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Abstract

We consider the problem of testing for slope homogeneity in high-dimensional panel

data models with cross-sectionally correlated errors. We consider a Swamy-type test

for slope homogeneity by incorporating interactive fixed effects. We show that the pro-

posed test statistic is asymptotically normal. Our test allows the explanatory variables

to be correlated with the unobserved factors, factor loadings, or with both. Monte

Carlo simulations demonstrate that the proposed test has good size control and good

power.
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1 Introduction

This paper considers the testing of slope homogeneity for high-dimensional panel data

models. Testing slope homogeneity is a useful tool for empirical studies. In finance,

for example, testing asset pricing models, including the capital asset pricing model

(CAPM), Fama and French’s (1992) three-factor model and Carhart’s (1997) four-

factor model, is related to testing homogeneity (in this case, it involves testing intercept

homogeneity, which is a special case of the test considered in this paper). There are a

number of studies on testing for slope homogeneity in panel data models, including Pe-

saran et al. (1996), Phillips and Sul (2003), Pesaran and Yamagata (2008), Blomquist

and Westerlund (2013), and Su and Chen (2013).

Pesaran and Yamagata’s (2008) testing procedure is useful in the sense that it treats

a high-dimensional panel data model where the number of cross-sectional units N and

the time series dimension T are large. However, the test does not allow cross-sectionally,

serially correlated errors. To deal with the serially correlated errors, Blomquist and

Westerlund (2013) extended their test to the case when the errors are heteroskedastic

and/or serially correlated in an unknown fashion. However, the test still does not deal

with the practically relevant case of cross-sectional dependence. Moreover, these tests

do not allow dependence between the set of predictors and unobservable errors.

To deal with these problems, we propose a new simple test that accommodates

cross-sectional dependence by using the results of Bai (2009), Song (2013), and Ando

and Bai (2014). These studies considered panel data models with interactive fixed

effects. Our proposed test statistic, denoted by Γ̂, is a modified version of Swamy’s

(1970) test statistic. An advantage of our testing procedure is that it provides a robust

test under cross-sectionally correlated errors with heteroskedasticity. Furthermore, the

proposed test works even when the set of predictors and the unobservable errors that

contain the factor structure are correlated. We investigate the asymptotic distribution

of our test statistic, and show that the test has a standard normal distribution as

N, T → ∞ such that
√
N/T → 0. Monte Carlo experiments show that the proposed

test tends to have the correct size and satisfactory power as N, T → ∞.

Recently, Su and Chen (2013) proposed a residual-based LM test for slope homo-

geneity in high-dimensional panel data models with interactive fixed effects. Although

their test also uses a panel data model with interactive fixed effects, we point out that

our restriction on the relationship between N and T (i.e.,
√
N/T → 0) is weaker than

those imposed by Su and Chen (2013). In Su and Chen (2013), N3/4/T → 0 and

T 2/3/N → 0 are assumed as N, T → ∞. Thus, it is possible to face a situation where

the relationship between N and T satisfies our assumptions, while the conditions of Su

and Chen (2013) are not met. Through a Monte Carlo simulation, it is shown that,

under such situations, the proposed test still provides the correct size, while a size

distortion is observed by Su and Chen’s (2013) test.
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Notation. Let ∥A∥ = [tr(A′A)]1/2 be the usual norm of the matrix A, where

“tr” denotes the trace of a square matrix. The equation an = O(bn) states that the

deterministic sequence an is at most of order bn, cn = Op(dn) states that the random

variable cn is at most of order dn in terms of probability, and cn = op(dn) is of a smaller

order in terms of probability. All asymptotic results are obtained under a large number

of units N and a large number of time periods T .

The outline of the rest of the paper is as follows. Section 2 provides a literature

review of the slope homogeneity test for high-dimensional panel data models. Section

3 proposes the Γ̂ test statistic, a modified version of Swamy’s (1970) test statistic,

and derives its asymptotic distribution. In Section 4, we conduct Monte Carlo experi-

ments to evaluate the finite sample performance of the proposed test. Some concluding

remarks are provided in Section 5.

2 Literature review

Consider the following high-dimensional panel data model, with a large number of

cross-sectional units N and a large number of time periods T

yi = Xiβi + ui, i = 1, . . . , N, (1)

where yi = (yi1, ..., yiT )
′ Xi = (xi1, ...,xiT )

′, ui = (ui1, ..., uiT )
′. Here, each xit is a p×1

vector of observable predictors, βi is a p× 1 vector of unknown slope coefficients, and

uit is an idiosyncratic error. The null hypothesis of interest in this paper is

H0 : β0
1 = β0

2 = · · · = β0
N = β0 for some β0.

The alternative hypothesis is

H1 : β0
i ̸= β0

j for a nonzero fraction of pairwise slopes for i ̸= j.

There are several procedures that can be used to test the null hypothesis. Although

one may consider the standard F statistic, this test is valid for a fixed N , while this pa-

per focuses on high-dimensional panel data models with large N and T . In this section,

we provide a literature review of the test of slope homogeneity for high-dimensional

panel data models.

2.1 ∆ test

To check the slope homogeneity assumption, Pesaran and Yamagata (2008) considered

a panel data model with fixed effects and heterogeneous slopes yit = αi + β′
ixit + uit,

where each xit is a p × 1 vector of observable predictors, βi is a p × 1 vector of

unknown slope coefficients, and uit is an error term. Under the assumption that
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εit are mutually uncorrelated over i and t, they proposed a standardized version of

Swamy’s test of slope homogeneity. Using the individual slope estimator β̂i,FE =

(X ′
iM1Xi)

−1X ′
iM1yi, withM1 = I−11′/T and the weighted fixed effects pooled estima-

tor β̂WFE = (
∑N

i=1
X ′

iM1Xi/σ̂
2
i )

−1
∑N

i=1
X ′

iM1yi/σ̂
2
i with σ̂2

i = (yi−Xiβ̂i,FE)
′M1(yi−

Xiβ̂i,FE)/(T − p− 1), Pesaran and Yamagata (2008) proposed the ∆ tests

∆̂ =
√
N

(

N−1Ŝ − p√
2p

)

, (2)

where Ŝ is given as

Ŝ =
N
∑

i=1

(β̂i,FE − β̂WFE)
′
(

X ′
iM1Xi

σ̂2
i

)

(β̂i,FE − β̂WFE).

Under large N and T , and
√
N/T → 0, the test statistic asymptotically follows the

standard normal distribution under the null hypothesis H0 : β = βi for all i.

In addition to the ∆̂ test statistic, Pesaran and Yamagata (2008) also considered

the following modified version

∆̃ =
√
N

(

N−1S̃ − p√
2p

)

, (3)

where S̃ is given as

S̃ =
N
∑

i=1

(β̂i,FE − β̄WFE)
′
(

X ′
iM1Xi

σ̃2
i

)

(β̂i,FE − β̄WFE),

where instead of σ̂2
i , σ̃

2
i = (yi−Xiβ̂FE)

′M1(yi−Xiβ̂FE)/(T −1) is used. Here, β̂FE =

(
∑N

i=1
X ′

iM1Xi)
−1
∑N

i=1
X ′

iM1yi, and the weighted FE estimator is computed using σ̃2
i ,

β̄WFE = (
∑N

i=1
X ′

iM1Xi/σ̃
2
i )

−1
∑N

i=1
X ′

iM1yi/σ̃
2
i . Similar to ∆̂, the test statistic ∆̃

asymptotically follows the standard normal under the null. However, it is shown that

this claim holds under
√
N/T 2 → 0, which is weaker than the ∆̂ test statistic.

Although Pesaran and Yamagata (2008) considered modified versions of the ∆̂ test

statistic, one of their crucial assumptions is that the error terms are cross-sectionally

and serially independent. Moreover, they also assume that the p-dimensional predictors

are strictly exogenous. In the presence of interactive effects (factor errors), the ∆ test

works when the regressors are uncorrelated with the factor errors, but will not work

when correlations are allowed. As will be shown in our Monte Carlo results, their ∆

test suffers from the size distortion problem in such situations. This motivates us to

develop a new slope homogeneity test. It can be shown that our proposed test is able

to overcome these issues.
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2.2 HAC version of ∆ test

The ∆ test by Pesaran and Yamagata (2008) for slope homogeneity in large panels

has become very popular in the literature. However, Blomquist and Westerlund (2013)

pointed out that the test cannot deal with the practically relevant case of heteroskedas-

tic and serially correlated errors. To overcome this difficulty, Blomquist and Westerlund

(2013) proposed a generalized test that accommodates both features.

The HAC version of ∆̂ in (2) is given by

∆̂HAC =
√
N

(

N−1ŜHAC − p√
2p

)

,

where ŜHAC is given as

ŜHAC =
N
∑

i=1

(β̂i,OLS − β̂HAC)
′
(

X ′
iM1XiV̂

−1
i X ′

iM1Xi/T
2

)

(β̂i,OLS − β̂HAC)

with β̂HAC = (
∑N

i=1
X ′

iM1XiV̂
−1
i X ′

iM1Xi/T
2)−1

∑N
i=1

X ′
iM1XiV̂

−1
i X ′

iM1yi/T and β̂i,OLS

is the OLS estimator for cross-sectional unit i. The heteroskedasticity and serial cor-

relation are treated by the HAC estimator of V̂i

V̂i = Γ̂i(0) +
T−1
∑

j=1

K [1/Mi,T ]
[

Γ̂i(j) + Γ̂i(j)
′
]

,

where Γ̂i(j) = T−1
∑T

t=j+1
ûitû

′
it−j, ûit = (xit − x̄i)ε̂it, x̄i =

∑T
t=1

xit/T , and ε̂it =

yit− ȳi− β̂
′
HAC(xit− x̄i). The kernel function K(·) and the bandwidth parameter Mi,T

are assumed to satisfy some regularity conditions.

However, similar to Pesaran and Yamagata’s (2008) ∆ test, the HAC version of the

∆ test does not work when the regressors are correlated with the unobservable factor

errors.

2.3 A residual-based Lagrangian multiplier test

Recently, Su and Chen (2013) considered a residual-based Lagrangian multiplier (LM)

test for slope homogeneity in high-dimensional panel data models with the interactive

fixed effects of Bai (2009), yi = Xiβi+Fλi+εi, i = 1, ..., N , where F is a T ×r matrix

of unobservable common factors, λi is the factor loading, and εi are idiosyncratic errors.

A key idea is that, under the null hypothesis of homogenous slopes, the p-dimensional

predictors do not contain any useful information about the residuals.

In their testing procedure, a restricted model is first estimated by imposing slope

homogeneity. Under the null, the model becomes yi = Xiβ + Fλi + εi, which can be

estimated by using Bai’s (2009) procedure. Given the number of common factors, the
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parameters {β, F,Λ} are estimated by minimizing the least-squares objective function

{β̂, F̂ , Λ̂} = argmin{β,F,Λ}
∑N

i=1
∥yi −Xiβ − Fλi∥2.

Then, the heterogeneous panel regression of the restricted residuals is ε̂i = Xiφi+ηi,

where for each unit, the coefficient of predictors φi can be regarded as the slope

parameter. Under the null, it is expected that φi = 0. Assuming that ηi are

independent and identically distributed with N(0, σ2), across i, they maximize the

Gaussian quasi log-likelihood of the restricted residuals. This is equivalent to finding

{φ̂1, ..., , φ̂N} = argmin{φ1,...,,φN}
∑N

i=1
∥ε̂i−Xiφi∥2. The test of slope homogeneity can

be based on the LM statistic

LMNT =
1√
N

N
∑

i=1

ε̂′iXi(X
′
iXi)

−1X ′
iε̂i.

Su and Chen (2013) showed that, under the null hypothesis H0,

JNT = (LMNT − BNT )/V
1/2
NT (4)

asymptotically follows the standard normal distribution. Here BNT and VNT are esti-

mated by

B̂NT =
1√
N

N
∑

i=1

T
∑

t=1

ε̂2itĥi,tt and V̂NT =
4

T 2N

N
∑

i=1

T
∑

t=2

(

ε̂itb̂it

t−1
∑

s=1

b̂isε̂is

)

,

where ĥi,tt denotes the t-th diagonal element of Ĥi = MF̂Xi(X
′
iXi)

−1X ′
iMF̂ , and b̂it =

(X ′
iXi/T )

−1/2(xit −
∑T

s=1
f̂

′
tf̂ sxit).

One of the crucial differences between Su and Chen’s (2013) test and our proposed

test is that their test has a narrower tolerance to the relationship between N and T .

Their conditions N3/4/T → 0 and T 2/3/N → 0 as N, T → ∞ are stronger than ours,√
T/N → 0. Using Monte Carlo experiments, we demonstrate that our proposed test

has the correct size and satisfactory power, while that of Su and Chen (2013) suffers

size distortion because of the violation of their conditions on the relationship between

N and T .

3 A new procedure for testing slope homogeneity

3.1 Model

Consider a high-dimensional panel data model, with a large number of cross-sectional

units N , and a large number of time periods T , yi = Xiβi + ui in (1). In this paper,

we assume that the error term contains multifactor structures:

ui = Fλi + εi, , i = 1, ..., N, (5)
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where

F =











f ′
1

f ′
2

...
f ′

T











, λi =











λi1

λi2
...
λir











, εi =











εi1
εi2
...
εiT











,

where f t is an r × 1 vector of unobservable common factors, λi is the factor loading,

and εit are the idiosyncratic errors. In the next section, we describe the assumptions

under the null and alternative hypotheses.

3.2 Assumptions

We state the assumptions needed for the asymptotic analysis.

Assumption A: Common factors

The common factors satisfy E∥f t∥4 < ∞. Furthermore, T−1
∑T

t=1
f tf t

′ → ΣF as

T → ∞, where ΣF is an r × r positive definite matrix.

Assumption B: Factor loadings

The factor-loading matrix Λ = [λ1, . . . ,λN ]
′ satisfies E∥λ4

i ∥ < ∞ and ∥N−1Λ′Λ −
ΣΛ∥ → 0 as N → ∞, where ΣΛ is an r × r positive definite matrix.

Assumption C: Error terms

There exists a positive constant C < ∞ such that for all N and T ,

(1): E[εit] = 0, E[|εit|8] < C for all i and t;

(2): εit and εjs are independent, for i ̸= j and t ̸= s.

(3): For every (s, t), E[|N−1/2
∑N

i=1
(εisεit − E[εisεit])|4] < C.

(4): εit is independent of xjs, λi, and f s for all i, j, t, s.

Assumption D: Predictors

We assume E∥xit∥4 < C. The p × p matrix 1

T
[X ′

iMF 0Xi] is positive definite, where

MF = I −F (F ′F )−1F ′, and MF0
is equal to MF evaluated at the true common factors

F 0. Furthermore, we define Ai =
1

T
X ′

iMFXi, Bi = (λiλ
′
i)⊗ IT , Ci =

1√
T
λ′

i ⊗ (X ′
iMF ).

Let A be the collection of F such that A = {F : F ′F/T = I}. We assume

infF∈A

[ 1

N

N
∑

i=1

Ei(F )
]

is positive definite, (6)

where Ei(F ) = Bi − C ′
iA

−
i Ci and A−

i is the generalized inverse of Ai.
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Assumption E: Central limit theory

We assume

1√
T
X ′

iMF 0εi →d N(0,Ωi),

where Ωi is the probability limit of (as T goes to infinity)

1

T
E[X ′

iMF 0εiε
′
iMF 0Xi].

Remark 1 Assumptions A and B above are commonly imposed on the panel data

model (1). The full rank assumptions of ΣF and ΣΛ imply the number of common

factors is r. Assumption C allows heteroskedasticity in the idiosyncratic errors εi.

Assumptions D and E above are imposed for deriving the asymptotic distributions of

the slope coefficients (see Bai (2009), Song (2013), Ando and Bai (2014)).

We consider estimating the model (1) with factor structure (5) under the null and

alternative hypotheses, respectively. Under the null hypothesis, we can estimate the

common slope coefficient β by using the procedure in Bai (2009). Under the alternative,

we employ the estimation procedure in Song (2013) and Ando and Bai (2014). Given

the number of common factors r, we minimize the least-squares objective function

ℓ(β1, . . . ,βN , F,Λ) =
N
∑

i=1

∥yi −Xiβi − Fλi∥2 (7)

subject to the constraints on the factors and its loadings (see Connor and Korajczyk

(1986), Bai and Ng (2002), Bai (2009)). The number of common factors can be selected

by the Cp criterion, proposed in Ando and Bai (2014). Thus, we can compare the

restricted and unrestricted estimators of the slope coefficients.

3.3 A new slope homogeneity test

To test slope homogeneity, we consider Swamy’s test statistic. Swamy’s (1970) test

of slope homogeneity calculates the dispersion of individual slope estimates from a

suitable pooled estimator (also see Pesaran and Yamagata (2008)). In our setting,

Swamy’s test statistic applied to the slope coefficients can be written as

Γ̂ =
T (β̂ − β̄1N

)′
(

Ŝ − 1

N
L̂′
)

Ω̂−1

(

Ŝ − 1

N
L̂
)

(β̂ − β̄1N
)−Np

√
2Np

, (8)

where β̂
′
= (β̂

′
1, ..., β̂

′
N), β̄

′
1N

= (β̄
′
, ..., β̄

′
), β̄ =

∑N
i=1

β̂i/N , and β̂i are obtained by

minimizing (7), Ŝ is anNp×Np block diagonal matrix with ith block (X ′
iMF̂Xi)/T , and
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L̂ is an Np×Np matrix with ij-th block âij(X
′
iMF̂Xj)/T with âij = λ̂

′
j(Λ̂

′Λ̂/N)−1λ̂j

and Ω̂ is the variance–covariance estimator of Ω given as

Ω =











Ω1

Ω2

. . .

ΩN











, (9)

and Ωi is the variance–covariance matrix of X ′
iMF0

εi/
√
T , i = 1, ..., N . The following

theorem provides the asymptotic distribution of Γ̂ under the null hypothesis.

Theorem 1 Suppose that Assumptions A–E and
√
T/N → 0 hold. Then, under H0,

Γ̂ → N(0, 1) in distribution,

as T,N → ∞.

The proof of Theorem 1 is provided in the Appendix. The proposed test is simple

to implement as it has a limiting N(0, 1) distribution. This result holds even under

the cross-sectional correlations and heteroskedasticity in ui.

Remark 2 Under the null H0, we need the value of the true common slope coefficients

β0, for which we use β̄ =
∑N

i=1
β̂i/N where β̂i are obtained by minimizing (7). Note

that we can also employ Bai’s (2009) estimator β̂. Because these two provide similar

results, we thus report only the use of β̄.

Remark 3 To calculate Γ̂, we need to estimate the variance–covariance matrix of

X ′
iMF0

εi/
√
T , Ωi in (9). The following provides a practical calculation method for Ωi.

Case 1: Homoskedastic errors over i and t

In this case, Ωi is given as Ωi = σ2Sii with σ2 = Var(εit). In the absence of serial

correlation and heteroskedasticity, the common variance can be estimated by

σ̂2 =
1

NT −Np− (N + T )r

N
∑

i=1

T
∑

t=1

(yit − x′
itβ̂i − f̂

′
tλ̂i)

2.

Case 2: Heteroskedastic errors over i

The i-th block diagonal element of Ω, Ωi, is given as Ωi = σ2
i Sii with σ2

i = Var(εit).

The variance can be estimated as

σ̂2
i =

1

T − p

T
∑

t=1

(yit − x′
itβ̂i − f̂

′
tλ̂i)

2.

Case 3: Heteroskedastic errors over i and t

If the idiosyncratic errors εit are heteroskedastic over i and t (i.e., E[εit] = σ2
it), then

Ω̂i = T−1
∑T

t=1
x̂itx̂

′
itε̂

2
it, where x̂it is the t-th row of MF̂Xi. Furthermore, with serial

correlation, we can also use the method of Blomquist andWesterlund (2013) to compute

Ωi.
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Remark 4 A simpler version of the test statistic is

Γ̃ =

∑N
i=1

T (β̂i − β̄)′SiiΩ̂
−1
i Sii(β̂i − β̄)

[

1− λ̂
′
i(Λ̂

′Λ̂)−1λ̂i

]2

−Np
√
2Np

. (10)

Under Assumptions A–E and
√
T/N → 0, the Γ̃ asymptotically follows the standard

normal distribution under the null H0. The proof of this claim is provided in the

Appendix.

4 Simulation

In this section, we conduct a Monte Carlo simulation to evaluate the finite sample

performance of our testing procedure. As a performance comparison, we considered

Pesaran and Yamagata’s (2008) ∆ test statistics ∆̂ in (2) and ∆̃ in (3), and Su and

Chen’s (2013) residual-based LM test in (4). Pesaran and Yamagata (2008) assume

that uit are mutually uncorrelated over i and t. Although Su and Chen (2013) allow

cross-sectional dependence through the factor structure among uit, their conditions on

the relationship between N and T are stronger than ours.

4.1 Data generating processes

GDP1: The first data generating process considered is yit = x′
itβi + uit and uit =

f ′
tλi+ εit, where the r(= 2)-dimensional factor f t is a vector of N(0, 1) variables, each

element of the factor-loading vector λi follows N(0, I), and the noise term εit is also

generated from N(0, 1). Setting p = 2, each of the elements of Xi is generated from

the uniform distribution over [−2, 2]. Under the null H0, the true parameter vectors

βi were set to βi = (−1/2, 1/2)′, i = 1, ..., N . Under the alternative H1, the true

parameter vectors βi were set to βi = (βi1, 1/2)
′ with βi1 being generated from the

uniform distribution over [1, 1.5].

GDP2: As the second example, we investigated the performance of the proposed

testing procedure when the predictors and the unobservable factor structures have

dependency. We generated the predictors as follows:

xit,1 = 0.2 + 0.3f ′
tλi + εxit,1, and xit,2 = 0.5 + 0.5f ′

tλi + εxit,2,

where εxit,1 and εxit,2 are independently generated from the standard normal distribution.

The other variables are defined as before. The key feature of this model is that the

noise ui and predictors Xi are correlated.

4.2 Results

We consider various configurations of (N, T ). For a given configuration of (N, T ), we

generate 2,000 replications from each of the two data generating models. Our test
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statistics Γ̂ in (8) and Γ̃ in (10) are calculated under the true number of common

factors r = 2 in our testing procedure, as it can be identified by the Cp criterion of

Ando and Bai (2014).

Theorem 1 suggests that our test statistic Γ̂ in (8) is asymptotically normal with

mean 0 and standard deviation 1, when the null hypothesis of slope homogeneity is

satisfied. Therefore, we reject the null hypothesis if the absolute value of our test

statistic exceeds the critical value at α based on the normal distribution. We focus on

the rejection frequency at an α = 5% nominal level for our test across 2,000 simula-

tions. Furthermore, we check the finite sample power rejection frequency of our testing

procedure under the alternative.

The finite sample properties of the proposed test under each of the data generating

processes are summarized in Tables 1–3. Each column reports the rejection frequency

(= the number of rejections/2,000) under the null H0 and alternative H1. Table 1

provides the results for the first data generating process, and gives the size and power

for a wide range of N and T . The results for ∆̂ and ∆̃ are in line with those of Pesaran

and Yamagata (2008). Furthermore, the LM results are in line with those of Su and

Chen (2013).

Table 1 suggests that the level of our test behaves reasonably well as the size of the

panel increases N, T → ∞. When the null hypothesis does not hold, Table 1 suggests

our test statistics Γ̂ and Γ̃ have higher power than those of ∆̂ and ∆̃ under small T

and N .

However, we can see the clear advantages of our testing procedure in Table 2. Under

the null, Pesaran and Yamagata’s (2008) testing procedure rejects the null in almost

all cases. In contrast, our testing procedure has nice size control and power for all

combinations of N and T . This difference arises because xit and the factor structure

are correlated in the second data generating process. Our test permits this correlation.

Su and Chen’s (2013) procedure works well in general. There is, however, a tendency

of size distortion when N is relatively large with respect to T , for example, T = 50

and N = 200. A possible reason is that their test imposes the following conditions:

N3/4/T → 0 and T 2/3/N → 0 as N, T → ∞. In general, these conditions are sufficient,

and they are not necessary. Nevertheless, they imply a relatively narrow band between

N and T . To verify this, we further compared the size and power of all tests under large

N. Under much larger N relative to T , the finite sample properties of the proposed test

are summarized in Table 3. Under the second data generating process with (N, T ) =

(200, 20), the finite sample rejection frequencies at an α = 5% nominal level for our

test were 0.06 under the null H0 and 0.72 under the alternative H1. However, those of

Su and Chen’s (2013) test are 0.35 under the null H0 and 0.96 under the alternative

H1. It can be seen that our proposed test still provides correct size, while a size

distortion is observed with Su and Chen’s (2013) test. This difference arises because of

11



the relationship between N and T . Similar observations can be made for Pesaran and

Yamagata’s (2008) ∆̂ test statistic. As ∆̃ needs the weaker condition
√
N/T 2 → 0,

the ∆̃ procedure has nice size control under the first DGP, but not under the second

DGP, as before.

5 Conclusion

In this paper we examined the problem of testing slope homogeneity in a high-dimensional

panel data model. We developed testing procedures based on the Swamy’s (1970) test

principle. Our testing procedure allows cross-sectional dependence as well as the de-

pendence between the predictors and unobservable factor structures. Monte Carlo

experiments suggest that the proposed method is a useful testing procedure for detect-

ing slope homogeneity in high-dimensional panel data in which both the time dimension

and the cross-sectional dimension are large.
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Appendix 1: Proof of Theorem 1. Suppose that β̂i is obtained by mini-

mizing the least-squares objective function in (7). Let Sii = (X ′
iMF 0Xi)/T , Lij =

aij(X
′
iMF 0Xj)/T with aij = λ0

j

′
(Λ0′Λ0/N)−1λ0

j and ζi = X ′
iMF 0εi/

√
T . Song (2013)

rigorously showed that under
√
N/T → 0,

√
T (β̂i − β0

i ) = S−1
ii ζi + S−1

ii

1

N

N
∑

j=1

Lij

√
T (β̂j − β0

j) + op(1), i = 1, ..., N,

which implies

√
T











β̂1 − β0
1

β̂2 − β0
2

...

β̂N − β0
N











=











S−1
11

S−1
22

. . .

S−1

NN





















ζ1

ζ2

...
ζN











+
1

N











S−1
11

S−1
22

. . .

S−1

NN





















L11 L12 · · · L1N

L21 L22

. . . L2N
...

. . . . . .
...

LN1 LN2 · · · LNN





















√
T (β̂1 − β0

1)√
T (β̂2 − β0

2)
...√

T (β̂N − β0
N)











+ op(1).

We can express the above formula as

√
T (β̂ − β0) = S−1ζ +

1

N
S−1L

√
T (β̂ − β0) + op(1), (11)

where β̂
′
= (β̂

′
1, ..., β̂

′
N), β

0′ = (β0
1

′
, ...,β0

N

′
), ζ ′ = (ζ ′

1, ..., ζ
′
N), S is an Np×Np block

diagonal matrix with ith block Sii, and L is an Np×Np matrix with ij-th block Lij.
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Let Ω be the variance–covariance matrix of ζ, that is block diagonal matrix,

Ω =











Ω1

Ω2

. . .

ΩN











, (12)

where Ωi is the variance–covariance matrix of ζi.

From (11), we then have

Ω−1/2

(

S − 1

N
L

)√
T (β̂ − β0) = Ω−1/2ζ + op(1),

which implies

T (β̂ − β0)′
(

S − 1

N
L′
)

Ω−1

(

S − 1

N
L

)

(β̂ − β0) = ζ ′Ω−1ζ + op(1).

From Assumption (E), ζ ′Ω−1ζ in the last line asymptotically follows a chi-squared

distribution with Np degrees of freedom. Because the noise terms are cross-sectionally

independent as in Assumption (C), by the central limit theorem, we have

ζ ′Ω−1ζ −Np√
2Np

→ N(0, 1).

It can be shown that replacing β0 by β̄1N
, and the unknown elements in S, L, and

Ω by their estimators, the same asymptotic representation holds. This completes the

proof of Theorem 1.

Appendix 2: Proof of (10). The test statistic Γ̂ is derived by correcting bias for

the whole system (joint bias). If we correct the individual parameter β̂i for each i,

then from
1

N
S−1
ii Lii =

1

N
aiiIp = λ0

i

′
(Λ0′Λ0)−1λ0

i Ip,

we have √
T (β̂i − β0

i ) = S−1
ii ζi +

1

N
aii

√
T (β̂i − β0

i ) + op(1).

The reason that this approximation works is that the weighted average of (β̂j − β0
j)

for j ̸= i,

S−1
ii

1

N

∑

j ̸=i

Lij

√
T (β̂j − β0

j),

is of small magnitude, and is also uncorrelated with the leading term ζi. This leads to

Sii

√
T (β̂i − β0

i )(1− aii/N) = ζi + op(1),
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or

Ω
−1/2
i Sii

√
T (β̂i − β0

i )(1− aii/N) = Ω
−1/2
i ζi + op(1).

We thus have

T (β̂i − β0
i )

′SiiΩ
−1Sii(β̂i − β0

i )(1− aii/N)2 = ζ ′
iΩ

−1
i ζi + op(1),

for i = 1, ..., N . Again, ζ ′
iΩ

−1
i ζi follows a chi-squared distribution with p degrees of

freedom from Assumption (E). Using Assumption (C) and the central limit theorem,

we have Γ̃ → N(0, 1). This completes the proof.

15



Table 1: Finite sample properties of the proposed test under the first data generating
process. Each column reports the rejection frequency under the null H0 and alternative
H1. Critical level is set as α = 5%. Γ̂: the proposed test statistic in (8), Γ̃: the proposed
test statistic in (10), ∆̂: the test procedure of Pesaran and Yamagata (2008) in (2), ∆̃:
the test procedure of Pesaran and Yamagata (2008) in (3) and LM: the residual-based
Lagrangian Multiplier test of Su and Chen (2013) in (4).

Rejection frequency under H0

T N Γ̂ Γ̃ ∆̃ ∆̂ LM
50 50 0.02 0.02 0.02 0.04 0.06
50 100 0.02 0.02 0.02 0.07 0.07
50 200 0.03 0.03 0.03 0.09 0.09
100 50 0.02 0.02 0.03 0.05 0.04
100 100 0.03 0.02 0.02 0.04 0.05
100 200 0.03 0.02 0.03 0.07 0.06
200 50 0.01 0.01 0.02 0.02 0.03
200 100 0.02 0.02 0.02 0.03 0.05
200 200 0.03 0.03 0.03 0.04 0.05

Rejection frequency under H1

T N Γ̂ Γ̃ ∆̃ ∆̂ LM
50 50 0.91 0.91 0.42 0.57 0.92
50 100 1.00 1.00 0.71 0.88 1.00
50 200 1.00 1.00 0.96 1.00 1.00
100 50 1.00 1.00 0.92 0.95 1.00
100 100 1.00 1.00 1.00 1.00 1.00
100 200 1.00 1.00 1.00 1.00 1.00
200 50 1.00 1.00 1.00 1.00 1.00
200 100 1.00 1.00 1.00 1.00 1.00
200 200 1.00 1.00 1.00 1.00 1.00
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Table 2: Finite sample properties of the proposed test under the second data generating
process. Each column reports the rejection frequency under the null H0 and alternative
H1. Critical level is set as α = 5%. Γ̂: the proposed test statistic in (8), Γ̃: the proposed
test statistic in (10), ∆̂: the test procedure of Pesaran and Yamagata (2008) in (2), ∆̃:
the test procedure of Pesaran and Yamagata (2008) in (3) and LM: the residual-based
Lagrangian Multiplier test of Su and Chen (2013) in (4).

Rejection frequency under H0

T N Γ̂ Γ̃ ∆̃ ∆̂ LM
50 50 0.02 0.02 1.00 1.00 0.02
50 100 0.03 0.03 1.00 1.00 0.07
50 200 0.03 0.03 1.00 1.00 0.10
100 50 0.01 0.01 1.00 1.00 0.02
100 100 0.03 0.03 1.00 1.00 0.04
100 200 0.03 0.04 1.00 1.00 0.07
200 50 0.01 0.01 1.00 1.00 0.02
200 100 0.02 0.02 1.00 1.00 0.03
200 200 0.03 0.03 1.00 1.00 0.04

Rejection frequency under H1

T N Γ̂ Γ̃ ∆̃ ∆̂ LM
50 50 0.73 0.74 1.00 1.00 0.86
50 100 0.96 0.96 1.00 1.00 1.00
50 200 1.00 1.00 1.00 1.00 1.00
100 50 1.00 1.00 1.00 1.00 1.00
100 100 1.00 1.00 1.00 1.00 1.00
100 200 1.00 1.00 1.00 1.00 1.00
200 50 1.00 1.00 1.00 1.00 1.00
200 100 1.00 1.00 1.00 1.00 1.00
200 200 1.00 1.00 1.00 1.00 1.00
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Table 3: Finite sample properties of the proposed test under large number of units N
compared with the length of time series T . Each column reports the rejection frequency
under the null H0 and alternative H1. Critical level is set as α = 5%. Γ̂: the proposed
test statistic in (8), Γ̃: the proposed test statistic in (10), ∆̂: the test procedure of
Pesaran and Yamagata (2008) in (2), ∆̃: the test procedure of Pesaran and Yamagata
(2008) in (3) and LM: the residual-based Lagrangian Multiplier test of Su and Chen
(2013) in (4).

Rejection frequency under H0

T N Γ̂ Γ̃ ∆̃ ∆̂ LM
DGP 1 20 200 0.02 0.02 0.03 0.43 0.24

50 500 0.04 0.04 0.01 0.15 0.10
50 800 0.04 0.04 0.02 0.31 0.29

DGP 2 20 200 0.06 0.06 1.00 1.00 0.35
50 500 0.04 0.04 1.00 1.00 0.14
50 800 0.04 0.04 1.00 1.00 0.25

Rejection frequency under H1

T N Γ̂ Γ̃ ∆̃ ∆̂ LM
DGP 1 20 200 0.87 0.87 0.29 0.95 0.97

50 500 1.00 1.00 1.00 1.00 1.00
50 800 1.00 1.00 1.00 1.00 1.00

DGP 2 20 200 0.72 0.72 1.00 1.00 0.96
50 500 1.00 1.00 1.00 1.00 1.00
50 800 1.00 1.00 1.00 1.00 1.00
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