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Abstract: In this paper, we obtain bounds for the population Coefficient of Variation (CV) in Bernoulli,
Discrete Uniform, Normal and Exponential distributions. We also show that the sample coefficient of
variation (cv) 1s not an accurate estimator of the population CV in the above indicated distributions. Finally
we provide some suggestions based on the Maximum Likelihood Estimation to improve the population CV

estimate.
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INTRODUCTION

The coefficient of variation is usually used as a
measure of precision for the dispersion of data sets
[1, 2] and is also often used to compare numerical
distributions measured on different scales. Ostle [3]
found that the population CV is an ideal device for
comparing the variation in two series of data which are
measured n two different units (e.g., a comparison of
variation in height with vanation in weight). Lewis [4]
showed that the population CV may be used to compare
the dispersion of series measured in different units and
also that of series with the same units but running at
different levels of magnitude. Similarly, population
CVs have been used to evaluate results from different
experiments involving the same units of measure,
possibly conducted by different persons [5].

Scientists and researchers are often interested in
obtaining estimations and confidence intervals on
population coefficient of varations. Vangel [6] and
Verril [7] both discuss confidence intervals for the
population CV in Normal and Log-normal distributions.
It must also be mentioned that the confidence intervals
are based on a point estimator. Hence, the accuracy of
the point estimator is important too. The theoretical
investigation of properties of the sample coefficient of
variation has a long history. Two noteworthy examples
being Summers [8] and Albercher et al. [2], the latter
providing limits for the sample coefficient of variation
n a Normal distribution.

Here, we discuss whether the sample coefficient of
variation, cv, is a good estimator for the population CV.
In section 2, we obtain bounds for the population
coefficient of variation for both discrete and continuous
distributions namely, Bernoulli, Discrete Uniform,
Exponential and Normal distributions. We also consider
the accuracy of the sample c¢v as an estimator for the
population CV in each of the above indicated
distributions. In section 3, we examine whether the
Maximum Likelihood Estimation (MLE) can be used as
a better estimator for the population CV and finally
conclusions are presented in Section 4.

BOUNDS FOR POPULATION CV AND ITS
ESTIMATOR

The coefficient of variation of a distribution with

mean W and variance o is defined as o/p. If X and S
are the corresponding sample mean and variance, then
the sample cv=8/X can be regarded as an estimator
for the population CV. It can also be shown that this 1s
an asymptotically unbiased estimator for the population
CV [2]. In the following we investigate two discrete
and two continuous distributions and discuss the
accuracy of the sample cv as an estimator for the
population CV. Note however, similar results to those
obtained in this section can be determined for many
other distributions.

Bernoulli distribution: Tet X~Bemoulli (P), with
0<p<1, then
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From the above equation we obtain the following
bounds for the population CV.

0<Cv<l ifP=1/2

(M

1=CV<=ee if P=1/2

Let us now consider some sample points from this
distribution. For example, consider the points
(1,0,0,0,0,0,0,0,0)

From Bemoulli (P>1/2). The value of the cv for
this sample is 3 but according to (1) it should be less
than 1. Similarly, consider the points (1,1,1,1,1,1,1,1,1)
from Bemoulli (P<1/2). The sample cv for this case 1s 0
but according to (1) it should be greater than 1. These
are just two samples that show the sample cv does not
provide a good estimation for the population CV in
some situations. In the following, we compute the
probability of violating (1) for the sample cv in general.

Let Xi,...,. Xy~ Bemoulli (P), where P>1/2. Then
the violation from (1) for the sample cv is:

}Pk (1-py"k

n1-X
— 1
n-1 X

n
k

W

P{ev »1) = P(ev? = 1) = P[

SO

where, w = [n*/(2n-1)] and note also that X . the sample
mean, 1s used as an estimator for P. Table 1 shows the
value of this probability of violation for different
values of n and P. As can be seen from Table 1, the
probability of generating poor estimators for the sample
cv 1s decreased when the values of n and P increase.
Nevertheless, this probability 1s still relatively high for
some cases. For example, when P = 0.6 and n = 10, the
probability is almost 0.37.

2
2n-1

Discrete uniform distribution: Let X~DU{0,1,... u-
1}. The probability mass function for this distribution is
given by:

fx(X):% X

=0,1

=0,1,.,u-1

It follows that,

PopulationCV =fut /B 1) and43/3<CV <l (2)
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Table 1: Probability of generating a poor estimate of the population

cv
P= 06 0.7 08 0.9
n=10 0.3669 0.1503 0.0328 0.0016
n=20 0.2447 0.0480 0.0026 0.0000
n=30 0.1754 0.016% 0.0002 0.0000
n=40 0.1298 0.0063 0.0000 0.0000
n=>50 0.0978 0.0024 0.0000 0.0000

Table 2: Values of sample cv for the discrete uniform distribution on
the set {0, 1, 2} of size 4

4
X Symbol sample Number of similar samples  cv
=

0 {0,0,0,0) 1

1 (1,0,0,0) 4 2.00
2 (2,0,0,0) 4 2.00
2 (1,1,0,0) 6 1.15
3 (2,1,0,0) 12 1.28
3 (1,1,1,0) 4 0.67
4 (2,2,0,0) 6 1.15
4 (2,1,1,0) 12 0.82
4 (1,1,1,1) 1 0.00
5 (2,2,1,0) 12 0.77
5 2,1,1,1) 4 0.40
6 {2,2,2,0) 4 0.67
6 2,2,1,1) 6 0.38
7 2,2.2,1) 4 0.29
8 2,22, 1 0.00

Similar to the Bernoulli distribution, there are
many samples for which the sample cv does not satisfy
(2). For example, consider two samples (1,0,0,...,0) and
{(1,1,...,1) each of size n. The values of the cv for these

two samples are 4 and O respectively, which lie
outside the bounds obtained in (2).

We can also calculate the probability of a poor
estimate of the population CV. For example, let
X~DU{0,1,2}. Table 2 represents all samples from this
distribution of size 4 together with the value of the
sample cv in each case. According to Table 2,
P(J3/3<ov<1)=33/81=0.41. That is, 59 percent of

samples give an unacceptable estimation for the
population CV.

Exponential distribution: Let X-exp(0). For this
distribution the value of the population CV = 1, for all
6>0. Ten thousand samples of size n = 5, 10 and 50
were generated from an exponential distribution with
mean 1. Figure 1 shows the probability of frequency
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Fig. 1: Frequency plot for sample cv based on
simulation

plot for the sample cv for the three different sample
sizes. (The program for the simulation used in S-Plus is
presented in appendix A). In Fig. 1 the vertical axis
shows the probability density function of sample cv and
horizontal axis shows the values of sample cv. It should
be noted that the accuracy of this estimator increases as
the values of n and P increase.

Normal distribution: Let X~-N(u ¢%). In this

distribution the population CV=c/u and there is no

specific bound for this value [2, 7]. Here, we consider

the accuracy of the sample cv to estimate the value of

the population CV for the Standard Normal distribution.
Let Xy,... . X ~N{0,1). It can be shown that:

n-Dg*
2 ~ An-1:
(o3

n(xy* R
o '

where S% is the sample variance and 2 is the chi-

square distribution with v degrees of freedom. It
follows that:

(n—1)s?
( = 1/@1—1) ¢
(%7 nx?  n Y

2
9]

[ ],q
where, F,,, represents the F distribution with m and n
degrees of freedom. The value of the population CV for
the Standard Normal distribution is infinity; however,
there are many samples which produce a small
finite value for the sample cv. For example, whenn =5
we have:

P(lov] <3)=P(F,; <1.8)=05

This suggests that in this case, almost 50 percent
of samples lead to a very small estimation for the
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Fig. 2: P(lev[<k) for different values k using the
standard normal distribution

population CV. Figure 2 shows P(lcv|<k) for different
values of n Note also that this probability decreases
as n increases for a fixed k For example if k = 20,
the probability is greater than 0.8 for n = 5 but is less
than 0.6 when n 100. This confirms that as n
increases the sample cv provides a better estimate for
the population CV.

MAXTMUM LIKELTHOOD ESTIMATION OF CV

Maximum Likelihood Estimation (MLE) is a
popular statistical method used to make inferences
about parameters of the underlying probability
distribution from a given data set. As we observed in
the previous sections, the sample cv provides a poor
estimation for the population CV in many situations.
We saw that the sample cv may lie outside the bounds
obtained for the population CV, however, it should be
noted that the range of the MLE coincides with that of
the population parameters. Also MLHs are consistent
estimators of their parameters and asymptotically
efficient [9]. We now apply this property to estimate the
parameters of each of the distributions examined above.

Bernoulli distribution: The MLE of P in the Bernoulli
distribution is simply:

min{lfz,i} ,

max{lfz,i} . P=1/2

P<1/2
MLE(P) =

We saw that the population CV for the Bernoulli
distribution is ;T—P)/P . Using the invariance property
of MLFs (if 0 is an MLE of 8 and if g is a function,

then g(0) is an MLE of g(8)), we now see that the MLE
for the population CV is:

MLE(CV) = yf{1- MLE(P)}/MLE(P)
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It follows that the bounds obtained now coincide
with (1). (This result can also be confirmed for the
previous samples examined.)

Discrete uniform distribution: The following 1s a
good estimator for the population CV

MLE(CV) = (Y, +2)/(3Y,)

Where Y, max{Xy,.... X,}. Notice thaty3

/3<MLE(CV)<1 which again coincides with the bounds
for the CV obtained in (2) above. Thus this estimator
doesn’t have the defect of sample cv previously
highlighted.

Exponential distribution: As was outlined above, the
population CV for this distribution is always equal to 1.
Similarly, the MLE(CV) = 1, which clearly provides a
very good estimator in this case.

Normal distribution: The MLE of the population CV
is as follows:

Y x|
MLE(CV) =22 g

Note that the standard deviation is estimated with
normalizing f{actor n instead of n-1, therefore the MLE
of population CV is better than the sample cv for this
distribution. Note also the discrepancy of these two
estimators is very small as n increases. That is, these
two estimators asymptotically coincide.

CONCLUSION

The coefficient of variation is one of the most
popular measures for dispersion. This measure has
many good features, but in some cases, using the
coefficient of variation may lead to incorrect
conclusions about empirical phenomena. In this paper
we have demonstrated in many cases the sample cv
provides a poor estimate of the population CV.
Therefore the coefficient of variation should be used
with care, if at all. The results of this paper show that
using a MLE is better alternative to the classical
estimator the population CV.

APPENDIX A
The S-plus program to generate ten thousand

samples of sizes 5, 10 and 30 from an exponential
distribution with mean 1 is:
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dencvexp<-function(simulsize,samsizel,samsize2,samsiz3,param){
cvl <-array(dim=simulsize)

cv2<-array(dim=simulsize)

cvi3<-array({dim=simulsize)

for{i in 1:simulsize){

x1<-rexp(samsizel,param)

X2<-rexp{samsize2, param)

X3<-rexp(samsize3,param)
cvl[i]<-sqrt(var(x1))/mean(x1)
cv2[i]<-sqrt(var(x2))/mean(x2)
cv3[i]<-sqrt(var(x3))/mean(x3)

}

guiPlot("density" DataSetValues=data.sheet{cvl,cv2,cv3))

1.
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