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A Ponzi scheme exposed to volatile markets

BERNHARD R. PARODI!

Abstract. The PGBM model for a couple of counteracting, exponentially growing capital flows is
presented: the available capital stock X (¢) evolves according to a variant of inhomogeneous geome-
tric Brownian motion (GBM) with time-dependent drift, in particular, to the stochastic differential
equation dX (t) = [pX(t) + p1exp(qit) + p2 exp(qat)|dt + o X (t)dW (t), where W (t) is a Wiener
process. As a paragon, we study a continuous-time model for a nine-parameter Ponzi scheme
with an exponentially growing number of investors. Investors either maintain their investment or
withdraw it after some fixed investment span and quit the system. The first two moments of the
process and hence a closed-form solution for the mean path are given. The capital stock exhibits
a dynamic lognormal probability distribution as long as the system remains solvent. The assumed
stochastic performance allows for earlier or later collaps of the investment system as compared to
the deterministic analogy (o = 0). Allowing also for negative capital values the system’s default
probability can be calculated at any time by numerically solving the corresponding Kolmogorov
forward equation. We use the finite difference method and obtain results in accordance with those
of simple Monte-Carlo simulations. Finally, a minor modification of the payout function provides
a toy model for a social security system exhibiting critical behaviour. Depending on whether some
parameter value violates a weak no-Ponzi game condition or not, the system represents either a
non-lasting Ponzi game or a lasting no-Ponzi game in the weak sense.

1 Introduction

“[NJobody knew with the least precision what Mr. Merdle’s business was, except that it was to
coin money” (Dickens 1857). The career of the admired but devious financier Merdle in Charles
Dickens novel Little Dorrit culminates as that of “the man of this time” with a “world-wide
repute”; but it takes a fatal end when he is recognised as a “master of humbug” and as “the
greatest Thief” because his shadowy investment system defaults leaving many investors ruined
and at least one bank destroyed. The attentive reader may remember busting contemporary Ponzi
schemes well-covered by the media. A Ponzi scheme is a scam investment system that offers
seasoned investors attractive yields that are paid exclusively or to a large extent from the money
deposited by subsequent investors; one may speak of a Ponzi system in its narrow or its broad sense,
respectively. Such systems fail as soon as new deposits plus some eventual additional earnings (due
to compound interests, renewed membership fees or taxes, monetary gifts by donators, dividend
yields or any successful asset management) cannot match payments anymore. This we call a Ponzi
system in its strong sense. However, if this total external cash inflow is large enough with respect
to an accordingly modest promised return on investment, there’s no cash-flow deficit, and the
investment system will not crash as long as there is a non-empty reservoir of new investors. We
call this a weak Ponzi system. This article covers all of these modes of Ponzi systems, the emphasis
being placed on weak Ponzi systems in the broad sense.

Two early historical examples of documented Ponzi schemes are Adele Spitzeder’s “Dachauer
Bank” that operated a couple of years until 1872 in Germany, and William Miller’s “Franklin
Syndicate” that blew up in 1899 in the USA. Carlo “Charles” Ponzi’s spectacular scam investment
system was run during the early 1920ies in Boston and became the nomenclature for so-called
Ponzi games. Most prominent is Bernard Madoft’s New York based ”Fairfield Sentry Ldt” fund
that operated more than two and a half decades until its collaps in 2008. Contemporary Ponzi
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schemes are observed to flush up world-wide in high number and with many faces. Even pay-as-
you-go social security systems are recognized to show Ponzi-game like aspects. A widely cited and
seemingly paradoxical statement by Paul Samuelson was that “social security is a Ponzi scheme
that works” (Tanner 2011); the formal and quantitative results of the present paper may contribute
to clarify the ambivalence of the situation.

The underlying mechanism does per se correspond to a fraudulent investment system due to
some necessary limit of participants; however, ignoring this constraint the violation of a weak
no-Ponzi game condition (WNPC) due to unfavourable parameter value relationships makes the
distinction between a strong Ponzi game that will collapse and a sustained weak Ponzi game.
Usually, the investment system is dooming due to the promise of an unrealistically high rate of
return that attracts investors, or due to an inappropriate growth rate of new participants, or due to
an excessive average participation time, et cetera. Contrariwise, if operated as weak Ponzi games
investment systems as modelled in the present paper may (seemingly) have a sustained financial
future.

In recent years, several mathematical models for Ponzi schemes have appeared. All of them
basically rely on some sort of dynamic budget equation that allows the available capital to grow
due to a nominal interest rate and, most characteristically, under the competing effect of in-
flowing and outflowing money, that is, due typically to deposits of new participants and due to
returns on investment or withdrawals, respectively. Artzrouni’s (2009) deterministic approach
is based on an ordinary first-order linear differential equation (ODE). The model incorporates
a withdrawal function that implies exponential decay and allows for an analytical solution. Be-
cause the solution consists of the sum of three exponential functions, i.e., having the structure
aexp(at) + bexp(ft) + cexp(yt) (where a, b, and c¢ are coefficients that depend on the model pa-
rameters, as do the exponential scaling factors «, 8, and =), such a result is called in Parodi (2013)
an abc-model solution. Cunha, Valente & Vasconcelos (2013) solve Artzrouni’s ODE numerically
by means of a higher-order Runge-Kutta algorithm that is available within MATLAB. Such a
purely numerical approach allows for studying the dynamic effects of sudden parameter changes
immediately. The authors perform a rough sensitivity analysis concerning the long-term solvency
of Artzrouni’s Ponzi scheme and find that sustainability depends on the initial conditions. A very
similar result is obtained in Parodi (2013) for a discrete-time abc-model of a Ponzi system. The
model allows for sudden withdrawals after fixed investment spans when saturated investors quit
the system. On the one hand the model relies on difference equations and therefore is well-suited
for spreadsheet applications and thus for studying dynamic effects as mentioned above. On the
other hand, being an abc-model, it has an analytical solution that leads to the formal derivation
of weak no-Ponzi-game conditions (wNPC) for four model variants (which differ in their payout
functions and thus correspond to a variety of Ponzi schemes). A model represents a doomed weak
Ponzi system only if the wNPC is not satisfied; otherwise the system remains solvent and, assuming
enough potential participants, sustainable. Mayorga-Zambrano (2011) and Quituisaca-Samaniego,
Mayorga-Zambrano & Medina (2013) provide a stochastic simulation of Ponzi pyramidal schemes,
based on a set of recursion relations. Stochasticity enters by means of three fundamental param-
eters that obey normal distributions, namely, the (epidemic) growth factor for new members, the
conversion rate, and the nominal interest rate governing the instantaneous growth of the invested
capital. Real world applications are given. The present paper takes up the conceptual ideas of
Parodi (2013), but now the model is formally based on a linear first-order stochastic differential
equation (SDE) where the capital evolves according to geometric Brownian motion (GBM) with
inhomogenous drift. This not only allows for an analytical abc-model solution with respect to
the mean path of capital evolution, but also for a closed-form representation of the probability
distribution function for the capital (at least under some restrictions). As expected, the stochastic
market-based interest rate produces (quantifiable) uncertainty about the exact point of capital
saturation, i.e., about the system’s time of collapse.

The paper is organized as follows. Section 2 provides the mathematical setting by means of



introducing the PGBM model, i.e., a principal GBM process with a particular inhomogenous drift.
This includes the definition of the stochastic process, the derivation of the corresponding first and
second moments, and the presentation of the probability distribution together with its evolution
equation. In Section 3 a Ponzi scheme is designed and modelled within the PGBM framework,
including the formulation of some weak no-Ponzi game condition (wWNPC). Section 4 provides
the computation of default probabilities by numerically solving the Kolmogorov forward equation
(KfE) as well as by performing Monte-Carlo (MC) simulations. Section 5 is devoted to a toy
model social security system that is based on a variant of the paragon model used in Section 3;
the system’s critical behaviour is exemplified. Finally, in section 6, some conclusions that point
out pathways for future work are drawn.

2 Principal geometric Brownian motion

2.1 Stochastic capital dynamics

In the continuous-time model to be presented the capital stock X(¢) evolves according to an
infinitesimal budget equation

dX (1) = [pX(t) + X(t) — XOUT(t)} dt + o X (£) dW (¢) (1)

with exponentially growing earnings and spendings. The first term reflects the infinitesimal net
capital increase (including a market-based nominal interest or performance rate p) and the second
term allows for a standard Wiener process W (t) in order to model market volatility (as measured
by o). In particular, we assume that after specification of the rates Xy (t) and Xour(t) the evolution
of the capital is governed by the linear first-order stochastic differential equation (SDE)

dX (t) = [pX(t) + pre™" + poe®'] dt + o X (t) dW (1), (2)

where the time-dependent drift exhibits two, possibly counteracting exponential inhomogeneities
(p1 < 0 < pg or vice versa). This SDE may be considered as a prototypical consumption-and-
saving model that incorporates a number of financial and economic processes with competitive
contributions. For example, the mean-reverting exponential Brownian motion model analysed by
Zhao (2009) is recovered for p = =\, p1 = Ay, p2 = q1 = ¢2 = 0; the model of Huang, Milevsky
& Wang (2003) for an actuarial application within the context of lifetime ruin probabilites is
recovered for p = pu, p1 = —1, po2 = ¢1 = g2 = 0; and the evolution of government debt (or
dept-to-GDP ratio) may be approached by a bugdet equation like the one above, see Blanchard
(2011) for a non-stochastic, discrete-time analogon. Because of this broad context and because
equation (2) reduces to the SDE of geometric Brownian motion (GBM) in the case of disappearing
inhomogeneities (p1=p2 =0), we henceforth refer to it as principal GBM (PGBM for short). In
section 3 the process described by (2) and with p; and py being properly specified, PGBM will
serve as a mathematical model for a paragon Ponzi scheme, called Ponzi GBM and abbreviated
by PGBM, too.
The rate of change given by (2) is a special case of the more general setting

dX (1) = [A(t)X(t) + a(t)} dt + [B(t)X(t) L b(t)|aw ), (3)

with
A(t)=p, a(t) = pre®" + pre®', B(t) =0, b(t) =0. (4)

Such a linear SDE has the solution (see textbooks on SDEs, e.g., Geering et al. 2011)

X(t) = &(t) [X(o)+ /0 ®1(s) a(s) ds|, (5)



where d®(t) = A(t)®(t)dt + B(t)®(t)dW (t). In our case we have d®(t) = p®(t)dt + o®(t)dW (),
i.e., a geometric Brownian motion (GBM), with the familiar solution ®(¢) = ®(0) exp[(p—0c?/2)t+
oW (t)]; we set ®(0) = 1. Hence we are readily left with the solution

X(t) = X(0)elP= 20 tH+eW O y(p), (6)

t t
A =1+ ——{p / e Pmai=307)1=0W(s) s 4 p, / e (Pa2= 3ot W(s) g | (6b)
X(O) 0 0

This result corresponds to a transformed solution of a GBM process, with a time-dependent
stochastic transformation factor x(¢) that involves a couple of exponential functionals. GBM is
recovered for p;=p2=0 (x=1).

For the deterministic counterpart with zero noise (¢ = 0), we find (by applying an integrating
factor exp(—pt)) the solution of the corresponding linear ordinary differential equation (ODE)
dX (t) = [pX(t) + prett + pae®']dt to be given by

X(t) = [X(0)+ Ly L2 Jept = _PL ot P2 oot (7a)
P—q:1 pP—Qq P—a 2’
= aeP! + bet 4 ce®!, (7b)
with
a=X(0)=b—c, b=—pi/(p—aq), c=—p2/(p— ) (8)
For later use we already consider the following additional specification here to the (c=0)—case:
beginning at time ¢ = t; the drift coefficients take new forms and are afterwards labelled pgtztl )
and pétzt; ), Again, applying the integrating factor method and integrating from ¢t = t; to t > t;
we find
(t>tr) (t>tr) (t>tr) (t>tr)
X(t>t1)(t) _ |:X(t[) + pl eqltI + p2 eq2t1:|67pt1 ept o pl eqlt o p2 qut (9&)
N P—q P—Qq2 P—aq P—q2
= a(tztl)ept + b(tztj)eqlt =+ C(t2t1)6q2t7 (gb)
with
(t>tr) (t=tr)
eztr) = [X(tz)—b@zm et — (54 eqztl}e_pt” bzt = ————, Cuziy) = ————, (10)
Pp—aq P—q

and where X (t7) is calculated by means of equation (7).

2.2 The first two moments for the PGBM model

In order to calculate the mean path and the probability distribution for the stochastic process
under investigation we need its first two moments. The first moment F[X (t)] (expected value,
mean) and the second moment E[X?2(t)] of the stochastic process (3) can be determined by means
of the so-called moment equations (e.g., Geering et al. 2011), i.e., by solving the ordinary first
order differential equations

& BIX ()] = AWEX(0)] +alt), (11a)
%E[XQ(L‘)] - [2A(t) + BX(t)| B[X2(1)] + 2E[X (1)) [a(t) +BOb)| +02(t),  (11b)



with initial conditions E[X (0)] = X(0) and E[X?(0)] = X(0)?. Inserting (4), integration is done
by means of integrating factors exp(—pt) and exp[—(2p + 02)t] in the case of the first and of the
second moment, respectively. In detail, for the first moment one has

! trdE[X t
/ d [E(X)e_pqdr :/ {d X] —pE[X]}e_pTdT :/ pre”Pma)T 4 poeTPmERT gr
0 0

dr dr 0
E[X]efpt —X(0) = 7Le*(1’*ql)t + P Lef(pfqz)t + P2 7
pP—aq P—q P—Qq pP—Qq2
leading to

E[X ()] = [X(0) + Py P2 Jert — PL_gmt P2 oast _ gept | petrt | cetat, (13)
P—¢1 P—Q pP—q p—q

Thus, the expected value E[X (t)] for process (2) corresponds to its solution under the deter-
ministic zero-noise constraint (o = 0) as given in (7), i.e., E[X(t)] = X(¢;0 = 0).
For the second moment one has

td > ' rdE[X?] >
— [B[X?)e=CpFo)T :/ 1 (2p+ 0} E[X?|e@proT
/0 d’T[ [X?e |dr i { e (2p + 0*)E|[ }]e dr

t
- / 2B[X](pre®” + ,026"27)6_(2’“’”2)7 dr
0
t
- / 2(ae’™ +be™ ™ + ce®7) (= b(p — q1)e™ = c(p — ga)e™7)e” T dr,
0

—(p—q+o*)t _q
E[Xz]e—(2p+02)t _ X(0)2 = 2ab(p — fh)e—

p—q +o?
—(p—aqa+o)t _ 1 —(2p—2q1+0°)t _ 1
e e
+2ac(p — qo) ———————5— + b (2p — 2
(p Q2) p_q2_|_0_2 ( p ql) 2p_2q1_|_0_2
e—(2p—ai—a2+o”)t _ 1 e—(2p—2a2+0)t _ 1

+c2(2p — 2¢2)

+2bc(2p — q1 — q2)

2p—q1 — g2 + 02 2p — 2q2 + 02

yielding
2
E[X?(1)] = e®rT (X (0))* + H(t;0)), (14)
where the auxiliary function
H(t;t") = 2abh(p—qu,t*)+2ac h(p—ga, t*)+2bc h(2p—q1 =G, t*) +b* h(2p—2q1, 1) +¢* h(2p—2¢o, ")

(15)
itself relies on a further auxiliary function

e—(z+02)t _ e—(a;+o2)t*

h(x,t*) = h(t;z,t*,0%) = ) (16)

1+02/x

wherein x, t*, and 02 act as parameters. (These two auxiliary functions are introduced here in
order to also simplify the notation in section 3.2).
Finally, the variance of the stochastic process can be calculated by means of

Var[X(t)] = E[X*(t)] - BIX (1)) (17)



2.3 The probability distribution for a positiv definite variable

The PGBM model can be regarded as a transformed GBM model, as highlighted in section 2.1. The
probability density function (pdf) of geometric Brownian motion follows a lognormal distribution.
Likewise, the PGBM exhibits a lognormal probability density function

(In (X) — u<t>>2} (18)

P = = x O {_ 202 (1)

where the time-dependent scale and shape parameters are given by

w(t) =1In (E[X]) — %UZ(t) =In <%> , (19a)
o*(t)=In (1+‘%gg]> =1In (gg]j) (19b)

and hence depend on the moments E[X] and E[X?] as derived in the previous subsection. The first
of these equations may be checked by calculating the expected value E[X|= [ X P(X, t; p(t),o%(t))
dX = exp(u(t) + 0%(t)/2) and then inserting the identity provided by the second equation. Note
that due to the logarithmic dependency on X distribution (18) is only defined for a positive definite
variable X > 0.

The pdf for the pure GBM process is recovered as a special case by setting p;=p2=0 and hence
by means of inserting a = X(0), b = —p1/(p — ¢q) = 0, and ¢ = —p2/p = 0 into equations (13)-
(15), leading to p(t) = In(X(0)) + (p — 302)t and o2(t) = o*t. Equivalently, given relation (6),
ie., X(t) = ®(t) x(¢t) with ®(¢) being the GBM solution and ®(0) = X(0), the pdf for GBM is
recovered for a constant transformation factor x(t) = 1.

Because the solution of the PGBM process is a transformed solution of the GBM process
the parameter functions (19) can be expressed by an alternative analytic specification instead of
using the first two moments. Denoting the pdf for GBM by Pg(®(t),t), then according to the
change-of-variable rule for probability distributions, one has P(X (¢),t) = Ps(®(t),t) |0®/0X| =
Py (X (t)/x(t),t) /|x(t)]. See also the theorem provided by Rujivan (2011) about coinciding tran-
sition densities of affine transformations of Itd processes. For ease of computational tractability
of the stochastic transformation factor x(¢), which involves a couple of stochastic integrals in the
form of exponential functionals, we replace it by its adjusted expected value

X(t) = Elx()] =1+ (20)

1 (p e—(p—ql—ao2)t -1 e~ (p—qg—ao’Z) t 1 )
1 [ )

X(0) p—q1 — ao? te p—qa — ao?

with a = 1/2. Theoretically, the expected value of each of the exponential functionals demands
a =1 (see, e.g., Huang, Milevsky & Wang (2004) for a detailed derivation of the first (and second)
moment of such stochastic present values). However, using this value produced results that were
inconsistent with the results obtained either by means of equation (21) below or with Monte-Carlo
simulations or with the outcomes of numerically integrating the evolution equation as discussed
later. We henceforth rely on the adjusted expected value only.

Given E[X] (by equation (13)) and E[x] (by equation (20)), the parameters of the pdf (18) for
the PGBM process become

pu(t) =In(X(0)) + (p— %az)t + In(E[x)), (21a)
o*(t) =2 (In(E[X]) — u@)). (21b)

Similar to before, the pdf for pure GBM is recovered for E[X] = X (0) exp(pt) and E[y] = 1.



2.4 The evolution of the pdf

Having found the pdf of the process, we also want to consider its differential evolution with respect
to time. The resulting partial differential equation will be crucial for the numerical approach dealt
with in section 3.2 below. The probability density function P(X,t) for a process X obeying SDE (3)
is known to evolve according to the one-dimensional Kolmogorov forward equation (Fokker-Planck
equation)

B 1 92
&P(X’ t)= 20X2

(see, e.g., Gardiner 1985). Inserting the values attributed in (4), PGBM obeys the Kolmogorov
forward equation (KfE)

O (A0 X0 +a(] PX.1) (22)

([B(X, t) X () + b(t)]* P(X, t)) -y

%P(X t) = % a(?);? (U2X2P(X7 t)) - a%( [pX - X(t)] P(X, t)), (23)

where X (t) = a(t) = p1exp(qit) + p2 exp(gat) and with an initial probability density P(X,0) =
5(X — X(0)) (X € Ry, using the Kronecker-d). For p;=p,=0 and hence for X (t) = 0 we get the
pdf evolution equation for GBM. It would be a cumbersome exercise indeed to verify that function
(18) satisfies equation (23); here we consider the coincidence between this analytical result and the
numerical results obtained later as convincing enough (cf. figures 1 and 2).

Unfortunately, pdf (18) only holds as long as X > 0, E[X] > 0, and E[y] > 0, due to their
logarithmic dependencies. However, as will be evident from figures 1 to 3, starting at some first
passage time there are trajectories occuring at X-values below zero, and the analytical pdf will
necessarily fail. Therefore we will rely on numerical calculations in the following sections, i.e.,
numerically integrate the above KfE (23) in order to provide the probability density function (pdf)
and the related cumulative distribution function (cdf). Computational details with respect to the
adopted numerical method are relegated to the Appendix.

3 Ponzi geometric Brownian motion

The principal GBM (PGBM) model developed in the previous section will now serve as the frame-
work for an idealized Ponzi system. The following construction of an investment system illustrates
the design process for generating the Ponzi scheme: after setting up the particularities of the
scheme in section 3.1 (like determining the presumed evolution of the number of members and like
fixing some withdrawal modalities), the model is recognized as a PGBM process in section 3.2 that
can be handled accordingly. A no-Ponzi game condition is proposed in section 3.3. Modifications
and variations of the setup can be dealt with in a similar fashion, and we will take advantage of
this later in section 5.

3.1 Member evolution and capital flow

An investment system is founded by Nyg initiators which together contribute a total initial capital
Xo. They start with Ny initial investors and continuously recruit more investors according to the
rate

Nnew (t) = A]\/vO e(Ita (24)

where ANy provides the initial number increase of new investors, ¢ is an exponential growth factor,
time ¢ is measured in time units appropriate to the process (e.g., in years or weeks), and the dot
represents the first derivative with respect to time. Therefore, within time intervals of unit length,
the number of new participants is also exponentially growing by an amount ftt_l Nnew(T) dr =



Ngett, with N§ := ANy(1 — e~ %)/q, in reminiscence to the evolution of members in the discrete-
time model of Parodi (2013). Each investor stays invested only for a fixed investment span t;:
if she entered the system at time ¢ — {7, she will quit it again at time ¢. Thus, the number of
members (including the initiators) at time ¢ is N(t) = Noo + No + fg Npew(T) dr (if t < t5) or
N(t) = Noo + ftt_tl Nnew(T) dr (if t > tr), yielding

No + 20 (et — 1) (t <tr)

AN (1 — ematr) e, (t>tr)

N(t) = Noo + { (25)

The initial number of members is N(0) = Ngg + Ny, the number of initiators remains constant at
Ny, and the instantaneous number of investors is N(t) — Ngg. Note that N(¢) counts the number
of members after all the entries and exits have taken place at a time t. In particular, at t=ty,
the number of members N (¢;) excludes the Ny very first investors due to their resignations at this
moment. Each new investor lends a single amount Iy to the initiators when entering the system.
Thus, the cash inflow rate to the system due to new members is (for ¢>0)

Xin(t) = IgNpew(t) = Iy ANy et (26)

The initiators pay interest Ior to each investor as a return on investment (ROI), with a constant
periodical interest rate r. Similarly, each initiator is compensated with a periodic amount Iygrgg,
where Ioo = Xo/Noo is the average funding by an initiator and rgg is the respective interest
rate. While the initiators always keep participating in the system, an investor withdraws his
investment [y and quits the system after an investment period t;. Accordingly, the infinitesimal
payments leaving the system are Xour(t) = Noolooroo + [N (t) — NoolIor (if t < t7) or Xour(t) =
Noolooroo+ [N(t) fNOO]IorJanew (t—ty) Iy (if t > t1), with the very last term taking into account
the full withdrawal of those investors who joined at time ¢ — ¢; and who drop out again at time
t. We arbitrarily neglect an additional last ROI for the departing investors, Nnew (t —tr) Ior, as
well as subtracting the interests for the newest participants, Npew (t) Ior; both these terms can be
added if considered relevant. The capital outflow rate now simply is (for ¢>0)

(No + AN, eqq*l) Ior (t < tr)

Xour(t) = Noolooroo +
ANyl [5 + (1 — g)eiqtl} elt. (t > t[)

(27)

Table 1: THE PARAMETERS OF THE PONZI SCHEME

Nyo  number of initiators roo  promised rate of return to initiators
No  initial number of investors promised rate of return to investors (ROI)
ANy initial number of new investors growth rate of the number of new investors
Ipp  average capital of an initiator market-based asset performance rate
I investment of an investor financial market constant volatility
tr investment time span
AuXiliary definitions: )(002:]\7001007 )(()Z:]\/vol()7 AXoizAN()IO
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3.2 The first two moments of Ponzi geometric Brownian motion

Inserting the earnings and spendings as provided by equations (26) and (27), respectively, into the
capital growth equation (1), the SDE (2) as specified for the PGBM model uprises, with assembled
coefficients

r _
pL = AX0<1 - 5) (1 TR ‘m) (28a)
AX
p2 = ( 2 Xo) 7 (1= Lp>¢,1) — Xooroo- (28b)
0 t<tr

Herein, for the sake of a more compact notation, the indicator function 1>, = L t>¢
> 1r

enforces the case distinction between times before and after the beginning of member drain. This
drain can be avoided by choosing the investment span ¢; large enough (for practical purposes) or
even infinite (for formal reasons). The initial values suited for the two regimes are X (0) = X9+ Xo
(ift < tj) or X(t]) = X(t<t1)(t1) — Xy (ift > t[).

The expected value E[X (t)] is, according to equation (13) with relation (28) inserted, given by

E[X ()] = aeP’ + be* + ¢, (29a)
AX r ot T00
— _ _ _ pti —
a = (X() P —p) (1 p) (1 1[t2ti]e ) + Xoo (1 » > s (29b)
AX r
— _ _ —qt;
b q_p(l q) (1= Lpzge ), (29¢)
AX\ 7 Xoor
c= <X0 - > — (1= 1ps) + -2, (29d)
q p p

Note that E[X (t)] may exhibit a jump at regime switching time t;. We call this form of solution
an abc-model solution in continuous time for a Ponzi scheme, due to analogous results provided
by the discrete-time model of Parodi (2013).

In order to calculate the second moment of the stochastic process, we rely on equations (14)
and (28) and find

E[X2(t)] _ 6(2P+02)t y ((Xoo + )(0)72 + Hgt; O)), (t < t])

(E[X2(ty)]e-@p+o)tn + H(t;t))), (t >t5).
Herein the auxiliary function H(¢;t*) is defined in equation (15) and depends on the coefficients
a, b, and ¢ given in egs. (29b)-(29d) (and which therefore have to be chosen according to whether
t <ty ort > tr); the other auxiliary function, h(z,t*), is defined in equation (16). We add a
technical note: the quantity F[X?(¢;)] immediately after regime switching can be calculated by
requiring momentary constancy of variance, i.e. Var[X(t;)] = limat—o Var[X (t; — At)], hence by
setting E[X?(t7)] = E[X (t)]* + limao (E[X2(t; — At)] — E[X (t; — At)]?).

The outcome of a typical PGBM process is illustrated in Figures 1 and 2 for nearly identical
sets of parameter values, they only differ with respect to the investment span. In figure 1, the
investment span is larger than the chosen time domain, hence no withdrawals occur. Shown in the
top diagram are the mean path E[X (¢)] (solid curve), that crosses the (X=0)-level at an expected
default time t=21.5 periods, and the 0.1%- and 95%-percentile paths (dashed lines), as determined
by means of a Monte-Carlo simulation (see section 4). First passage of the (X=0)-level (for the
0.1%-percentile path) is at about t=15.5 periods. The distribution of the paths at two selected
time points is presented in the histogramms at the bottom of Figure 1. Before first passage time,
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Figure 1: THE EVOLUTION OF A PONZI SYSTEM WITH INFINITE INVESTMENT SPAN, i.e., without
quitting participants and hence without final withdrawals. For practical purposes, i.e., to avoid
withdrawals, the investment span is a finite value larger than the time window of interest; here it
is set to t;=25.01.

Top: The mean path (solid blue line) for the Ponzi scheme under investigation is shown together
with the 0.1%-percentile and the 95%-percentile (lower and upper blue dashed lines, respectively)
as resulting from a Monte-Carlo simulation using the eleven indicated parameter values. Because
the investment span ¢; is at least as large as the time domain shown, no withdrawals have occured
yet. The mean path may formally be described by E[X(t)] = aeP! + be? + ¢, with a = 481.316,
b= —5.483, and ¢ = —460.833. Bust time for the mean path is at t=21.5 (see the position of the
right vertical dashed line). However, due to volatility the first passage time at bust level X (¢)=0
already occurs around 15 periods. For the times indicated by vertical dashed lines, the probability
functions for X (¢) are given in the lower panels of the figure.

Bottom: The distributions of the simulated paths are shown at times =12 and t=21.5 by means
of normalized histograms for Monte-Carlo simulation data (black bars, representing centered bins
with widths of 50 capital units). Overlaid are the graphs for the probability density functions
(pdf, left scales) as determined by numerically solving the Kolmogorov forward equation (KfE,
red envelopes). The green graph in the left panel is the analytical solution for the pdf involving
the lognormal distribution (equation (18)) that is valuable as long as the capital remains positive
definite; therefore no such solution is available for the graph in the right panel. Also shown in red
are the corresponding cumulative distribution functions (cdf, right scales), from which the system’s
instantaneous probability of default (PD) can be read. For example, the cdf has a value of about
0.752 at the mean path default time ¢t=21.5, hence the probability of default up to this time is
about PD=75% and, correspondingly, the survival probability is about 1-PD=25%.
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Figure 2: THE EVOLUTION OF A PONZI SYSTEM WITH FINITE INVESTMENT SPAN, i.e., with partici-
pants quitting after an investment period of ¢; = 10 time units and at the same time withdrawing
their initial deposits. All other parameter values and designations are as with figure 1. The overall
qualitative behaviour of the systems shown in figures 1 and 2 is alike. However, with the onset of
withdrawals after the first investment span at ¢t = ¢; = 10, the available capital undergoes a (small)
jump and declines with a higher pace. After ¢t = ¢; the mean path follows F[X (t)] = aeP® +be? +c,
with @ = 186.350, b = —4.985, and ¢ = 10.0. Due to the higher amount of migrated capital (i.e.,
including withdrawals), the system defaults earlier than the comparative system shown in figure
1 with infinite investment span: first passage time for the 0.1%-percentile path now is around 12
periods and for the mean path the bust already occurs at about t=19.2 periods. As can clearly be
seen in the right bottom panel histogramm, at this expected bust time the majority of paths has
negative capital values; nevertheless, from the cdf, that has a value of PD=0.764 at X = 0, one
can read that the system’s survival probability up to this point still is about 1-PD=24%.

for example at t=12 periods, all paths are still above the bust level X=0; their envelope exhibits
the shape of a lognormal distribution (i.e., it is calculated by means of equations (18) and (19)).
However, after the first passage time increasingly many paths enter the negative capital domain
(X < 0) and therefore correspond to crashed Ponzi systems. At the expected default time t=21.5
periods about 25% of the paths are still in the positive capital domain (X > 0); these systems will
survive somewhat longer.

3.3 No-Ponzi game condition

In a typical Ponzi system the available capital grows during a first phase when new members
contribute their deposits and the other members still get a comparatively small total amount of the
return on investments (ROIs). After a while, when there are many participants that receive ROIs,
the system’s total available capital reaches a peak that is followed by a second phase characterized
by a pronounced demise of the capital, finally leading to the collapse of the system at some bust
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Figure 3: PROPAGATION OF THE PROBABILITY DISTRIBUTION. Snapshots of the numerically
determined pdfs for the system represented in figure 1 are shown for times t=5, 10, 15, 17, 19, 21,
23, 25 time units. The thinnest and tallest distribution corresponds to =5 (shown in green), the
fat and broad distribution to the left corresponds to t=25 (shown in blue). Due to the underlying
diffusion process, the pdfs smudge with time. The distribution is of lognormal type only as long
as the probability for negative capital values is zero (=5, 10, 15) and can be expressed in closed
form by means of equation (18). For later times, or more precisely, starting with the first passage
time around ¢t=15, the distributions are no longer lognormal and exhibit increasingly large wings
above the negative branch of the X-axis.

time tgygr. This time point of saturation X (tgysr) = 0 for the capital mean path usually has to
be determined numerically. However, if coefficient ¢ in the abc-model solution (29a) is comparably
small with respect to the other two coeffiecients, i.e., if |a|, |b] > |¢|, it may be ignored for an
approximation. Then, using equation (29), condition E[X (¢)] = 0 leads to the estimation

1 a
e % I (=), (lal, ol > |e) (31)
where either ¢ > p, —a/b > 1 or p > ¢, —b/a > 1 must hold.

The time of occurence of the peak, tprax, can be computed by means of the condition dE[X (t)]/dt

= 0, implying .
a
tppak = qa—p In <_bf])> . (32)

In order to avoid a bust destiny one has to choose the nine parameter values of the parameter
vector ¢ = {t;, Xoo, Xo, AXo,700,7,¢,p,0} in such a way that there is only monotonous capital
growth and no occurence of a peak time. Therefore, requiring a non-existing logarithmic value in
(32) corresponds to requiring a negative argument of the logarithm, and also assuming positive
rates ¢ and p leads to a simple weak no-Ponzi game condition

wNPC : % >0 (p,q > 0) (33)
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The condition is called weak because an unlimited pool of potential participants is supposed. A
strong no-Ponzi game condition (NPC) would include the above wNPC as well as some maximum
number of participants, Npax, i.€., the additional condition N(¢) £ Npyax. This paper puts its
focus on weak Ponzi games. Correspondingly, if condition (33) holds for a given set of parameter
values, the system represents a no-Ponzi game as long as we may forget about the number limit
condition, hence it’s a Ponzi game in its weak sense. If on the other hand condition (33) is violated,
the system is identified as a Ponzi system that will collapse due to other reasons than reaching
a number limit. For example, the systems shown in figures 1 and 2 satisfy a/b ~ —88 and —37,
respectively, identifying them as true Ponzi systems. In order to study the critical behaviour of
a system, one may trigger the value of a single parameter, say ¢; € ¢, while keeping the other
parameter values ¢; € ¢ (j # ) fixed, until the system tilts from a weak Ponzi game (no Ponzi
game) to a strong Ponzi game, or vice versa. Formally, this is equivalent to finding the zeros
or the singularities of the function f(¢;) = a(¢;)/b(¢:). In section 5 an illustrated example for
numerically determining such single critical parameter values will be given.

4 Default probability

Despite the restricted domain of definition of the lognormal pdf (i.e., to positive definite capital
values), we want to calculate the probability of default (written PD or Pp) at times when this
restriction is violated. The leading question is: how likely is it, that the system will collaps before
some time T'?7 Stated differently, what is the system’s default probability before a given time T'7
We are now going to describe two numerical procedures that allow for consistent results.

I. MONTE-CARLO SIMULATION. Starting with an initial value X (0) = Xoo + X we construct a
multitude of N independent paths, each by approximating equation (2) according to the discrete-
time evolutionary rule

X(t+At) = X(t) + [pX (1) + pre?* + p2] At + o X (t)eVAt, (34)

where the last term is a well known approach with respect to geometric Brownian motion (GBM),
including a random sample € from a normal distribution with a zero mean and a standard deviation
of 1.0 (see, e.g., Geering et al. 2011). Selecting all the values at a specified time T', we construct
a histogram with K bins such that the entries H(k,T) in bins k = 1,2, ..., ko correspond to
negative values of X (T') and those in bins k = ko + 1, ko + 2, ..., K to positive values of X (T). The
histogramm is normalized by the total number N = Zﬁzf H(k,T) of simulated paths and thus
traces the corresponding probability distribution function for the Ponzi system wealth values X at
time T'. As soon as the wealth of a single Ponzi system lays below zero, this system has collapsed.
Therefore the probability for a default before a time T is estimated by the cumulative sum

ko
PMC(t <T)= % > H(E,T) (35)
k=1

This actually is a lower boundary, because a few paths that have hit the level X (t) = 0 before
time 7' may have recovered to X(7T') > 0 and are therefore not counted. However, performing
enough simulations the effect turns out to be neglectable. Examples of histograms accompaning
Monte-Carlo (MC) simulations and created at selected times are given, together with the readings
of the corresponding system PDs, in figures 1 and 2.

II. KOLMOGOROV FORWARD EQUATION (Fokker-Planck equation). In order to quantify the
probability for a collaps of the investment system before a particular time 7', we now numerically
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Figure 4: SURVIVAL PROBABILITY. The survival probability 1 — PD (i.e., the complement to the
default probability PD) for the Ponzi system represented in figure 2 is shown for different constant
market volatilities 0. The curves are interpolated solutions of the Kolmogorov forward equation
for the PGBM model, with total integrated evolution times ¢ = 10,10.25,10.5, ...,26 periods. A
volatility of 0% corresponds to the deterministic PGBM model which is represented by the mean
path in figure 2 and which hits the zero capital line at bust time ¢t = 19.17 periods (blue vertical
line): before that time point, survival probability is one, afterwards zero. Exposition to increasing
volatilities has the effect of correspondingly lower (higher) survival probabilities at some given pre-
bust (post-bust) time. For example, the system of figure 2 with 0 = 30% has a survival probability
of only about 30% until deterministic bust time (red graph). An otherwise similar system but
exposed to a 50%-volatility has a survival probability of only 50% up to about 15 periods and less
than 20% until deterministic bust time, but up to about 23 periods there still is a 5%-survival
probability (blue graph).

solve the Kolmogorov forward equation (23) by means of a finite difference method to get the dis-
cretized pdf P(X;,T) for equally spaced grid values X; = i AX, i € {imin,-..,—2,—1,0,1,2 ...,
imaxz}- The sophisticated computational details, including a proper variable substitution that
allows for negative values of X, are relegated to the Appendix. Because of the requirement
Simer P(X;,T)AX = 1, the default probability of the system is then measured by means

1="tmin

of the cumulative distribution function (cdf)

0
PEPE(t<T)= Y  P(X;T)AX, (36)
i.e., by numerically integrating the pdf. Example results are shown in figures 1 and 2 where the

pdfs provide smooth envelopes to the histograms and where the graphs for the corresponding cdfs
allow to directly read off the PDs.

5 Toy model for a social security system
Within the context of social security the investment system defined in section 3 may be rein-

terpreted as a pay-as-you-go pension scheme as follows: At retirement the retiree pays a unique
amount of Iy, called the deposit, to the insurance company. This asset corresponds to all the social

14
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Figure 5: THE PGBM MODEL REPRESENTING A SOCIAL SECURITY SYSTEM. For the particular
social security model introduced in the text different mean path scenarios are shown ceteris paribus:
the graph given by the black solid line corresponds to the parameter values denoted in the upper
left corner, called reference parameter set, while the paired colored graphs result from changing
single parameter values by minor amounts, as indicated. The system may react quite sensibly
to changes of parameter values. For example, a small shrinkage of the periodical annuity 7l
received by the retiree (corresponding to a rather modest decrease of the promised rate of return
on investment, say, for example, from r = 0.25 to r = 0.247) has a large impact on the system’s
longevity (bust time increases from 25 to 38 periods). Most intriguing, however, is that depending
on the values of the parameters relative to critical values (which can be determined by means of the
wNPG condition), a system represents either a non-lasting Ponzi game or a lasting no-Ponzi game
(in the weak sense). The longevity of a basically non-lasting social security system is longer the
closer the single parameter value lies to the corresponding single critical value. Hence, a seemingly
stable system may rather suddenly come to an abrupt end.

security payments during work life, including compounds. For some time span tj, representing
a retiree’s mean life time after retirement, each beneficiary receives periodically an annuity Iyr,
where r is the conversion rate. Hence, equations (24), (25), and (26) for the number of new re-
tirees entering the system, the number of retirees in total, and the capital inflow rate, respectively,
remain unchanged. However, after the decease of a beneficiary, i.e. after the span tj, neither the
original deposit Iy nor a possibly remaining asset value Iy (1 —7¢;) of the retiree will be withdrawn
but remain in the system. No withdrawals are performed. Therefore the system’s payout function
is no longer given by equation (27), but modified to

q

(X0+AXOth71)T (t<t1)
AXog(l - e*q“)eqt. (t>t5)

Xour(t) = Xooroo + (37)

Correspondingly, the coefficients within the drift term in the SDE for the PGBM process change
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Figure 6: DETERMINATION OF SINGLE PARAMETER CRITICAL VALUES. Some graphs for the wNPC
function a/b are shown, where a and b are the parameter-dependent coefficients of the abc-model
solution as applied to the social security scenario presented in figure 5. For illustration, the
parameters r, g, and t; are chosen to act as single variables. Positive values correspond to no-
Ponzi games (no PG) in the weak sense (i.e., to weak Ponzi games), negative values to strong Ponzi
games (PG). For the three parameters shown, the function exhibits singularities with a flipping
sign, thus identifying the critical values.

from equation (28) to

pr=AX, 1~ 2(1 ~ pzee )] (38a)

Dy — (AXO

- XO) 7 (1= Lp>41) — Xooroo- (38b)

Actually, only the first coefficient, p;, has changed. The abc-model coefficients entering the
formulae for the expected value (equation (13)) and for the second moment (equation (14)) are
now available for plain evaluation or for further formal calculations. For example, requiring initial
values X (0) = Xoo+ Xo (if t < t7) and X(¢t;) = X (¢;¢ < t1) (if t > t;) (that is, without additional
withdrawals X due to the initial group of retirees) and relying directly on equations (7) and (9)
we get an expected value

E[X(t)] = aeP’ + bel" + ¢, (39a)
AX T T
— _ = _ _ —pt; _ 00
o= (XO ; _p) (1 . (1= Lz e )) + Xoo (1 . ) : (39b)
AX T
_ _ _ —qt;
b= q,p(l ; (1~ Lizuge ). (39¢)
AX X
c= (XO _ ) Ta- 1ysr,) + 200700, (39d)
q )p = p

While the model presented in section 3 describes a Ponzi scheme with withdrawals (done by
quitting investors), the variant offered here represents a simple social security system that corre-
sponds to a scheme without withdrawals at the end of an insurance span (when the retiree leaves
the system due to death). To visually illustrate the kinship of the two models, their mean paths
due to equations (29) (with ¢7) and (39), otherwise using the same parameter values, are shown in
figure 5 as dot-dashed and solid black lines, respectively. Up to time ¢;, the formulas and therefore
the graphs are identical. Afterwards, the no-withdrawal requirement delays but doesn’t prevent
the crash. For the social security model several different mean path scenarios are shown ceteris
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paribus: to create a graph only one parameter value was changed with respect to the compara-
tive values denoted in the upper left corner of the figure. The system is sensible with regard to
critical parameter values that decide whether the system will default or survive. For example, if
the investor’s return on investment rate is r=0.247 (lower red graph) the system collapses rather
abruptly, while for r=0.246 (upper red graph), where the payouts are only slightly smaller, the
system will survive. Actually, the critical parameter value is r &~ 0.24675. Similar observations
hold for the single critical values of the parameters ¢ and ¢; (green and blue lines, respectively),
with critical values ¢ = 0.2435 and t; =~ 13.41. The critical behaviour of the system with respect
to changing single parameter values is illustrated in figure 6: the parameters r, g, and ¢; act as
single variables ¢; for the function f(¢;) = a(¢;)/b(¢;) given by equation (33). Positive values cor-
respond to no-Ponzi games (actually, to sustained weak Ponzi games), negative values to (strong)
Ponzi games. For the three parameters shown, the function exhibits singularites with a flipping
sign, thus marking the critical values. However, not all of the components of the parameter vector
are exposed to critical behaviour. For example, changing the height of an investor’s initial deposit
Iy will neither change the type of the game nor alter the bust time (dashed black line in figure
5). In general, a system represents either a non-lasting Ponzi game or a lasting no-Ponzi game
(in the sense of a sustained weak Ponzi game), depending on the values of the parameters relative
to critical values. The closer a parameter value lies to the corresponding single critical value, the
longer the system will survive. Based on this short sensitivity analysis we assume that a seemingly
doomed system may possibly be saved by means of initiating an advantageous parameter value
transition. The opposite could possibly happen as well: a seemingly safe system is doomed after
an unfavourable shift of a single parameter value. However, the model investigated so far keeps
the parameter values constant, no sudden a posteriori changes are considered. Closer inspection
of the effects on a running system’s fate due to single or multiple parameter value changes remains
a topic for future research.

6 Conclusions

To summarize, the nine parameter PGBM model for a Ponzi scheme presented in this paper is part
of the broad family of consumption-and-saving models and is formulated within the well-known
framework of geometric Brownian motion (GBM) with one stochastic variable (namely, the market-
based interest rate). Particularly, the inhomogenous drift term includes two exponential terms. The
formal model solution corresponds to a transformed solution of the familiar GBM process. The first
moment of the process, i.e., the expected value for the available capital, is given as the solution of an
abc-model. Also considering the second moment, the probability density function for the available
capital is either given analytically by means of a dynamic lognormal distribution (requiring positive
funding) or numerically (allowing for negative capital values as well). The numerical results are
used to calculate Ponzi scheme bust probabilities at any time of capital evolution. Depending
on the values of the model parameters relative to their critical values, this evolution may exhibit
either a peak followed by a final saturation of the capital (representing a non-lasting Ponzi game)
or an uprising trend (representing a sustained no-Ponzi game). This ambivalence is due to a weak
no-Ponzi game condition (wWNPC) that ignores a limit on the number of participants. However,
the number of participants cannot realistically exceed a maximum number. Therefore, even if a
system may satisfy the wNPC, at some time point the reservoir of new participants is exhausted
and the system as designed here (i.e., with an exponentially increasing number of new members in
each period) won’t work anymore.

Future work may cover model improvements as well as applications and hence include for
example the following topics:

(i) The Ponzi scheme model introduced here optionally allows for a variant with or without
any withdrawals after some investment span. Withdrawals are, however, expected to be discrete.
Some modification is wished for that implements stepwise discrete (as in Parodi 2013) or continuous
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withdrawals, too. The latter variant would faciliate a direct comparison of the capital dynamics
as exhibited by our model with that of Artzrouni (2009).

(ii) The lognormal probability distribution function is only appropriate for the stochastic PGBM
process as long as one considers time intervals before the first passage time, i.e., before the prob-
ability for negative capital values becomes non-zero. However, when detemined numerically or by
means of Monte-Carlo simulations the distribution smoothly passes through this critical time point
(cf. figure 3). As some tests showed (but not discussed in this paper), these post-first-passage-time
distributions are no more of lognormal type. Attempts by the author to perform a “right-wing
approximation”, i.e., to fit only the right wings of lognormal distributions to those of the simulated
distributions, were at best moderately promising. As seen from a theoretical viewpoint, finding an
analytical expression for the first passage time may be more helpful (but may not be mandatory)
when tackling this question concerning the breakdown of the lognormal pdf description and some
analytical continuation.

(iii) The PGBM model introduced in this paper assumes frozen parameter values that are given
a priori. An analytical model extension will include and study the reaction of the system to sudden
a posteriori changes of single or multiple parameters. For example, in the social security model
a lurking deficit could be eliminated through a reform that encompasses an increased retirement
age (corresponding to increasing Iy and lowering ¢;), benefit reductions (lowering r) and increasing
revenues (higher g and I). However, for practical reasons such a sensitivity analysis could of course
easily be performed numerically, that is, simply by chosing some initial conditions and iterating
the evolution equation (2).

(iv) More realistic volatility models than GBM may be considered as the basic market process,
for example models with stochastic volatility or other jump processes. However, with respect to
analytical tractability this quickly becomes rather demanding or even unrealizable. Introducing
stochasticity numerically in the manner of Mayorga-Zambrano (2011) and Quituisaca-Samaniego et
al. (2013), i.e., describing capital evolution by means of recursion relations that include stochastic
parameters (e.g., with normally distributed values), is an efficient alternative.

(v) Last but not least, theory profits when it meets with reality, and vice versa. While the
PGBM model’s clarity and analytical tractability is of didactic value, finding some proper appli-
cations would increase the model’s usefulness. Realms of possible applications include for example
real scam investment systems, the handling of governmental debts, or possibly micro credit systems
considered as some kind of reversed Ponzi games (i.e., with negative investment Iy<0 correspond-
ing to loans offered by wealthy initiators). Of particular contemporary interest is the comparison of
possible social security model outcomes with fact data based on real systems. Official examples of
real social security systems that exhibit peaked graphs for the predicted capital evolution (resem-
bling those shown in figure 5) are not hard to find in the internet. Instead of providing hard-won
percentiles often several graphs are simultaneously displayed for the mean paths of a best-, mid-,
and worst-case scenario. If models like the one presented in this paper (or more sophisticated
ones including more demographic and financial details) matching real data would be satisfyingly
achievable, the discussion about Ponzi-like aspects of classical social security systems would gain
a refined quality. Possibly there would be more agreement upon a statement like ”social security
may work as a weak Ponzi scheme”.
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Appendix:
Numerical computation of the probability density function

In order to numerically compute equation (23), we use techniques offered by computational
finance. In particular, we proceed in close analogy to a standard procedure as suggested for
example in Schwab & Hilber (2007) for solving the Black-Scholes partial differential equation, with
modifications where appropriate. For that purpose we apply finite differences in space and the
Crank-Nicolson scheme in time, as now disclosed in detail.

(i) Variable transformation. Applying the chain rule for derivations and replacing the variable
for the capital, X, by a grid space variable z, we write equation (23) in the form

Oy P(x,t) = %290285P(x, t)+ [(20% — p) z + p2(t)] 0. P(z,t) + (0® — p) P(z,t), (40)

where 9; denotes the first partial derivative with respect to time ¢ and where 9, and 92 denote the
first and the second partial derivatives with respect to the space variable x, respectively. Numerical
computation of such a parabolic partial differential equation (in our case possibly depending on
large absolute values of ) both is computationally more efficient and allows for negative values of

2 (which is crucial for the PGBM model), if one performs a variable transformation = = e¥ +
* * 2

(with some real z < 0). We accordingly replace 0, = e~¥9, and 229? = (1 + xe_y) (02 —0y)

in equation (40) and demand P(x,t) = Q(y,t). One obtains the transformed Kolmogorov forward
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equation

0 Q(y,t) = a(y) R2Q(y, 1) + B(y, 1) 8,Q(y, 1) + v Q(y, 1) (41a)
02 * 2
a(y) = 5 (1 + me*y> (41b)
0'2 * 2 *
B(y,t) = — (1 + xe_y> + (20% — p) (1 + xe_y) + pz(t)e ¥ (41c)

with an initial probability density Q(y,0) = 6(y — In[Xy — z]) (Vy € R). Note that the variable
dependent coefficients a(y) and B(y,t) are non-constant, the latter also being explicitely time-
dependent, whereas v is a real constant.

(ii) Discretization. Equation (41) is discretized by means of finite differences (FD) in y and
the f-scheme in time. In particular, the restriction of y to a bounded domain [a, b] with mesh size
Ay = (b—a)/(N+1) (ie., yi=a+iAy, i=0,1,2, ..., N+1) and to discrete time with steps At = T/M
(ie., t;m = mAt, m = 0,1,2,..., M) provides a column vector Q™ = (Q7*, Q% ...,Q™,....QW)T),
with boundaries Q" and Q' |, that undergoes time-stepping according to the -scheme as follows:
- implicit Euler discretization:

1 +1 +1 +1 +1 +1
QI - QT 20" +Q QT — Q"

1—1 m+1 _ ., .
- explicit Euler discretization:
QU - Qr | QU 207 QR QN QP o
R = o R 4 g 4 0Ql =

Qmti_qQm . Qmtt QM
- ©-scheme: ~—— = O f, 11 + (1 — O)f,. Rearranging as “55— — O fr11 = 35 +(1-0)f,
leads to

1 _ m m m
EQT“ - QaFDQijl — O8rpQ; - @angDQHJ{l
1 _ m m m
= EQ? +(1=0)appQit, + (1 - 0)BrpQ" + (1 — ©)af Q1 4,

with discretization coefficients

£ o 8 _ 2
“FD = Ay T 2Ay’ Prp = =1y

+7, (42)

being approximately determined at mesh points y; = a 4+ iAy in space and t,, = mAt in time.
Hence, one actually has discrete, non-constant coefficients o« = a(y) and 8 = 5(y, t), and accord-
ingly coefficients a% p and Brp. The above result corresponds to a linear system of equations that
has to be solved at every time step. Written in matrix form, one has for example at time mAt

QM = (I— AtOA™) ™' (14 At (1 - ©)A™)Q™, (43)
where I is the diagonal N x N identity matrix and A™ is the tridiagonal N x N matrix
Brp afp O o 0
arp Brp afp :
R (44)
app Brp afp

0 0 a;‘D 6FD
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We set © = 1/2 (Crank-Nicolson ©-scheme). Note that a superscript involving m is not to
be read as an exponent but as an index of time. Note furthermore that —unlike with the most
basic procedure for solving the Black-Scholes equation with constant discretization coefficients—
iteration of equation (43) requires the space- and time-dependent matrix A™ to be recalculated
at every time step m, a rather time-consuming computational side effect. The above formalism
was implemented into a MATLAB 7.0.1-routine (release 14, code available from the author upon
request) and was run on a common laptop in order to provide the numerical results presented in
figures 1 to 4.
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