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Abstract 

 

This paper provides a new proof of the Pythagoras Theorem on right-angled triangles via two 

new lemmas pertaining to, respectively, isosceles triangles and right-angled triangles, which are 

of pedagogical value in themselves. 
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A New and Very Long Proof of the Pythagoras Theorem 

By Way of a Proposition on Isosceles Triangles 

 

1. Introduction 

There is an abundance of proofs available for Pythagoras’ Theorem on right-angled triangles, 

from Pythagoras’ own alleged proof in the 6
th

 century B.C.
1, through Euclid’s proof2

, the proof 

by Thabit ibn Qurra of Baghdad in the 9
th

 century, the Indian 12
th

-century mathematician 

Bhaskara’s proof, to the one by the 20
th

 President of the United States James Garfield, who 

published his paper in 1876, five years before taking up office as President
3
.  

The aim of this paper is to present a new, and a rather long proof of this theorem.  In doing 

so, I have to face the inevitable question, “Why?”  This is especially so because an important 

principle of mathematics is brevity. Many an original, long proof of a theorem has been cast 

aside by the subsequent discovery of shorter proofs. The best example of this, within the realm 

of my own interests, is Kenneth Arrow’s celebrated Impossibility Theorem, pertaining to voting 

systems (Arrow 1951). When it comes to proving it, Arrow’s original proof has been superseded 

almost purely on grounds of its length and the availability now of much shorter proofs, such as 

those of Amartya Sen (1970) and John Geanakoplos (2005).  

How then can one justify presenting a new and longer proof of Pythagoras’ theorem? The 

only way to answer this is to invoke another Greek, Constantine Cavafy and his classic poem, 

Ithaca, which describes the long journey to Odysseus’ home island. When you reach the island, 

the poet warns the reader, you are likely to be disappointed, for it will have little new to offer. 

But do not be disappointed, Cavafy tells the reader, for Ithaca’s charm is the journey itself.  

 

                                                           
1
 The use of the word ‘alleged’ requires explanation. To the best of our knowledge the theorem was proved fully 

during the time of Pythagoras. But since Pythagoras also happened to be a prominent philosopher with a cult-like 

following, it is possible that the theorem was proved by someone else and attributed to him. The cult had many 

strange beliefs, including a pledge of secrecy and abstinence from eating beans. The cult ultimately broke down; 

according to Bertrand Russell, because some disciples cheated (and ate beans). 

For several different proofs of the Pythagorean theorem see:   http://www.cut-the-knot.org/pythagoras/ 
2
 A commonly used edition is the one published in 1956 and cited fully in the References under Euclid (1956). 

3
 President Garfield published his proof in the New England Journal of Education in 1976, when he was a 

Congressman from Ohio. For a discussion of Garfield’s proof see Lamb (2012). One of the best illustrations of 

President Garfield’s proof is to be found on the Khan Academy website: 
https://www.khanacademy.org/math/basic-geo/basic-geo-pythagorean-topic/basic-geo-pythagorean-

proofs/v/garfield-s-proof-of-the-pythagorean-theorem 

 

http://www.cut-the-knot.org/pythagoras/
https://www.khanacademy.org/math/basic-geo/basic-geo-pythagorean-topic/basic-geo-pythagorean-proofs/v/garfield-s-proof-of-the-pythagorean-theorem
https://www.khanacademy.org/math/basic-geo/basic-geo-pythagorean-topic/basic-geo-pythagorean-proofs/v/garfield-s-proof-of-the-pythagorean-theorem
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“Ithaca gave to you the beautiful journey;  
without her you’d not have set upon the road.  

But she has nothing left to give you any more.” 

In the present paper, I take reader to the familiar, final theorem via two novel propositions 

or lemmas, one which pertains to isosceles triangles and the other to right-angled triangles. 

They establish some interesting properties of isosceles and right-angled triangles. It is hoped 

that these lemmas, and especially the one on isosceles triangles, will be of interest in 

themselves
4
. As Cavafy says in the same poem: 

   “Hope that the road is a long one. 

Many may the summer mornings be 

when—with what pleasure, with what joy— 

you first put in to harbors new to your eyes;”5
 

 

Section 2 states the main theorem; sections 3 and 4 state and prove the two lemmas and 

the proof of the main theorem is provided in section 5. The notation used in this paper is 

section-specific. 

 

2. Pythagoras’ Theorem 

The theorem that we are setting out to prove, the Pythagoras’ Theorem, says the following. 

Take any right-angled triangle, in which the hypotenuse has a length of c and the other two 

sides lengths of a and b. The theorem asserts that  c
2
 = a

2
 + b

2
. 

The theorem is now proved via two lemmas, stated and proved in the next two sections.  

 

3. The Isosceles Lemma 

Consider an isosceles triangle, in which no angle is greater than 90
0
. Such an isosceles 

triangle is illustrated below, as ABC. 

 

                                                           
4
 In defense of this foray into geometry, I may add that while the present paper is an exercise in pure geometry, it 

is the outcome of a long-standing interest of mine in using geometry to understand economics (Basu, 1992).    
5
 The translations from Greek are by Daniel Mendelsohn. The reader interested in the full poem will find it at: 

http://www.cavafy.com/poems/content.asp?id=259&cat=1 , but is strongly encouraged to read the other poems 

of Cavafy as well, especially by the same translator (see Cavafy, 2009).  

http://www.cavafy.com/poems/content.asp?id=259&cat=1
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Let the two equal sides be of length c and let the length of CB be r.
6
 

Now from the vertex C drop a perpendicular to the side AB and label the touchdown point D, 

as shown. The length of DB be d.  

 

Figure 1 

 

 

 

 

 

 

 

 

 

Next draw a rectangle on the side AB, which has height d (and the other side is of course 

of length c). Draw an identical rectangle on the side AC. These two rectangles are illustrated in 

Figure 2 and marked R1 and R2.  

The lemma that I call the Isosceles Lemma and prove below is the following. The sum of 

the areas of the two rectangles R1 and R2 is exactly equal to the area of the square on the third 

side, BC. In other words, what I am going to prove, is, using the notation introduced in this 

section, r
2
 = 2dc 

 

                                                           
6
 In case the many “equal to’s” that appears in what follows get tiring, I may warn the reader with Nigel 

Molesworth’s observation in Down with Skool (see Willans and Searle, 1953):  “To do geom you hav to make a lot 

of things equal to each other when you can see perfectly well that they don’t. This agane is due to Pythagoras and 
it formed much of his conversation at brekfast.”    

D 

r 

c c 

B C 

A 

d 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 To prove the lemma, take the same triangle as shown in Figures 1 and 2, and drop a 

perpendicular from A to the side BC. Let the touchdown point be E, as illustrated in Figure 3.  

 

Figure 3 
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 Clearly E bisects BC in two equal parts. Hence, BE = EC = r/2. It is easy to see that 

triangles AEB and CDB are similar. That is, their only (possible) difference is in size. Hence, the 

length of DB is to BC is what BE is to AB. Using the notation in this section          

Hence,       r
2 

= 2dc.  

This completes the proof of the Isosceles Lemma. 

 

Corollary   In the special case in which the isosceles triangle happens to be right-angled, the 

Isosceles Lemma implies the Pythagoras Theorem. 

 

To see this, think of the angle at vertex A, in Figure 3, to be 90
0
. It will be obvious that for 

such an isosceles triangle, the point D will coincide with A. Hence, in that case d = c. By inserting 

this in the above equation, we get r
2 

= 2c
2
, which is what the Pythagoras Theorem would assert. 

This is of course not enough for what we are setting out to do in this paper, since the 

corollary applied to only right-angled isosceles triangles. For the full proof of the Pythagorean 

theorem we have to prove this for all right-angled triangles. 

 

4. The Right-Angled Lemma 

In this section I prove what I shall refer to as the “Right-angled Lemma”.  

Consider a right-angled triangle, such as ABF in Figure 4.  From the vertex B drop a line to 

the side AF such that where it makes contact with AF--call it G--is such that AG = AB.  In other 

words ABG is an isosceles triangle.  Let the length of AF be c and FG be f.  
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Figure 4 

 

 

 

  

 

 

 

Next draw a rectangle on the side AF and also one on the side AB which have a height of f.  

These are illustrated in Figure 5 and marked as rectangle R3 and R4. 

  

Figure 5 

 

 

 

 

 

 

 

 

 

 The lemma that I call the “Right-Angled Lemma” and will prove presently says the 

following.  The sum of the areas of the two rectangles R3 and R4 is exactly equal to the square 

on the side FB. In other words, using the notation introduced in this section and referring to the 

length of AB and BF by b and a, the Lemma claims that  a
2
 = bf + cf. 

c 

B 

F G 

b A 

f 
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To prove this, take the same triangle ABF in Figures 5 and from vertex F draw a line 

parallel to BG and call the point, where it touches the straight line AB, H. This is shown in Figure 

6.  

 

Figure 6 

 

  

 

 

 

 

 

 

 

Since FH is parallel to GB and ABG is an isosceles triangle (by construction), AHF must be 

isosceles as well.  Hence, the length of HB is f. Now draw a line linking H and G, and mark the 

point where HG cuts FB as J.  Let FJ = n and JB = m.  Clearly, it follows HJ = n and JG = m.  

 It is easy to see GFJ and BFA are similar triangles. Hence       

Since FJ = n and JB = JG = m,  n + m = a. 

Hence,   n = a – m = a - 
     

or nc = ac – bn 

or  n =          
Again, since GFJ and BFA are similar,  
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F 
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From the two previous equations, we know  

                      
          

Therefore,           a
2
 = bf + cf.  

 

5. The Proof of Pythagoras’ Theorem 

 

 To prove the Pythagoras Theorem, consider a right-angled triangle, BFH, as illustrated in 

Figure 7.  Let the hypotenuse HF be of length r, let BH be of length d, and BF of length a.  We 

have to prove:  

r
2
 = a

2
 + d

2
. 

 

Figure 7 

 

 

 

 

 

 

 

 

 Extend the line HB to the right, up to a point A, such that FA = HA.  In other words, AHF 

is an isosceles triangle.  Let the length of AB be b, and the length of AF be c.  

By the Isosceles Lemma, we know r
2
 = 2dc 

Or,  r
2
 = dc + d(d+b) 

Next, by the Right-angled Lemma, we have  

d b 

B A 

F 
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d 



10 

 

a
2
 = db + dc 

The last two above equations imply  

r
2
 = a

2
 + d

2
. 

This establishes the Pythagorean Theorem.  
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