig value for monthly data of λ = 129,600). ADF tests on the de-trended series 

indicate the previously detected non-stationarity is eliminated. 

A potential complication in the analysis is that our results might reflect longer term 

comovements in the data, as oppose to the cyclical fluctuations which are the focus of our 

interest. Indeed, CLMX (2001) document strong evidence of an upward trend in 

idiosyncratic uncertainty within their sample, hence in order to isolate short run movements 

around these trends, we de-trend both our volatility time series before embarking on the 

VAR analysis. 

We include 25 lags of each variable in the VAR - the Lagrange Multiplier (LM) test for 

optimal lag structure indicates the optimal number of lags is 25, whereas the Akaike 

information criterion (AIC) puts it at 27, but we opt for 25 in order to gain from parsimony. 
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4. Results 
 

Correlations and lead-lag relationships 

In order to gain some preliminary insights into the sources of comovements in the data, it is 

useful to examine the bivariate correlations (at various leads and lags of up to one year) 

between our set of endogenous variables, before characterizing the relationships more 

formally with the VAR analysis. Both uncertainty time series
15

 show strong evidence of serial 

correlation, which is more persistent for idiosyncratic uncertainty. There is also strong 

evidence of comovement between idiosyncratic and aggregate uncertainty, with the 

contemporaneous correlation being the strongest, and each series exhibiting positive and 

statistically significant correlations with the lagged value of the other up to 6 months. 

Although the correlations between lagged values of idiosyncratic uncertainty with 

contemporaneous aggregate uncertainty are slightly higher than the converse, the lead-lag 

relationship between the two uncertainty indices remains ambiguous. 

Table 1 below reports the pairwise correlations of our two uncertainty indices with 

industrial production growth. There is strong evidence that both uncertainty measures lead 

production, with all lagged (and contemporaneous) values exhibiting negative
16

 and highly 

statistically significant correlations with production up to one year. But notably, the 

correlations are stronger for idiosyncratic uncertainty, peaking at -0.39 after 6 months, and 

for aggregate uncertainty peaking at -0.26. For lead values, the evidence is weak - although 

both uncertainty series exhibit negative correlations with production, they are statistically 

significant only up to 3 months, and the magnitudes are considerably smaller. Thus the 

preliminary evidence on lead-lag relationships points to both uncertainty series leading 

production, rather than the converse. 

  

                                                           

15
 We report all correlations using the de-trended uncertainty measures only. 

16
 i.e. uncertainty is higher during recessions and lower during booms. 



20 

 

Lead/lag (months) Idiosyncratic uncertainty Aggregate uncertainty 

+12 -0.28
** 

-0.13
** 

+6 -0.40
** 

-0.26
** 

+3 -0.35
** 

-0.24
** 

0 -0.22
** 

-0.15
** 

-3 -0.12
** 

-0.08
* 

-6 -0.04 -0.03 

-12 0.07 0.04 

TABLE 1: CORRELATIONS WITH REAL INDUSTRIAL PRODUCTION GROWTH 

NOTE: This table reports the lead, lagged and contemporaneous correlation structure of the aggregate and 

idiosyncratic uncertainty series (both de-trended) with real industrial production growth. * and ** indicate 

significance at the 5% and 1% levels respectively. 

Granger causality tests 

Next, we gain further insights by investigating to what extent the different uncertainty 

measures can forecast each other, and also forecast production growth and other 

endogenous variables. We do this by conducting Granger causality tests on each of the VAR 

equations. 

Starting with the full VAR system which includes all five endogenous variables, 

unsurprisingly, we find strong evidence that each uncertainty measure Granger causes the 

other. However, in the production equation, although tests for both inflation and the policy 

rate are statistically significant, neither of the uncertainty measures is. However, although 

these variables are not independently significant in terms of their forecasting power, this 

does not preclude their joint significance. Indeed, the lack of individual significance can be 

explained given that the two uncertainty measures are highly positively correlated. This, 

combined with the problem of our inclusion of numerous lags, means that the Granger 

causality test, which tests whether each of the uncertainty series is independently  

significant in forecasting production, is less likely to yield a positive result. Hence, to get 

round this, we repeat the exercise but include each individual uncertainty series 

sequentially in the VAR system. In both cases, the results are quite different. First, our 

results shed light on the lead-lag relationship between idiosyncratic uncertainty and 

production. We find that idiosyncratic uncertainty Granger causes production with a very 
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high significance level (whereas the tests for inflation and policy rate are no longer 

significant at the 5% level). In contrast, we find that production has very little predictive 

power for idiosyncratic uncertainty. 

Second, we also find aggregate uncertainty has forecasting power for production, but this is 

significantly weaker than with the idiosyncratic uncertainty measure. Furthermore, 

production has strong predictive power for aggregate uncertainty, hence the lead-lag 

relationship is more ambiguous for this uncertainty measure. 

Third, the results also lend support to the view that movements in aggregate uncertainty are 

primarily an endogenous response to macroeconomic fluctuations, with all three macro 

variables having significant forecasting power for our aggregate uncertainty measure. 

However, one cannot say the same for idiosyncratic uncertainty - only inflation has 

significant predictive ability for this variable. But analysis of the reduced form system is 

incapable of disentangling the underlying causal relationships, which requires that we move 

to a more structural model. 

Idiosyncratic uncertainty 

 yt πt MPt IUt 

yt-i - 0.014 0.000 0.234 

πt-i 0.069 - 0.746 0.000 

MPt-i 0.060 0.000 - 0.203 

IUt-i 0.002 0.000 0.063 - 

Aggregate uncertainty 

 yt πt MPt AUt 

yt-i - 0.017 0.000 0.010 

πt-i 0.024 - 0.756 0.005 

MPt-i 0.010 0.000 - 0.030 

AUt-i 0.014 0.000 1.000 - 

TABLE 2: GRANGER CAUSALITY 

NOTE: This table reports the p-values of Granger-causality VAR tests. The null hypothesis is that lags 1 through 

i of the series indicated in the row do not help to forecast the series indicated in the column, conditional on 

the other variables in the VAR. 
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VAR analysis 

In this section, we present further insights into the effects of shocks to our two different 

uncertainty measures on the macroeconomy, by undertaking Cholesky-orthogonalized 

impulse response functions (IRFs) and forecast error variance decompositions (FEVDs) on 

our set of endogenous variables. We present results for the whole economy idiosyncratic 

uncertainty index, and also compare these with the results for the disaggregated measures 

for large and small firms. 

IRFs 

Starting with the IRFs, an unanticipated increase in idiosyncratic uncertainty of one standard 

deviation causes a significant decline in real industrial production (in level terms), which falls 

by approximately ¾ of a percentage point below trend 18 months after impact. Growth falls 

rapidly over the course of a year, but then subsequently rebounds sharply, almost 2/3 of the 

way back to trend within the next 5 months.  The sharp drop and rapid rebound in growth is 

even more noticeable for idiosyncratic uncertainty shocks originating in the large firms 

sector, with the trough in growth rates slightly deeper, and the pace of recovery faster with 

growth almost back to trend within the following year. Their effects are of a similar order of 

magnitude to monetary policy shocks. 

The effects of an aggregate uncertainty shock are, however, more subdued, and also more 

protracted. Following impact, growth dips gently, bottoming out after a year, and also 

displays a much more gradual pace of recovery, with growth still below trend after another 

year. In level terms, production is only around ¼ of a percentage point below trend after 18 

months. 
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FIGURE 9: IMPULSE RESPONSE FUNCTIONS (EFFECTS OF SHOCKS ON INDUSTRIAL PRODUCTION) 

The figure depicts the impulse responses of real industrial production growth to a one standard deviation 

orthogonalized shock to all variables. 

It is interesting to note that the profile of responses to an idiosyncratic uncertainty shock 

displays the characteristic rapid drop and subsequent rebound in activity characterized in 

Bloom (2009)
17

. His intuition for these effects is that firms respond to a surge in uncertainty 

by delaying major investment decisions and hiring decisions, due to the “real option” value 

of waiting. This happens rapidly because the uncertainty shock affects firms’ expectations 

about future business conditions, hence investment and hiring freezes are implemented 

with immediate effect. Once the uncertainty has dissipated, activity rebounds rapidly as 

firms address their pent-up demand for investment and hiring. However, the key difference 

is that Bloom associates this profile of responses with aggregate uncertainty shocks, 

whereas we find this for idiosyncratic, but not aggregate, uncertainty shocks. 

We also investigate long-run effects, and find that a typical idiosyncratic uncertainty shock 

results in a permanent loss in production of around ¾ of a percentage point after 5 years 

                                                           

17
 Although Bloom uses levels of production (relative to trend), whereas we use growth rates. 
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(regarding the sectoral decomposition, shocks to large firms result in a permanent loss of 

around the same magnitude, but for small firms it is smaller at around ½ a percentage 

point). We interpret this as due to the scaling down of investment plans and postponement 

of projects by firms during the period of heightened uncertainty. This results in an erosion of 

future productive potential. Although Bloom notes that firms attempt to “catch up” on 

foregone investment opportunities during the recovery phase, our findings suggest that 

they never fully do so
18

. In contrast, although monetary policy shocks have an equally severe 

effect on production in the short run, in the long run, the economy almost fully recoups 

these losses such that there is no permanent effect on the level of production, consistent 

with the behaviour of a traditional demand shock. But, as expected, supply shocks (i.e. 

shocks to production) have a significant, persistent effect on output, resulting in a loss of 

around ¾ of a percentage point after 5 years. Hence, the long-run effects of an idiosyncratic 

uncertainty shock are of the same order of magnitude as a supply shock. 

It is also of interest to examine the profile of responses of the uncertainty series themselves. 

We find that both uncertainty shocks decay quite rapidly, and are almost completely 

dissipated after a year
19

, suggesting that periods of heightened uncertainty tend to be quite 

short-lived. It is also noteworthy that idiosyncratic uncertainty shocks lead to a sizeable 

increase in aggregate uncertainty, but again this decays rapidly and then overshoots for 

quite a protracted period (in contrast, aggregate uncertainty shocks have almost no effect 

on idiosyncratic uncertainty). These results suggests that in addition to a direct transmission 

mechanism from idiosyncratic uncertainty to real activity, there may also be an indirect 

channel through which an idiosyncratic uncertainty shock leads to propagation of aggregate 

uncertainty, which in turn drives business cycle fluctuations. 

Finally, we examine the monetary policy response to uncertainty shocks. The IRFs indicate 

there is very little response to either type of uncertainty shock, suggesting that central 

banks tend not to ease policy significantly in the wake of spikes in uncertainty. However, the 

                                                           

18
 Alternatively, it might be that output takes longer to recover than our 5 year horizon (due to “time to build” 

investment lags etc.). However, running the IRFs up to 10 years does not affect the results, there is still a 

permanent loss in production of around ¾ of a percentage point. 

19
 although aggregate uncertainty actually overshoots slightly for the following year before returning to steady 

state. 
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standard error bands are quite wide, hence it is difficult to pin down with confidence the 

true policy response. 

FEVDs 

To gain insights into how significant are uncertainty shocks in driving business cycle 

fluctuations, relative to the standard macroeconomic shocks modelled here, we conduct 

FEVDs, running out to a five year horizon (in order to match average business cycle 

frequencies). We find that idiosyncratic uncertainty shocks account for a large fraction of 

output fluctuations over most of the forecast range, dominating all other shocks with the 

exception of supply shocks. In contrast, the fraction attributed to aggregate uncertainty 

shocks is negligible throughout. 

In the short-term (less than 6 months after impact), the contribution of idiosyncratic 

uncertainty is relatively small, with supply shocks dominating and accounting for over 80% 

of fluctuations in production. However, the effects of idiosyncratic uncertainty shocks 

propagate rapidly, peaking at more than 30% after 2 years, and stay around this level for the 

duration. The proportion attributed to aggregate uncertainty shocks starts off small, and 

stays low at around 5% throughout. Looking at the sectoral decomposition of idiosyncratic 

uncertainty shocks, we find that for large firms, the proportion of fluctuations in production 

accounted for is actually higher at around 35% after 2 years, whereas for small firms is lower 

at around 25% at a similar forecast horizon. 

Interestingly, the contribution of monetary policy shocks is significantly lower than 

idiosyncratic uncertainty shocks, at less than 20% after 2 years, albeit increasing slightly to 

25%
20

 by the end of the 5 year forecast horizon. Inflation shocks, however, have a negligible 

impact throughout. 

                                                           

20
 consistent with several estimates reported in the existing literature. 
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FIGURE 10: FORECAST ERROR VARIANCE DECOMPOSITION 

The figure depicts the forecast error variance decomposition of real industrial production growth from one 

standard deviation orthogonalized shocks to idiosyncratic and aggregate uncertainty. 

It is also useful to analyze the factors driving movements in the uncertainty measures 

themselves. Regarding idiosyncratic uncertainty, this is mainly self-driven by idiosyncratic 

uncertainty shocks, although monetary policy also plays a significant role. This suggests that 

idiosyncratic uncertainty is a primitive force driving fluctuations, as opposed to an 

endogenous response reflecting other macroeconomic factors. In contrast, aggregate 

uncertainty is driven significantly by all our candidate shocks (with the exception of 

inflation), with idiosyncratic uncertainty shocks having the largest effect. Thus, it appears 

that fluctuations in aggregate uncertainty are mostly an endogenous response to other 

disturbances in the macroeconomy. 

Shocks Industrial 

production 

Inflation Policy rate 

Idiosyncratic 31 19 1 

Aggregate 5 2 2 

TABLE 3: FORECAST ERROR VARIANCE DECOMPOSITIONS 

NOTE: This table reports the percentage contributions of one standard deviation orthogonalized shocks to 

idiosyncratic and aggregate uncertainty to other endogenous variables, at a 24 month forecast horizon. 
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5. Comparing the effects of large and small firms’ uncertainty 

shocks 
 

A somewhat puzzling finding is that when we aggregate up the individual shares of 

fluctuations in production attributed to large and small firms, the numbers do not seem to 

add up to what we get for the whole economy idiosyncratic uncertainty shocks. Specifically, 

at a 2 year forecast horizon, the share of output fluctuations attributed to uncertainty 

shocks for large firms is around 35%, whereas for small firms it is around 25%. But for the 

aggregated equivalent of the idiosyncratic uncertainty series, the figure is around 30%. 

Hence, around 30% of output fluctuations seems to be missing. 

 
FIGURE 11: COMPARING LARGE AND SMALL FIRMS – FEVDS 

The figure depicts the forecast error variance decomposition of real industrial production growth from one 

standard deviation orthogonalized shocks to idiosyncratic uncertainty of large firms and small firms. 

This puzzle might be explained by omitted variable bias – the idiosyncratic uncertainty series 

for large and small firms are highly correlated, hence given that we include the large (small) 

firms index in isolation in the VAR, it is plausible that its contribution to economic 

fluctuations is biased upwards, as it captures the effects of small (large) firms also. This 

would effectively lead to a problem of “double-counting” when summing together the 

individual contributions of large and small firms’ uncertainty shocks. However, this 

explanation is unsatisfactory in that it does not explain why the contribution of large firms’  

shocks (35%) actually exceeds that of the aggregated equivalent (30%). 
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To investigate further, we reformulate the VAR to include both large and small firm 

idiosyncratic uncertainty indices simultaneously, but omit inflation and interest rates in 

order to avoid the problem of over-parameterization from including too many endogenous 

variables. We then replicate this VAR model, but substitute the two disaggregated 

uncertainty series with the single aggregated equivalent, and compare the results. Our 

results are consistent with the previous formulation. From a two year forecast horizon 

onwards, the contribution of large and small firms shocks sums to around 25%, whereas the 

aggregated equivalent only accounts for around 15%
21

. 

Our proposed resolution of this puzzle is based on the pattern of comovements of large and 

small firms’ shocks with production. Although there is a strong positive contemporaneous 

correlation between the innovations of large and small firm uncertainty measures, they 

appear to co-move with production in opposite directions over certain stages of the 

business cycle, with a large (small) firms’ shock having a positive (negative) impact on 

production. Hence, there appears to be an economy-wide “buffering effect” in operation, 

which dampens down the aggregate effects of idiosyncratic uncertainty shocks on economic 

fluctuations. Inspecting the IRFs for the effects of shocks to large and small firms on activity, 

we find supportive evidence of this. Although both sectors experience steep initial drops in 

production, large firms recover more rapidly and more vigorously than small firms, with 

growth turning sharply positive for large firms around 18 months after impact, whereas as 

for small firms it remains negative. 

                                                           

21
 We also check whether this puzzling phenomenon is an artefact of the unique episode in the late 1990s - 

early 2000s which saw a significant increase in idiosyncratic uncertainty due to the incidence of the Dotcom 

bubble and bust. However, re-estimating the VARs but excluding the time period 1998Q4-2001Q4 from the 

sample, we find that our results are robust. 
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FIGURE 12: COMPARING LARGE AND SMALL FIRMS – IRFS 

The figure depicts the impulse responses of real industrial production growth to one standard deviation 

orthogonalized shocks to idiosyncratic uncertainty of large firms and small firms. 

Our intuition for these observed effects is as follows. An idiosyncratic uncertainty shock 

would likely result in increased cash-flow volatility, thus exacerbating financial frictions and 

making it harder for firms to fund investment through bank lending. However, large firms 

would be less constrained by tighter bank credit rationing than small firms, given that they 

are more able to draw on internal equity due to stronger balance sheets and liquidity 

positions, and also able to access external equity and bond markets, which are generally 

closed to small firms. Thus, large firms would have a better opportunity to expand and grab 

market share from their (shrinking) smaller rivals. We formalize this intuition as follows. 

We start with the benchmark case in which we use the aggregated idiosyncratic uncertainty 

series in the VAR. Assuming the VAR is stable, we can re-write it in vector moving-average 

form: 

 𝑋𝑡 = 𝜇 + ∑ 𝜑𝑠𝑢𝑡−𝑠∞
𝑠=0  (14) 

where X is an M-variate stochastic process, µ is a vector of time-invariant means, and u is a 

vector of innovations with 𝑢𝑡~𝑁(0, 𝛴). It is more useful to look at the MA representation 

with orthogonal innovations. Factorization of Σ yields: 
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 𝐹𝐹′ = Σ      and    𝐺ΣG′ = I (15) 

where 𝐺 = 𝐹−1, which allows us to re-write (14) as: 

 𝑋𝑡 = 𝜇 + ∑ 𝜑𝑠𝐹𝑣𝑡−𝑠∞
𝑠=0  (16) 

where 𝑢𝑡 = 𝐹𝑣𝑡 and 𝐸𝑣𝑡𝑣𝑡′ = 𝐼. Denoting 𝜑𝑠∗ = 𝜑𝑠𝐹, the K-step ahead forecast error is: 

 𝑋𝑡 − 𝐸𝑡−𝑘[𝑋𝑡] = ∑ 𝜑𝑠∗𝑣𝑡−𝑠𝐾−1
𝑠=0  (17) 

Given the standard SVAR assumption of mutual orthogonality of v, the variance-covariance 

matrix of the K-step ahead forecast errors is given by ∑ 𝜑𝑠∗𝐾−1𝑠=0 𝜑𝑠∗′. Isolating our specific 

variable of interest, production (denoted y), the k-step ahead forecast error is given by: 

 𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡] = ∑ 𝑎𝑖11𝑘−1
𝑖=0 𝜀1𝑡−𝑖 + ∑ 𝑎𝑖12𝑘−1

𝑖=0 𝜀2𝑡−𝑖 + ⋯ + ∑ 𝑎𝑖1𝑚𝑘−1
𝑖=0 𝜀𝑚𝑡−𝑖 (18) 

where 𝑎𝑖𝑝𝑞
 denotes the p

th
 row and q

th
 column of matrix 𝜑𝑖∗. Hence, the k-step ahead 

forecast error variance for variable y is given by: 

 𝐸(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2 = 𝜎12 ∑(𝑎𝑖11)2𝑘−1
𝑖=0 + 𝜎22 ∑(𝑎𝑖12)2𝑘−1

𝑖=0 + ⋯ + 𝜎𝑚2 ∑(𝑎𝑖1𝑚)2𝑘−1
𝑖=0  (19) 

where the m
th

 variable denotes the IV series. 

Next, we compare with the case in which we replace the aggregated idiosyncratic 

uncertainty series with the disaggregated counterparts for large and small firms, denoted by 

variables m and m+1 respectively. As previously, we assume: 

 𝐸[𝑣𝑡𝑣𝑠′] = 0𝐾      𝑓𝑜𝑟 𝑎𝑙𝑙  𝑠 ≠ 𝑡 (20) 

However, unlike previously, we have: 

 𝐸[𝑣𝑡𝑣𝑡′] ≠ 𝐼𝐾 (21) 

given there exists a non-zero contemporaneous correlation between the two sectoral 

idiosyncratic uncertainty series. Thus, the k-step ahead forecast error variance for variable y 

becomes: 
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 𝐸(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2
= 𝜎12 ∑(𝑎𝑖11)2𝑘−1

𝑖=0 + ⋯ + 𝜎𝑚+12 ∑(𝑎𝑖1𝑚+1)2𝑘−1
𝑖=0+ 2 ∑ 𝑎𝑖1𝑚𝑎𝑖1𝑚+1𝐸(𝜀𝑚𝑡−𝑖𝑘−1

𝑖=0 𝜀𝑚+1𝑡−𝑖) 

(22) 

We assume the sectoral idiosyncratic uncertainty series are covariance stationary, i.e. 

 𝐸(𝜀𝑚𝑡−𝑖𝜀𝑚+1𝑡−𝑖) = 𝜎𝑚,𝑚+1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (23) 

Substituting (23) into (22) yields: 

 𝐸(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2
= 𝜎12 ∑(𝑎𝑖11)2𝑘−1

𝑖=0 + ⋯ + 𝜎𝑚+12 ∑(𝑎𝑖1𝑚+1)2𝑘−1
𝑖=0+ 2𝜎𝑚,𝑚+1 ∑ 𝑎𝑖1𝑚𝑎𝑖1𝑚+1𝑘−1

𝑖=0  

(24) 

Next, let �̃�(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2 denote the mis-specified forecast error variance in which 

mutual orthogonality is assumed between all innovations, hence: 

 �̃�(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2 = �̃�12 ∑(�̃�𝑖11)2𝑘−1
𝑖=0 + ⋯ + �̃�𝑚+12 ∑(�̃�𝑖1𝑚+1)2𝑘−1

𝑖=0  (25) 

where �̃�𝑖𝑝𝑞
 denotes the p

th
 row and q

th
 column of matrix �̃�𝑖∗, and �̃�𝑖∗ is the equivalent of 𝜑𝑖∗ in the previous case above. 

Thus, given 𝜎𝑚,𝑚+1 > 0, 

 �̃�(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2 > 𝐸(𝑦𝑡 − 𝐸𝑡−𝑘[𝑦𝑡])2 ⇔ ∑ 𝑎𝑖1𝑚𝑎𝑖1𝑚+1𝑘−1
𝑖=0 < 0 (26) 

which requires 𝑎𝑖1𝑚, 𝑎𝑖1𝑚+1 to have opposite signs over some portion of the forecast 

horizon. 
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6. Robustness checks 
 

We begin by investigating the robustness of our results to different orderings of variables in 

the VAR. We find that the key flavour of our results continues to hold for a variety of 

different orderings. In particular, we check whether our results are sensitive to the decision 

to order idiosyncratic before aggregate uncertainty in the VAR. Ordering the aggregate 

uncertainty variable first, and again repeating the exercise with this variable taking all other 

possible positions in the estimation order, we find that the share of fluctuations in activity 

attributed to aggregate uncertainty shocks remains negligible, and never exceeds the share 

reached in our original formulation.
22

 

Next, we completely reverse the order of variables compared to the original formulation, 

with production entering first and idiosyncratic uncertainty last. Here, we find that both 

types of uncertainty shocks become relatively insignificant in explaining fluctuations in 

activity, however repeating this exercise for large firms only reveals a different result. The 

contribution of idiosyncratic uncertainty shocks remains significant (despite being last in the 

ordering), peaking at around 15%, although only half its magnitude in the original 

formulation. However, aggregate uncertainty remains insignificant, despite being positioned 

before idiosyncratic uncertainty in the estimation order. 

We also investigate whether our results are affected by a problem of over-parameterization, 

due to inclusion of five endogenous variables and a large number of lags. We drop the 

inflation variable from the VAR, as this consistently has the smallest forecasting power for 

fluctuations in activity in our previous estimations, but otherwise we retain the original 

estimation order. We find that the fraction explained by idiosyncratic uncertainty shocks 

peaks at over 20%, whereas aggregate uncertainty never exceeds 2%. Reversing the 

estimation order, the results remain robust with idiosyncratic uncertainty shocks remaining 

significant, and double that of aggregate uncertainty shocks which remains at approximately 

only 5%, despite being ordered before idiosyncratic uncertainty. Again, the effects are 

stronger for large firms, in the reverse ordering the impact of idiosyncratic uncertainty 

shocks peaks at over 20%, approximately 4 times that for aggregate uncertainty. 

                                                           

22
 Indeed, we try 20 different orderings and the contribution of aggregate uncertainty remains negligible for all 

of these, even when it is placed first in the ordering. 
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Robustness to structural breaks 

Another concern is that the possibility of structural breaks within our estimation period 

might affect the results. Our first concern is with the well-documented “Great Moderation”, 

i.e. the  period of significantly diminished output volatility, occurring from the mid-1980s 

(McConnell and Perez-Quiros (2000)) until the outbreak of the financial crisis of 2008, and 

also the incidence of more efficient monetary policy-making and reduced occurrence of 

monetary policy shocks, occurring from around 1990 (Cecchetti et al. (2006)). Our interest 

here is whether the effects of idiosyncratic uncertainty might also suffer from a 

“moderated” impact during this time period. We investigate whether our results are robust 

to these effects by re-estimating the VAR, FEVDs and IRFs but with the sample period 

truncated in 1990. 

Our key results appear to be unaffected by the possibility of structural breaks. On the 

contrary, breaking the sample at 1990
23

, we find the share of fluctuations in activity 

attributed to idiosyncratic uncertainty shocks increases significantly to approximately 45% 

at a two year forecast horizon (compared with the whole sample estimate of around 30%), 

whilst aggregate uncertainty shocks remain insignificant at around 5%. The time profile of 

responses to uncertainty shocks also remains similar – an idiosyncratic uncertainty shock 

leads to a sharp fall and rapid rebound in output, whereas an aggregate uncertainty shock 

induces a more gradual and persistent decline. Also consistent with previous results, 

idiosyncratic uncertainty shocks to large firms account for a larger share of fluctuations in 

activity than to small firms (45% as opposed to 35% for the latter). 

Our second concern is that our results might be distorted by the effects of a unique episode 

in the late 1990s - early 2000s which saw a significant increase in idiosyncratic uncertainty 

due to the incidence of the Dotcom bubble and bust. However, re-estimating the VAR but 

excluding the relevant time period (1998Q4-2001Q4)
24

 from the sample, we find that our 

results continue to hold, and if anything are actually reinforced. Specifically, the share of 

fluctuations in activity attributed to idiosyncratic uncertainty shocks increases significantly 

                                                           

23
 Breaking the sample at different points during the mid-1980s to 1990 yields similar results. 

24
 Bekaert et al. (2012) test for structural breaks for these effects and find the ends of 1997/1998 and 

2001/2002 are consistently identified as break points. 
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to approximately 40% after two years, whereas aggregate uncertainty shocks become even 

more insignificant, with their share falling to 0% (to a first order approximation). 

7. Concluding Remarks 
 

In this paper, we study jointly the roles of aggregate and idiosyncratic uncertainty shocks in 

driving business cycle fluctuations. By decomposing total stock return uncertainty of over 

20,000 publicly-listed US firms, we construct separate indices for aggregate and 

idiosyncratic uncertainty, and run a horse race between them in an otherwise standard 

macroeconomic VAR. We find that idiosyncratic uncertainty shocks account for 

approximately 30% of volatility in industrial production at business cycle frequencies, larger 

than the share attributed to monetary policy shocks. They generate a significant decline in 

real economic activity, and exhibit the characteristic “sharp drop and rapid rebound” 

response identified in Bloom (2009). In contrast, aggregate uncertainty shocks have a much 

more muted impact, with their contribution to volatility in industrial production little more 

than 5%. Idiosyncratic uncertainty shocks to large firms also have more powerful 

macroeconomic impacts than small firms, suggesting “Granular” origins to the role of 

uncertainty in the macroeconomy. 

We also shed light on the transmission mechanisms of uncertainty shocks to the real 

economy. Our findings are supportive of the channel identified in Bloom (2009), in which 

greater uncertainty increases the real option value to waiting, hence firms scale back their 

investment and hiring plans. In contrast, our evidence casts doubt on the mechanism 

formulated in CMR (2012), which predicts that smaller firms would be more significantly 

affected by uncertainty shocks than larger firms. 

One possible direction for future research would be to investigate the propagation 

mechanisms through which such Granular effects might arise. In particular, it would be 

interesting to explore whether there are general equilibrium effects through which an 

idiosyncratic uncertainty shock to a large firm might permeate throughout the economy as a 

whole, and how this depends on the interconnectedness of firms. 

Another promising extension would be to investigate more deeply the causal relationships 

between idiosyncratic uncertainty and key macroeconomic variables. Although our research 
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shows that these shocks generate significant impacts on the real economy, a fully structural 

model is required to tackle the identification problem. 

Finally, it is also of interest to investigate the optimal policy response to idiosyncratic 

uncertainty shocks, and the differences between policy responses to aggregate and 

idiosyncratic uncertainty shocks. But these, and other interesting questions, are left for 

future research. 
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