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Abstract 

Scenario Analysis (SA) plays a key role in determination of operational risk capital under Basel II 

Advanced Measurement Approach. However, operational risk capital based on scenario data may 

exhibit high sensitivity or wrong-way sensitivity to scenario inputs. In this paper, we first discuss 

scenario generation using quantile approach and parameter estimation using quantile matching. Then 

we use single-loss approximation (SLA) to examine sensitivity of scenario based capital to scenario 

inputs. 

1. Introduction 

As per the Basel II capital guidelines, banks may compute capital requirement for operational risk 

using one of the three approaches viz. Basic Indicator Approach (BIA), The Standardized Approach 

(TSA) and Advanced Measurement Approach (AMA). AMA is a risk-sensitive approach that requires 

regulatory capital estimation at 99.9
th
 quantile of the annual loss distribution using internal models. 

Due to paucity of empirical annual loss data, annual loss distribution is generated through convolution 

of annual frequency and individual loss severity distribution using parametric models. 

Regulatory AMA guidelines state that internal capital model must incorporate four data elements viz. 

internal loss data (ILD), relevant external loss data (ELD), scenario analysis (SA) and business 

environment and internal control factors (BEICF). As there is no standard modelling approach 

acceptable across the industry, different modelling approaches use these four data elements in a 

variety of ways (BCBS, 2009a, Table 18A, 18B, 18C). There are also multiple ways of conducting 

scenario analysis, which can be broadly classified into three categories viz. Individual scenario 

approach, percentile/quantile approach, bucket/interval approach (BCBS, 2009b, Table S1). 

Guidelines also require banks to identify non-overlapping units viz. Operational Risk Categories 

(ORC) that share similar risk profile. Typically, ORCs are identified as combination of banking 

business lines such as retail banking, commercial banking, trading and sales, payment and settlement 

etc. and operational risk event types such as internal fraud, external fraud, damage to physical 

assets, business disruption and system failure etc. 

In this paper we examine Value at Risk (VaR) sensitivity of AMA models that use scenario analysis as 

a direct model input. We demonstrate that scenario output may exhibit significant volatility due to 

small changes in scenario input data and this can have practical implications for banks migrating to 

AMA. 

 

2. Literature Review 

Rosengren (2006) summarises implications of scenario structuring choices and challenges in 

validation of scenario based models. Chaudhury (2010) reviews practical issues with operational risk 

capital modelling including scenario analysis. RMA (2012) industry position paper summarises 

industry practices in use of SA in AMA implementation in United States. Shevchenko and Wüthrich 

(2006) demonstrate the use of Bayesian techniques for combining scenario data with loss data, 

alongwith multiple ad-hoc procedures. 
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To the best of author’s knowledge, there is a lack of work in public domain discussing AMA model 

sensitivity for scenario based models. Colombo and Desando (2008) discuss development and 

implementation of scenario models alongwith model sensitivity. For LDA models, Opdyke and Cavallo 

(2012) demonstrate wrong-way VaR sensitivity to small losses where parameters are estimated 

based on loss data using MLE. 

 

3. Scenario Generation 

Scenario analysis involves elicitation of expert opinions for forward-looking estimates of likelihood and 

impact of plausible operational risk events. Quantile approach is a common approach for scenario 

analysis, resulting in expert estimates for specific percentiles of the frequency and severity 

distribution. The approach typically involves elicitation of mean frequency (MF), most likely severity 

(MS) and worst-case severity (WS) estimates from subject matter experts in following manner: 

Frequency 

No. Target 
Statistics/Quantile 

Question for the experts Illustrative answer 

1 MF What is the expected average number of loss events 
in a year? 

10 

 

Individual loss severity 

No. Target 
Statistics/Quantile 

Question for the experts Illustrative answer 
(Million) 

2 MS What is the most likely impact of this scenario? 5 

3 WS One of following approaches: 
 

 Time-based elicitation: What would you 
judge to be the impact of the single largest 
event over the next ‘t’ years? 

 

 Count-based elicitation: What would you 
judge to be the impact of the single largest 
loss out of ‘x’ such loss events? 

 

 
 

50 (1 in 10 years 
scenario) 

 
 

50 (1 worst out of 
100 losses) 

 

 

There are multiple ways of eliciting worst-case severity. Count-based method allows elicitation of a 

pre-determined quantile of the individual loss severity distribution. For instance, single largest loss out 

of 100 losses relates to 99
th
 quantile of individual loss severity distribution. Time-based elicitation of 

tail quantile interlinks severity and frequency distribution. Probability associated with worst-case 

severity (referred as ‘WS probability’ in the paper) in such cases is dependent on the mean frequency 

as well as frequency associated with worst-case loss. With ‘Fx’ as the distribution function for severity 
distribution and Poisson( ) as frequency of a loss greater than zero, frequency of losses above a 

threshold ‘u’ can be calculated as:                 
Therefore, probability that a loss less than or equal to worst-case loss would occur is: 

               



ie,                                   

with   =1/t where ‘t’ is the horizon for worst-case scenario. 

For instance, for 1 in 10 years scenario, annual frequency of worst-case loss would be 0.10. This is 

referred to as the ‘WS frequency’ in rest of the paper and it implies the frequency with which a loss 

greater than or equal to worst-case loss would occur during the horizon. With average frequency of 10 

events per annum, 1 in 10 years worst-case event represents 99
th
 quantile of the severity distribution. 

As can be observed, an increase in average frequency would increase the WS probability and vice-

versa. 

 

3.1. Distribution fitting to scenario inputs 

Quantile matching is a logical method for fitting continuous distributions to severity data collected 

using quantile approach. The method involves parameter estimation by minimizing the squared 

difference between empirical quantiles (as elicited from experts) and theoretical quantiles (defined by 

the inverse cumulative distribution function of the selected distribution). The objective is to ensure that 

the fitted distribution has the same quantiles as the expert opinion, by minimizing the following 

objective function for two or more quantiles: 

                                         
    

For purpose of our analysis, we assume that most likely severity (MS) is interpreted as median of the 

individual loss severity distribution. We consider only sub-exponential distributions from shape-scale 

family for sensitivity analysis, as these are commonly used in operational risk modelling and are 

suggested in AMA guidelines. Sub-exponential distributions are those distributions with slower tail 

decay than exponential distribution. This class includes weibull distribution (shape<1), lognormal 

distribution, pareto, burr distribution etc. We have not considered gamma distribution and weibull 

distribution (shape>1) as these are thin-tailed distributions. We have also not considered cases where 

pareto shape parameter declines below 1, as infinite-mean distribution would result in unrealistic 

capital figures. 

Parameter estimates are arrived at as follows: 

Distribution CDF Scale Parameter Shape Parameter 

 
Lognormal 

             

  >0 

                               

 
with Z1 =                   ) 

 

 
Weibull 

              
         

               

 

                                       

 

 
Pareto 

          
 

         

 
Numerical methods 

 
 

 



MS is the Median Severity and WS is the worst-case severity elicited from the experts. (1-WS 

Probability) is the probability that a loss higher than worst-case loss would occur. N(x) is the standard 

normal distribution function and N
-1

(p) is the quantile function for standard normal distribution. 

Closed-form solution for lognormal and weibull are arrived on basis of quantile function evaluated at 

cumulative probability equal to 50% and WS probability. Parameters for pareto distribution are 

estimated using numerical methods. 

 

4. OpVaR computation 

For sub-exponential distributions, VaR maybe approximated using following closed-form solution, 

known as single-loss approximation (Böcker & Klüppelberg, 2005). The expression shows that VaR 

based on convolution of frequency and severity distribution can be approximated by computing a 

higher quantile of the individual loss severity distribution. 

                     

where F
-1

 is the quantile function of individual loss severity distribution, ci is the confidence level,    is 

the mean frequency ie, average number of events in a time period. With mean correction (Böcker & 

Sprittulla, 2008), the refined approximation is: 

                                
Degen (2010) shows that for heavy-tailed, finite mean severity distributions, the approximation can be 

further improved to: 

                            
where E(X) is the mean of the individual loss severity distribution. The first term represents the 

Unexpected Loss (UL) and the second term represents the Expected Loss (EL) of aggregate loss 

distribution. In the rest of the paper, we refer to VaR as the Unexpected Loss component only ie, we 

examine sensitivity of UL component only. 

VaR approximation would be as follows at 99.9% confidence level for our candidate distributions: 

Distribution Quantile Function 99.9% VaR 

 
Lognormal 

                 
 

                              
 

 
Weibull 

                 
 

                     
 
 

Pareto                     
 

                      
 

 

For lognormal distribution, substituting estimates of shape and scale on basis of scenario output, we 

get: 



                                      

with 

                  

 

5. Wrong-way Sensitivity of OpVaR to Median Severity 

Parameter estimates for lognormal distribution show that with a decrease in MS, scale parameter 

would decline (reducing VaR) and the shape parameter would increase (increasing VaR). With 

opposing impact on scale and shape parameter, it is difficult to predict if OpVaR would increase or 

decrease with change in median severity. In the following section, we show that for probable 

scenarios, OpVaR would always increase due to decline in median severity and vice-versa. 

Differentiating lognormal VaR with respect to MS, we get:                         

and                                

with        or in expanded form 

                                     

It is unlikely that banks would focus on worst-case severities with associated frequency of less than 

0.001 ie, if worst-case loss occurs less frequently than 1 in 1000 years. It maybe observed that c 

would be greater than 1 if WS frequency is greater than 0.001. First derivative of OpVaR with respect 

to MS is negative for cases where c>1, indicating that OpVaR would increase with decrease in MS. 

Second derivative of VaR with respect to MS is positive with c>1. With worst-case annual frequency 

exactly equal to 0.001, VaR would be equal to WS and shows no sensitivity to change in MS. 

It is concluded that VaR would increase with decline in MS as increase in lognormal shape parameter 

would more than offset the benefit due to reduction in scale parameter. 

For ‘a%’ change in MS, percentage change in VaR for lognormal distribution would be:                                         

which results in:                        

For decrease in MS, VaR change would be positive and vice-versa. 



For weibull distribution, percentage change in VaR would be:                                                                  

with 

                             
This shows that percentage change in VaR depends on percentage change in MS, value of MF and 

WS probability, rather than on absolute level of MS, WS or WS/MS ratio. VaR sensitivity to MS 

reduces with increase in WS probability ie, sensitivity is lower for scenarios with low frequency 

associated with worst-case loss. 

 

5.1. Numerical results 

We use a test scenario, with Median Severity of 5 million and WS of 50 Million as basecase in Year-1. 

Due to an improvement in risk-profile of the Bank and improvement in control environment, the Bank 

revises Median severity estimate from 5 million in Year-1 to 4 million in Year-2. However, this leads to 

an increase in AMA capital. Conversely, an increase in Median severity due to deterioration in risk 

profile would lead to a capital saving. The illustration assumes that other scenario inputs are not 

changed. 

Mean 
Frequency 

Median 
Severity 
(Million) 

Worst-case 
Severity 
(Million) 

WC-probability OpVaR 
(Million) 

OpVaR: % 
change from 

basecase 

10 1 50 0.95 6940 661% 

10 2 50 0.95 2896 218% 

10 3 50 0.95 1737 90% 

10 4 50 0.95 1208 32% 

10 5 50 0.95 912 - 

10 6 50 0.95 725 -21% 

10 7 50 0.95 597 -35% 

10 8 50 0.95 504 -45% 

10 9 50 0.95 435 -52% 

10 10 50 0.95 381 -58% 

 

 

5.2. VaR sensitivity to MS for different distributions 

The following chart shows VaR sensitivity to MS for three sub-exponential distributions for the above 

illustration: 

 



 

The chart below shows percentage change in VaR due to change in MS. 

 

5.3. VaR sensitivity to lower quantile 

This is a generalisation of the previous results where the lower quantile is taken as the median. 

Scenario maybe designed in a manner such that both the quantiles are in the tail region of severity 

distribution or the first quantile is in the mid region and second quantile is in the tail region. VaR 

sensitivity to the lower quantile is still wrong-way as shown below: 



                        

with 

              

Where Z0 is the standard normal quantile at probability associated with lower quantile. With c’>1, VaR 
would increase due to decline in MS and vice-versa, which would be the case if frequency associated 

with worst-case scenario is greater than 0.001. 

Following are the practical implications of the above results: 

 While use of SA in AMA capital models might be preferred for reasons of conservatism and 

forward-looking estimates, high importance to SA as direct input in AMA model may lead to 

undesired consequence in form of volatile capital estimate. For instance, a change in median 

severity by 1 million (from 2 million to 1 million) pushes up capital requirement by 4.04 billion. 

 Due attention should also be given to median severity, rather than focussing solely on the 

worst-case severity estimates. High median severity estimates than justifiable on basis of 

empirical data (internal and/or external) should be properly supported. This should be done to 

prevent ‘gaming’ of the scenario output. 
 It may not be obvious to experts that for a given worst-case severity, lower median severity 

would translate into higher capital and vice-versa. 

 Banks should keep in mind that improvement/deterioration in risk profile may not have a 

logically consistent impact on OpVaR. This is also true for models where expert opinion is 

elicited for only for worst-case severity and median severity is derived from ILD. A decline is 

ILD median would increase OpVaR and vice-versa. 

 Choice of distribution for SA has non-trivial implications on VaR and VaR sensitivity. VaR is 

lowest for weibull, followed by lognormal and then pareto distribution. The only exception in 

the above illustration is when MS exceeds 8 million where pareto VaR declines below 

lognormal VaR. It is observed that VaR sensitivity is lowest for weibull (thinnest tail), followed 

by lognormal and pareto distribution. For each distribution, sensitivity increases as distribution 

tail becomes thicker ie, with increase in shape parameter for lognormal and decline in shape 

parameter for weibull and pareto. 

 

6. Right-way Sensitivity of OpVaR to Worst-case Severity 

Differentiating lognormal VaR with respect to WS, we get:                          

                                   

Both first and second derivatives are positive for scenarios with worst-case frequency greater than 

0.001. This shows that OpVaR changes in same direction as worst-case severity. 

For ‘b%’ change in WS, percentage change in VaR for lognormal distribution would be: 



                            

which results in:                      

For weibull distribution, percentage change in VaR would be:                                                         

with 

                             
This shows that percentage change in VaR depends on percentage change in WS, value of MF and 

WS probability, rather than on absolute level of MS, WS or WS/MS ratio. Further, absolute 

percentage change in VaR would be greater than absolute percentage change in WS, if c>1. 

 

6.1. VaR sensitivity to WS for different distributions 

VaR changes in same direction as WS for lognormal, weibull and pareto distribution. VaR and VaR 

sensitivity is lowest for weibull, followed by lognormal and then pareto distribution. For each 

distribution, VaR sensitivity increases as distribution tail becomes thicker. 

 

The chart below shows percentage change in VaR at different percentage change in WS. 



 

6.2. VaR sensitivity to upper quantile 

Following would be the VaR sensitivity to ‘b%’ change in upper quantile, where lower quantile may not 
be the median:                       

with  

              

Where Z0 is the standard normal quantile at probability associated with lower quantile. With c’>1, VaR 
would increase due to increase in WS and vice-versa, which would be the case if frequency 

associated with worst-case scenario is greater than 0.001. 

 

7. VaR sensitivity to MS and WS 

The following chart show impact of simultaneous change in WS and MS on VaR for three sub-

exponential distributions. 



 

For lognormal distribution, it maybe shown that for ‘a%’ change in MS and ‘b’% change in WS, 
percentage change in VaR would be:                                

This shows that for same percentage change in MS and WS (ie, a%=b%), change in VaR would also 

be a%. ie, if WS and MS are changed by a scalar such that WS/MS ratio is held constant, then VaR 

changes by the same scalar. At constant WS/MS ratio, shape parameter remains constant. Therefore, 

VaR changes linearly with change in scale parameter. This can be shown for lognormal distribution 

where MS and WS are scaled by a scalar ‘s’, resulting in new VaR which is ‘s’ times that of existing 

VaR: 

                                                                       

                

Following chart shows VaR at various WS and MS levels such that WS/MS ratio is 10. 

 



 

8. Wrong-way sensitivity of OpVaR to Mean Frequency for certain scenarios 

For scenarios with time-based elicitation of worst-case severity, VaR is dependent on MF in two 

opposing ways: 

 MF has a direct relationship with OpVaR as VaR is the ‘MF’-fold convolution of the individual 

loss severity distribution.  

 For time-based elicitation, probability associated with worst-case severity (WC probability) 

has direct relationship with mean frequency. Therefore, a decline (increase) in mean 

frequency would result in a decline in WC probability and an increase (decline) in OpVaR. 

This sensitivity is not applicable for count-based scenario elicitation, as the worst-case 

severity is a pre-determined percentile of the individual loss severity distribution that does not 

change due to change in MF. 

Indirect MF impact on VaR through ‘WC probability’ would offset the direct impact of MF on VaR, 

leading to wrong-way VaR sensitivity to MF. For lognormal distribution, percentage change in VaR 

due to change in MF would be:                           

 

where  

                                                 

VaR sensitivity to MF would remain same for a constant (WS/MS) ratio. Sensitivity to MF increases 

with an increase in WS/MS ratio. 

Illustrative results are shown below, with MF=10 considered as basecase: 



Mean 
Frequency 

Median 
Severity 
(Million) 

Worst-case 
Severity with 

WCF =0.5 p.a. 
(Million) 

WC probability 
(1-WCF/MF) 

OpVaR 
(Million) 

OpvaR: % 
change from 

basecase 

5 5 50 0.9 2893 217% 

10 5 50 0.95 912 0% 

15 5 50 0.967 605 -34% 

20 5 50 0.975 483 -47% 

25 5 50 0.98 416 -54% 

 

Following are the practical implications of the above results: 

 Probability associated with a worst-case loss may change due to changes in MF, even when 

the horizon associated with worst-case loss does not change. For instance, a 1 in 25 years 

event would be 99
th
 quantile of severity distribution if MF is 4 and would be 96

th
 quantile of 

severity distribution if MF is 1. Models that link scenario MF with ILD/ELD mean frequency 

may exhibit logically inconsistent results over time ie, VaR may increase with decline in 

empirical MF and vice-versa. 

 Linkage between MF and WS probability may not be clear to the experts during scenario 

exercise. For rare events with low average arrival rate, experts’ opinion about WS may not 

relate to a high quantile of severity distribution even though experts might perceive otherwise. 

For instance, a ‘1 in 25 years’ worst-case loss of 100 million would be just the 80
th
 quantile of 

severity distribution if MF is ‘1 in 5 years’. This may lead to unrealistic capital figures for 

certain rare event scenarios. Conversely, for certain ORCs a ‘1 in 2 years’ worst-case loss 

maybe sufficiently in the tail if MF is very high. Therefore, for time-based elicitation it is critical 

that time horizon is carefully selected to ensure that worst-case loss is sufficiently in the tail 

region. 

 

9. Conclusion 

The objective of the paper was to highlight scenario model sensitivities for the benefit of practitioners. 

We have shown that AMA models using scenario analysis as a direct input may exhibit significant 

volatility due to changes in scenario inputs. Many of the model sensitivities may not be obvious to the 

experts during scenario elicitation exercise. For instance, experts might believe that lower median 

severity would result in lower capital, for same worst-case severity. Similarly, impact of a decline in 

mean frequency on capital due to decline in probability associated with worst-case loss may not be 

obvious in time-based elicitation. Another important result is that capital sensitivity increases with 

choice of a conservative risk-curve for fitting to scenario data. 

Further work needs to be done to examine VaR sensitivity where EL term is included in the VaR 

approximation and where more than two severity quantiles are elicited. Future studies are also 

needed to examine overall capital sensitivity to scenario inputs, for models that combines scenario 

and loss data using various approaches such as body-tail splice or Bayesian methods. 
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