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Abstract

The factor-augmented vector autoregressive (FAVAR) model, first proposed by

Bernanke, Bovin, and Eliasz (2005, QJE), is now widely used in macroeconomics and

finance. In this model, observable and unobservable factors jointly follow a vector

autoregressive process, which further drives the comovement of a large number of ob-

servable variables. We study the identification restrictions in the presence of observable

factors. We propose a likelihood-based two-step method to estimate the FAVAR model

that explicitly accounts for factors being partially observed. We then provide an infer-

ential theory for the estimated factors, factor loadings and the dynamic parameters in

the VAR process. We show how and why the limiting distributions are different from

the existing results.
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1 Introduction

Since the seminal work of Sims (1980), vector autoregressive (VAR) models have played

an important role in macroeconomic analysis. Because the number of parameters in a

VAR system increases rapidly with the number of variables, there is a degree-of-freedom

problem when too many variables are included in the system. On the other hand, too few

variables may not fully capture the dimension of the structural shocks. These problems

may explain some puzzling empirical results in the body of VAR research. For example,

various studies commonly find that a contractionary monetary policy often leads to an

increase of the price level, rather than a decrease as the standard economic theory alleges

(see Sims (1992) and Christiano, Eichenbaum and Evans (1999)). Sims (1992) proposes a

plausible interpretation of this puzzle, suggesting that it results from the VAR analysis not

fully capturing the information. Including more series in a VAR model is limited because

of the loss of degrees of freedom.1 Furthermore, as Stock and Watson (2005) point out, it

is doubtful that the larger VAR models with some potentially incredible restrictions would

be superior to the smaller ones.

Bernanke, Boivin and Eliasz (2005) propose a factor-augmented vector autoregressive

(FAVAR) model to address the dilemma arising from the information deficiency and the

degree-of-freedom problem in traditional VAR models. In contrast with such models, the

FAVAR model includes unobserved low-dimensional factors in the autoregression. These

factors, which may not be captured by some specific macroeconomic aggregates, are thought

to contain the bulk of information about an economy. With inclusion of these unobserved

factors, the FAVAR model is of rich information, but remains tractable in terms of the

number of parameters, owing to the low dimension of the factors. The FAVAR model is

now widely used in economic applications.2 Despite its wide applicability, important issues

remain to be addressed.

We first derive the number of restrictions needed in the presence of observable factors,

and then consider how to impose these restrictions. Two types of restrictions may be

considered. One type involves restrictions on the sample moments of factor process, the

other involves restrictions on the population moments of the factor process. The first

type is more appropriate for factors being a sequence of fixed constants, e.g., Bai and

Li (2012a). The second type is more appropriate for factors being a random sequence.

Similar issue was discussed by Anderson (2003, page 571). In FAVAR models, since the

factors are stochastic processes, restrictions on population variance are more reasonable

1The Bayes method is alternatively considered (Doan, Litterman and Sims (1984), Litterman (1986),
Sims (1993)), and by imposing some prior restrictions, the usual VAR model can accommodate more
variables (e.g., Leeper, Sims and Zha (1996)).

2For example, Boivin, Giannoni and Mihov (2009), Bianchi, Mumtaz and Surico (2009), Forni and
Gambetti (2010), Moench (2008), Ludvigson and Ng (2009), to name a few. Large dimensional factor
models are also increasingly used outside macroeconomics and fiance, for example, Fan, Liao and Mincheva
(2011) and Fan, Liao and Mincheva (2013) and Tsai and Tsay (2010).
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than on sample variance. An important result of this paper is that the two types of

restrictions, although asymptotically equivalent, lead to different limiting distributions for

the estimated factors and factor loadings, as well as different limiting distributions for the

estimated parameters in the VAR process.

The second issue is estimation and the related inferential theory. In the FAVAR litera-

ture, Bernanke, Boivin and Eliasz (2005) and Boivin, Giannoni and Mihov (2009) suggest

a two-step method to estimate a FAVAR model, in which the factors are extracted first

and their dynamics are estimated next. There are no studies on the inferential theory

of the FAVAR model. The deficiency in this respect makes it difficult to construct the

confidence intervals for the impulse response function and to interpret the subsequent eco-

nomic analysis. Possibly for this reason, Bernanke, Boivin and Eliasz (2005) also consider a

bayesian method to estimate the model. However, the burdensome computation procedure

of the Markov chain Monte Carlo (MCMC) method in this context is formidable for many

researchers.

In this paper, we consider the identification, estimation, and inferential theory of the

FAVAR models. We contribute to the FAVAR literature in several ways. First, we inves-

tigate the identification problem of the FAVAR model. Due to the presence of partially

observable factors, the identification problem here differs from those in standard factor

models. We consider three sets of identification conditions. Unlike the usual identification

conditions that are imposed on the sample variance of factors, we put the conditions on

the variance of innovations to factors. These conditions are similar to those in the stan-

dard structural VAR literature. Second, we propose a likelihood-based two-step method

to estimate the FAVAR model, which explicitly takes into account of partial factors being

observed. Using maximum likelihood (ML) method instead of principal components (PC)

method in the first step gives a better estimation of unobserved factors.3 In addition, we

find that the iterative estimation procedure advocated by Boivin, Giannoni and Mihov

(2009) can be avoided. Third, we establish the statistical theory of the two-step estima-

tors including consistency, convergence rates, and the asymptotic representations. We also

give an inferential theory for the impulse response functions. Based on this theory, the

confidence intervals of the impulse response function can be easily constructed.

There are several studies related to our work. Stock and Watson (2005) consider the

identification and estimation issues in the dynamic factor models. Their identification

strategies share with ours the same feature that partial conditions are imposed on the

variance of innovations. But the remaining conditions are different: their conditions are

imposed on the vector moving average representation and ours are imposed on the orig-

inal factor representation. Which identification strategy is preferred depends on specific

applications. Bernanke, Boivin and Eliasz (2005) suggest a timing-exclusion strategy for

3See Bai and Li (2012b) for a comparison of finite sample performance of the ML and PC methods.
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identification. Their strategy may lead to over-identification. Han (2014) proposes a statis-

tic to test the over-identification restrictions. There are additional studies considering the

bootstrap method to construct confidence intervals for factor-augmented models, such as

Goncalves and Perron (2014), Shintani and Guo (2011), Yamamoto (2011). Our theoretical

results also pave ways for future studies in this direction.

The rest of the paper is arranged as follows. Section 2 introduces the FAVAR model

with its identification problem, and examines three sets of identification restrictions; and

presents some regularity conditions. Section 3 states our two-step estimation procedures.

Section 4 presents all the asymptotic properties of our estimators. Section 5 focuses the

impulse response function and its confidence intervals. Section 6 investigates the finite

sample properties of our estimators. Section 7 concludes. Technical proofs are delivered in

the appendix. Throughout the paper, the norm of a vector or matrix is that of Frobenius,

that is, ‖A‖ =
√

[tr(A′A)] for vector or matrix A.

2 The FAVAR models

Let gt be a vector of observable factors, and ft be a vector of latent factors, both of low

dimension. The FAVAR model assumes that gt and ft jointly follow a VAR process. That

is, let ht = (f ′
t, g

′
t)

′, then ht is characterized by a VAR(K) process for some K,

ht = Φ1ht−1 + Φ2ht−2 + · · · + ΦKht−K + ut. (2.1)

In general, neither ft nor gt alone is a finite order VAR process. The FAVAR model further

assumes that a large number of observable variables zt = (z1t, z2t, ..., zNt)
′, dimension of

N × 1, is affected by ht through a factor model

zt = [Λ Γ]

[
ft

gt

]
+ et, (2.2)

where Λ and Γ are the factor loadings with Λ = (λ1, ..., λN )′ and Γ = (γ1, ..., γN )′, and

et = (e1t, e2t..., eNT )′ is the idiosyncratic error. Throughout, we assume ft is of dimension

r1 × 1, gt of r2 × 1 and ht of r = r1 + r2. We consider estimating the factors (ft) and factor

loadings, the variance of the idiosyncratic errors eit, and the dynamic parameters in the ht

process, and derive their limiting distributions under various identification restrictions.

Model (2.1)−(2.2) is the FAVAR model proposed by Bernanke, Boivin and Eliasz

(2005). Equation (2.1) is a standard specification of VAR(K) model, except that the vari-

ables ft are unobservable. The inclusion of unobservable factors is crucial to the FAVAR

model. These unobservable factors usually capture the information of some structural

shocks that are important to the economy but cannot be well represented by specific

macroeconomic aggregates. As mentioned before, omitting unknown structure shocks may

be a primary reason for the failure of the traditional VAR model in some empirical appli-

cations. Equation (2.2) specifies that the common factors ht are related to the observable
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data zt by a factor model. This approach is a plausible way to model the relation between

observable variables zt and the latent variable ft, given the diffusion nature of common

shocks in ht. The FAVAR model can be considered as a special case of Forni et al. (2000),

but with more structures.

2.1 The number of identification restrictions needed

Model (2.1)−(2.2) cannot be fully identified without additional restrictions. To see this,

for any invertible r1 × r1 matrix M11 and r1 × r2 matrix M12, the model can be written as

zt = Λft + Γgt + et = (ΛM11)︸ ︷︷ ︸
Λ∗

(M−1
11 ft −M−1

11 M12gt)︸ ︷︷ ︸
f∗

t

+ (Γ + ΛM12)︸ ︷︷ ︸
Γ∗

gt + et. (2.3)

Then we obtain two observably equivalent models. Since the total number of free pa-

rameters of M11 and M12 is r2
1 + r1r2, we need at least r2

1 + r1r2 restrictions to identity

parameters. A subsequent question is whether r2
1 +r1r2 restrictions are enough. To answer

this question, we first define some notations for ease of exposition. Let

F = (f1, f2, . . . , fT )′, G = (g1, g2, . . . , gT )′, H = (h1, h2, . . . , hT )′ = [F,G].

The following proposition shows that the preceding question has a definite answer.

Proposition 2.1 Suppose that H is of full column rank, the number of restrictions needed

to fully identify model (2.2)−(2.1) is (r2
1 + r1r2).

Proof. Let M be any invertible r × r rotation matrix, partitioned as

M =

[
M11 M12

M21 M22

]

where M11,M22 are r1 × r1 and r2 × r2 square matrices, respectively. Then equation (2.2)

can be written as

zt = [Λ Γ]

[
ft

gt

]
+ et = [Λ Γ]

[
M11 M12

M21 M22

]−1 [
M11 M12

M21 M22

] [
ft

gt

]
+ et.

Let h†
t = Mht. If M is a qualified rotation matrix, the lower r2 elements of h†

t should be

gt. This gives [
f †

t

gt

]
=

[
M11 M12

M21 M22

] [
ft

gt

]
,

implying gt = M21ft +M22gt, or equivalently

[M21 (M22 − Ir2
)]

[
ft

gt

]
= 0,

for t = 1, 2, . . . , T . The above result is equivalent to

[M21 (M22 − Ir2
)]H ′ = 0.
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If H is of full column rank, by post-multiplying H(H ′H)−1, we have M21 = 0,M22 =

Ir2
. This result indicates that, to fully identify the parameters, we only need to uniquely

determine the matrix M11 and M12, whose number of free parameters is exactly r2
1 + r1r2.

This proves the proposition. �

2.2 Identification restrictions

The identification problem brings advantages and disadvantage to the FAVAR model. On

one hand, it causes difficulties in interpreting the model in a universal way; on the other

hand, the model has flexibility to fit specific situations through a careful design of the

identification strategy. In what follows, we consider three sets of identification restrictions,

which we think are of practical relevance. We first introduce the following notations:

ut =

[
εt

υt

]
; Ω = E(utu

′
t) =

[
E(εtε

′
t) E(εtυ

′
t)

E(υtε
′
t) E(υtυ

′
t)

]
=

[
Ωεε Ωευ

Ωυε Ωυυ

]
(2.4)

ht =

[
ft

gt

]
; ∆ = E(hth

′
t) =

[
E(ftf

′
t) E(ftg

′
t)

E(gtf
′
t) E(gtg

′
t)

]
=

[
∆ff ∆fg

∆gf ∆gg

]

where εt and υt are the innovations corresponding to ft and gt respectively. We consider

the following three sets of identification restrictions.

IRa The underlying parameter values θ satisfy: Ωεε = Ir1
, Ωευ = 0 and 1

N Λ′Σ−1
ee Λ = Q,

where Q is a diagonal matrix with its diagonal elements being distinct and arranged

in descending order.

IRb The underlying parameter values θ satisfy: Ωεε = Ir1
,Ωευ = 0 and Λ1 is a lower

triangular matrix, where Λ1 is the upper r1 × r1 submatrix of Λ.

IRc The underlying parameter values θ satisfy: Ωευ = 0 and Λ1 = Ir1
, where Λ1 is the

upper r1 × r1 submatrix of Λ.

Each set of identification restrictions imposes r2
1 + r1r2 restrictions. There are no

restrictions on Ωυυ as υt is the reduced form residual from the observable gt. In the next

subsection, we explain why it is possible to assume Ωευ = 0.

Remark 2.1 In factor analysis, Anderson (2003, page 571) considers both types of restric-

tions E(ftf
′
t) = Ir1

and 1
T

∑T
t=1 ftf

′
t = Ir1

. The former restriction is considered population

restriction, and the latter is considered sample version restriction. In our case, since we

have dynamics in ht, the errors εt correspond to ft. Because we assume the errors are

random, it is reasonable to make populational assumptions rather than sample version

restrictions. However, as we will show, though E(εtε
′
t) = Ir1

and 1
T

∑T
t=1 εtε

′
t = Ir1

are

asymptotically equivalent, they imply different distributions for the estimated factor load-

ings and the estimated factors ft. The population version restriction implies larger variance

than the sample version restriction.
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2.3 Discussions on the identification restrictions

We give some discussions on the preceding identification restrictions, especially the reason

that we can impose the restriction Ωευ = 0. Suppose the original FAVAR model is

zt = [Λ† Γ†]

[
f †

t

gt

]
+ et,

h†
t = Φ†

1h
†
t−1 + Φ†

2h
†
t−2 + · · · + Φ†

Kh
†
t−K + u†

t

where h†
t =

[
f †

t

gt

]
and u†

t =

[
ε†

t

υt

]
with the variance matrix Ω† = E(u†

tu
†′
t ) =

[
Ω†

εε Ω†
ευ

Ω†
υε Ωυυ

]
.

Note that this original VAR representation is in a reduced form with Ω†
υε 6= 0. Let A be a

rotation matrix defined as A =

[
(Ω†

εε·υ)−1/2 −(Ω†
εε·υ)−1/2Ω†

ευΩ−1
υυ

0 Ir2

]
, then the new FAVAR

model after rotation is

zt = [Λ† Γ†]A−1

︸ ︷︷ ︸
[Λ Γ]

· A
[
f †

t

gt

]

︸ ︷︷ ︸[
ft

gt

]
≡ht

+et,

Ah†
t︸︷︷︸

ht

= AΦ†
1A

−1

︸ ︷︷ ︸
Φ1

·Ah†
t−1︸ ︷︷ ︸

ht−1

+AΦ†
2A

−1

︸ ︷︷ ︸
Φ2

·Ah†
t−2︸ ︷︷ ︸

ht−2

+ · · · +AΦ†
KA

−1

︸ ︷︷ ︸
ΦK

·Ah†
t−K︸ ︷︷ ︸

ht−K

+Au†
t︸︷︷︸

ut

where we use the notation without † to denote the new parameters. Note that the observ-

able factor gt and the corresponding innovation υt do not change. Let Ω be the variance

matrix of the new innovation ut =

[
εt

υt

]
, then Ω = AΩ†A′ =

[
Ir1

0
0 Ωυυ

]
, where the new

innovations satisfy Ωεε = Ir1
and Ωευ = 0. Consequently our imposed identification re-

strictions on the innovations as stated in the previous subsection are reasonable. The new

factor ft = (Ω†
εε·υ)−1/2f †

t − (Ω†
εε·υ)−1/2Ω†

ευΩ−1
υυ
gt is now a linear combination of f †

t and gt.

With some appropriate restrictions on the new loadings [Λ Γ], the factor ft can now have

economic meanings with additional identification restrictions.

The three different identification restrictions in the previous subsection can be inter-

preted as follows.

IRa requires that Λ′Σ−1
ee Λ be diagonal, which is often used in the maximum likelihood

estimation, see Lawley and Maxwell (1971). This identification condition is important

in terms of the statistical analysis, it can also be of economic interest in some specific

cases, as pointed out in Bai and Ng (2013). For example, Λ is block diagonal such as

Λ = [π1, 0; 0, π2], where πi is a vector (or matrix) of Ni elements with N1 + N2 = N . In

this case, the first factor only affects the first N1 variables, and the second factor only

affects the next N2 variables. Each variable is affected by only a single factor, but we

do not need to know which variable is affected by which factor; we have Λ′Σ−1
ee Λ being

diagonal under arbitrary cross-sectional permutation of individuals.
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IRb shares the same feature with IRa by imposing the restrictions on the variance of ut.

In addition, it restricts Λ1 to being a lower triangular matrix. This allows IRb to endow

economic implications with the unobserved factors. Under IRb, only the first unobservable

factor affects the first variable, the first two unobservable factors affect the second vari-

able, etc. This scheme somewhat resembles the recursive identification in structural VAR

analysis. Through careful selection of the first r1 variables, the unobservable factors are

now explainable.

IRc restricts the upper r1×r1 matrix to being an identity matrix. Since more restrictions

are imposed on the factor loadings Λ, IRc relinquishes the requirement that the innovations

to the unobservable factors be orthogonal and have unit variance. Under IRc, the first

unobservable factor affects only the first series, the second unobservable factor affects only

the second series, etc.

Overall, the identification restrictions considered in this paper share the feature that

they impose restrictions on the loadings Λ and the variance of the innovations to ht. This is

in contrast with the usual identification conditions in factor models, which impose restric-

tions on the loadings and the sample variance of factors; see Anderson and Rubin (1956)

and Bai and Li (2012a) for traditional identification conditions. Imposing restrictions on

innovations instead on factors themselves is important and reasonable because the compo-

nents of ft are correlated while the innovations εt can be assumed uncorrelated, similar to

structural analysis.

2.4 Assumptions

To analyze model (2.2)−(2.1), we make the following assumptions:

Assumption A. The factor ht = (f ′
t, g

′
t)

′ admits a VAR representation (2.1), where ut

is an i.i.d process with E(ut) = 0, var(ut) = Ω > 0 and E(‖ut‖4) < ∞. In addition, all the

roots of the polynomial Φ(L) = Ir − Φ1L− Φ2L
2 − · · · − ΦKL

K = 0 are outside of the unit

circle.

Assumption B. There exists a positive constant C large enough such that

B.1 ‖λi‖ ≤ C < ∞, ‖γi‖ ≤ C < ∞.

B.2 C−2 ≤ σ2
i ≤ C2 for all i.

B.3 lim
N→∞

1
N Λ′Σ−1

ee Λ = Q exists and is a positive-definite matrix, where Σee is defined in

Assumption C.

Assumption C. E(et) = 0; E(ete
′
t) = Σee = diag(σ2

1, σ
2
2, . . . , σ

2
N ); E(e4

it) < ∞ for all i

and t. The eit are independent over i and t. The N × 1 vector et is identically distributed

over t. Furthermore, eit is independent with us for all i, t, s.
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Assumption D. Variances σ2
i are estimated in the compact set [C−2, C2].

Assumption A makes the regularity conditions on factors. It requires factor ht to be

stationery over t. It also guarantees that H = (h1, h2, . . . , hT )′ is of full column rank. So

under Assumption A, Proposition 2.1 holds. Assumption B is made on the factor loadings.

This assumption is standard. Notice that Assumption B requires the columns of Λ to be

linearly independent; otherwise, Q will be a singular matrix. Assumption C centers on the

idiosyncratic errors. Under Assumption C, the correlations over time and cross section are

ruled out. Meanwhile, the heteroscedasticity over time is also precluded. This assumption

can be relaxed to a great extent. In fact, the analysis of this paper can be extended to the

approximate factor models (Chamberlain and Rothschild (1983)). Assumption D requires

σ2
i to be estimated in a compact set. This assumption is due to the high nonlinearity of

the likelihood function, and it is common in the literature for nonlinear problems.

3 Estimation

In this section, we propose a two-step method to estimate the underlying structure param-

eters that satisfy IRa, IRb, or IRc. Some alternative methods can also be used. Bernanke,

Boivin and Eliasz (2005) consider the MCMC method. Boivin, Giannoni and Mihov (2009)

consider the iterated PC-OLS method. Our method directly takes into account that gt is

observable, no iteration is necessary. Also, the MLE-based method is more efficient than

that of PC-based.

To gain insight into our method, write (2.2) into matrix form as

Z = ΛF ′ + ΓG′ + e. (3.1)

Post-multiplying MG = IT −G(G′G)−1G, we have

ZMG = ΛF ′MG + eMG.

Applying the quasi maximum likelihood (ML) estimation method to the model, we obtain

the QMLE Λ̃, Σ̃ee and F̃ . Let f⋆
t = R11(ft − ∆fg∆−1

gg gt), where R11 is a rotation matrix.

It can be shown that f̃t consistently estimate f⋆
t . To recover ft from f⋆

t and gt, we only

need to determine ∆fg and R11, which is achieved by our identification conditions.

The estimation method is formally stated as follows:

1. Apply quasi ML method with Y = ZMG to get quasi ML estimates (QMLE) λ̃i, σ̃
2
i ;

then calculate F̃ = Y ′Σ̃−1
ee Λ̃(Λ̃′Σ̃−1

ee Λ̃)−1 and Γ̃ = (Z − Λ̃F̃ ′)G(G′G)−1, where Σ̃ee =

diag(σ̃2
1, . . . , σ̃

2
N ).

2. Let h̃t = (f̃ ′
t, g

′
t)

′ and run the following regression

h̃t = Φ1h̃t−1 + Φ2h̃t−2 + · · · + ΦK h̃t−K + error (3.2)
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to get the estimator Φ̃1, Φ̃2, . . . , Φ̃K .

3. Let ũt be the residuals of the regression (3.2). Calculate Ω̃ = 1
T̄

∑T
t=K̄ ũtũ

′
t, where

T̄ = T −K and K̄ = K + 1. Then Ω̃εε, Ω̃ευ and Ω̃υυ are obtained by the definition.

Calculate Ω̃εε·υ = Ω̃εε − Ω̃ευΩ̃−1
υυ

Ω̃υε.

4. Estimation under IRa: Let V be the eigenvector matrix of Ω̃
1/2
εε·υ( 1

N Λ̃′Σ̃−1
ee Λ̃)Ω̃

1/2
εε·υ,

whose associated eigenvalues are in descending order. Calculate Λ̂ = Λ̃Ω̃
1/2
εε·υV, Γ̃ +

Λ̃Ω̃ευΩ̃−1
υυ

, F̂ = (F̃ −GΩ̃−1
υυ

Ω̃υε)Ω̃
−1/2
εε·υ V. Further construct R as

R =

[
V ′Ω̃

−1/2
εε·υ −V ′Ω̃

−1/2
εε·υ Ω̃ευΩ̃−1

υυ

0 Ir2

]
.

Then Φ̂p = RΦ̃pR
−1 for p = 1, 2, . . . ,K, and Ω̂υυ = Ω̃υυ.

Estimation under IRb: Let Ω̃
1/2
εε·υΛ̃′

1 = QR be the QR decomposition of Ω̃
1/2
εε·υΛ̃′

1

with Q an orthogonal matrix and R an upper triangular matrix, where Λ̃1 is the

upper r1 × r1 submatrix of Λ̃. The parameters are estimated by Λ̂ = Λ̃Ω̃
1/2
εε·υQ,

Γ̂ = Λ̃Ω̃ευΩ̃−1
υυ

+ Γ̃, F̂ = (F̃ −GΩ̃−1
υυ

Ω̃υε)Ω̃
−1/2
εε·υ Q. Let

R =

[
Q′Ω̃

−1/2
εε·υ −Q′Ω̃

−1/2
εε·υ Ω̃ευΩ̃−1

υυ

0 Ir2

]
.

Then Φ̂p = RΦ̃pR
−1 for p = 1, 2, . . . ,K, and Ω̂υυ = Ω̃υυ.

Estimation under IRc: The parameters are estimated by Λ̂ = Λ̃(Λ̃1)−1, Γ̂ = Γ̃ +

Λ̃Ω̃ευΩ̃−1
υυ

and F̂ = (F̃ −GΩ̃−1
υυ

Ω̃υε)Λ̃′
1. Let

R =

[
Λ̃1 −Λ̃1Ω̃ευΩ̃−1

υυ

0 Ir2

]
.

Then Φ̂p = RΦ̃pR
−1 for p = 1, 2, . . . ,K, and Ω̂υυ = Ω̃υυ, Ω̂εε = Λ̃1Ω̃εε·υΛ̃′

1.

Remark 3.1 The innovations υt do not involve any identification problem and hence are

the same under different identification restrictions, due to the factors gt being observable.

As a result, the estimator Ω̂υυ is the same under different identification restrictions. How-

ever, for the innovations εt, its variance matrix is restricted to being an identity matrix

under IRa and IRb, so we only need estimate Ωεε under IRc. The estimator Ω̂ would be

useful in the construction of the impulse response function in section 5.

Remark 3.2 We explain how we recover ft from f⋆
t (how to obtain f̂t from f̃t) using

the given formula above. We take IRc as the example to illustrate. By f⋆
t = R11(ft −

∆fg∆−1
gg gt), we have F = (F ⋆ +G∆−1

gg ∆gfR
′
11)R−1′

11 . From the estimation procedure, it is

seen that Λ̃−1
1 corresponds to R11. Also notice that
[
ft

gt

]
=

[
R−1

11 ∆fg∆−1
gg

0 I

] [
f⋆

t

gt

]
−→

[
εt

υt

]
=

[
R−1

11 ∆fg∆−1
gg

0 I

] [
ε⋆

t

υ
⋆
t

]

10



(notice that υ
⋆
t = υt), which further implies

[
Ωεε Ωευ

Ωυε Ωυυ

]
=

[
∗ R−1

11 Ω⋆
ευ

+ ∆fg∆−1
gg Ω⋆

υυ

Ω⋆
υεR

−1′
11 + Ω⋆

υυ
∆−1

gg ∆gf Ω⋆
υυ

]
.

By Ωυε = 0, we see that Ω⋆−1
υυ

Ω⋆
υε = −∆−1

gg ∆gfR
′
11. So the term −Ω̃−1

υυ
Ω̃υε is an estimator

of ∆−1
gg ∆gfR

′
11. This justifies the formula F̂ = (F̃ −GΩ̃−1

υυ
Ω̃υε)Λ̃′

1 in IRc.

Remark 3.3 The parameters Λ,Γ,Σee,Φ1, . . . ,Φk and Ω can also be estimated by the

state space method using the Kalman smoother as in Watson and Engle (1983), Quah

and Sargent (1992), and Doz, Giannone, and Reichlin (2012) (though the latter paper

considers homoskedastic eit, it can be extended to heteroskedastic errors). But the state

space method is computationally more demanding than the two-step method here. That

is perhaps the reason that Doz, Giannone, and Reichlin (2011) subsequently also consider

a two-step method. Furthermore, it can be shown that, due to the static relationship

between zit and ht, there is no asymptotic efficiency gain by using the Kalman smoother.

None of these papers study the limiting distributions of the estimators.

Throughout the paper, we use the symbols with a hat to denote the final estimators (for

example, λ̂i, f̂t, Φ̂k) and the symbols with a tilde to denote the intermediate estimators (for

example, λ̃i, f̃t, Φ̃k). Since σ2
i does not have the identification problem, the intermediate

estimator and the final estimator are the same. For this reason, we use the two symbols

interchangeably; that is, σ̂2
i = σ̃2

i and Σ̂ee = Σ̃ee.

4 Asymptotic properties of the estimators

In this section, we deliver the asymptotic results on the two-step estimators. The following

proposition states that the two-step estimators are individually consistent.

Proposition 4.1 Under Assumptions A-D, when N,T → ∞, with any one of identifica-

tion conditions (IRa, IRb or IRc), we have

λ̂i − λi
p−→ 0; γ̂i − γi

p−→ 0; σ̂2
i − σ2

i
p−→ 0; f̂t − ft

p−→ 0; Φ̂k − Φk
p−→ 0,

for each i = 1, 2, . . . , N ; t = 1, 2, . . . , T ; k = 1, 2, . . . ,K.

To give the asymptotic representations for the factor loadings, we introduce the follow-

ing notations. Let V be a r1 × r1 matrix, which is defined as follows:

vec(V ) =





B−1
Q P1D

+
r1

1
T̄

∑T
t=K̄ [εt ⊗ εt − vec(Ir1

)], under IRa

D2
1
T̄

∑T
t=K̄ [εt ⊗ εt − vec(Ir1

)] + D3(Λ1 ⊗ ∆φφ)−1 1
T

∑T
t=1(ξt ⊗ φt), under IRb

−(Ir1
⊗ ∆−1

φφ) 1
T

∑T
t=1 ξt ⊗ φt, under IRc

11



where Dr is the r-dimensional duplication matrix such that Drvech(M) = vec(M) for any

r×r symmetric matrixM andD+
r is its Moore-Penrose inverse; BQ = [2D+′

r1
,
(
K ′

r1
(Ir1

⊗Q)+

Q ⊗ Ir1

)
D′

1]′ where Kr is the r-dimensional commutation matrix such that Krvec(M) =

vec(M ′) for any r × r matrix M and D1 is the matrix such that veck(M) = D1vec(M)

for any symmetric matrix, where veck(M) is the operator that stacks the elements of

M below the diagonal into a vector; P1 = [Ip, 0p×q]′ with p = (r1 + 1)r1/2 and q =

r1(r1 − 1)/2; D2 = Kr1
D∗

r1
(D∗′

r1
S′

r1
Sr1

D∗
r1

)−1D∗′
r1
S′

r1
/2 where D∗ is the matrix such that

vec(M) = D∗
rvech(M) for any lower triangular r× r matrix M and Sr1

is the symmetrizer

matrix such that Sr = (Ir2 +Kr)/2; D3 = 2D2Sr1
− Ir2

1
; Λ1 is the upper r1 × r1 submatrix

of Λ; ∆φφ = E(φtφ
′
t) with φt = ft − ∆fg∆−1

gg gt; ξt = (e1, e2, . . . , er1t)
′.

Given the consistency, we have the following theorem on the asymptotic representation

of the estimator for loadings λ̂i:

Theorem 4.1 Under Assumptions A-D, when N,T → ∞ and
√
T/N → 0, under IRa,

IRb or IRc, we have,

√
T (λ̂i − λi) =

√
TV λi + ∆−1

φφ

( 1√
T

T∑

t=1

φteit

)
+ op(1) (4.1)

where φt = ft − ∆fg∆−1
gg gt and ∆φφ = E(φtφ

′
t), where ∆fg and ∆gg are defined in (2.4).

Remark 4.1 Consider the limiting distribution under IRa. The restrictions under IRa

are similar to those for the principal components estimator. The limiting distribution here

is different from that of the usual PC in several ways. First because of the presence of

observable gt, the “regressors” ft is projected onto gt, and the projection error φt enters

into the distribution. Second, there is an extra term V in the limiting distribution. To

better understand this term, consider the situation in which gt is absent, and the dynamics

in ht is also absent so that ht = ft = εt. The restriction E(εtε
′
t) = Ir becomes E(ftf

′
t) = Ir.

The limiting distribution under IRa would be

√
T (λ̂i − λi) =

√
TV λi +

( 1

T

T∑

t=1

ftft

)−1 1√
T

T∑

t=1

fteit + op(1)

where V depends on 1
T

∑T
t=1 ftf

′
t − Ir. If one imposes the sample version restriction

1
T

∑
t ftf

′
t = Ir, then the first term disappears. This result is consistent with that of

Bai and Li (2012a), where the sample version restriction is considered. Thus restrictions

on sample covariance and restrictions on population covariance lead to different limiting

distributions for the estimated factor loadings. The former restrictions imply a larger lim-

iting variance for λ̂i. Third, because we allow dynamics in ht, the first term V involves the

innovations of εt rather than ft.

Under IRb, the population restriction E(εtε
′
t) = Ir1

continues to affect the limiting

distribution. Now V itself is composed of two expressions. The second expression in V is

analogous to a term in Bai and Li (2012a) under IC5 .

12



Under IRc, there are no restrictions on the population variance of εt, and instead, the

restrictions are imposed on the factor loadings. The limiting distribution is analogous to

that of Bai and Li (2012a) under IC1.

Remark 4.2 Theorem 4.1 shows that the asymptotic representation for λ̂i under different

IRs has a similar expression, which justifies our treatment that the asymptotic properties

for λ̂i under different IRs are studied in a unified framework. The symbol φt in the asymp-

totic representation is the residual of projecting ft on gt. Hence it is orthogonal with gt.

The expression of V is different under different identification restrictions.

To derive the limiting distribution of λ̂i, we consider the covariance between the first and

second term on the right hand side of (4.1). Under IRa, V only involves the VAR innova-

tions εt, then it is independent with the second term which only involves the idiosyncratic

errors eit. Under IRc, we only need to estimate λi with i > r1, so the second term only

involves eit where i > r1. But V involves ξt = (e1t, e2t, · · · , ert), so it is independent with

the second term. Under IRb, for i > r1, these two terms are independent for the same rea-

son as under IRc. But for i ≤ r1, these two terms are correlated. Based on the preceeding

analysis and Theorem (4.1), we have the following corollary.

Corollary 4.1 Under the assumptions of Theorem 4.1, with the normality of ut, we have

Under IRa:
√
T (λ̂i − λi)

d−→ N
(
0, (λ′

i ⊗ Ir1
)2B−1

Q P1(D′
r1
Dr1

)−1P′
1B

−1′
Q (λi ⊗ Ir1

) + σ2
i ∆−1

φφ

)
,

Under IRb: for i > r1,
√
T (λ̂i − λi)

d−→ N
(
0, (λ′

i ⊗ Ir1
)
[
2D2D

′
2 + D3[(Λ′

1Σ−1
ξξ Λ1) ⊗ ∆φφ]−1D′

3

]
(λi ⊗ Ir1

) + σ2
i ∆−1

φφ

)
,

for 1 ≤ i ≤ r1,
√
T (λ̂i − λi)

d−→ N
(
0, (λ′

i ⊗ Ir1
)D2

[
2Ir2

1
+ 4Sr1

[(Λ′
1Σ−1

ξξ Λ1) ⊗ ∆φφ]−1S′
r1

]
D′

2(λi ⊗ Ir1
)
)
,

Under IRc: for i > r1,
√
T (λ̂i − λi)

d−→ N
(
0, (λ′

iΣξξλi + σ2
i )∆−1

φφ

)
,

where Σξξ = var(ξt) with ξt = (e1t, e2t, . . . , er1t)
′. The symbols BQ,P1, Dr1

,D2,D3,Λ1, Sr1

and ∆φφ are defined in the paragraph before Theorem 4.1.

Now we consider the asymptotic results for γ̂i − γi. We have the following theorem.

Theorem 4.2 Under Assumptions A-D, when N,T → ∞ and
√
T/N → 0, under IRa,

IRb or IRc, we have

√
T (γ̂i − γi) =

√
TWλi + ∆−1

ηη

( 1√
T

T∑

t=1

ηteit

)
+ op(1)
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where ηt = gt − ∆gf ∆−1
ff ft and ∆ηη = E(ηtη

′
t) where ∆gf and ∆ff are defined (2.4). In

addition,

W = Ω−1
υυ

1

T

T∑

t=K̄

υtε
′
t

Similar to Theorem (4.1), the asymptotic representation of γ̂i under different IRs also

has a unified expression. Symmetric to the symbol φt in Theorem 4.1, the symbol ηt

here is the residual of projecting gt on ft. The matrix W has a unified expression under

different IRs. If the population restriction E(υtε
′
t) = 0 is replaced by the sample version

1
T

∑T
t=1 υtε

′
t = 0, then the first term W disappears.

Notice that the two terms in the asymptotic representation of γ̂i − γi are independent,

since the first term only involves ut but the second term only involves eit. Then we have

the following corollary.

Corollary 4.2 Under the assumptions of Theorem 4.2, we have

√
T (γ̂i − γi)

d−→ N
(
0, (λ′

iΩεελi)Ω
−1
υυ

+ σ2
i ∆−1

ηη

)

where Ωεε and Ωυυ are defined in (2.4).

After deriving the asymptotic result of loadings, we consider the estimation of the

unobservable factors f̂t. The asymptotic result of f̂t − ft involves both V and W matrices,

which is stated in the following theorem.

Theorem 4.3 Let κ = N/T . Under Assumptions A-D, when N,T → ∞, we have

√
N(f̂t − ft) =

( 1

N

N∑

i=1

1

σ2
i

λiλ
′
i

)−1( 1√
N

N∑

i=1

1

σ2
i

λieit

)
− √

κ(
√
TV ′ft +

√
TW ′gt) + op(1)

Notice in the asymptotic representation of f̂t − ft, the first term and V and W are

asymptotically uncorrelated with each other. To prove this, first consider V and W . Un-

der IRa, notice E[vec(V )vec(W )′|ε] = 0 where ε = (ε1, . . . , εT )′. Thus E[vec(V )vec(W )′] =

E[E(vec(V )vec(W )′|ε)] = 0. Under IRc, we also have the same result since E[vec(V )vec(W )′|u] =

0 where u = (u1, . . . , uT )′. Combining the above two results under IRa and IRb, we have

E(vec(V )vec(W )′] = 0 under IRb. Then we show the first term is asymptotically uncor-

related with both V and W . Since W only involves u while the first term only involves

e, they are independent under all IRs. Under IRa, V is independent with the first term

for the same reason. Under IRc, V involves uit over t while the first term involves eit over

i, so the covariance between them is asymptotically zero. The previous two cases imply

that under IRb, V is also asymptotically uncorrelated with the first term. Given the above

analysis, we derive the limiting distribution in the following corollary.
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Corollary 4.3 Under the assumptions of Theorem 4.3, with normality of ut, we have

Under IRa:
√
N(f̂t − ft)

d−→ N
(
0,Q−1 + κ

[
2F ′

tB
−1
Q P1(D′

r1
Dr1

)−1P′
1B

−1′
Q Ft + g′

tΩ
−1
υυ
gtΩεε

])
,

under IRb:
√
N(f̂t − ft)

d−→ N
(
0,Q−1 + κ

[
F ′

t

(
2D2D

′
2 + D3[(Λ′

1Σ−1
ξξ Λ1) ⊗ ∆φφ]−1D′

3

)
Ft + g′

tΩ
−1
υυ
gtΩεε

])
,

under IRc:
√
N(f̂t − ft)

d−→ N
(
0,Q−1 + κ

[
f ′

t∆
−1
φφftΣξξ + g′

tΩ
−1
υυ
gtΩεε

])
,

where Ft = Ir1
⊗ ft and Q = lim

N→∞
Q.

For estimator σ̂2
i , we have the following theorem and corollary.

Theorem 4.4 Under Assumptions A-D, when N,T → 0,

√
T (σ̂2

i − σ2
i ) =

1√
T

T∑

t=1

(e2
it − σ2

i ) + op(1).

In addition, we have √
T (σ̂2

i − σ2
i )

d−→ N (0, σ4
i (2 + κi)),

where κi is the excess kurtosis of eit. With the normality of eit, the limiting distribution

reduces to N (0, 2σ4
i ).

Notice eit does not have the identification problem. Consequently its asymptotic repre-

sentation does not depend on the identification restrictions. We then consider the asymp-

totic representation of Φ̂k − Φk, which is stated in the following theorem.

Theorem 4.5 Under Assumptions A-D, when N,T → 0 and
√
T/N → 0, we have

√
T (Φ̂k − Φk) =

( 1√
T

T∑

t=K̄

utψ
′
t

)( 1

T

T∑

t=K̄

ψtψ
′
t

)−1
(ik ⊗ Ir) −

√
TB′Φk +

√
TΦkB

′ + op(1)

where ψt = (h′
t−1, h

′
t−2, . . . , h

′
t−K)′ and B is defined as B = [V, 0;W, 0].

If the factors ft were observed, the asymptotic representation of
√
T (Φ̂k − Φk) would

be
( 1√

T

T∑

t=K̄

utψ
′
t

)( 1

T

T∑

t=K̄

ψtψ
′
t

)−1
(ik ⊗ Ir) + op(1).

However, ft is unobservable, the asymptotic representation of
√
T (Φ̂k − Φk) then has two

extra terms, −
√
TB′Φk +

√
TΦkB

′. Theorem 4.5 shows that the inferential theory of the

standard VAR models cannot be applied to the FAVAR model.

Given Theorem 4.5, we have the following corollary.
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Corollary 4.4 Under the assumptions of Theorem 4.5, with normality of ut, we have

√
Tvec(Φ̂k − Φk)

d−→ N (0,Vk ⊗ Ω + D6JD
′
6),

where Vk denotes the (k, k)th r× r submatrix of [E(ψtψ
′
t)]

−1 and J is the limiting variance

of
√
Tvec(B) and defined as

Under IRa:

J = 2D4B
−1
Q P1(D′

r1
Dr1

)−1P′
1B

−1′
Q D′

4 + D5(Ωεε ⊗ Ω−1
υυ

)D5,

Under IRb:

J = D4

(
2D2D

′
2 + D3[(Λ′

1Σ−1
ξξ Λ1) ⊗ ∆φφ]−1D′

3

)
D′

4 + D5(Ωεε ⊗ Ω−1
υυ

)D5,

Under IRc:

J = D4(Σξξ ⊗ ∆−1
φφ)D′

4 + D5(Ωεε ⊗ Ω−1
υυ

)D5,

where D4 and D5 are respective r2×r2
1 and r2×r1r2 matrices such that vec(B) = D4vec(V )+

D5vec(W ); D6 = (Ir ⊗ Φk − Φ′
k ⊗ Ir)Kr with Kr the r-dimensional commutation matrix.

5 Impulse response function

Impulse response function plays an important role in the VAR analysis. In this section,

we construct the confidence intervals for impulse response function of model (2.1). Let

Φ = (Φ1,Φ2, . . . ,ΦK). Theorem 4.5 gives

√
Tvec(Φ̂′ − Φ′) =

[
Ir ⊗

( 1

T

T∑

t=1

ψtψ
′
t

)]−1[ 1√
T

T∑

t=1

(ut ⊗ ψt)
]

−
√
T (Ir ⊗ Φ′)vec(B) +

√
T (Φ ⊗ IKr)vec(IK ⊗B) + op(1).

Let D9 be a K2r2 × r2 matrix satisfying that vec(IK ⊗B) = D9vec(B). Given this result,

we have

√
Tvec(Φ̂′ − Φ′) =

[
Ir ⊗

( 1

T

T∑

t=1

ψtψ
′
t

)]−1[ 1√
T

T∑

t=1

(ut ⊗ ψt)
]

+ [(Φ ⊗ IKr)D9 − (Ir ⊗ Φ′)]
√
Tvec(B) + op(1).

By definition, it is seen that
√
Tvec(B) is asymptotically independent with 1√

T

∑T
t=1(ut ⊗

ψt). Let D10 = (Φ ⊗ IKr)D9 − (Ir ⊗ Φ′). Under the normality of ut, we have

√
Tvec(Φ̂′ − Φ′)

d−→ N
(
0,Ω ⊗ [E(ψtψ

′
t)]

−1 + D10JD
′
10

)

where J is the limiting variance of
√
Tvec(B) and Ω = E(utu

′
t).

Under the assumption of stationarity of the process ht, model (2.1) has a vector MA(∞)

expression

ht = ut + Ψ1ut−1 + Ψ2ut−2 + . . . . (5.1)
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Given the asymptotic results of
√
Tvec(Φ̂′ − Φ′), the limiting distribution of Ψ̂s − Ψs for

all s can be derived in the standard way (see Hamilton (1994) p.336). The limiting result

is stated in the following theorem.

Theorem 5.1 Under Assumptions A-D, when N,T → ∞ and
√
T/N → 0,

√
Tvec(Ψ̂′

s − Ψ′
s)

d−→ N
(
0,Υs

[
Ω ⊗ [E(ψtψ

′
t)]

−1 + D10JD
′
10

]
Υ′

s

)

where Υs is defined recursively by

Υs =
s∑

i=1

Ψi−1 ⊗ [Ψ′
s−i Ψ′

s−i−1 . . . Ψ′
s−i−K+1]

with Ψ0 = Ir and Ψs = 0 for s < 0.

We notice that the above impulse response functions are derived from the non-orthogonal

shocks. In the analysis of some structural models, the impulse response functions for or-

thogonal shocks are required. For this, we consider decomposing Ω = var(ut). Let P be

the lower triangular matrix, which is obtained by the Cholesky decomposition of Ω. And

let ωt be the corresponding structural shocks with the relation that ut = Pωt. Then the

moving average expression (5.1) can be written as

ht = Pωt + Ψ1Pωt−1 + Ψ2Pωt−2 + · · · = C0ωt + C1ωt−1 + C2ωt−2 + · · · . (5.2)

with Cs = ΨsP being the impulse response function corresponding to the structural shocks

ωt.

Remark 5.1 There are some cases in which no Cholesky decomposition is needed. For

instance, in the application of Bernanke, Boivin and Eliasz (2005), gt is a scalar that is the

federal fund rate. Then Ωυυ is a scalar and hence a diagonal matrix. So under IRa and IRb,

Ω̂ is diagonal implying that the innovations ut are mutually orthogonal and hence can be

interpreted as structural shocks. But under IRc, Ω̂ is not diagonal due to the non-diagonal

matrix Ω̂εε.

Next we aim to derive the limiting distribution of
√
Tvec(Ĉs −Cs), on which basis the

confidence intervals of the impulse response function can be constructed.

By definition, Cs is related to both Ψs and P. The limiting distribution of Ψ̂s − Ψs

is given in Theorem 5.1. The limiting distribution of P̂ − P can be derived based on the

following theorem, since by definition, P is related to Ωεε and Ωυυ.

Theorem 5.2 Under Assumption A-D, when N,T → ∞, the estimator Ω̃υυ is consistent

for Ωυυ. With normality of ut and
√
T/N → 0,under IRa, IRb or IRc, we have

√
Tvech(Ω̃υυ − Ωυυ)

d−→ N
(
0, 2D+

r2
(Ωυυ ⊗ Ωυυ)D+′

r2

)
.
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where D+
r2

is the Moore-Penrose inverse of an r2-dimensional duplication matrix. In addi-

tion, under IRc, we also have

√
Tvech(Ω̂εε − Ωεε)

d−→ N
(
0, D+

r1
(2Ωεε ⊗ Ωεε + 4Sr1

(Σξξ ⊗ ∆−1
φφ)S′

r1
)D+′

r1

)
.

Further, based on Theorem 5.1 and Theorem 5.2, we can derive the limiting distribution

of
√
Tvec(Ĉs − Cs) as in the following theorem.

Theorem 5.3 Under Assumptions A-D together with normality of ut, when N,T → ∞
and

√
T/N → 0, we have

Under IRa and IRb,
√
Tvec(Ĉs − Cs)

d−→ N
(
0, (P ′ ⊗ Ir)KrΥsJ1Υ′

sK
′
r(P ⊗ Ir) + (Ir ⊗ Ψs)D7J2D

′
7(Ir ⊗ Ψ′

s)
)
,

Under IRc,
√
Tvec(Ĉs − Cs)

d−→ N
(
0, (P ′ ⊗ Ir)KrΥsJ1Υ′

sK
′
r(P ⊗ Ir) + (Ir ⊗ Ψs)J3(Ir ⊗ Ψ′

s)
)

with J1 = Ω ⊗ [E(ψtψ
′
t)]

−1 + D10JD
′
10, J2 = 2W2(Ωυυ ⊗ Ωυυ)W′

2 and J3 = D8W1[2(Ωεε ⊗
Ωεε)+4Sr1

(Σξξ⊗∆−1
φφ)S′

r1
]W′

1D
′
8+2D7W2(Ωυυ⊗Ωυυ)W′

2D
′
7. D7 and D8 are transformation

matrices such that for any Mr×r = [M1, 0; 0,M2] where M1 is r1 × r1 and M2 is r2 × r2

and both are lower-triangular matrices, vec(M) = D8vech(M1) +D7vech(M2); W1 and W2

are defined in Appendix E.

Then based on (2.2) and (5.2), the impulse response function of the observable variables

zt with respect to the structural shocks ωt is

∂zi,t+k

∂ωt
= C′

k

[
λi

γi

]

for each i and for all k ≥ 0. Then note that

∂̂zi,t+k

∂ωt
− ∂zi,t+k

∂ωt
= (Ĉk − Ck)′

[
λi

γi

]
+ C′

k

[
λ̂i − λi

γ̂i − γi

]

has two components, which arise from estimating the loadings (λi, γi) and the MA(∞)

coefficients Ck. From the asymptotic representations of (λ̂i − λi), (γ̂i − γi) and (Ĉk − Ck),

taking into account their covariances, we obtain the following theorem on the impulse

response function.

Theorem 5.4 (Impulse Response Function) Under Assumptions A-D together with nor-

mality of ut, when N,T → ∞ and
√
T/N → 0, under IRa, IRb or IRc, we have

√
T

(
∂̂zi,t+k

∂ωt
− ∂zi,t+k

∂ωt

)
d−→ N

(
0,Avar

( ∂̂zi,t+k

∂ωt

))
,
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where

Avar
( ∂̂zi,t+k

∂ωt

)
= (λ′

i, γ
′
i) ⊗ Ir ·Kr · Avar(vec(Ĉk)) ·K ′

r · (λ′
i, γ

′
i)

′ ⊗ Ir + C′
k · Avar(λ̂′

i, γ̂
′
i) · Ck

+ (P ′ ⊗ Ir)KrΥkD10J [(λ′
i, γ

′
i)

′ ⊗ Ck] + [(λ′
i, γ

′
i) ⊗ C′

k]JD′
10Υ′

kK
′
r(P ⊗ Ir)

with Avar(λ̂′
i, γ̂

′
i) = diag(Avar(λ̂i),Avar(γ̂i)); Avar(λ̂i), Avar(γ̂i) and Avar(vec(Ĉk)) are

given in Corollary (4.1), Corollary (4.2) and Theorem (5.3) respectively; Kr is the commu-

tation matrix defined as in Section 4; J is the limiting variance of
√
Tvec(B) defined as in

Corollary (4.4) and Υk is defined in Theorem (5.1).

Once estimators for Avar(λ̂i), Avar(γ̂i) and Avar(vec(Ĉk)) are obtained, the confidence

intervals for the impulse response function can be easily constructed. For example, the

95% confidence interval for the impulse response function
∂zi,t+k

∂ωt
is

(( ∂̂zi,t+k

∂ωt

)
− 1.96√

T

[
diag

{
Âvar

( ∂̂zi,t+k

∂ωt

)}]1/2
,
( ∂̂zi,t+k

∂ωt

)
+

1.96√
T

[
diag

{
Âvar

( ∂̂zi,t+k

∂ωt

)}]1/2
)

where
(

∂̂zi,t+k

∂ωt

)
= Ĉ′

k

[
λ̂i

γ̂i

]
, and diag{·} stacks the diagonal elements of the argument into

a column vector, and

Âvar
( ∂̂zi,t+k

∂ωt

)
= (λ̂′

i, γ̂
′
i) ⊗ Ir ·Kr · Âvar(vec(Ĉk)) ·K ′

r · (λ̂′
i, γ̂

′
i)

′ ⊗ Ir + Ĉ′
k · Âvar(λ̂′

i, γ̂
′
i) · Ĉk

+ (P̂ ′ ⊗ Ir)KrΥ̂kD̂10Ĵ [(λ̂′
i, γ̂

′
i)

′ ⊗ Ĉk] + [(λ̂′
i, γ̂

′
i) ⊗ Ĉ′

k]ĴD̂′
10Υ̂′

kK
′
r(P̂ ⊗ Ir)

with Âvar(λ̂′
i, γ̂

′
i) being the estimate of Avar(λ̂′

i, γ̂
′
i) and Âvar(vec(Ĉk)) being the estimate

of Avar(vec(Ĉk)); P̂, Υ̂k, D̂10 and Ĵ are the estimates of P, Υk, D10 and J respectively.

6 Finite sample properties

In this section, we run Monte Carlo simulations to investigate the finite sample properties

of the two-step estimators. For the sake of space, we only consider IRb and IRc, which are

of more practical relevance. In factor analysis literature, many studies, such as Bai and

Li (2012a,b), Doz, Giannone, and Reichlin (2012), investigate the finite sample properties

of the QMLE; that is, Λ̃, F̃ , Σ̃ee. Consequently in this paper we instead focus on the

performance of the estimator Φ̂. Notice that Φ̂ has a close relation with the impulse

response function, which in many occasions is the primary tool of the economic analysis.

Hence the finite sample properties of Φ̂ deserves our special attention.

The factors are assumed to follow VAR(1) and are generated according to

ht = Φht−1 + ut
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where ht = (f ′
t, g

′
t)

′ and ut is an i.i.d. N (0,Ω) process. Matrix Ω is restricted by the

identification IRb and IRc and exhibits the form, respectively,

(IRb)

[
Ir1

0
0 Ω22

]
, (IRc)

[
Ω11 0
0 Ω22

]

where Ω11 and Ω22 are both symmetric positive definite matrices. The symmetric positive

matrix is generated according to Ω = MDM′, where M = M(M ′M)−1/2 with M being

any r× r standard normal random matrix and D is a diagonal matrix with all its diagonal

elements drawn from (1 + U [0, 1])2. Throughout the simulation, the number of unknown

factors and known factors, r1 and r2, are set to 2 and 1 (so r = r1 + r2 = 3). In addition,

the parameter Φ is fixed to 0.7Ir.

All the factor loadings are generated independently from N (0, 1) (where Λ is N×2 and

Γ is N × 1). To make the underlying factor loadings satisfy the identification restrictions,

we set the (1, 2)th element of Λ to be 0 under IRb and the upper 2×2 matrix of Λ to be the

identity matrix under IRc. After the factor loadings are obtained, the data are generated

by

zt = Λft + Γgt + et

where et = (e1t, e2t, . . . , eNt)
′ with eit ∼ N (0, σ2

i ), where σ2
i ∼ 1 + U [0, 1].

After the data (Z,G) are constructed, we need to determine the number of unknown

factors r1 before estimation. There are two approaches to determine r1. One approach is

to first estimate the total number of factors based on Z (denoted as r̂) by the information

criterion proposed in Bai and Ng (2002), and then get r̂1 = r̂ − r2 where r2 is the number

of known factors. A better approach is to directly estimate the number of unknown factors

r̂1 through the transformed data ZMG. The second approach is adopted in simulations.

Once r1 is determined, we use the method described in the previous section to estimate

the parameters.

The identification conditions IRb have so-called sign problem.4 To eliminate this prob-

lem, after the estimated factors F̂ are obtained, we calculate the correlation coefficients

between each column of F̂ and the corresponding column of F . If the coefficient is negative,

then multiply -1 to that column of F̂ and the corresponding column of Λ̂. In practice, this

treatment is not feasible. However, sign problem can be fixed by other means, see Stock and

Watson (2005). We consider a combination of N = 50, 100, 200 and T = 50, 100, 200, 500.

All the results are obtained in 1000 repetitions.

Table 1 reports the root of mean square error (RMSE) of all elements of Φ. The last

element of each row is the average of the left nine elements under IRb. On the whole,

we can see that the RMSE decreases as the sample size becomes larger. More concretely,

Table 1 shows that the RMSE is closely linked with the time length T and little related to

4See Bai and Li (2012a) for an illustration on the sign problem.
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the cross-sectional size N . Take Φ11 as an example. When T = 200 and N = 50, 100, 200,

the corresponding three RMSEs are 0.0611, 0.0572, and 0.0557, which are roughly equal.

However, when T increases to 500, the corresponding three RMSEs are 0.0373, 0.0343, and

0.0335, which are still roughly equal but dramatically lower in comparison with those of

T = 200. This result is consistent with results in Theorem 4.5.

Aside from the consistency, we are also concerned about the limiting distribution of√
Tvec(Φ̂′ − Φ′), which, as seen in the last section, has a direct effect on the confidential

interval of the impulse response function. To this end, we calculate the size of t-test for

every Φij in each simulation and count the number of times that the absolute value of

t-statistics is greater than the critical value of the 5% significance level for the standard

normal distribution (i.e., 1.96) in 1000 repetitions. Table 2 reports the actual significance

level that corresponds to 5% nominal size for every Φij . As in Table 1, we average the

result of the nine elements of Φ and report the result in the last column. From Table 2,

we find that, unlike in table 1, the actual significance level is related to both N and T .

When the sample size is small, say N = 50, T = 50, the size distortion is a little larger, for

Φ22, the actual significance level is 0.086. However, when the sample becomes larger, the

distortion gradually decreases (see the last column). When N = 200, T = 500, we can see

that all the elements of Φ have a satisfactory size.

The results under IRc are similar to those under IRb and are reported in Tables 3 and

4. We do not repeat the detailed analysis.

7 Concluding remarks

This paper considers the identification, estimation, and inferential theory of the FAVAR

model. Three sets of identification restrictions are considered. We propose a likelihood-

based two-step method to estimate the parameters. Consistency, convergence rates, asymp-

totic representations, and the limiting distributions have been established. The impulse

response function and its confidence intervals are also provided. An important result from

our theory is that if the identification conditions are imposed on the population variance

rather than on the sample variance of the factor process, an additional term, which arises

from the distance between the sample variance and the population variance, would enter

the final asymptotic representations. Consequently the limiting variances of the estimators

are larger. We studied the ways in which this distance affects the limiting distributions.

The finite sample Monte Carlo simulation confirms our theoretical results.

The analysis of this paper assumes constant parameters. In empirical applications with

a long time span, it is likely that a structural change occurs, either in the dynamics of ht,

or in the factor loadings (Λ,Γ). It is of interest to develop inference procedures allowing

for this possibility, as in Chen, Dolado and Gonzalo (2011), Cheng, Liao and Schorfheide

(2013) and Han and Inoue (2011).
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Table 1. The RMSEs of all the elements of Φ̂ under IRb

N T Φ11 Φ12 Φ13 Φ21 Φ22 Φ23 Φ31 Φ32 Φ33 Ave

50 50 0.1360 0.1261 0.0902 0.1318 0.1474 0.0925 0.1804 0.1748 0.1170 0.1329
100 50 0.1307 0.1177 0.0919 0.1252 0.1351 0.0939 0.1799 0.1722 0.1209 0.1297
200 50 0.1335 0.1208 0.0894 0.1230 0.1320 0.0885 0.1736 0.1625 0.1218 0.1272

50 100 0.0933 0.0803 0.0569 0.0846 0.0891 0.0591 0.1179 0.1185 0.0810 0.0867
100 100 0.0841 0.0788 0.0563 0.0783 0.0848 0.0563 0.1113 0.1133 0.0811 0.0827
200 100 0.0844 0.0794 0.0554 0.0798 0.0879 0.0538 0.1106 0.1147 0.0816 0.0831

50 200 0.0611 0.0534 0.0380 0.0560 0.0614 0.0369 0.0787 0.0833 0.0529 0.0580
100 200 0.0572 0.0563 0.0379 0.0532 0.0600 0.0396 0.0795 0.0799 0.0559 0.0577
200 200 0.0557 0.0519 0.0370 0.0528 0.0547 0.0369 0.0836 0.0797 0.0551 0.0564

50 500 0.0373 0.0326 0.0236 0.0328 0.0380 0.0235 0.0495 0.0514 0.0336 0.0358
100 500 0.0343 0.0335 0.0229 0.0327 0.0350 0.0233 0.0509 0.0495 0.0349 0.0352
200 500 0.0335 0.0321 0.0233 0.0324 0.0341 0.0235 0.0505 0.0484 0.0322 0.0344

Table 2. The empirical size of the t-test (nominal 5%) for all the elements of Φ under IRb

N T Φ11 Φ12 Φ13 Φ21 Φ22 Φ23 Φ31 Φ32 Φ33 Ave

50 50 0.068 0.060 0.049 0.069 0.086 0.062 0.058 0.052 0.055 0.0621
100 50 0.063 0.055 0.055 0.062 0.071 0.066 0.063 0.055 0.055 0.0606
200 50 0.079 0.069 0.049 0.049 0.065 0.058 0.049 0.055 0.074 0.0608

50 100 0.085 0.046 0.044 0.065 0.072 0.060 0.042 0.067 0.054 0.0594
100 100 0.059 0.055 0.055 0.051 0.072 0.046 0.044 0.041 0.066 0.0543
200 100 0.060 0.045 0.050 0.055 0.074 0.040 0.034 0.055 0.060 0.0526

50 200 0.069 0.042 0.052 0.056 0.072 0.039 0.047 0.062 0.050 0.0543
100 200 0.058 0.057 0.048 0.058 0.069 0.052 0.042 0.040 0.071 0.0550
200 200 0.057 0.042 0.043 0.043 0.056 0.055 0.056 0.053 0.058 0.0514

50 500 0.070 0.043 0.055 0.043 0.081 0.058 0.049 0.064 0.053 0.0573
100 500 0.054 0.053 0.053 0.046 0.054 0.052 0.049 0.046 0.064 0.0523
200 500 0.055 0.047 0.056 0.049 0.046 0.053 0.057 0.048 0.048 0.0510

Table 3. The RMSEs of all the elements of Φ̂ under IRc

N T Φ11 Φ12 Φ13 Φ21 Φ22 Φ23 Φ31 Φ32 Φ33 Ave

50 50 0.1407 0.1397 0.1336 0.1354 0.1383 0.1258 0.1359 0.1281 0.1323 0.1344
100 50 0.1405 0.1403 0.1349 0.1365 0.1443 0.1299 0.1319 0.1419 0.1284 0.1365
200 50 0.1347 0.1290 0.1350 0.1394 0.1406 0.1295 0.1312 0.1323 0.1261 0.1331

50 100 0.0878 0.0868 0.0800 0.0897 0.0897 0.0849 0.0842 0.0859 0.0806 0.0855
100 100 0.0871 0.0869 0.0877 0.0810 0.0843 0.0838 0.0831 0.0871 0.0812 0.0847
200 100 0.0827 0.0840 0.0874 0.0813 0.0857 0.0852 0.0879 0.0878 0.0843 0.0851

50 200 0.0586 0.0562 0.0600 0.0571 0.0583 0.0568 0.0538 0.0571 0.0528 0.0567
100 200 0.0559 0.0566 0.0592 0.0558 0.0560 0.0586 0.0564 0.0567 0.0547 0.0567
200 200 0.0534 0.0583 0.0554 0.0577 0.0558 0.0565 0.0579 0.0562 0.0541 0.0562

50 500 0.0348 0.0343 0.0346 0.0334 0.0353 0.0364 0.0346 0.0348 0.0312 0.0344
100 500 0.0338 0.0337 0.0353 0.0344 0.0347 0.0353 0.0347 0.0359 0.0324 0.0344
200 500 0.0332 0.0339 0.0347 0.0341 0.0341 0.0369 0.0351 0.0370 0.0328 0.0346
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Table 4. The empirical size of the t-test (nominal 5%) for all the elements of Φ under IRc

N T Φ11 Φ12 Φ13 Φ21 Φ22 Φ23 Φ31 Φ32 Φ33 Ave

50 50 0.079 0.064 0.069 0.081 0.081 0.051 0.076 0.073 0.076 0.0722
100 50 0.088 0.078 0.065 0.071 0.089 0.069 0.074 0.078 0.087 0.0777
200 50 0.069 0.059 0.061 0.069 0.089 0.064 0.067 0.069 0.077 0.0693

50 100 0.078 0.064 0.051 0.070 0.074 0.058 0.057 0.050 0.062 0.0627
100 100 0.073 0.067 0.054 0.045 0.069 0.053 0.053 0.056 0.047 0.0574
200 100 0.055 0.055 0.070 0.058 0.068 0.066 0.058 0.066 0.065 0.0623

50 200 0.058 0.048 0.060 0.055 0.056 0.046 0.043 0.051 0.049 0.0518
100 200 0.060 0.046 0.067 0.050 0.059 0.058 0.064 0.064 0.066 0.0593
200 200 0.049 0.060 0.052 0.059 0.052 0.037 0.055 0.057 0.055 0.0529

50 500 0.055 0.046 0.046 0.046 0.066 0.057 0.058 0.060 0.048 0.0536
100 500 0.051 0.045 0.050 0.054 0.057 0.050 0.049 0.056 0.052 0.0516
200 500 0.051 0.051 0.045 0.050 0.058 0.067 0.047 0.060 0.047 0.0529

Appendix: Technical materials for the asymptotic results

In this appendix, we provide the detailed derivations for the asymptotic results under IRa.

The derivations for the asymptotic results under IRb and IRc as well as the theorems in

Section 5 are delegated in the supplement. Throughout the appendix, we use K̄ to denote

K + 1 and T̄ to denote T − K − 1. To facilitate the analysis, we introduce the following

the auxiliary identification condition (an intermediate step analysis)

AU1 The underlying parameter values θ∗ = (Λ∗,Γ∗, F ∗,Φ∗,Σee) satisfy: 1
N Λ∗′Σ−1

ee Λ∗ =

Q∗, 1
T

∑T
t=1 f

∗
t f

∗′
t = Ir1

and 1
T

∑T
t=1 f

∗
t g

′
t = 0, where Q∗ is a diagonal matrix, whose

diagonal elements are distinct and arranged in descending order.

Appendix A: The asymptotic results of the QMLE

In this appendix, we show that the QMLE λ̃i, σ̃
2
i and f̃t are respectively consistent estimator

of λ∗
i , σ

2
i and f∗

t in AU1.

Proposition A.1 Under Assumptions A-D, together with AU1,

λ̃i − λ∗
i =

( 1

T

T∑

t=1

f∗
t f

∗′
t

)−1( 1

T

T∑

t=1

f∗
t eit

)
+Op(N−1/2T−1/2) +Op(T−1), (A.1)

γ̃i − γ∗
i =

( 1

T

T∑

t=1

gtgt

)−1( 1

T

T∑

t=1

gteit

)
, (A.2)

f̃t − f∗
t =

( 1

N

T∑

i=1

1

σ2
i

λ∗
iλ

∗′
i

)−1( 1

N

N∑

i=1

1

σ2
i

λ∗
i eit

)
+Op(N−1/2T−1/2) +Op(T−1), (A.3)

σ̃2
i − σ2

i =
1

T

T∑

t=1

(e2
it − σ2

i ) +Op(N−1/2T−1/2) +Op(T−1), (A.4)
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Proof of Proposition A.1 Write zt = Λ∗f∗
t + Γ∗gt + et into matrix form,

Z = Λ∗F ∗′ + Γ∗G′ + e. (A.5)

Post-multiplying MG = IT −G(G′G)−1G′ on both sides, together with F ∗′G = 0 by AU1,

we have

ZMG = Λ∗F ∗′ + eMG.

Let Y = ZMG and yt denotes the t-th column of Y . The above equation is equivalent to

yt = Λ∗f∗
t + et − eG(G′G)−1gt (A.6)

Bai and Li (2012) derive the asymptotic representations of λ̃i, f̃t, σ̃
2
i under the case that

gt ≡ 1. However, when gt is a general random variable, as like in the present context,

the derivation is the same since term eG(G′G)−1gt is essentially negligible. Using the

arguments of Bai and Li (2012) under IC3, we obtain (A.1), (A.3) and (A.4). Consider

(A.2). Substituting zit = λ∗′
i f

∗
t + γ∗′

i gt + eit into γ̃i = (
∑T

t=1 gtg
′
t)

−1
(∑T

t=1 gt(zit − λ̃′
if̃t)

)
,

we have

γ̃i − γ∗
i =

( T∑

t=1

gtg
′
t

)−1( T∑

t=1

gteit

)
−
( T∑

t=1

gtg
′
t

)−1( T∑

t=1

gtf
∗′
t

)
(λ̃i − λ∗

i )

−
( T∑

t=1

gtg
′
t

)−1( T∑

t=1

gt(f̃t − f∗
t )′
)
λ̃i

The second term of the right hand side is zero by
∑T

t=1 gtf
∗′
t = G′F ∗ = 0. Consider the

third term. Notice

f̃t = (Λ̃′Σ̃−1
ee Λ̃)−1Λ̃′Σ̃−1

ee yt

= (Λ̃′Σ̃−1
ee Λ̃)−1Λ̃′Σ̃−1

ee

[
zt −

( T∑

s=1

zsg
′
s

)( T∑

s=1

gsg
′
s

)−1
gt

]

= (Λ̃′Σ̃−1
ee Λ̃)−1Λ̃′Σ̃−1

ee

[
Λ∗f∗

t + et −
( T∑

s=1

esg
′
s

)( T∑

s=1

gsg
′
s

)−1
gt

]

Then it follows

f̃t − f∗
t = −A∗′f∗

t + (Λ̃′Σ̃−1
ee Λ̃)−1Λ̃′Σ̃−1

ee et

− (Λ̃′Σ̃−1
ee Λ̃)−1Λ̃′Σ̃−1

ee

( T∑

s=1

esg
′
s

)( T∑

s=1

gsg
′
s

)−1
gt

(A.7)

where A∗ = (Λ̃ − Λ∗)′Σ̃−1
ee Λ̃(Λ̃′Σ̃−1

ee Λ̃)−1.

Given the above expression, together with
∑T

t=1 gtf
∗′
t = 0, we have

1

T

T∑

t=1

gt(f̃t − f∗
t )′ = 0 (A.8)

Then (A.2) follows. This completes the proof. �
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Lemma A.1 Under Assumptions A-D,

(a)
1

T̄

T∑

t=K̄

h̃t−ph̃
′
t−q − 1

T̄

T∑

t=K̄

h∗
t−ph

∗′
t−q = Op(N−1) +Op(T−1), for p, q = 0, . . . ,K

(b)
1

T̄

T∑

t=K̄

(h̃t−p − h∗
t−p)h̃′

t−q = Op(N−1) +Op(T−1), for p, q = 0, 1, . . . ,K

(c)
1

T̄

T∑

t=K̄

u∗
t h̃

′
t−p − 1

T̄

T∑

t=K̄

u∗
th

∗′
t−p = Op(N−1/2T−1/2)+Op(T−1), for p = 1, . . . ,K

where h̃t = (f̃ ′
t, g

′
t)

′ and h∗
t = (f∗′

t , h
′
t)

′.

Proof of Lemma A.1 Consider (a). By the definitions of h̃t and h∗
t , the left hand side

of (a) is equal to [
J11 J12

J21 0

]

where

J11 =
1

T̄

T∑

t=K̄

(f̃t−p − f∗
t−p)(f̃t−q − f∗

t−q)′ +
1

T̄

T∑

t=K̄

(f̃t−p − f∗
t−p)f∗′

t−q

+
1

T̄

T∑

t=K̄

f∗
t−p(f̃t−q − f∗

t−q)′;

J12 =
1

T̄

T∑

t=K̄

(f̃t−p − f∗
t−p)g′

t−q; J21 =
1

T̄

T∑

t=K̄

gt−p(f̃t−q − f∗
t−q)′.

The first term of J11 is Op(N−1) + Op(T−2), as shown in Bai an Li (2012). Consider the

second term. By (A.7), 1
T̄

∑T
t=K̄(f̃t−p − f∗

t−p)f∗′
t−q is equal to

−A∗′ 1

T̄

T∑

t=K̄

f∗
t−pf

∗′
t−q + (Λ̃′Σ̃−1

ee Λ̃)−1 1

T̄

T∑

t=K̄

Λ̃′Σ̃−1
ee et−pf

∗′
t−q

−(Λ̃′Σ̃−1
ee Λ̃)−1

( 1

T

T∑

s=1

Λ̃′Σ̃−1
ee esg

′
s

)( 1

T

T∑

s=1

gsg
′
s

)−1( 1

T̄

T∑

t=K̄

gt−pf
∗′
t−q

)

The first term of the above expression is Op(N−1/2T−1/2) +Op(T−1) by 1
T̄

∑T
t=K̄ f∗

t−pf
∗′
t−q

= Op(1) and A = Op(N−1/2T−1/2) +Op(T−1) , as shown in Bai and Li (2012). The

second and third terms are also Op(N−1/2T−1/2)+Op(T−1), which can be proved similarly

as Lemma C.1(e) of Bai and Li (2012). Given these results, the second term of J11 is

Op(N−1)+Op(T−1). The last term can be proved to be the same magnitude by the similar

arguments. Summarizing these results, we have J11 = Op(N−1)+Op(T−1). Terms J12 and

J21 can be proved to be Op(N−1/2T−1/2) +Op(T−1) similarly as J11. Then (a) follows.

Consider (b). The left hand side of (b) is equal to
[

1
T̄

∑T
t=K̄(f̃t−p − f∗

t−p)f̃ ′
t−q

1
T̄

∑T
t=K̄(f̃t−p − f∗

t−p)g′
t−q

0 0

]
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The two none-zero terms of the above are Op(N−1) + Op(T−1), which are shown in (a).

Then (b) follows.

Consider (c). The left hand side of (c) is equal to
[

1
T̄

∑T
t=K̄ u∗

t (f̃t−p − f∗
t−p)′

0

]
.

So it suffices to consider term 1
T̄

∑T
t=K̄ u∗

t (f̃t−p − f∗
t−p)′, which, by (A.7), can be written as

− 1

T̄

T∑

t=K̄

u∗
t f

∗′
t−pA

∗ +
1

T̄

T∑

t=K̄

u∗
t e

′
t−pΣ̃−1

ee Λ̃(Λ̃′Σ̃−1
ee Λ̃)−1

− 1

T̄

T∑

t=K̄

u∗
t g

′
t−p

( T∑

s=1

gsg
′
s

)−1 T∑

s=1

gse
′
sΣ̃−1

ee Λ̃(Λ̃′Σ̃−1
ee Λ̃)−1

Both 1
NT̄

∑T
t=K̄ u∗

t e
′
t−pΣ̃−1

ee Λ̃ and 1
NT̄

∑T
s=1 gse

′
sΣ̃−1

ee Λ̃ can be proved to be Op(N−1/2T−1/2)

+Op(T−1) similarly as Lemma C.1(e) of Bai and Li (2012). Given these results, together

with A = Op(N−1/2T−1/2) +Op(T−1) and (Λ̃′Σ̃−1
ee Λ̃)−1 = Op(N−1), we have

1

T̄

T∑

t=K̄

u∗
t (f̃t − f∗

t )′ = Op(N−1/2T−1/2) +Op(T−1).

Then (c) follows. �

Proposition A.2 Under Assumptions A-D, together with the identification condition AU1,

for each k = 1, 2, . . . ,K, we have

Φ̃k − Φ∗
k =

( T∑

t=K̄

u∗
tψ

∗′
t

)( T∑

t=K̄

ψ∗
tψ

∗′
t

)−1
(ik ⊗ Ir) +Op(N−1) +Op(T−1)

where ψ∗
t = (h∗′

t−1, h
∗′
t−2, . . . , h

∗′
t−K)′ and ik is the k-th column of the K×K identity matrix.

Proof of Proposition A.2 Let Φ∗ = (Φ∗
1,Φ

∗
2, . . . ,Φ

∗
K) and Φ̃ be defined similarly. Notice

Φ̃ is obtained by running the regression

h̃t = Φ1h̃t−1 + Φ2h̃t−2 + · · · + ΦK h̃t−K + error

So we have

Φ̃ =
( T∑

t=K̄

h̃tψ̃
′
t

)( T∑

t=K̄

ψ̃tψ̃
′
t

)−1

where ψ̃t = (h̃′
t−1, h̃

′
t−2, . . . , h̃

′
t−K)′. By h∗

t = Φ∗ψ∗
t + u∗

t ,

Φ̃ − Φ∗ =
[ T∑

t=K̄

(
u∗

t + (h̃t − h∗
t ) − Φ∗(ψ̃t − ψ∗

t )
)
ψ̃′

t

][ T∑

t=K̄

ψ̃tψ̃
′
t

]−1

=
[ 1

T̄

T∑

t=K̄

(
u∗

t + (h̃t − h∗
t ) − Φ∗(ψ̃t − ψ∗

t )
)
ψ̃′

t

][ 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

]−1
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By Lemma A.1(a) and (b),

[ 1

T̄

T∑

t=K̄

(h̃t − h∗
t )ψ̃′

t

][ 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

]−1
= Op(N−1) +Op(T−1)

[ 1

T̄

T∑

t=K̄

(ψ̃t − ψ∗
t )ψ̃′

t

][ 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

]−1
= Op(N−1) +Op(T−1)

By Lemma A.1(a) and (c),

[ 1

T̄

T∑

t=K̄

u∗
t ψ̃

′
t

][ 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

]−1
=
[ 1

T̄

T∑

t=K̄

u∗
tψ

∗′
t

][ 1

T̄

T∑

t=K̄

ψ∗
tψ

∗′
t

]−1

+Op(N−1) +Op(T−1)

Given this result, we have

Φ̃ − Φ∗ =
( T∑

t=K̄

u∗
tψ

∗′
t

)( 1

T̄

T∑

t=K̄

ψ∗
tψ

∗′
t

)−1
+Op(N−1) +Op(T−1)

Post-multiplying ik ⊗ Ir on both sides gives Proposition A.2. �

Now we consider the following condition (denoted by AU2), in which the loading re-

strictions are the same as AU1 but factor restrictions are imposed on the population.

AU2 The underlying parameter values θ⋆ = (Λ⋆,Γ⋆, F ⋆,Φ⋆,Σee) satisfy: 1
N Λ⋆′Σ−1

ee Λ⋆ =

Q⋆, E(f⋆
t f

⋆′
t ) = Ir1

and E(f⋆
t g

′
t) = 0, where Q⋆ is a diagonal matrix, whose diagonal

elements are distinct and arranged in descending order.

Note that the superscript “stars” in θ⋆ and θ∗ are different. Different identification

restrictions imply different notations. Because AU1 and AU2 are asymptotically the same

(the former with sample moment restriction 1
T

∑
t ftf

′
t = Ir1

and the latter with population

moment restriction E(ftf
′
t) = Ir1

), θ⋆ and θ∗ are also asymptotically the same. That is

why the MLE is also consistent for θ⋆, which will be proved below.

The following lemma is useful to our analysis.

Lemma A.2 Let Q be an r × r matrix satisfying

QQ′ = Ir

Q′V Q = D

where V is an r×r diagonal matrix with strictly positive and distinct elements, arranged in

decreasing order, and D is also diagonal. Then Q must be a diagonal matrix with elements

either −1 or 1 and V = D.
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Lemma A.2 is proved in Bai and Li (2012). The following proposition summarizes the

asymptotic results under AU2. It shows that the limiting distributions under AU2 have

been changed.

Proposition A.3 Under Assumptions A-D, together with the identification condition AU2,

when N,T → ∞, we have

λ̃i − λ⋆
i = V ⋆λ⋆

i + ∆⋆−1
ff

( 1

T

T∑

t=1

f⋆
t eit

)
+Op(N−1/2T−1/2) +Op(T−1) (A.9)

γ̃i − γ⋆
i = W ⋆λ⋆

i + ∆−1
gg

( 1

T

T∑

t=1

gteit

)
+Op(T−1) (A.10)

f̃t − f⋆
t = −V ⋆′f⋆

t −W ⋆′gt +
( 1

N

N∑

i=1

1

σ2
i

λ⋆
iλ

⋆′
i

)−1( 1

N

N∑

i=1

1

σ2
i

λ⋆
i eit

)

+Op(N−1) +Op(T−1) (A.11)

where W ⋆ = ∆−1
gg ∆⋆

gf with ∆⋆
gf = E(gtf

⋆′
t ); ∆⋆

ff = E(f⋆
t f

⋆′
t ); V ⋆ is an r1 × r1 matrix,

which is Op(T−1/2).

Proof of Proposition A.3. Notice that

λ̃i − λ⋆
i = (λ̃i − λ∗

i ) + (λ∗
i − λ⋆

i ).

We show λ∗
i and λ⋆

i are close to each other because AU1 and AU2 are asymptotically the

same. Different identification restrictions imply different rotations. Let R⋆ be the rotation

matrix, which transform (λ∗′
i , γ

∗′
i )′ to (λ⋆′

i , γ
⋆′
i )′. Then we have

zt = Λ⋆f⋆
t + Γ⋆gt + et = [Λ⋆,Γ⋆]

[
f⋆

t

gt

]
+ et

= [Λ∗,Γ∗]

[
R⋆′

11 R⋆′
21

R⋆′
12 R⋆′

22

] [
R⋆′

11 R⋆′
21

R⋆′
12 R⋆′

22

]−1 [
f∗

t

gt

]
+ et

(A.12)

As mentioned in the main text, due to the fact that the factors gt are observed, matrix

R⋆′
12 is fixed to 0 and matrix R⋆′

22 is fixed to Ir2
. So equation (A.12) reduces to

zt = [Λ⋆,Γ⋆]

[
f⋆

t

gt

]
+ et

= [Λ∗,Γ∗]

[
R⋆′

11 R⋆′
21

0 Ir2

] [
R⋆′−1

11 −R⋆′−1
11 R⋆′

21

0 Ir2

] [
f∗

t

gt

]
+ et

This gives

λ⋆
i = R⋆

11λ
∗
i , γ⋆

i = R⋆
21λ

∗
i + γ∗

i , f⋆
t = R⋆′−1

11 f∗
t −R⋆′−1

11 R⋆′
21gt. (A.13)

The last equation of (A.13) can also be written as

f∗
t = R⋆′

11f
⋆
t +R⋆′

21gt. (A.14)
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Post-multiplying g′
t on both sides and taking summation over t, by

∑T
t=1 gtf

∗′
t = 0, we have

R⋆
21 = −

[ T∑

t=1

gtg
′
t

]−1[ T∑

t=1

gtf
⋆′
t

]
R⋆

11, (A.15)

Substituting (A.15) into (A.14),

f∗
t = R⋆′

11

(
f⋆

t −
[ T∑

t=1

f⋆
t g

′
t

][ T∑

t=1

gtg
′
t

]−1
gt

)
.

By T−1∑T
t=1 f

∗
t f

∗′
t = Ir1

, the preceding equation implies

( 1

T

T∑

t=1

f⋆
t f

⋆′
t

)
−
( 1

T

T∑

t=1

f⋆
t g

′
t

)( 1

T

T∑

t=1

gtg
′
t

)−1( 1

T

T∑

t=1

gtf
⋆′
t

)
= R⋆′−1

11 R⋆−1
11 . (A.16)

The first equation of (A.13) shows Λ⋆ = Λ∗R⋆′
11. So we have

R⋆−1
11 Q⋆R⋆′−1

11 = R⋆−1
11

( 1

N
Λ⋆′Σ−1

ee Λ⋆
)
R⋆′−1

11 =
1

N
Λ∗′Σ−1

ee Λ∗ = diag. (A.17)

Consider (A.16). By E(f⋆
t g

′
t) = 0, we have

( 1

T

T∑

t=1

f⋆
t g

′
t

)( 1

T

T∑

t=1

gtg
′
t

)−1( 1

T

T∑

t=1

gtf
⋆′
t

)
= Op(T−1) (A.18)

The left hand side of (A.16) converges to Ir1
in probability. Thus R⋆′−1

11 R⋆−1
11

p−→ Ir1
.

Applying Lemma A.2 to R⋆′−1
11 R⋆−1

11
p−→ Ir1

and R⋆−1
11 Q⋆R⋆′−1

11 = 1
N Λ∗′Σ−1

ee Λ∗ with Q =

R⋆′−1
11 , V = Q⋆ and D = 1

N Λ∗′Σ−1
ee Λ∗, we have R⋆−1

11 converges to a matrix whose diagonal

elements either 1 or −1. Since we assume that the sign problem is precluded in our analysis,

it follows R⋆−1
11

p−→ Ir1
. Let

U⋆ = R⋆−1
11 − Ir1

. (A.19)

Apparently, U⋆ p−→ 0. Then (A.16) is equivalent to

( 1

T

T∑

t=1

[f⋆
t f

⋆′
t − Ir1

]
)

−
( 1

T

T∑

t=1

f⋆
t g

′
t

)( 1

T

T∑

t=1

gtg
′
t

)( 1

T

T∑

t=1

gtf
⋆′
t

)

= U⋆ + U⋆′ + U⋆′U⋆.

(A.20)

Also, (A.17) is equivalent to

Ndg
(
U⋆Q⋆ +Q⋆U⋆′ + U⋆Q⋆U⋆′

)
= 0 (A.21)

where Ndg{·} denotes the non-diagonal elements of the argument. Neglecting the terms

U⋆Q⋆U⋆′ and U⋆′U⋆ since they are of smaller order than U⋆, we can uniquely determine

matrix U⋆ by solving the equation system (A.20) and (A.21). Let V ⋆ be the leading term
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of U⋆. It is easy to see that U⋆ = Op(T−1/2), V ⋆ = Op(T−1/2) and U⋆ = V ⋆ + Op(T−1).

This result gives R⋆−1
11 = Ir1

+Op(T−1/2) by (A.19), which, together with (A.15), implies

R⋆
21 = −

[ T∑

t=1

gtg
′
t

]−1[ T∑

t=1

gtf
⋆′
t

]
+Op(T−1) = −∆−1

gg ∆⋆
gf +Op(T−1/2)

, −W ⋆ +Op(T−1) = Op(T−1/2)

(A.22)

Now consider the asymptotic representation of λ̃i − λ⋆
i . Notice

λ̃i − λ⋆
i = λ̃i −R⋆

11λ
∗
i = (λ̃i − λ∗

i ) − (R⋆
11 − Ir1

)λ∗
i

By (A.1), the above result is equivalent to

λ̃i−λ⋆
i =

[ 1

T

T∑

t=1

f∗
t f

∗′
t

]−1[ 1

T

T∑

t=1

f∗
t eit

]
−(R⋆

11−Ir1
)λ∗

i +Op(T−1)+Op(N−1/2T−1/2) (A.23)

By (A.14), we have

1

T

T∑

t=1

f∗
t f

∗′
t =

1

T

T∑

t=1

f⋆
t f

⋆′
t + op(1) = ∆⋆

ff + op(1),

1

T

T∑

t=1

f∗
t eit =

1

T

T∑

t=1

f⋆
t eit +Op(T−1).

Notice R⋆
11 = (Ir1

+ U⋆)−1 = Ir1
− U⋆(Ir1

+ V ⋆)−1 = Ir1
− U⋆R⋆

11. Then it follows

−(R⋆
11 − Ir1

)λ∗
i = U⋆λ⋆

i .

Given the above three results, together with U⋆ = Op(T−1) and (A.23), we have

λ̃i − λ⋆
i = V ⋆λ⋆

i +
( 1

T

T∑

t=1

f⋆
t f

⋆′
t

)−1( 1

T

T∑

t=1

f⋆
t eit

)
+Op(T−1) +Op(N−1/2T−1/2). (A.24)

We then consider γ̃i − γi. By (A.13), we have γ̃i − γ⋆
i = γ̃i − γ∗

i − R⋆
21λ

∗
i . Then, by

(A.3),

γ̃i − γ⋆
i = −R⋆

21λ
∗
i +

( T∑

t=1

gtg
′
t

)−1( T∑

t=1

gteit

)
.

Substituting (A.15) into the above equation and noticing λ⋆
i = R⋆

11λ
∗
i , we have

γ̃i − γ⋆
i =

( T∑

t=1

gtg
′
t

)−1( T∑

t=1

gt(eit + f⋆′
t λ

⋆
i )
)

= W ⋆λ⋆
i + ∆−1

gg

( T∑

t=1

gteit

)
+Op(T−1). (A.25)

Now consider f̃t − f⋆
t . By (A.13),

f̃t − f⋆
t = f̃t −R⋆′−1

11 f∗
t +R⋆′−1

11 R⋆′
21gt
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By R⋆′−1
11 = Ir1

+ U⋆′, the above equation is equal to

f̃t − f⋆
t = (f̃t − f∗

t ) − U⋆′f∗
t +R⋆′−1

11 R⋆′
21gt

Substituting (A.3) into the above result, we have

f̃t − f⋆
t = − U⋆′f∗

t +R⋆′−1
11 R⋆′

21gt +
( N∑

i=1

1

σ2
i

λ∗
iλ

∗′
i

)−1( N∑

i=1

1

σ2
i

λ∗
i e

′
it

)

+Op(N−1) +Op(T−1)

(A.26)

However, by (A.13) together with R⋆
11 = (Ir1

+ U⋆)−1 and U⋆ = Op(T−1/2), we have

1

N

N∑

i=1

1

σ2
i

λ∗
iλ

∗′
i =

1

N

N∑

i=1

1

σ2
i

λ⋆
iλ

⋆′
i + op(1)

1

N

N∑

i=1

1

σ2
i

λ∗
i eit =

1

N

N∑

i=1

1

σ2
i

λ⋆
i eit +Op(N−1/2T−1/2)

In addition, by (A.14), (A.12) and U⋆ = V ⋆ +Op(T−1) , we have

U⋆′f∗
t = V ⋆′f⋆

t +Op(T−1)

R⋆′−1
11 R⋆′

21gt = −
( T∑

t=1

f⋆
t g

′
t

)( T∑

t=1

gtg
′
t

)−1
gt = −W ⋆′gt +Op(T−1)

Given the above results, by (A.26), we have the last expression of Proposition A.3. This

completes the proof of Proposition A.3. �

Proposition A.4 Under Assumptions A-D, together with the identification condition AU2,

we have

Φ̃k − Φ⋆
k =

( T∑

t=K̄

u⋆
tψ

⋆′
t

)( T∑

t=K̄

ψ⋆
tψ

⋆′
t

)−1
(ik ⊗ Ir) −B⋆′Φ⋆

k + Φ⋆
kB

⋆′ +Op(N−1) +Op(T−1)

where B⋆ is defined as

B⋆ =

[
V ⋆ 0
W ⋆ 0

]
.

Proof of Proposition A.4. Notice

h∗
t = Φ∗

1h
∗
t−1 + Φ∗

2h
∗
t−2 + · · · + Φ∗

Kh
∗
t−K + u∗

t ,

and

h⋆
t = Φ⋆

1h
⋆
t−1 + Φ⋆

2h
⋆
t−2 + · · · + Φ⋆

Kh
⋆
t−K + u⋆

t .

By h⋆
t = R⋆′−1h∗

t , it follows that Φ⋆
k = R⋆′−1Φ∗

kR
⋆′. Thus,

Φ̃k − Φ⋆
k = Φ̃k −R⋆′−1Φ∗

kR
⋆′ (A.27)
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However, by R⋆−1
11 = Ir1

+ V ⋆ +Op(T−1) and R⋆
21 = −W ⋆ +Op(T−1), we have

R⋆′−1 =

[
R⋆′−1

11 −R⋆′−1
11 R⋆′

21

0 Ir2

]
= Ir +

[
V ⋆′ W ⋆′

0 0

]
+Op(T−1)

= Ir +B⋆′ +Op(T−1)

(A.28)

Given the above result, we have R⋆′ = Ir −B⋆′ +Op(T−1). Substituting the preceding two

results into (A.27), we have

Φ̃k − Φ⋆
k = Φ̃k − Φ∗

k −B⋆′Φ∗
k + Φ∗

kB
⋆′ +Op(T−1).

By Proposition A.2, we can rewrite the above result as

Φ̃k − Φ⋆
k =

( T∑

t=K̄

u∗
tψ

∗′
t

)( T∑

t=K̄

ψ∗
tψ

∗′
t

)−1
(ik ⊗ Ir) −B⋆′Φ∗

k + Φ∗
kB

⋆′ +Op(N−1) +Op(T−1).

By h⋆
t = R⋆′−1h∗

t , we have h∗
t = R⋆′h⋆

t = h⋆
t + (R⋆ − Ir)′h⋆

t . Given this result, together with

the fact that R⋆ − Ir = Op(T−1/2), we have

( T∑

t=K̄

u∗
tψ

∗′
t

)( T∑

t=K̄

ψ∗
tψ

∗′
t

)−1
=
( T∑

t=K̄

u⋆
tψ

⋆′
t

)( T∑

t=K̄

ψ⋆
tψ

⋆′
t

)−1
+Op(T−1)

and

B⋆′Φ∗
k = B⋆′Φ⋆

k +Op(T−1), Φ∗
kB

⋆′ = Φ⋆
kB

⋆′ +Op(T−1)

Given these results, we have

Φ̃k − Φ⋆
k =

( T∑

t=K̄

u⋆
tψ

⋆′
t

)( T∑

t=K̄

ψ⋆
tψ

⋆′
t

)−1
(ik ⊗ Ir) −B⋆′Φ⋆

k + Φ⋆
kB

⋆′ +Op(N−1) +Op(T−1)

This completes the proof. �

Appendix B: The asymptotic results and their proofs under IRa

As in the main text, we use (Λ,Γ, F ) to denote the underlying parameters satisfying IRa.

Let R be the rotation matrix which transforms (λ⋆′
i , γ

⋆′
i )′ into (λ′

i, γ
′
i)

′. Then we have

zt = Λft + Γgt + et = [Λ,Γ]

[
ft

gt

]
+ et

= [Λ⋆,Γ⋆]

[
R′

11 R′
21

0 Ir2

] [
R′−1

11 −R′−1
11 R′

21

0 Ir2

] [
f⋆

t

gt

]
+ et

(B.1)

Then we have

λi = R11λ
⋆
i , γi = γ⋆

i +R21λ
⋆
i , ft = R′−1

11 f⋆
t −R′−1

11 R′
21gt. (B.2)

The last equation in (B.2) can be written as

f⋆
t = R′

11ft +R′
21gt. (B.3)
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Note that the rotation matrix R is nonrandom. To see this, both AU2 and IRa impose

restrictions on the loadings and the covariance of ht. So the rotation matrix R, which

transform the underlying parameters from AU2 to IRa, only involves loadings and covari-

ance of ht. Thus it is nonrandom. This is in contrast with R⋆, which is random since AU1

involves ft.

Post-multiplying g′
t on both sides and taking the expectation, by E(f⋆

t g
′
t) = 0, we have

R21 = −∆−1
gg ∆gfR11.

Define φt = R′−1
11 f⋆

t . From the above results, φ has an alternative expression

φt = ft − ∆fg∆−1
gg gt. (B.4)

The following lemmas will be used in the subsequent proof.

Lemma B.1 For any compatible matrices A and B and their corresponding estimates Â
and B̂, we have

ÂB̂−1Â′ − AB−1A′ = (Â − A)B−1A′ + AB−1(Â − A)′ − AB−1(B̂ − B)B−1A′ +R

where

R = − (Â − A)B̂−1(B̂ − B)B−1A′ + (Â − A)B̂−1(Â − A)′

+ AB̂−1(B̂ − B)B−1(B̂ − B)B−1Â′ − AB̂−1(B̂ − B)B−1(Â − A)′.

Lemma B.1 can be proved easily by matrix algebra.

Lemma B.2 Under Assumptions A-D, we have

(a)
1

T̄
H̃ ′MΨ̃H̃ − 1

T̄
H∗′MΨ∗H∗ = Op(N−1) +Op(T−1)

(b)
1

T̄
H⋆′MΨ⋆H⋆ − 1

T̄
H∗′MΨ∗H∗ = B⋆′Ω⋆ + Ω⋆B⋆ +Op(T−1)

(c)
1

T̄
H̃ ′MΨ̃H̃ − 1

T̄
H⋆′MΨ⋆H⋆ = −B⋆′Ω⋆ − Ω⋆B⋆ +Op(N−1) +Op(T−1)

where 1
T̄
H̃ ′MΨ̃H̃ is defined as

1

T̄
H̃ ′MΨ̃H̃ =

1

T̄

T∑

t=K̄

h̃th̃
′
t −

( 1

T̄

T∑

t=K̄

h̃tψ̃
′
t

)( 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

)−1( 1

T̄

T∑

t=K̄

ψ̃th̃
′
t

)
,

and 1
T̄
H∗′MΨ∗H∗ and 1

T̄
H⋆′MΨ⋆H⋆ are defined similarly.

Proof of Lemma B.2. Consider (a). By Lemma A.1(a), we have

1

T̄

T∑

t=K̄

h̃th̃
′
t − 1

T̄

T∑

t=K̄

h∗
th

∗′
t = Op(N−1) +Op(T−1)
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1

T̄

T∑

t=K̄

h̃tψ̃
′
t − 1

T̄

T∑

t=K̄

h∗
tψ

∗′
t = Op(N−1) +Op(T−1)

1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t − 1

T̄

T∑

t=K̄

ψ∗
tψ

∗′
t = Op(N−1) +Op(T−1)

Given the above results, together with Lemma B.1, we have (a).

Consider (b). By h⋆
t = R⋆′−1h∗

t , we have ψ⋆
t = (IK ⊗R⋆′−1)ψ∗

t . This gives

1

T̄
H⋆′MΨ⋆H⋆ =

1

T̄
H⋆′MΨ∗H⋆

By H⋆ = H∗R⋆−1, we have

1

T̄
H⋆′MΨ∗H⋆ = R⋆′−1

( 1

T̄
H∗′MΨ∗H∗

)
R⋆−1

However, (A.28) shows that R⋆′−1 = Ir +B⋆′ +Op(T−1). Thus, we have

1

T̄
H⋆′MΨ⋆H⋆ − 1

T̄
H∗′MΨ∗H∗ = R⋆′−1

( 1

T̄
H∗′MΨ∗H∗

)
R⋆−1 − 1

T̄
H∗′MΨ∗H∗

= B⋆′
( 1

T̄
H∗′MΨ∗H∗

)
+
( 1

T̄
H∗′MΨ∗H∗

)
B⋆ +Op(T−1)

(B.5)

Now consider 1
T̄
H∗′MΨ∗H∗, which is equivalent to

1

T̄

T∑

t=K̄

u∗
tu

∗′
t −

( 1

T̄

T∑

t=K̄

u∗
tψ

∗′
t

)( 1

T̄

T∑

t=K̄

ψ∗
tψ

∗′
t

)−1( 1

T̄

T∑

t=K̄

ψ∗
t u

∗′
t

)

The second term is Op(T−1). The first term, by u⋆
t = R⋆′−1u∗

t and R⋆′ = Ir + Op(T−1/2),

is equal to

R⋆′
( 1

T̄

T∑

t=K̄

u⋆
tu

⋆′
t

)
R⋆ =

1

T̄

T∑

t=K̄

u⋆
tu

⋆′
t +Op(T−1/2) = Ω⋆ +Op(T−1/2).

Then it follows
1

T̄
H∗′MΨ∗H∗ = Ω⋆ +Op(T−1/2) (B.6)

Substituting (B.6) into (B.5), we have (b).

Result (c) is a direct result of (a) and (b). This completes the proof. �

Proposition B.1 Under Assumption A-D, together with the identification condition IR1,

we have

(a) λ̂i − λi = V λi + ∆−1
φφ

( 1

T

T∑

t=1

φteit

)
+Op(N−1) +Op(T−1)

(b) γ̂i − γi = Wλi + ∆−1
ηη

( 1

T

T∑

t=1

ηteit

)
+Op(N−1) +Op(T−1)

34



(c) f̂t − ft =
( 1

N

N∑

i=1

1

σ2
i

λiλ
′
i

)−1( 1

N

T∑

i=1

1

σ2
i

λieit

)
− V ′ft −W ′gt +Op(N−1) +Op(T−1)

where vec(V ) = B−1
Q P1D

+
r1

1
T̄

∑T
t=K̄ [εt ⊗εt −vec(Ir1

)]; φt = ft −∆fg∆−1
gg gt; ∆φφ = E(φtφ

′
t);

W = Ω−1
υυ

1
T

∑T
t=K̄ υtε

′
t; ηt = gt − ∆gf ∆−1

ff ft; ∆ηη = E(ηtη
′
t).

Proof of Proposition B.1. Consider the VAR expression under AU2:

h⋆
t = Φ⋆

1h
⋆
t−1 + Φ⋆

2h
⋆
t−2 + · · · + Φ⋆

Kh
⋆
t−K + u⋆

t .

Pre-multiplying R′−1 gives

ht =
(
R′−1Φ⋆

1R
′)ht−1 + · · · +

(
R′−1Φ⋆

KR
′)ht−K +R′−1u⋆

t .

So we have Φi = R′−1Φ⋆
iR

′ for i = 1, 2, . . . ,K and ut = R′−1u⋆
t . Then we have

εt = R′−1
11 ε⋆

t −R′−1
11 R′

21υ
⋆
t ,

υt = υ
⋆
t .

(B.7)

Post-multiplying υ
′
t on both sides and taking the expectation, by E(εtυ

′
t) = 0, we have

R21 = Ω⋆−1
υυ

Ω⋆
υε, (B.8)

Substituting the proceeding result into (B.7), by E(εtε
′
t) = Ir1

, we have

Ω⋆
εε·υ = Ω⋆

εε − Ω⋆
ευ

Ω⋆−1
υυ

Ω⋆
υε = R′

11R11. (B.9)

where Ω⋆
εε = E(ε⋆

t ε
⋆′
t ),Ω⋆

υυ
= E(υ⋆

t υ
⋆′
t ) and Ω⋆

ευ
= E(ε⋆

t υ
⋆′
t ). In addition, the identification

condition also requires that

Q =
1

N
Λ′Σ−1

ee Λ = R11

( 1

N
Λ⋆′Σ−1

ee Λ⋆
)
R′

11.

This is equivalent to

Q⋆ =
1

N
Λ⋆′Σ−1

ee Λ⋆ = R−1
11 QR

′−1
11 . (B.10)

However, our estimation procedure implies that the estimators of R11, R21, denoted by

R̂11, R̂21, satisfy

R̂21 = Ω̃−1
υυ

Ω̃υε (B.11)

R̂′
11R̂11 = Ω̃εε·υ = Ω̃εε − Ω̃ευΩ̃−1

υυ
Ω̃υε (B.12)

R̂11

( 1

N
Λ̃′Σ̃−1

ee Λ̃
)
R̂′

11 = diag (B.13)

where Ω̃εε, Ω̃υυ, Ω̃ευ are submatrices of Ω̃, which is defined as

Ω̃ =
1

T̄

T∑

t=K̄

ũtũ
′
t
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with ũt being the residuals of the regression

h̃t = Φ1h̃t−1 + Φ2h̃t−2 + · · · + ΦK h̃t−K + error

Let ψ̃t = (h̃′
t−1, h̃

′
t−2 . . . , h̃

′
t−K)′. Thus

ũt = h̃t −
( T∑

t=K̄

h̃tψ̃
′
t

)( T∑

t=K̄

ψ̃tψ̃
′
t

)−1
ψ̃t

So we have

Ω̃ =
1

T̄

T∑

t=K̄

h̃th̃
′
t −

( 1

T̄

T∑

t=K̄

h̃tψ̃
′
t

)( 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

)−1( 1

T̄

T∑

t=K̄

ψ̃th̃
′
t

)

The above result can be rewritten as

Ω̃ − Ω⋆ =

{
1

T̄

T∑

t=K̄

h̃th̃
′
t −

( 1

T̄

T∑

t=K̄

h̃tψ̃
′
t

)( 1

T̄

T∑

t=K̄

ψ̃tψ̃
′
t

)−1( 1

T̄

T∑

t=K̄

ψ̃th̃
′
t

)

− 1

T̄

T∑

t=K̄

h⋆
th

⋆′
t +

( 1

T̄

T∑

t=K̄

h⋆
tψ

⋆′
t

)( 1

T̄

T∑

t=K̄

ψ⋆
tψ

⋆′
t

)−1( 1

T̄

T∑

t=K̄

ψ⋆
t h

⋆′
t

)}
(B.14)

+
1

T̄

T∑

t=K̄

(u⋆
tu

⋆′
t − Ω⋆) −

( 1

T̄

T∑

t=K̄

u⋆
tψ

⋆′
t

)( 1

T̄

T∑

t=K̄

ψ⋆
tψ

⋆′
t

)−1( 1

T̄

T∑

t=K̄

ψ⋆
t u

⋆′
t

)

where ψ⋆
t = (h⋆′

t−1, h
⋆′
t−2, . . . , h

⋆′
t−K)′. The expression in bracket is given in Lemma B.2(c).

Given this result, together with

( 1

T̄

T∑

t=K̄

u⋆
tψ

⋆′
t

)( 1

T̄

T∑

t=K̄

ψ⋆
tψ

⋆′
t

)−1( 1

T̄

T∑

t=K̄

ψ⋆
t u

⋆′
t

)
= Op(T−1),

we have

Ω̃ − Ω⋆ = −B⋆′Ω⋆ − Ω⋆B⋆ +
1

T̄

T∑

t=K̄

(u⋆
tu

⋆′
t − Ω⋆) +Op(N−1) +Op(T−1). (B.15)

The above result implies

Ω̃εε − Ω⋆
εε = −V ⋆′Ω⋆

εε −W ⋆′Ω⋆
υε − Ω⋆

εεV
⋆ − Ω⋆

ευ
W ⋆ +

1

T̄

T∑

t=K̄

(ε⋆
t ε

⋆′
t − Ω⋆

εε)

+Op(N−1) +Op(T−1); (B.16)

Ω̃ευ − Ω⋆
ευ

= −V ⋆′Ω⋆
ευ

−W ⋆′Ω⋆
υυ

+
1

T̄

T∑

t=K̄

(ε⋆
t υ

⋆′
t − Ω⋆

ευ
) +Op(N−1) +Op(T−1); (B.17)

Ω̃υυ − Ω⋆
υυ

=
1

T̄

T∑

t=K̄

(υ⋆
t υ

⋆′
t − Ω⋆

υυ
) +Op(N−1) +Op(T−1). (B.18)
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By (B.15), we have Ω̃ − Ω⋆ p−→ 0. Then it follows Ω̃εε·υ − Ω⋆
εε·υ

p−→ 0, where Ω̃εε·υ and Ω⋆
εε·υ

are defined in (B.9) and (B.12). Thus

R̂′
11R̂11R

−1
11 R

′−1
11

p−→ Ir1
,

which, by the fact that AB = I then BA = I, leads to

(R̂11R
−1
11 )′(R̂11R

−1
11 )

p−→ Ir1
(B.19)

Furthermore, by (B.13), we have

(R̂11R
−1
11 )
[
R11

( 1

N
Λ̃′Σ̃−1

ee Λ̃
)
R′

11

]
(R̂11R

−1
11 )′ = diag

By 1
N Λ̃′Σ̃−1

ee Λ̃ − 1
N Λ⋆′Σ−1

ee Λ⋆ = op(1) and R11
1
N Λ⋆′Σ−1

ee Λ⋆R′
11 = 1

N Λ′Σ−1
ee Λ = Q, we have

(R̂11R
−1
11 )Q(R̂11R

−1
11 )′ = diag (B.20)

Notice Q is a diagonal matrix by identification. Applying Lemma A.2 to (B.19) and (B.20),

we have R̂11R
−1
11 converges to a diagonal matrix whose diagonal elements are either 1 or

−1. However, the possibility of −1 is precluded by our sign restrictions. Given this result,

we have R̂11 − R11
p−→ 0. Henceforth, we use ∆̂R11 to denote R̂11 − R11. Apparently

∆̂R11
p−→ 0. By (B.9) and (B.12), we have

R̂′
11R̂11 −R′

11R11 = Ω̃εε − Ω⋆
εε − (Ω̃ευΩ̃−1

υυ
Ω̃υε − Ω⋆

ευ
Ω⋆−1

υυ
Ω⋆

υε)

Substituting (B.16)-(B.18) into the above equation, together with Lemma B.1, we have

∆̂R
′
11R11 +R′

11∆̂R11 + ∆̂R
′
11∆̂R11 = −V ⋆′Ω⋆

εε·υ − Ω⋆
εε·υV

⋆

+
1

T̄

T∑

t=K̄

[
(ε⋆

t − Ω⋆
ευ

Ω⋆−1
υυ

υ
⋆
t )(ε⋆

t − Ω⋆
ευ

Ω⋆−1
υυ

υ
⋆
t )′ − Ω⋆

εε·υ
]

+Op(N−1) +Op(T−1).

However, by (B.7) and (B.8), we have R′
11εt = ε⋆

t − Ω⋆
ευ

Ω⋆−1
υυ

υ
⋆
t . Given this result, together

with (B.9), we have

∆̂R
′
11R11 +R′

11∆̂R11 + ∆̂R
′
11∆̂R11 = −V ⋆′R′

11R11 −R′
11R11V

⋆

+R′
11

[ 1

T̄

T∑

t=K̄

εtε
′
t − Ir1

]
R11 +Op(N−1) +Op(T−1).

(B.21)

Pre-multiplying R′−1
11 and post-multiplying R−1

11 on both sides, and neglecting the smaller

order term R′−1
11 ∆̂R

′
11∆̂R11R

−1
11 , we have

(
∆̂R11R

−1
11 +R11V

⋆R−1
11

)
+
(
∆̂R11R

−1
11 +R11V

⋆R−1
11

)′

=
1

T̄

T∑

t=K̄

(εtε
′
t − Ir1

) +Op(N−1) +Op(T−1).
(B.22)
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Now consider

1

N
Λ̃′Σ̃−1

ee Λ̃ − 1

N
Λ⋆′Σ−1

ee Λ⋆ =
1

N

N∑

i=1

1

σ̃2
i

(λ̃i − λ⋆
i )λ̃′

i +
1

N

N∑

i=1

1

σ̃2
i

λ̃i(λ̃i − λ⋆
i )′

− 1

N

N∑

i=1

1

σ̃2
i

(λ̃i − λ⋆
i )(λ̃i − λ⋆

i )′ +
1

N

N∑

i=1

λ⋆
iλ

⋆′
i (

1

σ̃2
i

− 1

σ2
i

).

The last term is Op(N−1/2T−1/2) + Op(T−1) which is shown in Bai and Li (2012). The

third term is Op(T−1). The first two terms are V ⋆Q⋆ +Q⋆V ⋆′ +Op(N−1/2T−1/2)+Op(T−1)

by Proposition A.3. Then it follows

1

N
Λ̃′Σ̃−1

ee Λ̃ − 1

N
Λ⋆′Σ−1

ee Λ⋆ = V ⋆Q⋆ +Q⋆V ⋆′ +Op(N−1/2T−1/2) +Op(T−1). (B.23)

Given the above results, (B.13) is equivalent to

Ndg

{
R̂11(Q⋆ + V ⋆Q⋆ +Q⋆V ⋆′)R̂′

11

}
= Op(N−1/2T−1/2) +Op(T−1).

Substituting (B.10) into the proceeding equation, we have

Ndg

{
R̂11(R−1

11 QR
′−1
11 +V ⋆R−1

11 QR
′−1
11 +R−1

11 QR
′−1
11 V ⋆′)R̂′

11

}
= Op(N−1/2T−1/2)+Op(T−1).

Replace R̂11 = ∆̂R11 +R11, the left hand side is (neglecting Ndg)

Q+ ∆̂R11R
−1
11 Q+Q(∆̂R11R

−1
11 )′ + ∆̂R11R

−1
11 Q(∆̂R11R

−1
11 )′Q

+R11V
⋆R−1

11 Q+ ∆̂R11V
⋆R−1

11 Q+ R̂11V
⋆R−1

11 Q(∆̂R11R
−1
11 )′

+QR′−1
11 V ⋆′R′

11 +QR′−1
11 V ⋆′∆̂R

′
11 + (∆̂R11R

−1
11 )QR′−1

11 V ⋆′R̂′
11

By neglecting the terms of smaller magnitude and noticing that Ndg(Q) = 0, we have

Ndg
{(

∆̂R11R
−1
11 +R11V

⋆R−1
11

)
Q (B.24)

+Q
(
∆̂R11R

−1
11 +R11V

⋆R−1
11

)′}
= Op(N−1/2T−1/2) +Op(T−1).

Let V = ∆̂R11R
−1
11 + R11V

⋆R−1
11 . Taking the half-vectorization operation vech(·) which

stacks the elements on and below the diagonal of the argument into a vector on both sides

of (B.22), we get

vech(V + V′) = vech
[ 1

T̄

T∑

t=K̄

(εtε
′
t − Ir1

)
]

+Op(N−1) +Op(T−1).

By the definitions of duplication matrix Dr1
and its Moore-Penrose inverse D+

r1
, and sym-

metrizer matrix Sr1
= (Ir2

1
+Kr1

)/2, the left hand side of the above equation can be written

as

vech(V + V′) = D+
r1

vec(V + V′) = 2D+
r1
Sr1

vec(V) = 2D+
r1

vec(V),
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where the last equation is due to D+
r1
Sr1

= D+
r1

, we have

2D+
r1

vec(V) = D+
r1

vec
[ 1

T̄

T∑

t=K̄

(εtε
′
t − Ir1

)
]

+Op(N−1) +Op(T−1). (B.25)

Let veck(M) be the operation which stacks the elements below the diagonal into a vector.

Let D1 be the matrix such that veck(M) = D1vec(M) for any symmetric matrix M . By

(B.24), we have

veck(VQ+QV′) = Op(N−1/2T−1/2) +Op(T−1).

implying

D1[Q⊗ Ir1
+ (Ir1

⊗Q)Kr1
]vec(V) = Op(N−1/2T−1/2) +Op(T−1). (B.26)

The preceding two equations imply

[
2D+

r1

D1[Q⊗ Ir1
+ (Ir1

⊗Q)Kr1
]

]
vec(V) =

[
D+

r1
vec
(

1
T̄

∑T
t=K̄(εtε

′
t − Ir1

)
)

0

]
+Op(N−1)+Op(T−1).

Let BQ be the matrix before vec(V) and P1 = [Ip, 0p×q]′, then the above result is equivalent

to

vec(V) = B−1
Q P1D

+
r1

vec
[ 1

T̄

T∑

t=K̄

(εtε
′
t − Ir1

)
]

+Op(N−1) +Op(T−1).

Define V by

vec(V ) = B−1
Q P1D

+
r1

vec
[ 1

T̄

T∑

t=K̄

(εtε
′
t − Ir1

)
]
.

Then by the definition of V,

∆̂R11R
−1
11 +R11V

⋆R−1
11 = V + +Op(N−1) +Op(T−1). (B.27)

Post-multiplying R11 on both sides of (B.27), we have

∆̂R11 = −R11V
⋆ + V R11 +Op(N−1) +Op(T−1) = Op(T−1/2) +Op(N−1) (B.28)

since V ⋆ = Op(T−1/2) and V = Op(T−1/2).

Now consider λ̂i − λi. By λ̂i = R̂11λ̃i and λi = R11λ
⋆
i , we have

λ̂i − λi = R̂11λ̃i −R11λ
⋆
i = ∆̂R11λ

⋆
i +R11(λ̃i − λ⋆

i ) + ∆̂R11(λ̃i − λ⋆
i ).

The last term of right hand side is Op(T−1) +Op(N−2) by λ̃i −λ⋆
i = Op(T−1/2) +Op(N−1)

and ∆̂R11 = Op(T−1/2) + Op(N−1). By (B.28) and (A.24), together with λi = R11λ
⋆
i , we

have

λ̂i − λi = V λi +R11

( 1

T

T∑

t=1

f⋆
t f

⋆′
t

)−1( 1

T

T∑

t=1

f⋆
t eit

)
+Op(N−1) +Op(T−1).
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Using (B.4), the above expression can be rewritten as

λ̂i − λi = V λi +
( 1

T

T∑

t=1

φtφ
′
t

)−1( 1

T

T∑

t=1

φteit

)
+Op(N−1) +Op(T−1)

= (λ′
i ⊗ Ir1

)vec(V ) + ∆−1
φφ

( 1

T

T∑

t=1

φteit

)
+Op(N−1) +Op(T−1).

To derive the remaining asymptotic results, we first consider ∆̂R21 = R̂21 −R21. Notice

R̂21 −R21 = Ω̃−1
υυ

Ω̃υε − Ω⋆−1
υυ

Ω⋆
υε = −Ω⋆−1

υυ
(Ω̃υυ − Ω⋆

υυ
)Ω⋆−1

υυ
Ω⋆

υε + Ω⋆−1
υυ

(Ω̃υε − Ω⋆
υε)

−(Ω̃−1
υυ

− Ω⋆−1
υυ

)(Ω̃υυ − Ω⋆
υυ

)Ω⋆−1
υυ

Ω⋆
υε + (Ω̃−1

υυ
− Ω⋆−1

υυ
)(Ω̃υε − Ω⋆

υε).

The last two terms of the right hand side are Op(N−2) + Op(T−1). Substituting (B.17)

and (B.18) into the above result, we have

∆̂R21 = Ω⋆−1
υυ

1

T̄

T∑

t=K̄

υ
⋆
t (ε⋆

t − Ω⋆
ευ

Ω⋆−1
υυ

υ
⋆
t )′ −W ⋆ − Ω⋆−1

υυ
Ω⋆

υεV
⋆ +Op(N−1) +Op(T−1).

However, by (B.7) and (B.8), we have R′
11εt = ε⋆

t − Ω⋆
ευ

Ω⋆−1
υυ

υ
⋆
t and υt = υ

⋆
t . Given these

results, we have

∆̂R21 = Ω⋆−1
υυ

[ 1

T̄

T∑

t=K̄

υtε
′
t

]
R11 −W ⋆ − Ω⋆−1

υυ
Ω⋆

υεV
⋆ +Op(N−1) +Op(T−1).

Notice that R21 = Ω⋆−1
υυ

Ω⋆
υε by (B.8) and 1

T̄

∑T
t=K̄ υtυ

′
t = E(υtυ

′
t) + Op(T−1/2) = Ωυυ +

Op(T−1/2) = Ω⋆
υυ

+Op(T−1/2), where the last equality is due to υt = υ
⋆
t by (B.7). Thus

∆̂R21 = WR11 −W ⋆ −R21V
⋆ +Op(N−1) +Op(T−1), (B.29)

where W = Ω−1
υυ

( 1
T̄

∑T
t=K̄ υtε

′
t). Notice γ̂i = γ̃i + R̂21λ̃i and γi = γ⋆

i +R21λ
⋆
i . Then

γ̂i −γi = (γ̃i −γ⋆
i ) + (R̂21λ̃i −R21λ

⋆
i ) = (γ̃i −γ⋆

i ) + ∆̂R21λ
⋆
i +R21(λ̃i −λ⋆

i ) + ∆̂R21(λ̃i −λ⋆
i ).

The last term of the right hand side of the above equation is Op(T−1) +Op(N−2). Substi-

tuting (A.25), (A.24) and (B.29) into the above result, we have

γ̂i − γi =
[ 1

T

T∑

t=1

gtg
′
t

]−1[ 1

T

T∑

t=1

gteit

]
+Wλi +R21

[ 1

T

T∑

t=1

f⋆
t f

⋆′
t

]−1[ 1

T

T∑

t=1

f⋆
t eit

]

+Op(N−1) +Op(T−1), (B.30)

by λi = R11λ
⋆
i . Consider the third expression, which, by (B.4), is equal to

R21R
−1
11 R11

( 1

T

T∑

t=1

f⋆
t f

⋆′
t

)−1( 1

T

T∑

t=1

f⋆
t eit

)
= R21R

−1
11

( 1

T

T∑

t=1

φtφ
′
t

)−1( 1

T

T∑

t=1

φteit

)
.
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Consider the last equation of (B.2). Post-multiplying g′
t on both sides and taking expecta-

tion, by E(f⋆
t g

′
t) = 0, we have

R21R
−1
11 = −∆−1

gg ∆gf .

The preceding two results imply that the third expression of (B.30) is equal to

−∆−1
gg ∆gf ∆−1

φφ

[ 1

T

T∑

t=1

φteit

]
+Op(T−1).

Let Ξt = ∆gf ∆−1
φφφt. Given the above result, the asymptotic representation of γ̂i − γi can

be rewritten as

γ̂i − γi = ∆−1
gg

[ 1

T

T∑

t=1

(gt − Ξt)eit

]
+Wλi +Op(N−1) +Op(T−1). (B.31)

The above asymptotic representation has an alternative expression. First, we define

ηt = gt − E(gtf
′
t)[E(ftf

′
t)]

−1ft = gt − ∆gf ∆−1
ff ft. (B.32)

which implies that

∆ηη = ∆gg − ∆gf ∆−1
ff ∆fg

By the Woodbury formula, we have

∆−1
gg = ∆−1

ηη − ∆−1
ηη ∆gf (∆ff + ∆fg∆−1

ηη ∆gf )−1∆fg∆−1
ηη (B.33)

With (B.33) and the relation that gt −Ξt = ηt +∆gf ∆−1
ff ft −∆gf ∆−1

φφφt, we can rewrite

the first term of the right hand side of (B.31) as

∆−1
gg

[ 1

T

T∑

t=1

(gt − Ξt)eit

]
= ∆−1

ηη

1

T

T∑

t=1

ηteit + ∆−1
ηη ∆gf

1

T

T∑

t=1

(∆−1
ff ft − ∆−1

φφφt)eit

−∆−1
ηη ∆gf (∆ff + ∆fg∆−1

ηη ∆gf )−1∆fg∆−1
ηη

1

T

T∑

t=1

ηteit

−∆−1
ηη ∆gf (∆ff + ∆fg∆−1

ηη ∆gf )−1∆fg∆−1
ηη ∆gf

1

T

T∑

t=1

(∆−1
ff ft − ∆−1

φφφt)eit

Consider the term (∆−1
ff ft − ∆−1

φφφt). From the definition of φt = ft − ∆fg∆−1
gg gt, we have

∆φφ = ∆ff − ∆fg∆−1
gg ∆gf (B.34)

which can be used to derive

φt = ft − ∆fg∆−1
gg (ηt + ∆gf ∆−1

ff ft) = ∆φφ∆−1
ff ft − ∆fg∆−1

gg ηt

Then

(∆−1
ff ft − ∆−1

φφφt) = ∆−1
φφ∆fg∆−1

gg ηt
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With the above equation, the first term of the right hand side of (B.31) can be further

rewritten as

∆−1
gg

[ 1

T

T∑

t=1

(gt − Ξt)eit

]
= ∆−1

ηη

1

T

T∑

t=1

ηteit + ∆−1
ηη ∆gf ∆−1

φφ∆fg∆−1
gg

1

T

T∑

t=1

ηteit (B.35)

−∆−1
ηη ∆gf (∆ff + ∆fg∆−1

ηη ∆gf )−1∆fg∆−1
ηη

1

T

T∑

t=1

ηteit

−∆−1
ηη ∆gf (∆ff + ∆fg∆−1

ηη ∆gf )−1∆fg∆−1
ηη ∆gf ∆−1

φφ∆fg∆−1
gg

1

T

T∑

t=1

ηteit

From the two basic facts that

∆−1
φφ = ∆−1

ff + ∆−1
ff ∆fg∆−1

ηη ∆gf ∆−1
ff ,

and

∆−1
ff ∆fg∆−1

ηη = ∆−1
φφ∆fg∆−1

gg .

we can rewrite the 2nd, 3rd and 4th terms on the right hand side of (B.35) as

∆−1
ηη ∆gf

(
∆−1

φφ − ∆−1
ff − ∆−1

ff ∆fg∆−1
gg ∆−1

gf ∆−1
φφ

)
∆fg∆−1

gg

1

T

T∑

t=1

ηteit

which equals zero by (B.34). So we can alternatively write the asymptotic representation

of γ̂i − γi as

γ̂i − γi = ∆−1
ηη

[ 1

T

T∑

t=1

ηteit

]
+Wλi +Op(N−1) +Op(T−1).

We proceed to consider f̂t − ft. Notice f̂t = R̂′−1
11 f̃t − R̂′−1

11 R̂′
21gt and ft = R′−1

11 f⋆
t −

R′−1
11 R′

21gt. Then

f̂t − ft = R̂′−1
11 f̃t − R̂′−1

11 R̂′
21gt −R′−1

11 f⋆
t −R′−1

11 R′
21gt

= −R′−1
11 (R̂′

11 −R′
11)R′−1

11 f⋆
t +R′−1

11 (f̃t −f⋆
t )−R′−1

11 (R̂′
21 −R′

21)gt +R′−1
11 (R̂′

11 −R′
11)R′−1

11 R′
21gt

−(R̂′−1
11 −R′−1

11 )(R̂′
11 −R′

11)R′−1
11 f⋆

t + (R̂′−1
11 −R′−1

11 )(f̃t − f⋆
t ) − (R̂′−1

11 −R′−1
11 )(R̂21 −R21)gt

+(R̂′−1
11 −R′−1

11 )(R̂′
11 −R′

11)R′−1
11 R′

21gt

The last four terms of the above expression are Op(N−2) +Op(T−1). Given this result, by

(B.28), (B.29) and Proposition A.3, we have

f̂t − ft = −V ′(R′−1
11 f⋆

t −R′−1
11 R′

21gt) −W ′gt

+
[ 1

N

N∑

i=1

1

σ2
i

λiλ
′
i

]−1( 1

N

T∑

i=1

1

σ2
i

λieit

)
+Op(N−1) +Op(T−1)
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By ft = R′−1
11 f⋆

t −R′−1
11 R′

21gt, we have

f̂t − ft =
( 1

N

N∑

i=1

1

σ2
i

λiλ
′
i

)−1( 1

N

T∑

i=1

1

σ2
i

λieit

)
− V ′ft −W ′gt +Op(N−1) +Op(T−1).

This completes the proof. �

Proposition B.2 Under Assumptions A-D, together with the identification condition IR1,

we have

Φ̂k − Φk =
( T∑

t=K̄

utψ
′
t

)( T∑

t=K̄

ψtψ
′
t

)−1
(ik ⊗ Ir) −B′Φk + ΦkB

′ +Op(N−1) +Op(T−1)

Proof of Proposition B.2. Consider Φ̂k − Φk. Notice Φ̂k = R′−1Φ̂kR̂
′ and Φk =

R′−1Φ⋆
kR

′. Thus

Φ̂k −Φk = R′−1Φ̂kR̂
′ −R′−1Φ⋆

kR
′ = R′−1Φ⋆

k∆̂R
′ −R′−1∆̂R

′
R′−1Φ⋆

kR
′ +R′−1(Φ̂k −Φ⋆

k)R′ +V

where

V = (R′−1−R′−1)Φ̂k∆̂R
′
+(R̂′−1−R′−1)(Φ̂k−Φ⋆

k)R′−(R̂′−1−R′−1)∆̂R
′
R′−1+R′−1(Φ̂k−Φ⋆

k)∆̂R
′

However, notice

∆̂R = R̂−R =

[
∆̂R11 0

∆̂R21 0

]
=

[
−R11V

⋆ + V R11 0
WR11 −W ⋆ −R21V

⋆ 0

]
+Op(N−1) +Op(T−1)

= BR−RB⋆ +Op(N−1) +Op(T−1) (B.36)

where

B =

[
V 0
W 0

]
, B⋆ =

[
V ⋆ 0
W ⋆ 0

]

and W = (
∑T

t=1 υtυ
′
t)

−1(
∑T

t=1 υtε
′
t). Then ∆̂R is Op(T−1/2) since both B and B⋆ are

Op(T−1/2). This result together with Φ̂k − Φ⋆
k = Op(T−1/2) +Op(N−1) implies V =

Op(N−2) +Op(T−1). Given this result, together with Φk = R′−1Φ⋆
kR

′, we have

Φ̂k − Φk = ΦkR
′−1∆̂R

′ −R′−1∆̂R
′
Φk +R′−1(Φ̂k − Φ⋆

k)R′ +Op(N−2) +Op(T−1) (B.37)

Substituting (B.36) into the above equation, together with ut = R′−1u⋆
t , ht = R′−1h⋆

t and

Proposition A.4, we have

Φ̂k − Φk =
( T∑

t=K̄

utψ
′
t

)( T∑

t=K̄

ψtψ
′
t

)−1
(ik ⊗ Ir) −B′Φk + ΦkB

′ +Op(N−1) +Op(T−1)

This completes the proof. �
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Supplement to “Estimation and inference of FAVAR models”

In this supplement, we provide detailed derivations for the asymptotic results under

IRb and IRc. We also provide the derivations for the asymptotic results of the impulse

response function.

Appendix C: The asymptotic results and their proofs under IRb

In this section, we derive the asymptotic results under IRb. The idea of the derivation is

to find the rotation matrix and its estimate, which transform the parameters under IRa

to those of IRb. For ease of exposition, we adopt the symbols in the previous section to

denote the parameters under IRa, e.g., Λ,Γ and F . We use the symbols with diamond

to denote the parameters under IRb, e.g., Λ⋄,Γ⋄ and F ⋄. We also use R⋄ to denote the

rotation matrix which transforms the parameters set (λ′
i, γ

′
i)

′ into (λ⋄′
i , γ

⋄′
i )′. We point out

that R⋄, unlike R⋆ in appendix A, is nonrandom. Then

zt = [Λ⋄,Γ⋄]

[
f⋄

t

gt

]
+ et

= [Λ,Γ]

[
R⋄′

11 R⋄′
21

0 Ir2

] [
R⋄′−1

11 −R⋄′−1
11 R⋄′

21

0 Ir2

] [
ft

gt

]
+ et.

Using the method in deriving (B.7), we have

ε⋄
t = R⋄′−1

11 εt −R⋄′−1
11 R⋄′

21υt,

υ
⋄
t = υt.

(C.1)

By E(εtυ
′
t) = E(ε⋄

t υ
⋄′
t ) = 0 and E(εtε

′
t) = E(ε⋄

t ε
⋄′
t ) = Ir1

, we have

R⋄
21 = 0; R⋄′

11R
⋄
11 = Ir1

. (C.2)

In addition, the identification conditions require

Λ1R
⋄′
11 = Λ⋄

1, (C.3)

where Λ1,Λ
⋄
1 are the upper r1 ×r1 submatrices of Λ,Λ⋄, respectively. Accordingly, we have

R̂⋄
21 = 0, R̂⋄′

11R̂
⋄
11 = Ir1

, (C.4)

Λ̂1R̂
⋄′
11 = Λ̂⋄

1. (C.5)

By (C.2) and (C.4), we have R̂⋄′
11R̂

⋄
11R

⋄′
11R

⋄
11 = Ir1

. This implies

(R⋄
11R̂

⋄′
11)(R⋄

11R̂
⋄′
11)′ = Ir1

.

Furthermore, notice that both Λ̂⋄
1 and Λ⋄

1 are lower triangular matrices, then Λ⋄−1
1 Λ̂⋄

1 is a

lower triangular matrix. By (C.3) and (C.5), we have Λ⋄−1
1 Λ̂⋄

1 = R⋄
11Λ−1

1 Λ̂1R̂
⋄′
11. However,
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we have already proved that Λ̂1 − Λ1
p−→ 0. Given this result, we have R⋄

11R̂
⋄′
11

p−→ Λ⋄−1
1 Λ̂⋄

1,

a lower triangular matrix. By (R⋄
11R̂

⋄′
11)(R⋄

11R̂
⋄′
11)′ = Ir, we have R⋄

11R̂
⋄′
11 converges in

probability to a diagonal matrix whose diagonal elements are either 1 or −1. However, our

sign restrictions rule out the possibility of −1. Then it follows R̂⋄
11

p−→ R⋄
11.

Let ∆̂R
⋄
11 = R̂⋄

11 −R⋄
11. By R̂⋄′

11R̂
⋄
11 = R⋄′

11R
⋄
11 = Ir1

, we have

∆̂R
⋄′
11R

⋄
11 +R⋄′

11∆̂R
⋄
11 + ∆̂R

⋄′
11∆̂R

⋄
11 = 0

Pre-multiplying R⋄
11 and post-multiplying R⋄′

11 on both sides gives

(∆̂R
⋄
11R

⋄′
11) + (∆̂R

⋄
11R

⋄′
11)′ + (∆̂R

⋄
11R

⋄′
11)′(∆̂R

⋄
11R

⋄′
11) = 0 (C.6)

Also notice that

Λ̂⋄′
1 − Λ⋄′

1 = R̂⋄
11Λ̂′

1 −R⋄
11Λ′

1 = ∆̂R
⋄
11Λ′

1 +R⋄
11(Λ̂1 − Λ1)′ + ∆̂R

⋄
11(Λ̂1 − Λ1)′

However, term ∆̂R
⋄
11Λ′

1 = (∆̂R
⋄
11R

⋄′
11)(R⋄

11Λ′
1) = (∆̂R

⋄
11R

⋄′
11)Λ⋄′

1 . Given this result, we have

Λ̂⋄′
1 − Λ⋄′

1 = (∆̂R
⋄
11R

⋄′
11)Λ⋄′

1 +R⋄
11(Λ̂1 − Λ1)′ + ∆̂R

⋄
11(Λ̂1 − Λ1)′

Post-multiplying Λ⋄′−1
1 on both sides, we have

(Λ̂⋄′
1 − Λ⋄′

1 )Λ⋄′−1
1 = (∆̂R

⋄
11R

⋄′
11) +R⋄

11(Λ̂1 − Λ1)′Λ⋄′−1
1 + ∆̂R

⋄
11(Λ̂1 − Λ1)′Λ⋄′−1

1

Matrix (Λ̂⋄′
1 − Λ⋄′

1 )Λ⋄′−1
1 is an upper triangular matrix since both Λ̂⋄

1 and Λ⋄
1 are lower

triangular matrices. So we have

lower
{

(∆̂R
⋄
11R

⋄′
11) +R⋄

11(Λ̂1 − Λ1)′Λ⋄′−1
1 + ∆̂R

⋄
11(Λ̂1 − Λ1)′Λ⋄′−1

1

}
= 0 (C.7)

where lower{·} denotes the elements of the argument strictly below the diagonal.

Consider R⋄
11(Λ̂1 − Λ1)′Λ⋄′−1

1 . By Proposition B.1, we have

R⋄
11(Λ̂1−Λ1)′Λ⋄′−1

1 = R⋄
11

( T∑

t=1

φtφ
′
t

)−1( T∑

t=1

φtξ
′
t

)
Λ⋄′−1

1 +R⋄
11V Λ′

1Λ⋄′−1
1 +Op(T−1)+Op(N−1),

where ξt = (e1t, e2t, . . . , ert)
′. Notice φt = ft − E(ftg

′
t)[E(gtg

′
t)]

−1gt. So we have R⋄
11φt =

f⋄
t − E(f⋄

t g
′
t)[E(gtg

′
t)]

−1gt, which we use φ⋄
t to denote. So the first term is equal to

( T∑

t=1

φ⋄
tφ

⋄′
t

)−1( T∑

t=1

φ⋄
t ξ

′
t

)
Λ⋄′−1

1

The second term is R⋄
11V R

⋄′
11 by Λ′

1Λ⋄′−1
1 = R⋄−1

11 = R⋄′
11. Then it follows

R⋄
11(Λ̂1 − Λ1)′Λ⋄′−1

1 = R⋄
11V R

⋄′
11 +

( T∑

t=1

φ⋄
tφ

⋄′
t

)−1( T∑

t=1

φ⋄
t ξ

′
t

)
Λ⋄′−1

1 +Op(T−1) +Op(N−1)
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Given the above result, (C.7) can be written as

lower
{(

∆̂R
⋄
11R

⋄′
11 +R⋄

11V R
⋄′
11

)
+
( T∑

t=1

φ⋄
tφ

⋄′
t

)−1( T∑

t=1

φ⋄
t ξ

′
t

)
Λ⋄′−1

1

+ ∆̂R
⋄
11(Λ̂1 − Λ1)′Λ⋄′−1

1 +Op(N−1) +Op(T−1)
}

= 0

(C.8)

By (C.6), we have

(
∆̂R

⋄
11R

⋄′
11+R⋄

11V R
⋄′
11

)
+
(
∆̂R

⋄
11R

⋄′
11+R⋄

11V R
⋄′
11

)′
+(∆̂R

⋄
11R

⋄′
11)′(∆̂R

⋄
11R

⋄′
11) = R⋄

11(V+V ′)R⋄′
11.

Notice

V + V ′ =
1

T̄

T∑

t=K̄

(εtε
′
t − Ir1

)

Then, by ε⋄
t = R⋄

11εt, we have

(
∆̂R

⋄
11R

⋄′
11 +R⋄′

11V R
⋄
11

)
+
(
∆̂R

⋄
11R

⋄′
11 +R⋄′

11V R
⋄
11

)′

+ (∆̂R
⋄
11R

⋄′
11)′(∆̂R

⋄
11R

⋄′
11) =

1

T̄

T∑

t=K̄

(ε⋄
t ε

⋄′
t − Ir1

) (C.9)

For now, define

V =

{
∆̂R

⋄
11R

⋄′
11 +R⋄

11V R
⋄′
11 +

[ T∑

t=1

φ⋄
tφ

⋄′
t

]−1[ T∑

t=1

φ⋄
t ξ

′
t

]
Λ⋄′−1

1

}′
.

By neglecting the smaller order terms (∆̂R
⋄
11R

⋄′
11)′(∆̂R

⋄
11R

⋄′
11) and ∆̂R

⋄
11(Λ̂1 −Λ1)′Λ⋄′−1

1 , we

see that V is an asymptotically lower triangular matrix such that

V + V ′ =
1

T̄

T∑

t=K̄

(ε⋄
t ε

⋄′
t − Ir1

) +
[ T∑

t=1

φ⋄
tφ

⋄′
t

]−1[ T∑

t=1

φ⋄
t ξ

′
t

]
Λ⋄′−1

1

+ Λ⋄−1
1

[ T∑

t=1

ξtφ
⋄′
t

][ T∑

t=1

φ⋄
tφ

⋄′
t

]−1
+Op(T−1) +Op(N−1).

Let D∗
r be the matrix such that vec(M) = D∗

rvech(M) for any lower triangular r×r matrix

M , where vech(·) is the operator which stacks all the elements on and below the diagonal

into a vector. It is worth noting that D∗
r is different from the usual duplication matrix

since M is lower triangular, not symmetric. Then taking the vectorization operation on

both sides and noticing that vec(V) = D∗
rvech(V), we have

2Sr1
D∗

r1
vech(V) =

1

T̄

T∑

t=K̄

[ε⋄
t ⊗ε⋄

t −vec(Ir1
)]+2Sr1

(Λ⋄−1
1 ⊗∆⋄−1

φφ )
1

T

T∑

t=1

(ξt⊗φ⋄
t )+Op(T−1)+Op(N−1).

where Sr is the symmetrizer matrix such that Sr = (Ir2 + Kr)/2, with Kr being the

r-dimensional commutation matrix such that vec(A′) = Krvec(A) for any r × r matrix A.
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Let V ⋄ be the leading term of ∆̂R
⋄
11R

⋄′
11 + R⋄′

11V R
⋄
11. It is easy to see from (C.8) and

(C.9) that V ⋄ = Op(T−1/2). So we have ∆̂R
⋄
11R

⋄′
11 +R⋄′

11V R
⋄
11 = V ⋄ +Op(T−1) +Op(N−1).

Then by the definition of V,

V ⋄ = V ′ − ∆⋄−1
φφ

1

T

T∑

t=1

φ⋄
t ξ

′
tΛ

⋄′−1
1 +Op(T−1).

Taking vectorization operation on both sides, we have

vec(V ⋄) = Kr1
vec(V) − (Λ⋄−1

1 ⊗ ∆⋄−1
φφ )

1

T

T∑

t=1

(ξt ⊗ φ⋄
t ) +Op(T−1)

= Kr1
D∗

r1
vech(V) − (Λ⋄−1

1 ⊗ ∆⋄−1
φφ )

1

T

T∑

t=1

(ξt ⊗ φ⋄
t ) +Op(T−1)

= D2

[ 1

T̄

T∑

t=K̄

[ε⋄
t ⊗ ε⋄

t − vec(Ir1
)] + 2Sr1

(Λ⋄−1
1 ⊗ ∆⋄−1

φφ )
1

T

T∑

t=1

(ξt ⊗ φ⋄
t )
]

(C.10)

− (Λ⋄−1
1 ⊗ ∆⋄−1

φφ )
1

T

T∑

t=1

(ξt ⊗ φ⋄
t ) +Op(T−1)

where D2 = Kr1
D∗

r1
(D∗′

r1
S′

r1
Sr1

D∗
r1

)−1D∗′
r1
S′

r1
/2.

Now consider the asymptotic property of λ̂⋄
i − λ⋄

i . By λ̂⋄
i = R̂⋄

11λ̂i and λ⋄
i = R⋄

11λi,

λ̂⋄
i − λ⋄

i = R̂⋄
11λ̂i −R⋄

11λi = ∆̂R
⋄
11λi +R⋄

11(λ̂i − λi) + ∆̂R
⋄
11(λ̂i − λi)

= ∆̂R
⋄
11R

⋄′
11λ

⋄
i +R⋄

11(λ̂i − λi) +Op(T−1) +Op(N−2)

Substituting the first expression of Proposition B.1 into the above equation and noticing

R⋄
11φt = φ⋄

t , we have

λ̂⋄
i − λ⋄

i = (∆̂R
⋄
11R

⋄′
11 +R⋄

11V R
⋄′
11)λ⋄

i +
( 1

T

T∑

t=1

φ⋄
tφ

⋄′
t

)−1( 1

T

T∑

t=1

φ⋄
t eit

)
+Op(T−1).

By ∆̂R
⋄
11R

⋄′
11 +R⋄

11V R
⋄′
11 = V ⋄ +Op(T−1)+Op(N−1) and 1

T

∑T
t=1 φ

⋄
tφ

⋄′
t = ∆⋄

φφ+Op(T−1/2),

we have

λ̂⋄
i − λ⋄

i = V ⋄λ⋄
i + ∆⋄−1

φφ

( 1

T

T∑

t=1

φ⋄
t eit

)
+Op(T−1) +Op(N−1) (C.11)

= (λ⋄′
i ⊗ Ir1

)vec(V ⋄) + ∆⋄−1
φφ

( 1

T

T∑

t=1

φ⋄
t eit

)
+Op(T−1) +Op(N−1).

Substituting (C.10) into the above expression,

λ̂⋄
i − λ⋄

i = (λ⋄′
i ⊗ Ir1

)D2

[ 1

T̄

T∑

t=K̄

[ε⋄
t ⊗ ε⋄

t − vec(Ir1
)] + 2Sr1

(Λ⋄−1
1 ⊗ ∆⋄−1

φφ )
1

T

T∑

t=1

(ξt ⊗ φ⋄
t )
]

− [(λ⋄′
i Λ⋄−1

1 ) ⊗ ∆⋄−1
φφ ]

1

T

T∑

t=1

(ξt ⊗ φ⋄
t ) + ∆⋄−1

φφ

( 1

T

T∑

t=1

φ⋄
t eit

)
+Op(T−1) +Op(N−1).
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We discuss the asymptotic representations in two cases.

Case one: i ≤ r1. In this case, λ⋄′
i Λ⋄−1

1 = ι′iΛ
⋄
1Λ⋄−1

1 = ι′i where ιi is the ith column of

r1 × r1 identity matrix. Given this result, it is easy to see that the last two expressions are

cancelled. Thus

λ̂⋄
i −λ⋄

i = (λ⋄′
i ⊗Ir1

)D2

[ 1

T̄

T∑

t=K̄

[ε⋄
t ⊗ε⋄

t −vec(Ir1
)]+2Sr1

(Λ⋄−1
1 ⊗∆⋄−1

φφ )
1

T

T∑

t=1

(ξt⊗φ⋄
t )
]
+Op(T−1)+Op(N−1).

Under the normality of ut, when
√
T/N −→ 0, we have

√
T (λ̂⋄

i − λ⋄
i )

d−→ N
(
0, (λ⋄′

i ⊗ Ir1
)D2

(
2Ir2

1
+ 4Sr1

[(Λ⋄−1
1 ΣξξΛ⋄−1′

1 ) ⊗ ∆⋄−1
φφ ]S′

r1

)
D′

2(λ⋄
i ⊗ Ir1

)
)
.

Case two: i > r1. In this case, the asymptotic representation can be written as

λ̂⋄
i − λ⋄

i = (λ⋄′
i ⊗ Ir1

)D2
1

T̄

T∑

t=K̄

[ε⋄
t ⊗ ε⋄

t − vec(Ir1
)] + ∆⋄−1

φφ

( 1

T

T∑

t=1

φ⋄
t eit

)

+ (λ⋄′
i ⊗ Ir1

)(2D2Sr1
− Ir2

1
)(Λ⋄−1

1 ⊗ ∆⋄−1
φφ )

1

T

T∑

t=1

(ξt ⊗ φ⋄
t ) +Op(T−1) +Op(N−1).

Under the normality of ut, when
√
T/N −→ 0, we have

√
T (λ̂⋄

i −λ⋄
i )

d−→ N
(
0, (λ⋄′

i ⊗Ir1
)
(
2D2D

′
2+D3[(Λ⋄−1

1 ΣξξΛ⋄−1′
1 )⊗∆⋄−1

φφ ]D′
3

)
(λ⋄

i ⊗Ir1
)+σ2

i ∆⋄−1
φφ

)
.

with D3 = 2D2Sr1
− Ir2

1
.

To derive the asymptotic γ̂⋄
i − γ⋄

i , we notice γ̂⋄
i = γ̂i and γ⋄

i = γi. Thus, by (B.31),

γ̂⋄
i − γ⋄

i =
( 1

T

T∑

t=1

gtg
′
t

)−1( 1

T

T∑

t=1

(gt − Ξt)eit

)
+Wλi +Op(N−1) +Op(T−1)

=
( 1

T

T∑

t=1

gtg
′
t

)−1( 1

T

T∑

t=1

(gt − Ξ⋄
t )eit

)
+W ⋄λ⋄

i +Op(N−1) +Op(T−1).

where Ξ⋄
t = ∆⋄

gf ∆⋄−1
φφ φ⋄

t and W ⋄ = Ω⋄−1
υυ

( 1
T

∑T
t=K̄ υ

⋄
t ε

⋄′
t ). By the similar arguments in the

previous section, the above asymptotic results has an alternative expression:

γ̂⋄
i − γ⋄

i =
[ T∑

t=1

η⋄
t η

⋄′
t

]−1[ T∑

t=1

η⋄
t eit

]
+W ⋄λ⋄

i +Op(N−1) +Op(T−1).

Now consider f̂⋄
t − f⋄

t . By f̂⋄
t = R̂⋄

11f̂t and f⋄
t = R⋄

11ft, we have

f̂⋄
t − f⋄

t = ∆̂R
⋄
11ft +R⋄

11(f̂t − ft) + ∆̂R
⋄
11(f̂t − ft)

= ∆̂R
⋄
11R

⋄′
11f

⋄
t +R⋄

11(f̂t − ft) +Op(N−1/2T−1/2) +Op(T−1).
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Substituting the third expression of Proposition B.1 into the above equation, we have

f̂⋄
t − f⋄

t = (∆̂R
⋄
11R

⋄′
11 −R⋄

11V
′R⋄′

11)f⋄
t −R⋄

11

( T∑

t=1

εtυ
′
t

)( T∑

t=1

υtυ
′
t

)−1
gt

+R⋄
11

( N∑

i=1

1

σ2
i

λiλ
′
i

)−1( N∑

i=1

1

σ2
i

λieit

)
+Op(N−1) +Op(T−1).

First notice that

∆̂R
⋄
11R

⋄′
11 −R⋄

11V
′R⋄′

11 = (∆̂R
⋄
11R

⋄′
11 +R⋄

11∆̂R
⋄′
11) − (∆̂R

⋄
11R

⋄′
11 +R⋄

11V R
⋄′
11)′f⋄

t .

By (C.6), term ∆̂R
⋄
11R

⋄′
11 + R⋄

11∆̂R
⋄′
11 is negligible. In addition, as defined before, V ⋄ is

the leading term of ∆̂R
⋄
11R

⋄′
11 + R⋄

11V R
⋄′
11. Given this results, together with λ⋄

i = R⋄
11λi,

ε⋄
t = R⋄

11εt, υ
⋄
t = υt and R⋄′

11R
⋄
11 = Ir1

, we have

f̂⋄
t − f⋄

t = −V ⋄′f⋄
t −W ⋄′gt +

( N∑

i=1

1

σ2
i

λ⋄
iλ

⋄′
i

)−1( N∑

i=1

1

σ2
i

λ⋄
i eit

)
+Op(N−1) +Op(T−1).

We finally consider the asymptotic result of Φ̂⋄
k − Φ⋄

k. Notice the derivation of (B.37)

does not involve any special value of parameters. So it still holds in the present context.

So we have

Φ̂⋄
k−Φ⋄

k = Φ⋄
kR

⋄′−1∆̂R
⋄′−R⋄′−1∆̂R

⋄′
Φ⋄

k+R⋄′−1(Φ̂k−Φk)R⋄′+Op(N−2)+Op(T−1). (C.12)

Notice

R⋄′−1∆̂R
⋄′

= R⋄∆̂R
⋄′

=

[
R⋄

11∆̂R
⋄′
11 0

0 0

]
.

By Proposition B.2, together with the above result, we have

Φ̂⋄
k − Φ⋄

k = Φ⋄
k

[
∆̂R

⋄
11R

⋄′
11 +R⋄

11V
a′R⋄′

11 W ⋄′

0 0

]
−
[
∆̂R

⋄
11R

⋄′
11 +R⋄

11V
a′R⋄′

11 W ⋄′

0 0

]
Φ⋄

k

+
( T∑

t=K̄

u⋄
tψ

⋄′
t

)( T∑

t=K̄

ψ⋄
tψ

⋄′
t

)−1
(ik ⊗ Ir) +Op(N−1) +Op(T−1).

Let B⋄ is defined by

B⋄ =

[
V ⋄ 0
W ⋄ 0

]
.

By ∆̂R
⋄
11R

⋄′
11 +R⋄

11V R
⋄′
11 = V ⋄ +Op(T−1), we have

Φ̂⋄
k − Φ⋄

k =
( T∑

t=K̄

u⋄
tψ

⋄′
t

)( T∑

t=K̄

ψ⋄
tψ

⋄′
t

)−1
(ik ⊗ Ir) + Φ⋄

kB
⋄′ −B⋄′Φ⋄

k +Op(N−1) +Op(T−1).

This completes the whole proof. �
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Appendix D: The asymptotic results and their proofs under IRc

Likewise in the previous section, we use the symbols without superscript to denote the

parameters of IRa and the symbols with diamond to denote the parameters of IRc. We

also use R⋄ to denote the rotation matrix, which transforms the parameters set (Λ,Γ, F )

into (Λ⋄,Γ⋄, F ⋄), i.e.,

zt = [Λ⋄,Γ⋄]

[
f⋄

t

gt

]
+ et

= [Λ,Γ]

[
R⋄′

11 R⋄′
21

0 Ir2

] [
R⋄′−1

11 −R⋄′−1
11 R⋄′

21

0 Ir2

] [
ft

gt

]
+ et.

Using the way in deriving (C.1), we have

ε⋄
t = R⋄′−1

11 εt −R⋄′−1
11 R⋄′

21υt,

υ
⋄
t = υt.

(D.1)

By E(εtυ
′
t) = E(ε⋄

t υ
⋄′
t ) = 0, we have

R⋄
21 = 0. (D.2)

By Λ⋄
1 = Ir1

, we have

R⋄
11 = Λ′−1

1 . (D.3)

Accordingly, we have R̂⋄
21 = 0 and R̂⋄

11 = Λ̂′−1
1 . Since we have already proved Λ̂1 − Λ1

p−→ 0,

then it follows R̂⋄
11

p−→ R⋄
11. We use ∆̂R

⋄
11 to denote R̂⋄

11 − R⋄
11. Apparently ∆̂R

⋄
11

p−→ 0.

Furthermore, Since Λ̂′
1 = Λ′

1 + Op(T−1/2) by Proposition B.1, we have ∆̂R
⋄
11 = R̂⋄

11 −
R⋄

11 = −Λ̂′−1
1 (Λ̂1 − Λ1)′Λ′−1

1 = Op(T−1/2). Now consider λ̂⋄
i − λ⋄

i . Notice λ̂⋄
i = R̂⋄

11λ̂i and

λ⋄
i = R⋄

11λi. Then it follows

λ̂⋄
i − λ⋄

i = ∆̂R
⋄
11λi +R⋄

11(λ̂i − λi) + ∆̂R
⋄
11(λ̂i − λi).

Notice ∆̂R
⋄
11 = Op(T−1/2) +Op(N−1) and λ̂i − λi = Op(T−1/2) +Op(N−1). So the above

result can be simplified as

λ̂⋄
i − λ⋄

i = ∆̂R
⋄
11λi +R⋄

11(λ̂i − λi) +Op(T−1) +Op(N−2). (D.4)

However, notice

∆̂R
⋄
11 = −Λ̂′−1

1 (Λ̂1 − Λ1)′Λ′−1
1

= −Λ′−1
1 (Λ̂1 − Λ1)′Λ′−1

1 − (Λ̂′−1
1 − Λ′−1

1 )(Λ̂1 − Λ1)′Λ′−1
1

= −Λ′−1
1 (Λ̂1 − Λ1)′Λ′−1

1 − ∆̂R
⋄
11(Λ̂1 − Λ1)′Λ′−1

1 .

The last term of right hand side of the above equality is Op(T−1) + Op(N−1). Then we

have

∆̂R
⋄
11 = −Λ′−1

1 (Λ̂1 − Λ1)′Λ′−1
1 +Op(T−1) +Op(N−2). (D.5)
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However, by Proposition B.1, we have

(Λ̂1 − Λ1)′ = V Λ′
1 +

( 1

T

T∑

t=1

φtφ
′
t

)−1( 1

T

T∑

t=1

φtξ
′
t

)
+Op(T−1) +Op(N−1), (D.6)

where ξt = (e1t, e2t, . . . , er1t)
′. Substituting (D.5) and (D.6)into (D.4), together with Propo-

sition B.1 and R⋄
11 = Λ′−1

1 and λ⋄
i = R⋄

11λi, we have

λ̂⋄
i − λ⋄

i = V ⋄λ⋄
i +

( 1

T

T∑

t=1

φ⋄
tφ

⋄′
t

)−1( 1

T

T∑

t=1

φ⋄
t eit

)
+Op(T−1) +Op(N−1), (D.7)

where V ⋄ = −∆⋄−1
φφ ( 1

T

∑T
t=1 φ

⋄
t ξ

′
t) and φ⋄

t = f⋄
t − ∆⋄

fg∆−1
gg gt.

We proceed to consider γ̂⋄
i − γ⋄

i . Notice γ̂⋄
i = γ̂i and γ⋄

i = γ. Thus, by (B.31),

γ̂⋄
i − γ⋄

i = γ̂i − γi =
[ 1

T

T∑

t=1

gtg
′
t

]−1[ 1

T

T∑

t=1

(gt − Ξt)eit

]
+Wλi +Op(N−1) +Op(T−1)

=
( 1

T

T∑

t=1

gtg
′
t

)−1( 1

T

T∑

t=1

(gt − Ξ⋄
t )eit

)
+W ⋄λ⋄

i +Op(N−1) +Op(T−1), (D.8)

where Ξ⋄
t = (

∑T
t=1 gtf

⋄′
t )(

∑T
t=1 φ

⋄
tφ

⋄′
t )−1φ⋄

t and W ⋄ = (
∑T

t=1 υ
⋄
t υ

⋄′
t )−1(

∑T
t=1 υ

⋄
t ε

⋄′
t ). By the

similar arguments in Section B, we have the following alternative expression:

γ̂⋄
i − γ⋄

i =
[ T∑

t=1

η⋄
t η

⋄′
t

]−1[ T∑

t=1

η⋄
t eit

]
+W ⋄λ⋄

i +Op(N−1) +Op(T−1).

We further consider f̂⋄
t − f⋄

t . Notice f̂⋄
t = R̂⋄′−1

11 f̂t and f⋄
t = R⋄′−1

11 ft. Given these

results, together with R̂⋄′−1
11 = Λ̂1 and R⋄′−1

11 = Λ1, we have

f̂⋄
t − f⋄

t = (Λ̂1 − Λ1)ft + Λ1(f̂t − ft) + (Λ̂1 − Λ1)(f̂t − ft).

The last term is Op(T−1) + Op(N−2). By (D.6) and Proposition B.1, together with

Λ⋄′−1
1 λi = R⋄

11λi = λ⋄
i , we have

f̂⋄
t −f⋄

t =
( 1

N

N∑

i=1

1

σ2
i

λ⋄
iλ

⋄′
i

)−1( 1

N

N∑

i=1

1

σ2
i

λ⋄
i eit

)
−V ⋄′f⋄

t −W ⋄′gt+Op(N−1)+Op(T−1). (D.9)

We finally consider Φ̂⋄
k − Φ⋄

k. Using the way to derive (B.37), we have

Φ̂⋄
k−Φ⋄

k = Φ⋄
kR

⋄′−1∆̂R
⋄′−R⋄′−1∆̂R

⋄′
Φ⋄

k+R⋄′−1(Φ̂k−Φk)R⋄′+Op(N−2)+Op(T−1). (D.10)
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By Proposition B.2 we have

Φ̂⋄
k − Φ⋄

k = Φ⋄
k(R⋄′−1∆̂R

⋄′
+R⋄′−1B′R⋄′) − (R⋄′−1∆̂R

⋄′
+R⋄′−1B′R⋄′)Φ⋄

k

+
( T∑

t=K̄

u⋄
tψ

⋄′
t

)( T∑

t=K̄

ψ⋄
tψ

⋄′
t

)−1
(ik ⊗ Ir) +Op(N−1) +Op(T−1).

However,

R⋄′−1∆̂R
⋄′

=


−R⋄′−1

11 V ′R⋄′
11 −

(
1
T

∑T
t=1 ξtφ

′
t

)(
1
T

∑T
t=1 φtφ

′
t

)−1
R⋄′

11 0

0 0




and

R⋄′−1B′R⋄′ =

[
R⋄′−1

11 V ′R⋄′
11 R⋄′−1

11 W ′

0 0

]
.

Given the above two results, together with φ⋄
t = R⋄′−1

11 φt, ε
⋄
t = R⋄′−1

11 εt and the definitions

of V ⋄ and W ⋄, we have

R⋄′−1∆̂R
⋄′

+R⋄′−1B′R⋄′ = B⋄′,

where

B⋄ =

[
V ⋄ 0
W ⋄ 0

]
.

Thus,

Φ̂⋄
k − Φ⋄

k =
( T∑

t=K̄

u⋄
tψ

⋄′
t

)( T∑

t=K̄

ψ⋄
tψ

⋄′
t

)−1
(ik ⊗ Ir) + Φ⋄

kB
⋄′ −B⋄′Φ⋄

k +Op(N−1) +Op(T−1).

This completes the proof.

Appendix E: Proofs of the theorems in Section 5

In this section, we give detailed proofs of Theorems 5.2 and 5.3. The proof of Theorem 5.1

is almost the same as that of the equation (11.7.4) in Hamilton (1994). Hence this proof

is omitted. As the starting point, we first give a theorem, which is closely related with

Theorem 5.2.

Theorem E.1 Under Assumptions A-D, when N,T → ∞ and
√
T/N → 0, under IRa,

IRb or IRc, we have

√
T̄ (Ω̃υυ − Ωυυ) =

1√
T̄

T∑

t=K̄

(υtυ
′
t − Ωυυ) + op(1).

In addition, under IRc, we also have

√
T̄ (Ω̂εε − Ωεε) =

1√
T̄

T∑

t=K̄

(εtε
′
t − Ωεε) + ∆−1

φφ

[ 1√
T̄

T∑

t=1

φtξ
′
t

]
+
[ 1√

T̄

T∑

t=1

ξtφ
′
t

]
∆−1

φφ + op(1).

55



Proof of Theorem E.1. Notice that υ
⋆
t = υt and Ω⋆

υυ
= Ωυυ. Then the first asymptotic

representation is a direct result from (B.15). We then consider the second one. In this proof,

we use Λ,Γ and F to denote the parameters under IRb and Λ⋄,Γ⋄ and F ⋄ to denote the

parameters under IRc. Notice that the rotation matrix R which transform the parameters

set under IRb to the ones under IRc is [Λ−1′
1 , 0; 0, Ir2

], i.e., λ⋄
i = Λ−1′

1 λi, f
⋄
t = Λ1ft and

ε⋄
t = Λ1εt. Given this result, we have Ω⋄

εε = Λ1Λ′
1. Accordingly, we have Ω̂⋄

εε = Λ̂1Λ̂′
1.

Thus,

Ω̂⋄
εε − Ω⋄

εε = (Λ̂1 − Λ1)Λ′
1 + Λ1(Λ̂1 − Λ1)′ + (Λ̂1 − Λ1)(Λ̂1 − Λ1)′. (E.1)

By (C.11), we have

(Λ̂1 − Λ1)′ = V Λ′
1 + ∆−1

φφ

1

T

T∑

t=1

φtξ
′
t +Op(T−1) +Op(N−1).

Substituting the preceding equation into (E.1),

Ω̂⋄
εε − Ω⋄

εε = Λ1(V + V ′)Λ′
1 +

1

T

T∑

t=1

ξtφ
′
t∆

−1
φφΛ′

1 + Λ1∆−1
φφ

1

T

T∑

t=1

φtξ
′
t +Op(T−1) +Op(N−1).

However, as shown in Section C,

V + V ′ =
1

T

T∑

t=1

(εtε
′
t − Ir1

) +Op(T−1).

Given this result, together with φ⋄
t = Λ1φt by the definition of φt, we have

Ω̂⋄
εε − Ω⋄

εε =
1

T

T∑

t=1

(ε⋄
t ε

⋄′
t − Ω⋄

εε) +
1

T

T∑

t=1

ξtφ
⋄′
t ∆⋄−1

φφ + ∆⋄−1
φφ

1

T

T∑

t=1

φ⋄
t ξ

′
t +Op(T−1) +Op(N−1).

This completes the proof of Theorem E.1. �

Based on the results in Theorem E.1, we can directly derive the limiting distribution

results in Theorem 5.2. Details are omitted.

Proof of Theorem 5.3. We first consider the impulse response function under IRa

and IRb. Let P be the solution of the Cholesky decomposition of Ω. Under IRa and IRb,

by the special structure of Ω, it is easy to see

P =

[
Ir1

0
0 P∗

]
.

with P∗P∗′ = Ωυυ. The impulse response function of ht subject to one unit orthogonal

innovation is

ht = Pωt + Ψ1Pωt−1 + Ψ2Pωt−2 + · · · = C0ωt + C1ωt−1 + C2ωt−2 + · · ·
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with Cs = ΨsP. Notice that Ĉs = Ψ̂sP̂. To deliver the limiting distribution of Ĉ − C,

we need to derive the limiting distribution of P̂ − P. By the structure of P, it suffices to

consider P̂∗ − P∗. By Ωυυ = P∗P∗′ and Ω̃υυ = P̂∗P̂∗′, we have

Ω̃υυ − Ωυυ = P̂∗P̂∗′ − P∗P∗′ = P∗(P̂∗ − P∗)′ + (P̂∗ − P∗)P∗′ + (P̂∗ − P∗)(P̂∗ − P∗)′

The last term is of smaller order and hence negligible. Therefore, we have (neglecting the

last term)

vec(Ω̃υυ − Ωυυ) = (P∗ ⊗ Ir2
)vec(P̂∗ − P∗) + (Ir2

⊗ P∗)vec[(P̂∗ − P∗)′]

= [(P∗ ⊗ Ir2
) + (Ir2

⊗ P∗)Kr2
]vec(P̂∗ − P∗)

where Kr2
is the r2-dimensional commutation matrix. Let D∗

r2
be the duplication matrix

such that D∗
r2

vech(M) = vec(M) for any lower triangular matrix M , where vech(·) is

the half-vectorization operator that stacks the elements on and below the diagonal into a

vector. Then the preceding equation gives

vec(Ω̃υυ − Ωυυ) = [(P∗ ⊗ Ir2
) + (Ir2

⊗ P∗)Kr2
]D∗

r2
vech(P̂∗ − P∗),

which leads to

vech(P̂∗ − P∗) = W2vec(Ω̃υυ − Ωυυ).

with W2 = [D∗′
r2

W′
2W2D

∗
r2

]−1D∗′
r2

W′
2 and W2 = (P∗ ⊗ Ir2

) + (Ir2
⊗ P∗)Kr2

. By Theorem

E.1 on Ω̂υυ − Ωυυ, we have

√
Tvech(P̂∗ − P∗)

d−→ N
(
0, 2W2(Ωυυ ⊗ Ωυυ)W′

2

)
.

Now consider the asymptotic representation of Ĉs − Cs. By definition, we have

Ĉs − Cs = Ψ̂sP̂ − ΨsP = (Ψ̂s − Ψs)P + Ψs(P̂ − P) + (Ψ̂s − Ψs)(P̂ − P).

Again the last term is of smaller order and hence negligible. Taking vectorization operation

on both sides, we have (neglecting the last term)

vec(Ĉs − Cs) = (P ′ ⊗ Ir)vec(Ψ̂s − Ψs) + (Ir ⊗ Ψs)vec(P̂ − P)

Let D7 be the matrix such that vec(M) = D7vech(M1) with Mr×r = [0, 0; 0,M1] where M1

is an arbitrary r2 × r2 lower triangular matrix. Then the above result gives

vec(Ĉs − Cs) = (P ′ ⊗ Ir)Krvec(Ψ̂′
s − Ψ′

s) + (Ir ⊗ Ψs)D7vech(P̂∗ − P∗)

Under the normality of ut, it is easy to check that the above two expressions on the right

hand side are asymptotically independent. Given this result, we have

√
Tvec(Ĉs − Cs)

d−→ N
(
0, (P ′ ⊗ Ir)KrΥsJ1Υ′

sK
′
r(P ⊗ Ir) + (Ir ⊗ Ψs)D7J2D

′
7(Ir ⊗ Ψ′

s)
)
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with J1 = Ω ⊗ [E(ψtψ
′
t)]

−1 + D9JD
′
9 and J2 = 2W2(Ωυυ ⊗ Ωυυ)W′

2.

Now we consider the asymptotic representation under IRc. Let P be the solution of

the Cholesky decomposition of Ω. Under IRc, P is of the form

P =

[
P∗

1 0
0 P∗

2

]
.

with P∗
1 P∗′

1 = Ωεε and P∗
2 P∗′

2 = Ωυυ. P̂∗
2 − P∗

2 is already given. We only focus on P̂∗
1 − P∗

1 .

By Ω̂εε = P̂∗
1 P̂∗′

1 and P∗
1 P∗′

1 = Ωεε, we have

Ω̂εε − Ωεε = (P̂∗
1 − P∗

1 )P∗′
1 + P∗

1 (P̂∗
1 − P∗

1 )′ + (P̂∗
1 − P∗

1 )(P̂∗
1 − P∗

1 )′.

Neglecting the last term and taking the vectorization operation on both sides, we get

vec(Ω̂εε − Ωεε) = [(P∗
1 ⊗ Ir1

) + (Ir1
⊗ P∗

1 )Kr1
]vec(P̂∗

1 − P∗
1 )

= [(P∗
1 ⊗ Ir1

) + (Ir1
⊗ P∗

1 )Kr1
]D∗

r1
vech(P̂∗

1 − P∗
1 ).

So we have

vech(P̂∗
1 − P∗

1 ) = W1vec(Ω̂εε − Ωεε)

with W1 = (D∗′
r1

W′
1W1D

∗
r1

)−1D∗′
r1

W′
1 with W1 = (P∗

1 ⊗ Ir1
) + (Ir1

⊗ P∗
1 )Kr1

. Given this

result, we have

vech(P̂∗
1 − P∗

1 )
d−→ N

(
0,W1

[
2(Ωεε ⊗ Ωεε) + 4Sr1

(Σξξ ⊗ ∆−1
φφ)S′

r1

]
W′

1

)
.

where P2 = (Ir ⊗ ∆−1
φφ) + (∆−1

φφ ⊗ Ir)Kr. Let D8 is defined as vec(M) = D8vech(M1) +

D7vech(M2) for any M such that Mr×r = [M1, 0; 0,M2], where M1 is r1 × r1 and M2 is

r2 × r2 and both are lower-triangular matrices. By these two definitions, we have

vec(P̂ − P) = D8vech(P̂∗
1 − P∗

1 ) + D7vech(P̂∗
2 − P∗

2 ),

implying

vec(P̂−P)
d−→ N (0,D8W1

[
2(Ωεε⊗Ωεε)+4Sr1

(Σξξ⊗∆−1
φφ)S′

r1

]
W′

1D
′
8+2D7W2(Ωυυ⊗Ωυυ)W′

2D
′
7

)
.

Notice

vec(Ĉs − Cs) = (P ′ ⊗ Ir)Krvec(Ψ̂′
s − Ψ′

s) + (Ir ⊗ Ψs)vec(P̂ − P).

Under the normality of ut, it is easy to check that the above two expressions on the right

hand side are asymptotically independent. Given this result, we have

√
Tvec(Ĉs − Cs)

d−→ N
(
0, (P ′ ⊗ Ir)KrΥsJ1Υ′

sK
′
r(P ⊗ Ir) + (Ir ⊗ Ψs)J3(Ir ⊗ Ψ′

s)
)

where

J3 = D8W1

[
2(Ωεε ⊗ Ωεε) + 4Sr1

(Σξξ ⊗ ∆−1
φφ)S′

r1

]
W′

1D
′
8 + 2D7W2(Ωυυ ⊗ Ωυυ)W′

2D
′
7.

This completes the proof.
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