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1 Introduction

The aim of this work is to review the paper by Hellerstein & Imbens (1982) focusing

on the use of auxiliary data and a formal derivation of the asymptotic properties of the

underlying Weighted Least Squares estimator. Hellerstein & Imbens had introduced very

broadly a GMM model, based on empirical likelihood estimators. The necessity for the spe-

cific framework in this paper arises for the purposes of data set combination. The essential

idea is to include auxiliary information in the form of weights in the regression analysis of

the primary data.

The regression on the primary data is estimated by means of weighted least squares. The

set of weights is based on the auxiliary data and estimated via empirical likelihood method.

These weights are constructed such that certain moments from the weighted primary data

are equal to the corresponding moments derived from the auxiliary data.

The literature for data set combination is huge, however it can be very broadly classified

into two, based on its fundamental objectives. The first class of models including Angrist

and Krueger (1992) and Arellano and Meghir (1992) combine different data sets in order

confront the situation that there is no single data set that contains all variables of interest

(Ridder and Moffitt, 2007).

In the second class of models including Imbens and Lancaster (1994) and this paper,

generally, the purpose of weights is to increase the precision of the estimates and achieve

∗Based on Hellerstein & Imbens (1982).
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asymptotic efficiency gains. For this purpose a small sample with all relevant variables is typ-

ically combined with a larger sample with fewer variables. Another purpose of weights may

be shifting the distribution of the primary sample towards the auxiliary sample distribution.

In this report, we focus on the first theorem which assumes that population from which the

primary sample was drawn and the population from which the moments are constructed are

the same. However if two populations differ and the latter is the population of interest, this

shift would be necessary.

Although we focus in this report on Theorem 1, the paper gives also extensions of the

model by relaxing two assumptions. Theorem 2 gives the large sample results for the case

where population from which the sample was drawn (sampled population) is different from

the population of interest (target population). Theorem 3 allows for sampling error in the

estimation of the moments from the auxiliary data.

The paper also presents an application of the model on Mincer wage equations. Returns

to schooling are estimated using NLS data set, which contains data of IQ and ability test

scores. The NLS is one of the few data sets which contain measures that can account for

the well-known omitted variable bias, however the size of the data set is small. In order to

increase precision, they use the moments from Census data and construct weights for the

weighted wage regressions of the NLS data.

2 Derivation of the estimator

Let’s consider a random sample Z = (Y,X) with an unknown probability density function

f(x, y) and assume that we have knowledge on

h∗ = E[h̄(Y,X)] =

∫

h̄(Y,X)dF(X,Y) (1)

which is the expectation of an R dimensional function of X and Y in the same population.

From this setting, we can write the following moment restriction

E[h(Y,X)] = 0 with h(Y,X) = h̄(Y,X)− h∗ .
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Let’s now consider the following linear regression

wnyn = wnx
′

n
θ + ǫn n = 1, ..., N . (2)

where wn is the weight put on observation n and is a scalar . Using the strict exogeneity

condition of the explanatory variables E[xnǫn] = 0, we can derive the Weighted Least Squares

(WLS) estimator as follows:

E[xnǫn] = 0

E[xn(wnyn − wnx
′

nθ)] = 0

E[wnxnyn] = E[wnxnx
′

n]θ

Hence, under invertibility of E[wnxnx
′

n], taking the sample analogue of each side and solving

for θ we get

θ̂WLS =
[

N
∑

n=1

ŵnxnx
′

n

]

−1[
N
∑

n=1

ŵnxnyn

]

. (3)

It is worth noting that in our linear regression, the sample analogue of E[wnxnyn] =

E[wnxnx
′

n]θ (using the strict exogeneity as above) is nothing else than the first order condi-

tion of

min
θ

N
∑

n=1

(wnyn − wnxn
′θ)2 .

We will come back to this later in section 3.

The weights ŵn in (3) are estimated optimally by the Empirical Likelihood (EL) method

which will basically consist of solving a maximization program of the sum of the log of the

weights, given that those weights add up to one and the weighted moment restrictions are

fulfilled.
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max
wn

N
∑

n=0

lnwn s.t.
N
∑

n=1

wn = 1 and
N
∑

n=1

wnh(yn, xn) = 0 (4)

The Lagragian of problem (4) is given by

L(α, λ, θ) =
N
∑

n=1

lnwn + α(1−
N
∑

n=1

wn)−Nλ
′

N
∑

n=1

wnh(yn, xn) (5)

where λ = (λ1, ..., λR)
′

is a R dimensional Lagrange multiplier vector attached to the moment

restrictions and α is a scalar Lagrange multiplier attached to the constraint on the sum of

the weights.

Taking the first order condition (FOC) with respect to wn gives:

1

wn

− α− λ′Nh(yn, xn) = 0 (6)

Multiplying (6) with wn and applying summation over all terms, we get α = N given that
N
∑

n=1

wnh(yn, xn) = 0. Using this value of α we can rewrite (6) as follows:

1

wn

−N −Nλ′h(yn, xn) = 0

and
1

wn

= N(1 + λ′h(yn, xn)) = 0

Hence we obtain

Nwn =
1

(1 + λ′h(yn, xn))
(7)

In order to obtain ŵn, an estimate of wn the optimal weights, we need an estimate of λ, the

Lagrange multiplier vector. Applying
N
∑

n=1

h(yn, xn) to (7) and using the fact

N
∑

n=1

wnh(yn, xn) = 0 (second constraint in (4)) , we can get :
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0 =
N
∑

n=1

h(yn,xn)

(1+ λ′h(yn,xn))
(8)

Consequently λ̂ solves (8) and using this estimate, the estimated optimal weight in (7) reads

ŵn =
1

N(1 + λ̂′h(yn, xn))
(9)

Therefore in a certain sense, all the previous steps consists of estimating the weights opti-

mally, which requires an estimate of the Lagrange multiplier in order to fully get θ̂WLS could

be summarized by just transforming the constrained problem in (4) into an unconstrained

one using (7). In fact, noting that wn is a decreasing function of λ and so does n , plugging

(7) into the objective function in (4) we can successively write:

max
wn

N
∑

n=1

lnwn = min
λ

N
∑

n=1

ln
1

N(1 + λ′h(yn, xn))
(10)

= min
λ

N
∑

n=1

−ln[N(1 + λ′h(yn, xn))] (11)

Here, neglecting N which is a constant and can always be normalized, the unconstrained

problem in (11) is equivalent to:

min
λ

N
∑

n=1

− ln[1 + λ′h(yn, xn)]. (12)

From (12), it is easy to see that the FOC yields exactly the equation in (8) which gives λ̂

and implicitly ŵn from (7) and θ̂ from (3).

The whole problem of the determination of θ̂ can be summarized by the following system of

equations:
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N
∑

n=1

xnǫn = 0

N
∑

n=1

h(yn, xn)

1 + λ′h(yn, xn)
= 0

(13)

In this system, ǫn = wnyn−wnx
′

nθ =
1

1 + λ′h(yn, xn)
(yn−x

′

nθ) with wn as it is found in (7).

The first equation of the system comes from the strict exogeneity condition and the second

equation comes from (8). The solution to the system (13) is thus {θ̂WLS, λ̂}.

3 The Theorem and the Proof

The theorem we are interested in (Theorem 1 in the paper) states the consistency and the

asymptotic normality of the Weighted Least Squares (WLS) estimator derived above.

3.1 Theorem

Given regularity conditions, the estimator θ̂WLS of θ∗ has the following asymptotic properties:

θ̂WLS

p→ θ∗

and

√
N(θ̂WLS − θ∗)

d→ N
(

0, E[XX
′

]−1
[

E[ǫ2XX
′

]− E[ǫXh′]E[hh
′

]−1E[ǫhX
′

]
]

E[XX
′

]−1
)

In the following sections we will establish the consistency and the asymptotic normality of

θ̂WLS.
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3.2 Proof

3.2.1 Consistency of θ̂WLS

θ̂WLS

p→ θ∗

Here we basically have to check whether the regularity conditions for consistency holds for

the estimator derived. From what we have said on the system (13) in the previous section ,

let’s posit

ρ(y, x, θ, λ) =









x(y − x
′

θ)

1 + λ′h(y, x)

−

h(y, x)

1 + λ′h(y, x)









=

(

ρ1(y, x, θ, λ)

ρ2(y, x, θ, λ)

)

(1)

The ρ’s are simply the underlying (moment) functions from the system (13). Moreover,

setting
N
∑

n=1

ρ(yn, xn, θ, λ) = 0 given (13) generates the FOC of the following program

min
θ,λ

1

N

N
∑

n=1

(

(wnyn − wnxn
′θ)2

−ln[1 + λ′h(yn, xn)]

)

= min
θ,λ

Qn(θ, λ) (2)

where equation (7) in section 2 defines the relationship between wn and λ; and Qn(θ, λ) is

defined as our sample criterion function.

Let’s then define the population criterion function as follows:

Q(θ, λ) = E

[(

(wnyn − wnxn
′θ)2

−ln[1 + λ′h(yn, xn)]

)]

= E[m(yn, xn, θ, λ)] (3)

From the program in (2) the FOC are indeed given by
N
∑

n=1

ρ(yn, xn, θ, λ) = 0.

The high level assumptions for consistency are first the identification of the true parameter
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of interest, θ∗ and second, the uniform weak convergence of the sample criterion function

Qn(θ, λ) to the population criterion function Q(θ, λ).

=⇒ Regularity conditions for well-separatedness and identification of θ∗

Let’s assume that the parameter space Θ is closed and bounded (compact) in R
R. We

have that m(zn, θ, λ) in (3) where zn = (yn, xn), is continuous in θ and λ, ∀ zn such that

λ′h(yn, xn) > −1. Moreover, assuming E sup(θ,λ)∈Θ

∥

∥

∥m(zn, θ, λ)
∥

∥

∥
< ∞, we can claim that

Q(θ, λ) is continuous. Hence two of the primitive conditions for identification are verified.

Concerning the third primitive condition i.e. whether the population criterion function

Q(θ, λ) is uniquely minimized, we have to check using (1), where setting

E

[(

ρ1(y, x, θ, λ)

ρ2(y, x, θ, λ)

)]

= E

















x(y − x
′

θ)

1 + λ′h(y, x)

− h(y, x)

1 + λ′h(y, x)

















=

(

0

0

)

(4)

gives the FOC from minimizing the population criterion function (see (1) and (3)).

From (1), (3) and (4), we can see that E[ρ2(y, x, θ, λ)] = 0 for a unique value which is λ = 0,

given that E[h(y, x)] = 0. Moreover E[∂ρ2(x, y, λ)/∂λ] =
hh′

(1 + λ′h)2
> 0 (always positive

definite) and thus also at λ = 0 , it clearly appears that the population criterion function is

uniquely minimized at λ = 0 (the true value of λ) through ρ2. Besides, given the equation

(7) in section 2, we can also claim that the true values of λ and θ, say, 0andθ∗ uniquely

minimize the population criterion function in (3) through the first order conditions ρ1 (given

the invertibility of E[xx′]−1 assumed earlier) for θ and ρ2 for λ.

Hence we have checked the primitive conditions for identification of (θ∗, λ).

Now we will establish the uniform weak convergence.

=⇒ Regularity conditions for uniform weak convergence of the sample criterion

function

We have some independently and identically distributed data zn = (yn, xn). We have as-
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sumed above that Θ is compact, E sup(θ,λ)∈Θ

∥

∥

∥m(zn, θ, λ)
∥

∥

∥ < ∞ and shown that m(zn, θ, λ)

is continuous. So the stochastic equicontinuity of Qn(θ, λ) holds and E[m(yn, xn, θ, λ) is

continuous in (θ, λ) at the true values of the parameters (θ∗, 0). Hence the uniform weak

convergence of Qn(θ, λ) follows.

With this, we have established the high level assumptions for consistency of (θ, λ). Thus, we

conclude:

λ̂
p→ 0

and θ̂WLS

p→ θ∗

In the following section we will establish the asymptotic normality of θ̂WLS.

3.2.2 Asymptotic normality of θ̂WLS

We have shown previously that θ̂WLS

p→ θ∗. Now let’s take a first order Taylor series

expansion of

ρ(y, x, θ, λ) =









x(y − x
′

θ)

1 + λ′h(y, x)

− h(y, x)

1 + λ′h(y, x)









=

(

ρ1(y, x, θ, λ)

ρ2(y, x, θ, λ)

)

around (θ, λ) = (θ∗, 0) and neglect the remainder

We have,

ρ(y, x, θ, λ) =

(

xǫ

h

)

−
(

xx
′

xǫh
′

0 hh
′

)(

θ − θ∗

λ

)

(5)

Taking summation over both sides of (5) and multiplying by 1/N , given the equation (13)

in section 2, we obtain
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0 =









1

N

N
∑

n=1

xǫ

1

N

N
∑

n=1

h









−









1

N

N
∑

n=1

xx
′ 1

N

N
∑

n=1

xǫh
′

0
1

N

N
∑

n=1

hh
′









(

θ − θ∗

λ

)

(6)

Since the matrix multipliying the parameter vector in (6) is positive definite and thus in-

vertible we get

(

θ − θ∗

λ

)

=









1

N

N
∑

n=1

xx
′ 1

N

N
∑

n=1

xǫh
′

0
1

N

N
∑

n=1

hh
′









−1







1

N

N
∑

n=1

xǫ

1

N

N
∑

n=1

h









(7)

Multiplying both sides of (7) by
√
N reads,

√
N

(

θ − θ∗

λ

)

=









1

N

N
∑

n=1

xx
′ 1

N

N
∑

n=1

xǫh
′

0
1

N

N
∑

n=1

hh
′









−1

√
N









1

N

N
∑

n=1

xǫ

1

N

N
∑

n=1

h









(8)

Using (8), we can apply the weak law of large numbers for each element of the inverted

matrix as follows:

1

N

N
∑

n=1

xx
′ p→ E[xx

′

];
1

N

N
∑

n=1

xǫh
′ p→ E[xǫh

′

] and
1

N

N
∑

n=1

hh
′ p→ E[hh

′

]

Moreover, by applying central limit theorem applied to the second term of the right hand

side of (8), we obtain

√
N









1

N

N
∑

n=1

xǫ

1

N

N
∑

n=1

h









d→ N
(

0, V

(

xǫ

h

))

We have
1

N

N
∑

n=1

xǫ
p→ 0 and

1

N

N
∑

n=1

h
p→ 0 due to, respectively, the strict exogeneity condition

10



on the explanatory variables and the moment on function h(see section 2).

We should note that in this subsection and elsewhere, 0 should be seen as a vector of scalar

zeros since h , x and θ are of dimension R as emphasized before .

Let us then rewrite (8), given the two previous results we got from (7) and using Slutsky

theorem as

√
N

(

θ − θ∗

λ

)

d→
(

E[xx
′

] E[xǫh
′

]

0 E[hh
′

]

)

−1

N
(

0, V

(

xǫ

h

))

(9)

First, taking the inverse of the triangular block matrix, we get

(

E[xx
′

] E[xǫh
′

]

0 E[hh
′

]

)

−1

=

(

E[xx
′

]−1 −E[xx
′

]−1
E[xǫh

′

]E[hh
′

]−1

0 E[hh
′

]−1

)

(10)

Second,

V

(

xǫ

h

)

= E

[(

xǫ

h

)

(

ǫx
′

h
′

)

]

= E

[(

ǫ2xx′ xǫh
′

hǫx
′

hh
′

)]

=

(

E[ǫ2xx
′

] E[xǫh
′

]

E[hǫx
′

] E[hh
′

]

)

(11)

Using the results from (9) , (10) and (11), we can write

√
N

(

θ − θ∗

λ

)

d→
(

E[xx
′

]−1 −E[xx
′

]−1
E[xǫh

′

]E[hh
′

]−1

0 E[hh
′

]−1

)

N
(

0,

(

E[ǫ2xx
′

] E[xǫh
′

]

E[hǫx
′

] E[hh
′

]

))

(12)

From (12) it easy to derive the asymptotic normality of each of the parameters θ and λ.

For what we are interested in, we can see that at θ = θ̂WLS, using the Slutsky theorem,
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√
N(θ̂WLS − θ∗) converges to a normal distribution with mean zero and asymptotic variance

Avar(θ̂WLS) which is derived successively as follows from (12) as:

(

E[xx
′

]−1 − E[xx
′

]−1
E[xǫh

′

][hh
′

]−1
)

(

E[ǫ2xx
′

] E[xǫh
′

]

E[hǫx
′

] E[hh
′

]

)(

E[xx
′

]−1

−E[hh
′

]−1
E[xǫh

′

]E[xx
′

]−1

)

= E[xx
′

]−1
(

I − E[xǫh
′

][hh
′

]−1
)

(

E[ǫ2xx
′

] E[xǫh
′

]

E[hǫx
′

] E[hh
′

]

)(

I

−E[hh
′

]−1
E[xǫh

′

]

)

E[xx
′

]−1

= E[xx
′

]−1
(

E[ǫ2xx
′

]− E[ǫxh
′

]E[hh
′

]−1
E[ǫhx

′

] E[ǫxh
′

]− E[ǫxh
′

]
)

(

I

−E[hh
′

]−1
E[xǫh

′

]

)

×

E[xx
′

]−1

= E[xx
′

]−1
(

E[ǫ2xx
′

]− E[ǫxh
′

]E[hh
′

]−1
E[ǫhx

′

] 0
)

(

I

−E[hh
′

]−1
E[xǫh

′

]

)

E[xx
′

]−1

Finally, the matrix multiplication yields

Avar(θ̂WLS) = E[xx
′

]−1
(

E[ǫ2xx
′

]− E[ǫxh
′

]E[hh
′

]−1
E[ǫhx

′

]
)

E[xx
′

]−1

which is the asymptotic variance that we had to derive.

Using capital letters for x just because it looks nicer, we get the asymptotic normality stated

in the theorem.

√
N(θ̂WLS − θ∗)

d→ N
(

0, E[XX
′

]−1
[

E[ǫ2XX
′

]− E[ǫXh′]E[hh
′

]−1E[ǫhX
′

]
]

E[XX
′

]−1
)

.

It is easy to see that, without the weights, one retrieves the basic OLS asymptotic nor-

mality in the presence of heteroskedasticity.

4 Conclusion

After showing the usefulness of data combination and the weighting required given infor-

mation about some known moment conditions in the population, we derived the estimator

and provided a formal proof of its asymptotic properties needed for statistical tests.
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